mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	v3: s-o-b comment, explanation of performance and descision for the start/stop implementation Implementing rmw functionality for RAID6 requires optimized syndrome calculation. Up to now we can only generate a complete syndrome. The target P/Q pages are always overwritten. With this patch we provide a framework for inplace P/Q modification. In the first place simply fill those functions with NULL values. xor_syndrome() has two additional parameters: start & stop. These will indicate the first and last page that are changing during a rmw run. That makes it possible to avoid several unneccessary loops and speed up calculation. The caller needs to implement the following logic to make the functions work. 1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source blocks inside P/Q between (and including) start and end. 2) modify any block with start <= block <= stop 3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of source blocks into P/Q between (and including) start and end. Pages between start and stop that won't be changed should be filled with a pointer to the kernel zero page. The reasons for not taking NULL pages are: 1) Algorithms cross the whole source data line by line. Thus avoid additional branches. 2) Having a NULL page avoids calculating the XOR P parity but still need calulation steps for the Q parity. Depending on the algorithm unrolling that might be only a difference of 2 instructions per loop. The benchmark numbers of the gen_syndrome() functions are displayed in the kernel log. Do the same for the xor_syndrome() functions. This will help to analyze performance problems and give an rough estimate how well the algorithm works. The choice of the fastest algorithm will still depend on the gen_syndrome() performance. With the start/stop page implementation the speed can vary a lot in real life. E.g. a change of page 0 & page 15 on a stripe will be harder to compute than the case where page 0 & page 1 are XOR candidates. To be not to enthusiatic about the expected speeds we will run a worse case test that simulates a change on the upper half of the stripe. So we do: 1) calculation of P/Q for the upper pages 2) continuation of Q for the lower (empty) pages Signed-off-by: Markus Stockhausen <stockhausen@collogia.de> Signed-off-by: NeilBrown <neilb@suse.de>
		
			
				
	
	
		
			250 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* -*- linux-c -*- ------------------------------------------------------- *
 | 
						|
 *
 | 
						|
 *   Copyright 2002 H. Peter Anvin - All Rights Reserved
 | 
						|
 *
 | 
						|
 *   This program is free software; you can redistribute it and/or modify
 | 
						|
 *   it under the terms of the GNU General Public License as published by
 | 
						|
 *   the Free Software Foundation, Inc., 53 Temple Place Ste 330,
 | 
						|
 *   Boston MA 02111-1307, USA; either version 2 of the License, or
 | 
						|
 *   (at your option) any later version; incorporated herein by reference.
 | 
						|
 *
 | 
						|
 * ----------------------------------------------------------------------- */
 | 
						|
 | 
						|
/*
 | 
						|
 * raid6/algos.c
 | 
						|
 *
 | 
						|
 * Algorithm list and algorithm selection for RAID-6
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/raid/pq.h>
 | 
						|
#ifndef __KERNEL__
 | 
						|
#include <sys/mman.h>
 | 
						|
#include <stdio.h>
 | 
						|
#else
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#if !RAID6_USE_EMPTY_ZERO_PAGE
 | 
						|
/* In .bss so it's zeroed */
 | 
						|
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
 | 
						|
EXPORT_SYMBOL(raid6_empty_zero_page);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
struct raid6_calls raid6_call;
 | 
						|
EXPORT_SYMBOL_GPL(raid6_call);
 | 
						|
 | 
						|
const struct raid6_calls * const raid6_algos[] = {
 | 
						|
#if defined(__ia64__)
 | 
						|
	&raid6_intx16,
 | 
						|
	&raid6_intx32,
 | 
						|
#endif
 | 
						|
#if defined(__i386__) && !defined(__arch_um__)
 | 
						|
	&raid6_mmxx1,
 | 
						|
	&raid6_mmxx2,
 | 
						|
	&raid6_sse1x1,
 | 
						|
	&raid6_sse1x2,
 | 
						|
	&raid6_sse2x1,
 | 
						|
	&raid6_sse2x2,
 | 
						|
#ifdef CONFIG_AS_AVX2
 | 
						|
	&raid6_avx2x1,
 | 
						|
	&raid6_avx2x2,
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#if defined(__x86_64__) && !defined(__arch_um__)
 | 
						|
	&raid6_sse2x1,
 | 
						|
	&raid6_sse2x2,
 | 
						|
	&raid6_sse2x4,
 | 
						|
#ifdef CONFIG_AS_AVX2
 | 
						|
	&raid6_avx2x1,
 | 
						|
	&raid6_avx2x2,
 | 
						|
	&raid6_avx2x4,
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_ALTIVEC
 | 
						|
	&raid6_altivec1,
 | 
						|
	&raid6_altivec2,
 | 
						|
	&raid6_altivec4,
 | 
						|
	&raid6_altivec8,
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_TILEGX)
 | 
						|
	&raid6_tilegx8,
 | 
						|
#endif
 | 
						|
	&raid6_intx1,
 | 
						|
	&raid6_intx2,
 | 
						|
	&raid6_intx4,
 | 
						|
	&raid6_intx8,
 | 
						|
#ifdef CONFIG_KERNEL_MODE_NEON
 | 
						|
	&raid6_neonx1,
 | 
						|
	&raid6_neonx2,
 | 
						|
	&raid6_neonx4,
 | 
						|
	&raid6_neonx8,
 | 
						|
#endif
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
void (*raid6_2data_recov)(int, size_t, int, int, void **);
 | 
						|
EXPORT_SYMBOL_GPL(raid6_2data_recov);
 | 
						|
 | 
						|
void (*raid6_datap_recov)(int, size_t, int, void **);
 | 
						|
EXPORT_SYMBOL_GPL(raid6_datap_recov);
 | 
						|
 | 
						|
const struct raid6_recov_calls *const raid6_recov_algos[] = {
 | 
						|
#ifdef CONFIG_AS_AVX2
 | 
						|
	&raid6_recov_avx2,
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_AS_SSSE3
 | 
						|
	&raid6_recov_ssse3,
 | 
						|
#endif
 | 
						|
	&raid6_recov_intx1,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
#define RAID6_TIME_JIFFIES_LG2	4
 | 
						|
#else
 | 
						|
/* Need more time to be stable in userspace */
 | 
						|
#define RAID6_TIME_JIFFIES_LG2	9
 | 
						|
#define time_before(x, y) ((x) < (y))
 | 
						|
#endif
 | 
						|
 | 
						|
static inline const struct raid6_recov_calls *raid6_choose_recov(void)
 | 
						|
{
 | 
						|
	const struct raid6_recov_calls *const *algo;
 | 
						|
	const struct raid6_recov_calls *best;
 | 
						|
 | 
						|
	for (best = NULL, algo = raid6_recov_algos; *algo; algo++)
 | 
						|
		if (!best || (*algo)->priority > best->priority)
 | 
						|
			if (!(*algo)->valid || (*algo)->valid())
 | 
						|
				best = *algo;
 | 
						|
 | 
						|
	if (best) {
 | 
						|
		raid6_2data_recov = best->data2;
 | 
						|
		raid6_datap_recov = best->datap;
 | 
						|
 | 
						|
		pr_info("raid6: using %s recovery algorithm\n", best->name);
 | 
						|
	} else
 | 
						|
		pr_err("raid6: Yikes! No recovery algorithm found!\n");
 | 
						|
 | 
						|
	return best;
 | 
						|
}
 | 
						|
 | 
						|
static inline const struct raid6_calls *raid6_choose_gen(
 | 
						|
	void *(*const dptrs)[(65536/PAGE_SIZE)+2], const int disks)
 | 
						|
{
 | 
						|
	unsigned long perf, bestgenperf, bestxorperf, j0, j1;
 | 
						|
	int start = (disks>>1)-1, stop = disks-3;	/* work on the second half of the disks */
 | 
						|
	const struct raid6_calls *const *algo;
 | 
						|
	const struct raid6_calls *best;
 | 
						|
 | 
						|
	for (bestgenperf = 0, bestxorperf = 0, best = NULL, algo = raid6_algos; *algo; algo++) {
 | 
						|
		if (!best || (*algo)->prefer >= best->prefer) {
 | 
						|
			if ((*algo)->valid && !(*algo)->valid())
 | 
						|
				continue;
 | 
						|
 | 
						|
			perf = 0;
 | 
						|
 | 
						|
			preempt_disable();
 | 
						|
			j0 = jiffies;
 | 
						|
			while ((j1 = jiffies) == j0)
 | 
						|
				cpu_relax();
 | 
						|
			while (time_before(jiffies,
 | 
						|
					    j1 + (1<<RAID6_TIME_JIFFIES_LG2))) {
 | 
						|
				(*algo)->gen_syndrome(disks, PAGE_SIZE, *dptrs);
 | 
						|
				perf++;
 | 
						|
			}
 | 
						|
			preempt_enable();
 | 
						|
 | 
						|
			if (perf > bestgenperf) {
 | 
						|
				bestgenperf = perf;
 | 
						|
				best = *algo;
 | 
						|
			}
 | 
						|
			pr_info("raid6: %-8s gen() %5ld MB/s\n", (*algo)->name,
 | 
						|
			       (perf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2));
 | 
						|
 | 
						|
			if (!(*algo)->xor_syndrome)
 | 
						|
				continue;
 | 
						|
 | 
						|
			perf = 0;
 | 
						|
 | 
						|
			preempt_disable();
 | 
						|
			j0 = jiffies;
 | 
						|
			while ((j1 = jiffies) == j0)
 | 
						|
				cpu_relax();
 | 
						|
			while (time_before(jiffies,
 | 
						|
					    j1 + (1<<RAID6_TIME_JIFFIES_LG2))) {
 | 
						|
				(*algo)->xor_syndrome(disks, start, stop,
 | 
						|
						      PAGE_SIZE, *dptrs);
 | 
						|
				perf++;
 | 
						|
			}
 | 
						|
			preempt_enable();
 | 
						|
 | 
						|
			if (best == *algo)
 | 
						|
				bestxorperf = perf;
 | 
						|
 | 
						|
			pr_info("raid6: %-8s xor() %5ld MB/s\n", (*algo)->name,
 | 
						|
				(perf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2+1));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (best) {
 | 
						|
		pr_info("raid6: using algorithm %s gen() %ld MB/s\n",
 | 
						|
		       best->name,
 | 
						|
		       (bestgenperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2));
 | 
						|
		if (best->xor_syndrome)
 | 
						|
			pr_info("raid6: .... xor() %ld MB/s, rmw enabled\n",
 | 
						|
			       (bestxorperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2+1));
 | 
						|
		raid6_call = *best;
 | 
						|
	} else
 | 
						|
		pr_err("raid6: Yikes!  No algorithm found!\n");
 | 
						|
 | 
						|
	return best;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Try to pick the best algorithm */
 | 
						|
/* This code uses the gfmul table as convenient data set to abuse */
 | 
						|
 | 
						|
int __init raid6_select_algo(void)
 | 
						|
{
 | 
						|
	const int disks = (65536/PAGE_SIZE)+2;
 | 
						|
 | 
						|
	const struct raid6_calls *gen_best;
 | 
						|
	const struct raid6_recov_calls *rec_best;
 | 
						|
	char *syndromes;
 | 
						|
	void *dptrs[(65536/PAGE_SIZE)+2];
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < disks-2; i++)
 | 
						|
		dptrs[i] = ((char *)raid6_gfmul) + PAGE_SIZE*i;
 | 
						|
 | 
						|
	/* Normal code - use a 2-page allocation to avoid D$ conflict */
 | 
						|
	syndromes = (void *) __get_free_pages(GFP_KERNEL, 1);
 | 
						|
 | 
						|
	if (!syndromes) {
 | 
						|
		pr_err("raid6: Yikes!  No memory available.\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	dptrs[disks-2] = syndromes;
 | 
						|
	dptrs[disks-1] = syndromes + PAGE_SIZE;
 | 
						|
 | 
						|
	/* select raid gen_syndrome function */
 | 
						|
	gen_best = raid6_choose_gen(&dptrs, disks);
 | 
						|
 | 
						|
	/* select raid recover functions */
 | 
						|
	rec_best = raid6_choose_recov();
 | 
						|
 | 
						|
	free_pages((unsigned long)syndromes, 1);
 | 
						|
 | 
						|
	return gen_best && rec_best ? 0 : -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static void raid6_exit(void)
 | 
						|
{
 | 
						|
	do { } while (0);
 | 
						|
}
 | 
						|
 | 
						|
subsys_initcall(raid6_select_algo);
 | 
						|
module_exit(raid6_exit);
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("RAID6 Q-syndrome calculations");
 |