mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			914 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			914 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * PPC Huge TLB Page Support for Kernel.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 | 
						|
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
 | 
						|
 *
 | 
						|
 * Based on the IA-32 version:
 | 
						|
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/of_fdt.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/kmemleak.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/hugetlb.h>
 | 
						|
#include <asm/pte-walk.h>
 | 
						|
 | 
						|
 | 
						|
#ifdef CONFIG_HUGETLB_PAGE
 | 
						|
 | 
						|
#define PAGE_SHIFT_64K	16
 | 
						|
#define PAGE_SHIFT_512K	19
 | 
						|
#define PAGE_SHIFT_8M	23
 | 
						|
#define PAGE_SHIFT_16M	24
 | 
						|
#define PAGE_SHIFT_16G	34
 | 
						|
 | 
						|
bool hugetlb_disabled = false;
 | 
						|
 | 
						|
unsigned int HPAGE_SHIFT;
 | 
						|
EXPORT_SYMBOL(HPAGE_SHIFT);
 | 
						|
 | 
						|
#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 | 
						|
 | 
						|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Only called for hugetlbfs pages, hence can ignore THP and the
 | 
						|
	 * irq disabled walk.
 | 
						|
	 */
 | 
						|
	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 | 
						|
			   unsigned long address, unsigned int pdshift,
 | 
						|
			   unsigned int pshift, spinlock_t *ptl)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	pte_t *new;
 | 
						|
	int i;
 | 
						|
	int num_hugepd;
 | 
						|
 | 
						|
	if (pshift >= pdshift) {
 | 
						|
		cachep = hugepte_cache;
 | 
						|
		num_hugepd = 1 << (pshift - pdshift);
 | 
						|
	} else {
 | 
						|
		cachep = PGT_CACHE(pdshift - pshift);
 | 
						|
		num_hugepd = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 | 
						|
 | 
						|
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 | 
						|
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 | 
						|
 | 
						|
	if (! new)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure other cpus find the hugepd set only after a
 | 
						|
	 * properly initialized page table is visible to them.
 | 
						|
	 * For more details look for comment in __pte_alloc().
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	spin_lock(ptl);
 | 
						|
	/*
 | 
						|
	 * We have multiple higher-level entries that point to the same
 | 
						|
	 * actual pte location.  Fill in each as we go and backtrack on error.
 | 
						|
	 * We need all of these so the DTLB pgtable walk code can find the
 | 
						|
	 * right higher-level entry without knowing if it's a hugepage or not.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < num_hugepd; i++, hpdp++) {
 | 
						|
		if (unlikely(!hugepd_none(*hpdp)))
 | 
						|
			break;
 | 
						|
		else {
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
			*hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS |
 | 
						|
					 (shift_to_mmu_psize(pshift) << 2));
 | 
						|
#elif defined(CONFIG_PPC_8xx)
 | 
						|
			*hpdp = __hugepd(__pa(new) | _PMD_USER |
 | 
						|
					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
 | 
						|
					  _PMD_PAGE_512K) | _PMD_PRESENT);
 | 
						|
#else
 | 
						|
			/* We use the old format for PPC_FSL_BOOK3E */
 | 
						|
			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* If we bailed from the for loop early, an error occurred, clean up */
 | 
						|
	if (i < num_hugepd) {
 | 
						|
		for (i = i - 1 ; i >= 0; i--, hpdp--)
 | 
						|
			*hpdp = __hugepd(0);
 | 
						|
		kmem_cache_free(cachep, new);
 | 
						|
	} else {
 | 
						|
		kmemleak_ignore(new);
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At this point we do the placement change only for BOOK3S 64. This would
 | 
						|
 * possibly work on other subarchs.
 | 
						|
 */
 | 
						|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	pgd_t *pg;
 | 
						|
	pud_t *pu;
 | 
						|
	pmd_t *pm;
 | 
						|
	hugepd_t *hpdp = NULL;
 | 
						|
	unsigned pshift = __ffs(sz);
 | 
						|
	unsigned pdshift = PGDIR_SHIFT;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	addr &= ~(sz-1);
 | 
						|
	pg = pgd_offset(mm, addr);
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
	if (pshift == PGDIR_SHIFT)
 | 
						|
		/* 16GB huge page */
 | 
						|
		return (pte_t *) pg;
 | 
						|
	else if (pshift > PUD_SHIFT) {
 | 
						|
		/*
 | 
						|
		 * We need to use hugepd table
 | 
						|
		 */
 | 
						|
		ptl = &mm->page_table_lock;
 | 
						|
		hpdp = (hugepd_t *)pg;
 | 
						|
	} else {
 | 
						|
		pdshift = PUD_SHIFT;
 | 
						|
		pu = pud_alloc(mm, pg, addr);
 | 
						|
		if (pshift == PUD_SHIFT)
 | 
						|
			return (pte_t *)pu;
 | 
						|
		else if (pshift > PMD_SHIFT) {
 | 
						|
			ptl = pud_lockptr(mm, pu);
 | 
						|
			hpdp = (hugepd_t *)pu;
 | 
						|
		} else {
 | 
						|
			pdshift = PMD_SHIFT;
 | 
						|
			pm = pmd_alloc(mm, pu, addr);
 | 
						|
			if (pshift == PMD_SHIFT)
 | 
						|
				/* 16MB hugepage */
 | 
						|
				return (pte_t *)pm;
 | 
						|
			else {
 | 
						|
				ptl = pmd_lockptr(mm, pm);
 | 
						|
				hpdp = (hugepd_t *)pm;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#else
 | 
						|
	if (pshift >= PGDIR_SHIFT) {
 | 
						|
		ptl = &mm->page_table_lock;
 | 
						|
		hpdp = (hugepd_t *)pg;
 | 
						|
	} else {
 | 
						|
		pdshift = PUD_SHIFT;
 | 
						|
		pu = pud_alloc(mm, pg, addr);
 | 
						|
		if (pshift >= PUD_SHIFT) {
 | 
						|
			ptl = pud_lockptr(mm, pu);
 | 
						|
			hpdp = (hugepd_t *)pu;
 | 
						|
		} else {
 | 
						|
			pdshift = PMD_SHIFT;
 | 
						|
			pm = pmd_alloc(mm, pu, addr);
 | 
						|
			ptl = pmd_lockptr(mm, pm);
 | 
						|
			hpdp = (hugepd_t *)pm;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	if (!hpdp)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 | 
						|
 | 
						|
	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
 | 
						|
						  pdshift, pshift, ptl))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return hugepte_offset(*hpdp, addr, pdshift);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
/*
 | 
						|
 * Tracks gpages after the device tree is scanned and before the
 | 
						|
 * huge_boot_pages list is ready on pseries.
 | 
						|
 */
 | 
						|
#define MAX_NUMBER_GPAGES	1024
 | 
						|
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
 | 
						|
__initdata static unsigned nr_gpages;
 | 
						|
 | 
						|
/*
 | 
						|
 * Build list of addresses of gigantic pages.  This function is used in early
 | 
						|
 * boot before the buddy allocator is setup.
 | 
						|
 */
 | 
						|
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 | 
						|
{
 | 
						|
	if (!addr)
 | 
						|
		return;
 | 
						|
	while (number_of_pages > 0) {
 | 
						|
		gpage_freearray[nr_gpages] = addr;
 | 
						|
		nr_gpages++;
 | 
						|
		number_of_pages--;
 | 
						|
		addr += page_size;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m;
 | 
						|
	if (nr_gpages == 0)
 | 
						|
		return 0;
 | 
						|
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
 | 
						|
	gpage_freearray[nr_gpages] = 0;
 | 
						|
	list_add(&m->list, &huge_boot_pages);
 | 
						|
	m->hstate = hstate;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
int __init alloc_bootmem_huge_page(struct hstate *h)
 | 
						|
{
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
 | 
						|
		return pseries_alloc_bootmem_huge_page(h);
 | 
						|
#endif
 | 
						|
	return __alloc_bootmem_huge_page(h);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 | 
						|
#define HUGEPD_FREELIST_SIZE \
 | 
						|
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 | 
						|
 | 
						|
struct hugepd_freelist {
 | 
						|
	struct rcu_head	rcu;
 | 
						|
	unsigned int index;
 | 
						|
	void *ptes[0];
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 | 
						|
 | 
						|
static void hugepd_free_rcu_callback(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct hugepd_freelist *batch =
 | 
						|
		container_of(head, struct hugepd_freelist, rcu);
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < batch->index; i++)
 | 
						|
		kmem_cache_free(hugepte_cache, batch->ptes[i]);
 | 
						|
 | 
						|
	free_page((unsigned long)batch);
 | 
						|
}
 | 
						|
 | 
						|
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 | 
						|
{
 | 
						|
	struct hugepd_freelist **batchp;
 | 
						|
 | 
						|
	batchp = &get_cpu_var(hugepd_freelist_cur);
 | 
						|
 | 
						|
	if (atomic_read(&tlb->mm->mm_users) < 2 ||
 | 
						|
	    mm_is_thread_local(tlb->mm)) {
 | 
						|
		kmem_cache_free(hugepte_cache, hugepte);
 | 
						|
		put_cpu_var(hugepd_freelist_cur);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*batchp == NULL) {
 | 
						|
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 | 
						|
		(*batchp)->index = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	(*batchp)->ptes[(*batchp)->index++] = hugepte;
 | 
						|
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 | 
						|
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 | 
						|
		*batchp = NULL;
 | 
						|
	}
 | 
						|
	put_cpu_var(hugepd_freelist_cur);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
 | 
						|
#endif
 | 
						|
 | 
						|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 | 
						|
			      unsigned long start, unsigned long end,
 | 
						|
			      unsigned long floor, unsigned long ceiling)
 | 
						|
{
 | 
						|
	pte_t *hugepte = hugepd_page(*hpdp);
 | 
						|
	int i;
 | 
						|
 | 
						|
	unsigned long pdmask = ~((1UL << pdshift) - 1);
 | 
						|
	unsigned int num_hugepd = 1;
 | 
						|
	unsigned int shift = hugepd_shift(*hpdp);
 | 
						|
 | 
						|
	/* Note: On fsl the hpdp may be the first of several */
 | 
						|
	if (shift > pdshift)
 | 
						|
		num_hugepd = 1 << (shift - pdshift);
 | 
						|
 | 
						|
	start &= pdmask;
 | 
						|
	if (start < floor)
 | 
						|
		return;
 | 
						|
	if (ceiling) {
 | 
						|
		ceiling &= pdmask;
 | 
						|
		if (! ceiling)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
	if (end - 1 > ceiling - 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < num_hugepd; i++, hpdp++)
 | 
						|
		*hpdp = __hugepd(0);
 | 
						|
 | 
						|
	if (shift >= pdshift)
 | 
						|
		hugepd_free(tlb, hugepte);
 | 
						|
	else
 | 
						|
		pgtable_free_tlb(tlb, hugepte,
 | 
						|
				 get_hugepd_cache_index(pdshift - shift));
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 | 
						|
				   unsigned long addr, unsigned long end,
 | 
						|
				   unsigned long floor, unsigned long ceiling)
 | 
						|
{
 | 
						|
	pmd_t *pmd;
 | 
						|
	unsigned long next;
 | 
						|
	unsigned long start;
 | 
						|
 | 
						|
	start = addr;
 | 
						|
	do {
 | 
						|
		unsigned long more;
 | 
						|
 | 
						|
		pmd = pmd_offset(pud, addr);
 | 
						|
		next = pmd_addr_end(addr, end);
 | 
						|
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 | 
						|
			/*
 | 
						|
			 * if it is not hugepd pointer, we should already find
 | 
						|
			 * it cleared.
 | 
						|
			 */
 | 
						|
			WARN_ON(!pmd_none_or_clear_bad(pmd));
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Increment next by the size of the huge mapping since
 | 
						|
		 * there may be more than one entry at this level for a
 | 
						|
		 * single hugepage, but all of them point to
 | 
						|
		 * the same kmem cache that holds the hugepte.
 | 
						|
		 */
 | 
						|
		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 | 
						|
		if (more > next)
 | 
						|
			next = more;
 | 
						|
 | 
						|
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 | 
						|
				  addr, next, floor, ceiling);
 | 
						|
	} while (addr = next, addr != end);
 | 
						|
 | 
						|
	start &= PUD_MASK;
 | 
						|
	if (start < floor)
 | 
						|
		return;
 | 
						|
	if (ceiling) {
 | 
						|
		ceiling &= PUD_MASK;
 | 
						|
		if (!ceiling)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
	if (end - 1 > ceiling - 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, start);
 | 
						|
	pud_clear(pud);
 | 
						|
	pmd_free_tlb(tlb, pmd, start);
 | 
						|
	mm_dec_nr_pmds(tlb->mm);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 | 
						|
				   unsigned long addr, unsigned long end,
 | 
						|
				   unsigned long floor, unsigned long ceiling)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	unsigned long next;
 | 
						|
	unsigned long start;
 | 
						|
 | 
						|
	start = addr;
 | 
						|
	do {
 | 
						|
		pud = pud_offset(pgd, addr);
 | 
						|
		next = pud_addr_end(addr, end);
 | 
						|
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 | 
						|
			if (pud_none_or_clear_bad(pud))
 | 
						|
				continue;
 | 
						|
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 | 
						|
					       ceiling);
 | 
						|
		} else {
 | 
						|
			unsigned long more;
 | 
						|
			/*
 | 
						|
			 * Increment next by the size of the huge mapping since
 | 
						|
			 * there may be more than one entry at this level for a
 | 
						|
			 * single hugepage, but all of them point to
 | 
						|
			 * the same kmem cache that holds the hugepte.
 | 
						|
			 */
 | 
						|
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 | 
						|
			if (more > next)
 | 
						|
				next = more;
 | 
						|
 | 
						|
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 | 
						|
					  addr, next, floor, ceiling);
 | 
						|
		}
 | 
						|
	} while (addr = next, addr != end);
 | 
						|
 | 
						|
	start &= PGDIR_MASK;
 | 
						|
	if (start < floor)
 | 
						|
		return;
 | 
						|
	if (ceiling) {
 | 
						|
		ceiling &= PGDIR_MASK;
 | 
						|
		if (!ceiling)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
	if (end - 1 > ceiling - 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, start);
 | 
						|
	pgd_clear(pgd);
 | 
						|
	pud_free_tlb(tlb, pud, start);
 | 
						|
	mm_dec_nr_puds(tlb->mm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function frees user-level page tables of a process.
 | 
						|
 */
 | 
						|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 | 
						|
			    unsigned long addr, unsigned long end,
 | 
						|
			    unsigned long floor, unsigned long ceiling)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Because there are a number of different possible pagetable
 | 
						|
	 * layouts for hugepage ranges, we limit knowledge of how
 | 
						|
	 * things should be laid out to the allocation path
 | 
						|
	 * (huge_pte_alloc(), above).  Everything else works out the
 | 
						|
	 * structure as it goes from information in the hugepd
 | 
						|
	 * pointers.  That means that we can't here use the
 | 
						|
	 * optimization used in the normal page free_pgd_range(), of
 | 
						|
	 * checking whether we're actually covering a large enough
 | 
						|
	 * range to have to do anything at the top level of the walk
 | 
						|
	 * instead of at the bottom.
 | 
						|
	 *
 | 
						|
	 * To make sense of this, you should probably go read the big
 | 
						|
	 * block comment at the top of the normal free_pgd_range(),
 | 
						|
	 * too.
 | 
						|
	 */
 | 
						|
 | 
						|
	do {
 | 
						|
		next = pgd_addr_end(addr, end);
 | 
						|
		pgd = pgd_offset(tlb->mm, addr);
 | 
						|
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 | 
						|
			if (pgd_none_or_clear_bad(pgd))
 | 
						|
				continue;
 | 
						|
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 | 
						|
		} else {
 | 
						|
			unsigned long more;
 | 
						|
			/*
 | 
						|
			 * Increment next by the size of the huge mapping since
 | 
						|
			 * there may be more than one entry at the pgd level
 | 
						|
			 * for a single hugepage, but all of them point to the
 | 
						|
			 * same kmem cache that holds the hugepte.
 | 
						|
			 */
 | 
						|
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 | 
						|
			if (more > next)
 | 
						|
				next = more;
 | 
						|
 | 
						|
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 | 
						|
					  addr, next, floor, ceiling);
 | 
						|
		}
 | 
						|
	} while (addr = next, addr != end);
 | 
						|
}
 | 
						|
 | 
						|
struct page *follow_huge_pd(struct vm_area_struct *vma,
 | 
						|
			    unsigned long address, hugepd_t hpd,
 | 
						|
			    int flags, int pdshift)
 | 
						|
{
 | 
						|
	pte_t *ptep;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	struct page *page = NULL;
 | 
						|
	unsigned long mask;
 | 
						|
	int shift = hugepd_shift(hpd);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
 | 
						|
retry:
 | 
						|
	/*
 | 
						|
	 * hugepage directory entries are protected by mm->page_table_lock
 | 
						|
	 * Use this instead of huge_pte_lockptr
 | 
						|
	 */
 | 
						|
	ptl = &mm->page_table_lock;
 | 
						|
	spin_lock(ptl);
 | 
						|
 | 
						|
	ptep = hugepte_offset(hpd, address, pdshift);
 | 
						|
	if (pte_present(*ptep)) {
 | 
						|
		mask = (1UL << shift) - 1;
 | 
						|
		page = pte_page(*ptep);
 | 
						|
		page += ((address & mask) >> PAGE_SHIFT);
 | 
						|
		if (flags & FOLL_GET)
 | 
						|
			get_page(page);
 | 
						|
	} else {
 | 
						|
		if (is_hugetlb_entry_migration(*ptep)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			__migration_entry_wait(mm, ptep, ptl);
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 | 
						|
				      unsigned long sz)
 | 
						|
{
 | 
						|
	unsigned long __boundary = (addr + sz) & ~(sz-1);
 | 
						|
	return (__boundary - 1 < end - 1) ? __boundary : end;
 | 
						|
}
 | 
						|
 | 
						|
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 | 
						|
		unsigned long end, int write, struct page **pages, int *nr)
 | 
						|
{
 | 
						|
	pte_t *ptep;
 | 
						|
	unsigned long sz = 1UL << hugepd_shift(hugepd);
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	ptep = hugepte_offset(hugepd, addr, pdshift);
 | 
						|
	do {
 | 
						|
		next = hugepte_addr_end(addr, end, sz);
 | 
						|
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 | 
						|
			return 0;
 | 
						|
	} while (ptep++, addr = next, addr != end);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_MM_SLICES
 | 
						|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | 
						|
					unsigned long len, unsigned long pgoff,
 | 
						|
					unsigned long flags)
 | 
						|
{
 | 
						|
	struct hstate *hstate = hstate_file(file);
 | 
						|
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_RADIX_MMU
 | 
						|
	if (radix_enabled())
 | 
						|
		return radix__hugetlb_get_unmapped_area(file, addr, len,
 | 
						|
						       pgoff, flags);
 | 
						|
#endif
 | 
						|
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
#ifdef CONFIG_PPC_MM_SLICES
 | 
						|
	/* With radix we don't use slice, so derive it from vma*/
 | 
						|
	if (!radix_enabled()) {
 | 
						|
		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 | 
						|
 | 
						|
		return 1UL << mmu_psize_to_shift(psize);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return vma_kernel_pagesize(vma);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool is_power_of_4(unsigned long x)
 | 
						|
{
 | 
						|
	if (is_power_of_2(x))
 | 
						|
		return (__ilog2(x) % 2) ? false : true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int __init add_huge_page_size(unsigned long long size)
 | 
						|
{
 | 
						|
	int shift = __ffs(size);
 | 
						|
	int mmu_psize;
 | 
						|
 | 
						|
	/* Check that it is a page size supported by the hardware and
 | 
						|
	 * that it fits within pagetable and slice limits. */
 | 
						|
	if (size <= PAGE_SIZE)
 | 
						|
		return -EINVAL;
 | 
						|
#if defined(CONFIG_PPC_FSL_BOOK3E)
 | 
						|
	if (!is_power_of_4(size))
 | 
						|
		return -EINVAL;
 | 
						|
#elif !defined(CONFIG_PPC_8xx)
 | 
						|
	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
 | 
						|
		return -EINVAL;
 | 
						|
#endif
 | 
						|
 | 
						|
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
	/*
 | 
						|
	 * We need to make sure that for different page sizes reported by
 | 
						|
	 * firmware we only add hugetlb support for page sizes that can be
 | 
						|
	 * supported by linux page table layout.
 | 
						|
	 * For now we have
 | 
						|
	 * Radix: 2M and 1G
 | 
						|
	 * Hash: 16M and 16G
 | 
						|
	 */
 | 
						|
	if (radix_enabled()) {
 | 
						|
		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
 | 
						|
			return -EINVAL;
 | 
						|
	} else {
 | 
						|
		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 | 
						|
 | 
						|
	/* Return if huge page size has already been setup */
 | 
						|
	if (size_to_hstate(size))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	hugetlb_add_hstate(shift - PAGE_SHIFT);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init hugepage_setup_sz(char *str)
 | 
						|
{
 | 
						|
	unsigned long long size;
 | 
						|
 | 
						|
	size = memparse(str, &str);
 | 
						|
 | 
						|
	if (add_huge_page_size(size) != 0) {
 | 
						|
		hugetlb_bad_size();
 | 
						|
		pr_err("Invalid huge page size specified(%llu)\n", size);
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hugepagesz=", hugepage_setup_sz);
 | 
						|
 | 
						|
struct kmem_cache *hugepte_cache;
 | 
						|
static int __init hugetlbpage_init(void)
 | 
						|
{
 | 
						|
	int psize;
 | 
						|
 | 
						|
	if (hugetlb_disabled) {
 | 
						|
		pr_info("HugeTLB support is disabled!\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
 | 
						|
	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
 | 
						|
		return -ENODEV;
 | 
						|
#endif
 | 
						|
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 | 
						|
		unsigned shift;
 | 
						|
		unsigned pdshift;
 | 
						|
 | 
						|
		if (!mmu_psize_defs[psize].shift)
 | 
						|
			continue;
 | 
						|
 | 
						|
		shift = mmu_psize_to_shift(psize);
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3S_64
 | 
						|
		if (shift > PGDIR_SHIFT)
 | 
						|
			continue;
 | 
						|
		else if (shift > PUD_SHIFT)
 | 
						|
			pdshift = PGDIR_SHIFT;
 | 
						|
		else if (shift > PMD_SHIFT)
 | 
						|
			pdshift = PUD_SHIFT;
 | 
						|
		else
 | 
						|
			pdshift = PMD_SHIFT;
 | 
						|
#else
 | 
						|
		if (shift < PUD_SHIFT)
 | 
						|
			pdshift = PMD_SHIFT;
 | 
						|
		else if (shift < PGDIR_SHIFT)
 | 
						|
			pdshift = PUD_SHIFT;
 | 
						|
		else
 | 
						|
			pdshift = PGDIR_SHIFT;
 | 
						|
#endif
 | 
						|
 | 
						|
		if (add_huge_page_size(1ULL << shift) < 0)
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * if we have pdshift and shift value same, we don't
 | 
						|
		 * use pgt cache for hugepd.
 | 
						|
		 */
 | 
						|
		if (pdshift > shift)
 | 
						|
			pgtable_cache_add(pdshift - shift, NULL);
 | 
						|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 | 
						|
		else if (!hugepte_cache) {
 | 
						|
			/*
 | 
						|
			 * Create a kmem cache for hugeptes.  The bottom bits in
 | 
						|
			 * the pte have size information encoded in them, so
 | 
						|
			 * align them to allow this
 | 
						|
			 */
 | 
						|
			hugepte_cache = kmem_cache_create("hugepte-cache",
 | 
						|
							  sizeof(pte_t),
 | 
						|
							  HUGEPD_SHIFT_MASK + 1,
 | 
						|
							  0, NULL);
 | 
						|
			if (hugepte_cache == NULL)
 | 
						|
				panic("%s: Unable to create kmem cache "
 | 
						|
				      "for hugeptes\n", __func__);
 | 
						|
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 | 
						|
	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
 | 
						|
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
 | 
						|
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 | 
						|
	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
 | 
						|
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
 | 
						|
#else
 | 
						|
	/* Set default large page size. Currently, we pick 16M or 1M
 | 
						|
	 * depending on what is available
 | 
						|
	 */
 | 
						|
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 | 
						|
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 | 
						|
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 | 
						|
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 | 
						|
	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
 | 
						|
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
arch_initcall(hugetlbpage_init);
 | 
						|
 | 
						|
void flush_dcache_icache_hugepage(struct page *page)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	void *start;
 | 
						|
 | 
						|
	BUG_ON(!PageCompound(page));
 | 
						|
 | 
						|
	for (i = 0; i < (1UL << compound_order(page)); i++) {
 | 
						|
		if (!PageHighMem(page)) {
 | 
						|
			__flush_dcache_icache(page_address(page+i));
 | 
						|
		} else {
 | 
						|
			start = kmap_atomic(page+i);
 | 
						|
			__flush_dcache_icache(start);
 | 
						|
			kunmap_atomic(start);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_HUGETLB_PAGE */
 | 
						|
 | 
						|
/*
 | 
						|
 * We have 4 cases for pgds and pmds:
 | 
						|
 * (1) invalid (all zeroes)
 | 
						|
 * (2) pointer to next table, as normal; bottom 6 bits == 0
 | 
						|
 * (3) leaf pte for huge page _PAGE_PTE set
 | 
						|
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
 | 
						|
 *
 | 
						|
 * So long as we atomically load page table pointers we are safe against teardown,
 | 
						|
 * we can follow the address down to the the page and take a ref on it.
 | 
						|
 * This function need to be called with interrupts disabled. We use this variant
 | 
						|
 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
 | 
						|
 */
 | 
						|
pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
 | 
						|
			bool *is_thp, unsigned *hpage_shift)
 | 
						|
{
 | 
						|
	pgd_t pgd, *pgdp;
 | 
						|
	pud_t pud, *pudp;
 | 
						|
	pmd_t pmd, *pmdp;
 | 
						|
	pte_t *ret_pte;
 | 
						|
	hugepd_t *hpdp = NULL;
 | 
						|
	unsigned pdshift = PGDIR_SHIFT;
 | 
						|
 | 
						|
	if (hpage_shift)
 | 
						|
		*hpage_shift = 0;
 | 
						|
 | 
						|
	if (is_thp)
 | 
						|
		*is_thp = false;
 | 
						|
 | 
						|
	pgdp = pgdir + pgd_index(ea);
 | 
						|
	pgd  = READ_ONCE(*pgdp);
 | 
						|
	/*
 | 
						|
	 * Always operate on the local stack value. This make sure the
 | 
						|
	 * value don't get updated by a parallel THP split/collapse,
 | 
						|
	 * page fault or a page unmap. The return pte_t * is still not
 | 
						|
	 * stable. So should be checked there for above conditions.
 | 
						|
	 */
 | 
						|
	if (pgd_none(pgd))
 | 
						|
		return NULL;
 | 
						|
	else if (pgd_huge(pgd)) {
 | 
						|
		ret_pte = (pte_t *) pgdp;
 | 
						|
		goto out;
 | 
						|
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
 | 
						|
		hpdp = (hugepd_t *)&pgd;
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * Even if we end up with an unmap, the pgtable will not
 | 
						|
		 * be freed, because we do an rcu free and here we are
 | 
						|
		 * irq disabled
 | 
						|
		 */
 | 
						|
		pdshift = PUD_SHIFT;
 | 
						|
		pudp = pud_offset(&pgd, ea);
 | 
						|
		pud  = READ_ONCE(*pudp);
 | 
						|
 | 
						|
		if (pud_none(pud))
 | 
						|
			return NULL;
 | 
						|
		else if (pud_huge(pud)) {
 | 
						|
			ret_pte = (pte_t *) pudp;
 | 
						|
			goto out;
 | 
						|
		} else if (is_hugepd(__hugepd(pud_val(pud))))
 | 
						|
			hpdp = (hugepd_t *)&pud;
 | 
						|
		else {
 | 
						|
			pdshift = PMD_SHIFT;
 | 
						|
			pmdp = pmd_offset(&pud, ea);
 | 
						|
			pmd  = READ_ONCE(*pmdp);
 | 
						|
			/*
 | 
						|
			 * A hugepage collapse is captured by pmd_none, because
 | 
						|
			 * it mark the pmd none and do a hpte invalidate.
 | 
						|
			 */
 | 
						|
			if (pmd_none(pmd))
 | 
						|
				return NULL;
 | 
						|
 | 
						|
			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
 | 
						|
				if (is_thp)
 | 
						|
					*is_thp = true;
 | 
						|
				ret_pte = (pte_t *) pmdp;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * pmd_large check below will handle the swap pmd pte
 | 
						|
			 * we need to do both the check because they are config
 | 
						|
			 * dependent.
 | 
						|
			 */
 | 
						|
			if (pmd_huge(pmd) || pmd_large(pmd)) {
 | 
						|
				ret_pte = (pte_t *) pmdp;
 | 
						|
				goto out;
 | 
						|
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
 | 
						|
				hpdp = (hugepd_t *)&pmd;
 | 
						|
			else
 | 
						|
				return pte_offset_kernel(&pmd, ea);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!hpdp)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
 | 
						|
	pdshift = hugepd_shift(*hpdp);
 | 
						|
out:
 | 
						|
	if (hpage_shift)
 | 
						|
		*hpage_shift = pdshift;
 | 
						|
	return ret_pte;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__find_linux_pte);
 | 
						|
 | 
						|
int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 | 
						|
		unsigned long end, int write, struct page **pages, int *nr)
 | 
						|
{
 | 
						|
	unsigned long pte_end;
 | 
						|
	struct page *head, *page;
 | 
						|
	pte_t pte;
 | 
						|
	int refs;
 | 
						|
 | 
						|
	pte_end = (addr + sz) & ~(sz-1);
 | 
						|
	if (pte_end < end)
 | 
						|
		end = pte_end;
 | 
						|
 | 
						|
	pte = READ_ONCE(*ptep);
 | 
						|
 | 
						|
	if (!pte_access_permitted(pte, write))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* hugepages are never "special" */
 | 
						|
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
 | 
						|
 | 
						|
	refs = 0;
 | 
						|
	head = pte_page(pte);
 | 
						|
 | 
						|
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
 | 
						|
	do {
 | 
						|
		VM_BUG_ON(compound_head(page) != head);
 | 
						|
		pages[*nr] = page;
 | 
						|
		(*nr)++;
 | 
						|
		page++;
 | 
						|
		refs++;
 | 
						|
	} while (addr += PAGE_SIZE, addr != end);
 | 
						|
 | 
						|
	if (!page_cache_add_speculative(head, refs)) {
 | 
						|
		*nr -= refs;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
 | 
						|
		/* Could be optimized better */
 | 
						|
		*nr -= refs;
 | 
						|
		while (refs--)
 | 
						|
			put_page(head);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 |