mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 49cb2fc42c
			
		
	
	
		49cb2fc42c
		
	
	
	
	
		
			
			The main motivation to add set_tid to clone3() is CRIU.
To restore a process with the same PID/TID CRIU currently uses
/proc/sys/kernel/ns_last_pid. It writes the desired (PID - 1) to
ns_last_pid and then (quickly) does a clone(). This works most of the
time, but it is racy. It is also slow as it requires multiple syscalls.
Extending clone3() to support *set_tid makes it possible restore a
process using CRIU without accessing /proc/sys/kernel/ns_last_pid and
race free (as long as the desired PID/TID is available).
This clone3() extension places the same restrictions (CAP_SYS_ADMIN)
on clone3() with *set_tid as they are currently in place for ns_last_pid.
The original version of this change was using a single value for
set_tid. At the 2019 LPC, after presenting set_tid, it was, however,
decided to change set_tid to an array to enable setting the PID of a
process in multiple PID namespaces at the same time. If a process is
created in a PID namespace it is possible to influence the PID inside
and outside of the PID namespace. Details also in the corresponding
selftest.
To create a process with the following PIDs:
      PID NS level         Requested PID
        0 (host)              31496
        1                        42
        2                         1
For that example the two newly introduced parameters to struct
clone_args (set_tid and set_tid_size) would need to be:
  set_tid[0] = 1;
  set_tid[1] = 42;
  set_tid[2] = 31496;
  set_tid_size = 3;
If only the PIDs of the two innermost nested PID namespaces should be
defined it would look like this:
  set_tid[0] = 1;
  set_tid[1] = 42;
  set_tid_size = 2;
The PID of the newly created process would then be the next available
free PID in the PID namespace level 0 (host) and 42 in the PID namespace
at level 1 and the PID of the process in the innermost PID namespace
would be 1.
The set_tid array is used to specify the PID of a process starting
from the innermost nested PID namespaces up to set_tid_size PID namespaces.
set_tid_size cannot be larger then the current PID namespace level.
Signed-off-by: Adrian Reber <areber@redhat.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Link: https://lore.kernel.org/r/20191115123621.142252-1-areber@redhat.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
		
	
			
		
			
				
	
	
		
			580 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			580 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Generic pidhash and scalable, time-bounded PID allocator
 | |
|  *
 | |
|  * (C) 2002-2003 Nadia Yvette Chambers, IBM
 | |
|  * (C) 2004 Nadia Yvette Chambers, Oracle
 | |
|  * (C) 2002-2004 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * pid-structures are backing objects for tasks sharing a given ID to chain
 | |
|  * against. There is very little to them aside from hashing them and
 | |
|  * parking tasks using given ID's on a list.
 | |
|  *
 | |
|  * The hash is always changed with the tasklist_lock write-acquired,
 | |
|  * and the hash is only accessed with the tasklist_lock at least
 | |
|  * read-acquired, so there's no additional SMP locking needed here.
 | |
|  *
 | |
|  * We have a list of bitmap pages, which bitmaps represent the PID space.
 | |
|  * Allocating and freeing PIDs is completely lockless. The worst-case
 | |
|  * allocation scenario when all but one out of 1 million PIDs possible are
 | |
|  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | |
|  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | |
|  *
 | |
|  * Pid namespaces:
 | |
|  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | |
|  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | |
|  *     Many thanks to Oleg Nesterov for comments and help
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/idr.h>
 | |
| 
 | |
| struct pid init_struct_pid = {
 | |
| 	.count		= REFCOUNT_INIT(1),
 | |
| 	.tasks		= {
 | |
| 		{ .first = NULL },
 | |
| 		{ .first = NULL },
 | |
| 		{ .first = NULL },
 | |
| 	},
 | |
| 	.level		= 0,
 | |
| 	.numbers	= { {
 | |
| 		.nr		= 0,
 | |
| 		.ns		= &init_pid_ns,
 | |
| 	}, }
 | |
| };
 | |
| 
 | |
| int pid_max = PID_MAX_DEFAULT;
 | |
| 
 | |
| #define RESERVED_PIDS		300
 | |
| 
 | |
| int pid_max_min = RESERVED_PIDS + 1;
 | |
| int pid_max_max = PID_MAX_LIMIT;
 | |
| 
 | |
| /*
 | |
|  * PID-map pages start out as NULL, they get allocated upon
 | |
|  * first use and are never deallocated. This way a low pid_max
 | |
|  * value does not cause lots of bitmaps to be allocated, but
 | |
|  * the scheme scales to up to 4 million PIDs, runtime.
 | |
|  */
 | |
| struct pid_namespace init_pid_ns = {
 | |
| 	.kref = KREF_INIT(2),
 | |
| 	.idr = IDR_INIT(init_pid_ns.idr),
 | |
| 	.pid_allocated = PIDNS_ADDING,
 | |
| 	.level = 0,
 | |
| 	.child_reaper = &init_task,
 | |
| 	.user_ns = &init_user_ns,
 | |
| 	.ns.inum = PROC_PID_INIT_INO,
 | |
| #ifdef CONFIG_PID_NS
 | |
| 	.ns.ops = &pidns_operations,
 | |
| #endif
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(init_pid_ns);
 | |
| 
 | |
| /*
 | |
|  * Note: disable interrupts while the pidmap_lock is held as an
 | |
|  * interrupt might come in and do read_lock(&tasklist_lock).
 | |
|  *
 | |
|  * If we don't disable interrupts there is a nasty deadlock between
 | |
|  * detach_pid()->free_pid() and another cpu that does
 | |
|  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 | |
|  * read_lock(&tasklist_lock);
 | |
|  *
 | |
|  * After we clean up the tasklist_lock and know there are no
 | |
|  * irq handlers that take it we can leave the interrupts enabled.
 | |
|  * For now it is easier to be safe than to prove it can't happen.
 | |
|  */
 | |
| 
 | |
| static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | |
| 
 | |
| void put_pid(struct pid *pid)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 
 | |
| 	if (!pid)
 | |
| 		return;
 | |
| 
 | |
| 	ns = pid->numbers[pid->level].ns;
 | |
| 	if (refcount_dec_and_test(&pid->count)) {
 | |
| 		kmem_cache_free(ns->pid_cachep, pid);
 | |
| 		put_pid_ns(ns);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_pid);
 | |
| 
 | |
| static void delayed_put_pid(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct pid *pid = container_of(rhp, struct pid, rcu);
 | |
| 	put_pid(pid);
 | |
| }
 | |
| 
 | |
| void free_pid(struct pid *pid)
 | |
| {
 | |
| 	/* We can be called with write_lock_irq(&tasklist_lock) held */
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pidmap_lock, flags);
 | |
| 	for (i = 0; i <= pid->level; i++) {
 | |
| 		struct upid *upid = pid->numbers + i;
 | |
| 		struct pid_namespace *ns = upid->ns;
 | |
| 		switch (--ns->pid_allocated) {
 | |
| 		case 2:
 | |
| 		case 1:
 | |
| 			/* When all that is left in the pid namespace
 | |
| 			 * is the reaper wake up the reaper.  The reaper
 | |
| 			 * may be sleeping in zap_pid_ns_processes().
 | |
| 			 */
 | |
| 			wake_up_process(ns->child_reaper);
 | |
| 			break;
 | |
| 		case PIDNS_ADDING:
 | |
| 			/* Handle a fork failure of the first process */
 | |
| 			WARN_ON(ns->child_reaper);
 | |
| 			ns->pid_allocated = 0;
 | |
| 			/* fall through */
 | |
| 		case 0:
 | |
| 			schedule_work(&ns->proc_work);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		idr_remove(&ns->idr, upid->nr);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pidmap_lock, flags);
 | |
| 
 | |
| 	call_rcu(&pid->rcu, delayed_put_pid);
 | |
| }
 | |
| 
 | |
| struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
 | |
| 		      size_t set_tid_size)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	enum pid_type type;
 | |
| 	int i, nr;
 | |
| 	struct pid_namespace *tmp;
 | |
| 	struct upid *upid;
 | |
| 	int retval = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_tid_size contains the size of the set_tid array. Starting at
 | |
| 	 * the most nested currently active PID namespace it tells alloc_pid()
 | |
| 	 * which PID to set for a process in that most nested PID namespace
 | |
| 	 * up to set_tid_size PID namespaces. It does not have to set the PID
 | |
| 	 * for a process in all nested PID namespaces but set_tid_size must
 | |
| 	 * never be greater than the current ns->level + 1.
 | |
| 	 */
 | |
| 	if (set_tid_size > ns->level + 1)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 | |
| 	if (!pid)
 | |
| 		return ERR_PTR(retval);
 | |
| 
 | |
| 	tmp = ns;
 | |
| 	pid->level = ns->level;
 | |
| 
 | |
| 	for (i = ns->level; i >= 0; i--) {
 | |
| 		int tid = 0;
 | |
| 
 | |
| 		if (set_tid_size) {
 | |
| 			tid = set_tid[ns->level - i];
 | |
| 
 | |
| 			retval = -EINVAL;
 | |
| 			if (tid < 1 || tid >= pid_max)
 | |
| 				goto out_free;
 | |
| 			/*
 | |
| 			 * Also fail if a PID != 1 is requested and
 | |
| 			 * no PID 1 exists.
 | |
| 			 */
 | |
| 			if (tid != 1 && !tmp->child_reaper)
 | |
| 				goto out_free;
 | |
| 			retval = -EPERM;
 | |
| 			if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
 | |
| 				goto out_free;
 | |
| 			set_tid_size--;
 | |
| 		}
 | |
| 
 | |
| 		idr_preload(GFP_KERNEL);
 | |
| 		spin_lock_irq(&pidmap_lock);
 | |
| 
 | |
| 		if (tid) {
 | |
| 			nr = idr_alloc(&tmp->idr, NULL, tid,
 | |
| 				       tid + 1, GFP_ATOMIC);
 | |
| 			/*
 | |
| 			 * If ENOSPC is returned it means that the PID is
 | |
| 			 * alreay in use. Return EEXIST in that case.
 | |
| 			 */
 | |
| 			if (nr == -ENOSPC)
 | |
| 				nr = -EEXIST;
 | |
| 		} else {
 | |
| 			int pid_min = 1;
 | |
| 			/*
 | |
| 			 * init really needs pid 1, but after reaching the
 | |
| 			 * maximum wrap back to RESERVED_PIDS
 | |
| 			 */
 | |
| 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
 | |
| 				pid_min = RESERVED_PIDS;
 | |
| 
 | |
| 			/*
 | |
| 			 * Store a null pointer so find_pid_ns does not find
 | |
| 			 * a partially initialized PID (see below).
 | |
| 			 */
 | |
| 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
 | |
| 					      pid_max, GFP_ATOMIC);
 | |
| 		}
 | |
| 		spin_unlock_irq(&pidmap_lock);
 | |
| 		idr_preload_end();
 | |
| 
 | |
| 		if (nr < 0) {
 | |
| 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		pid->numbers[i].nr = nr;
 | |
| 		pid->numbers[i].ns = tmp;
 | |
| 		tmp = tmp->parent;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(is_child_reaper(pid))) {
 | |
| 		if (pid_ns_prepare_proc(ns))
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	get_pid_ns(ns);
 | |
| 	refcount_set(&pid->count, 1);
 | |
| 	for (type = 0; type < PIDTYPE_MAX; ++type)
 | |
| 		INIT_HLIST_HEAD(&pid->tasks[type]);
 | |
| 
 | |
| 	init_waitqueue_head(&pid->wait_pidfd);
 | |
| 
 | |
| 	upid = pid->numbers + ns->level;
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	if (!(ns->pid_allocated & PIDNS_ADDING))
 | |
| 		goto out_unlock;
 | |
| 	for ( ; upid >= pid->numbers; --upid) {
 | |
| 		/* Make the PID visible to find_pid_ns. */
 | |
| 		idr_replace(&upid->ns->idr, pid, upid->nr);
 | |
| 		upid->ns->pid_allocated++;
 | |
| 	}
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 
 | |
| 	return pid;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 	put_pid_ns(ns);
 | |
| 
 | |
| out_free:
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	while (++i <= ns->level) {
 | |
| 		upid = pid->numbers + i;
 | |
| 		idr_remove(&upid->ns->idr, upid->nr);
 | |
| 	}
 | |
| 
 | |
| 	/* On failure to allocate the first pid, reset the state */
 | |
| 	if (ns->pid_allocated == PIDNS_ADDING)
 | |
| 		idr_set_cursor(&ns->idr, 0);
 | |
| 
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 
 | |
| 	kmem_cache_free(ns->pid_cachep, pid);
 | |
| 	return ERR_PTR(retval);
 | |
| }
 | |
| 
 | |
| void disable_pid_allocation(struct pid_namespace *ns)
 | |
| {
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	ns->pid_allocated &= ~PIDNS_ADDING;
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| }
 | |
| 
 | |
| struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	return idr_find(&ns->idr, nr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_pid_ns);
 | |
| 
 | |
| struct pid *find_vpid(int nr)
 | |
| {
 | |
| 	return find_pid_ns(nr, task_active_pid_ns(current));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_vpid);
 | |
| 
 | |
| static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	return (type == PIDTYPE_PID) ?
 | |
| 		&task->thread_pid :
 | |
| 		&task->signal->pids[type];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_pid() must be called with the tasklist_lock write-held.
 | |
|  */
 | |
| void attach_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid = *task_pid_ptr(task, type);
 | |
| 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
 | |
| }
 | |
| 
 | |
| static void __change_pid(struct task_struct *task, enum pid_type type,
 | |
| 			struct pid *new)
 | |
| {
 | |
| 	struct pid **pid_ptr = task_pid_ptr(task, type);
 | |
| 	struct pid *pid;
 | |
| 	int tmp;
 | |
| 
 | |
| 	pid = *pid_ptr;
 | |
| 
 | |
| 	hlist_del_rcu(&task->pid_links[type]);
 | |
| 	*pid_ptr = new;
 | |
| 
 | |
| 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | |
| 		if (pid_has_task(pid, tmp))
 | |
| 			return;
 | |
| 
 | |
| 	free_pid(pid);
 | |
| }
 | |
| 
 | |
| void detach_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	__change_pid(task, type, NULL);
 | |
| }
 | |
| 
 | |
| void change_pid(struct task_struct *task, enum pid_type type,
 | |
| 		struct pid *pid)
 | |
| {
 | |
| 	__change_pid(task, type, pid);
 | |
| 	attach_pid(task, type);
 | |
| }
 | |
| 
 | |
| /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 | |
| void transfer_pid(struct task_struct *old, struct task_struct *new,
 | |
| 			   enum pid_type type)
 | |
| {
 | |
| 	if (type == PIDTYPE_PID)
 | |
| 		new->thread_pid = old->thread_pid;
 | |
| 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
 | |
| }
 | |
| 
 | |
| struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result = NULL;
 | |
| 	if (pid) {
 | |
| 		struct hlist_node *first;
 | |
| 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 | |
| 					      lockdep_tasklist_lock_is_held());
 | |
| 		if (first)
 | |
| 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL(pid_task);
 | |
| 
 | |
| /*
 | |
|  * Must be called under rcu_read_lock().
 | |
|  */
 | |
| struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
 | |
| 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 | |
| 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 | |
| }
 | |
| 
 | |
| struct task_struct *find_task_by_vpid(pid_t vnr)
 | |
| {
 | |
| 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 | |
| }
 | |
| 
 | |
| struct task_struct *find_get_task_by_vpid(pid_t nr)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	task = find_task_by_vpid(nr);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 | |
| 	rcu_read_unlock();
 | |
| 	return pid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_task_pid);
 | |
| 
 | |
| struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result;
 | |
| 	rcu_read_lock();
 | |
| 	result = pid_task(pid, type);
 | |
| 	if (result)
 | |
| 		get_task_struct(result);
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_pid_task);
 | |
| 
 | |
| struct pid *find_get_pid(pid_t nr)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(find_vpid(nr));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_get_pid);
 | |
| 
 | |
| pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 | |
| {
 | |
| 	struct upid *upid;
 | |
| 	pid_t nr = 0;
 | |
| 
 | |
| 	if (pid && ns->level <= pid->level) {
 | |
| 		upid = &pid->numbers[ns->level];
 | |
| 		if (upid->ns == ns)
 | |
| 			nr = upid->nr;
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pid_nr_ns);
 | |
| 
 | |
| pid_t pid_vnr(struct pid *pid)
 | |
| {
 | |
| 	return pid_nr_ns(pid, task_active_pid_ns(current));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pid_vnr);
 | |
| 
 | |
| pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 | |
| 			struct pid_namespace *ns)
 | |
| {
 | |
| 	pid_t nr = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!ns)
 | |
| 		ns = task_active_pid_ns(current);
 | |
| 	if (likely(pid_alive(task)))
 | |
| 		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| EXPORT_SYMBOL(__task_pid_nr_ns);
 | |
| 
 | |
| struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 | |
| {
 | |
| 	return ns_of_pid(task_pid(tsk));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(task_active_pid_ns);
 | |
| 
 | |
| /*
 | |
|  * Used by proc to find the first pid that is greater than or equal to nr.
 | |
|  *
 | |
|  * If there is a pid at nr this function is exactly the same as find_pid_ns.
 | |
|  */
 | |
| struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	return idr_get_next(&ns->idr, &nr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_create() - Create a new pid file descriptor.
 | |
|  *
 | |
|  * @pid:  struct pid that the pidfd will reference
 | |
|  *
 | |
|  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
 | |
|  *
 | |
|  * Note, that this function can only be called after the fd table has
 | |
|  * been unshared to avoid leaking the pidfd to the new process.
 | |
|  *
 | |
|  * Return: On success, a cloexec pidfd is returned.
 | |
|  *         On error, a negative errno number will be returned.
 | |
|  */
 | |
| static int pidfd_create(struct pid *pid)
 | |
| {
 | |
| 	int fd;
 | |
| 
 | |
| 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
 | |
| 			      O_RDWR | O_CLOEXEC);
 | |
| 	if (fd < 0)
 | |
| 		put_pid(pid);
 | |
| 
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_open() - Open new pid file descriptor.
 | |
|  *
 | |
|  * @pid:   pid for which to retrieve a pidfd
 | |
|  * @flags: flags to pass
 | |
|  *
 | |
|  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
 | |
|  * the process identified by @pid. Currently, the process identified by
 | |
|  * @pid must be a thread-group leader. This restriction currently exists
 | |
|  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
 | |
|  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
 | |
|  * leaders).
 | |
|  *
 | |
|  * Return: On success, a cloexec pidfd is returned.
 | |
|  *         On error, a negative errno number will be returned.
 | |
|  */
 | |
| SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
 | |
| {
 | |
| 	int fd;
 | |
| 	struct pid *p;
 | |
| 
 | |
| 	if (flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	p = find_get_pid(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if (pid_has_task(p, PIDTYPE_TGID))
 | |
| 		fd = pidfd_create(p);
 | |
| 	else
 | |
| 		fd = -EINVAL;
 | |
| 
 | |
| 	put_pid(p);
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| void __init pid_idr_init(void)
 | |
| {
 | |
| 	/* Verify no one has done anything silly: */
 | |
| 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
 | |
| 
 | |
| 	/* bump default and minimum pid_max based on number of cpus */
 | |
| 	pid_max = min(pid_max_max, max_t(int, pid_max,
 | |
| 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 | |
| 	pid_max_min = max_t(int, pid_max_min,
 | |
| 				PIDS_PER_CPU_MIN * num_possible_cpus());
 | |
| 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 | |
| 
 | |
| 	idr_init(&init_pid_ns.idr);
 | |
| 
 | |
| 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
 | |
| 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 | |
| }
 |