mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
        kmalloc(a * b, gfp)
with:
        kmalloc_array(a * b, gfp)
as well as handling cases of:
        kmalloc(a * b * c, gfp)
with:
        kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
        kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
        kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			765 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			765 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#include <linux/moduleloader.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <linux/filter.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/if_vlan.h>
 | 
						|
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/ptrace.h>
 | 
						|
 | 
						|
#include "bpf_jit_32.h"
 | 
						|
 | 
						|
static inline bool is_simm13(unsigned int value)
 | 
						|
{
 | 
						|
	return value + 0x1000 < 0x2000;
 | 
						|
}
 | 
						|
 | 
						|
#define SEEN_DATAREF 1 /* might call external helpers */
 | 
						|
#define SEEN_XREG    2 /* ebx is used */
 | 
						|
#define SEEN_MEM     4 /* use mem[] for temporary storage */
 | 
						|
 | 
						|
#define S13(X)		((X) & 0x1fff)
 | 
						|
#define IMMED		0x00002000
 | 
						|
#define RD(X)		((X) << 25)
 | 
						|
#define RS1(X)		((X) << 14)
 | 
						|
#define RS2(X)		((X))
 | 
						|
#define OP(X)		((X) << 30)
 | 
						|
#define OP2(X)		((X) << 22)
 | 
						|
#define OP3(X)		((X) << 19)
 | 
						|
#define COND(X)		((X) << 25)
 | 
						|
#define F1(X)		OP(X)
 | 
						|
#define F2(X, Y)	(OP(X) | OP2(Y))
 | 
						|
#define F3(X, Y)	(OP(X) | OP3(Y))
 | 
						|
 | 
						|
#define CONDN		COND(0x0)
 | 
						|
#define CONDE		COND(0x1)
 | 
						|
#define CONDLE		COND(0x2)
 | 
						|
#define CONDL		COND(0x3)
 | 
						|
#define CONDLEU		COND(0x4)
 | 
						|
#define CONDCS		COND(0x5)
 | 
						|
#define CONDNEG		COND(0x6)
 | 
						|
#define CONDVC		COND(0x7)
 | 
						|
#define CONDA		COND(0x8)
 | 
						|
#define CONDNE		COND(0x9)
 | 
						|
#define CONDG		COND(0xa)
 | 
						|
#define CONDGE		COND(0xb)
 | 
						|
#define CONDGU		COND(0xc)
 | 
						|
#define CONDCC		COND(0xd)
 | 
						|
#define CONDPOS		COND(0xe)
 | 
						|
#define CONDVS		COND(0xf)
 | 
						|
 | 
						|
#define CONDGEU		CONDCC
 | 
						|
#define CONDLU		CONDCS
 | 
						|
 | 
						|
#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
 | 
						|
 | 
						|
#define BA		(F2(0, 2) | CONDA)
 | 
						|
#define BGU		(F2(0, 2) | CONDGU)
 | 
						|
#define BLEU		(F2(0, 2) | CONDLEU)
 | 
						|
#define BGEU		(F2(0, 2) | CONDGEU)
 | 
						|
#define BLU		(F2(0, 2) | CONDLU)
 | 
						|
#define BE		(F2(0, 2) | CONDE)
 | 
						|
#define BNE		(F2(0, 2) | CONDNE)
 | 
						|
 | 
						|
#define BE_PTR		BE
 | 
						|
 | 
						|
#define SETHI(K, REG)	\
 | 
						|
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
 | 
						|
#define OR_LO(K, REG)	\
 | 
						|
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
 | 
						|
 | 
						|
#define ADD		F3(2, 0x00)
 | 
						|
#define AND		F3(2, 0x01)
 | 
						|
#define ANDCC		F3(2, 0x11)
 | 
						|
#define OR		F3(2, 0x02)
 | 
						|
#define XOR		F3(2, 0x03)
 | 
						|
#define SUB		F3(2, 0x04)
 | 
						|
#define SUBCC		F3(2, 0x14)
 | 
						|
#define MUL		F3(2, 0x0a)	/* umul */
 | 
						|
#define DIV		F3(2, 0x0e)	/* udiv */
 | 
						|
#define SLL		F3(2, 0x25)
 | 
						|
#define SRL		F3(2, 0x26)
 | 
						|
#define JMPL		F3(2, 0x38)
 | 
						|
#define CALL		F1(1)
 | 
						|
#define BR		F2(0, 0x01)
 | 
						|
#define RD_Y		F3(2, 0x28)
 | 
						|
#define WR_Y		F3(2, 0x30)
 | 
						|
 | 
						|
#define LD32		F3(3, 0x00)
 | 
						|
#define LD8		F3(3, 0x01)
 | 
						|
#define LD16		F3(3, 0x02)
 | 
						|
#define LD64		F3(3, 0x0b)
 | 
						|
#define ST32		F3(3, 0x04)
 | 
						|
 | 
						|
#define LDPTR		LD32
 | 
						|
#define BASE_STACKFRAME	96
 | 
						|
 | 
						|
#define LD32I		(LD32 | IMMED)
 | 
						|
#define LD8I		(LD8 | IMMED)
 | 
						|
#define LD16I		(LD16 | IMMED)
 | 
						|
#define LD64I		(LD64 | IMMED)
 | 
						|
#define LDPTRI		(LDPTR | IMMED)
 | 
						|
#define ST32I		(ST32 | IMMED)
 | 
						|
 | 
						|
#define emit_nop()		\
 | 
						|
do {				\
 | 
						|
	*prog++ = SETHI(0, G0);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_neg()					\
 | 
						|
do {	/* sub %g0, r_A, r_A */				\
 | 
						|
	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_reg_move(FROM, TO)				\
 | 
						|
do {	/* or %g0, FROM, TO */				\
 | 
						|
	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_clear(REG)					\
 | 
						|
do {	/* or %g0, %g0, REG */				\
 | 
						|
	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_set_const(K, REG)					\
 | 
						|
do {	/* sethi %hi(K), REG */					\
 | 
						|
	*prog++ = SETHI(K, REG);				\
 | 
						|
	/* or REG, %lo(K), REG */				\
 | 
						|
	*prog++ = OR_LO(K, REG);				\
 | 
						|
} while (0)
 | 
						|
 | 
						|
	/* Emit
 | 
						|
	 *
 | 
						|
	 *	OP	r_A, r_X, r_A
 | 
						|
	 */
 | 
						|
#define emit_alu_X(OPCODE)					\
 | 
						|
do {								\
 | 
						|
	seen |= SEEN_XREG;					\
 | 
						|
	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
	/* Emit either:
 | 
						|
	 *
 | 
						|
	 *	OP	r_A, K, r_A
 | 
						|
	 *
 | 
						|
	 * or
 | 
						|
	 *
 | 
						|
	 *	sethi	%hi(K), r_TMP
 | 
						|
	 *	or	r_TMP, %lo(K), r_TMP
 | 
						|
	 *	OP	r_A, r_TMP, r_A
 | 
						|
	 *
 | 
						|
	 * depending upon whether K fits in a signed 13-bit
 | 
						|
	 * immediate instruction field.  Emit nothing if K
 | 
						|
	 * is zero.
 | 
						|
	 */
 | 
						|
#define emit_alu_K(OPCODE, K)					\
 | 
						|
do {								\
 | 
						|
	if (K || OPCODE == AND || OPCODE == MUL) {		\
 | 
						|
		unsigned int _insn = OPCODE;			\
 | 
						|
		_insn |= RS1(r_A) | RD(r_A);			\
 | 
						|
		if (is_simm13(K)) {				\
 | 
						|
			*prog++ = _insn | IMMED | S13(K);	\
 | 
						|
		} else {					\
 | 
						|
			emit_set_const(K, r_TMP);		\
 | 
						|
			*prog++ = _insn | RS2(r_TMP);		\
 | 
						|
		}						\
 | 
						|
	}							\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_loadimm(K, DEST)						\
 | 
						|
do {									\
 | 
						|
	if (is_simm13(K)) {						\
 | 
						|
		/* or %g0, K, DEST */					\
 | 
						|
		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
 | 
						|
	} else {							\
 | 
						|
		emit_set_const(K, DEST);				\
 | 
						|
	}								\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
 | 
						|
	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
 | 
						|
	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
 | 
						|
	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
 | 
						|
	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define BIAS (-4)
 | 
						|
 | 
						|
#define emit_ldmem(OFF, DEST)						\
 | 
						|
do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_stmem(OFF, SRC)						\
 | 
						|
do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
#define emit_load_cpu(REG)						\
 | 
						|
	emit_load32(G6, struct thread_info, cpu, REG)
 | 
						|
#else
 | 
						|
#define emit_load_cpu(REG)	emit_clear(REG)
 | 
						|
#endif
 | 
						|
 | 
						|
#define emit_skb_loadptr(FIELD, DEST) \
 | 
						|
	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load32(FIELD, DEST) \
 | 
						|
	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load16(FIELD, DEST) \
 | 
						|
	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define __emit_skb_load8(FIELD, DEST) \
 | 
						|
	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load8(FIELD, DEST) \
 | 
						|
	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
 | 
						|
#define emit_jmpl(BASE, IMM_OFF, LREG) \
 | 
						|
	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
 | 
						|
 | 
						|
#define emit_call(FUNC)					\
 | 
						|
do {	void *_here = image + addrs[i] - 8;		\
 | 
						|
	unsigned int _off = (void *)(FUNC) - _here;	\
 | 
						|
	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
 | 
						|
	emit_nop();					\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_branch(BR_OPC, DEST)			\
 | 
						|
do {	unsigned int _here = addrs[i] - 8;		\
 | 
						|
	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_branch_off(BR_OPC, OFF)			\
 | 
						|
do {	*prog++ = BR_OPC | WDISP22(OFF);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_jump(DEST)		emit_branch(BA, DEST)
 | 
						|
 | 
						|
#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
 | 
						|
#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
 | 
						|
 | 
						|
#define emit_cmp(R1, R2) \
 | 
						|
	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
 | 
						|
 | 
						|
#define emit_cmpi(R1, IMM) \
 | 
						|
	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 | 
						|
 | 
						|
#define emit_btst(R1, R2) \
 | 
						|
	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
 | 
						|
 | 
						|
#define emit_btsti(R1, IMM) \
 | 
						|
	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 | 
						|
 | 
						|
#define emit_sub(R1, R2, R3) \
 | 
						|
	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_subi(R1, IMM, R3) \
 | 
						|
	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_add(R1, R2, R3) \
 | 
						|
	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_addi(R1, IMM, R3) \
 | 
						|
	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_and(R1, R2, R3) \
 | 
						|
	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_andi(R1, IMM, R3) \
 | 
						|
	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_alloc_stack(SZ) \
 | 
						|
	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 | 
						|
 | 
						|
#define emit_release_stack(SZ) \
 | 
						|
	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 | 
						|
 | 
						|
/* A note about branch offset calculations.  The addrs[] array,
 | 
						|
 * indexed by BPF instruction, records the address after all the
 | 
						|
 * sparc instructions emitted for that BPF instruction.
 | 
						|
 *
 | 
						|
 * The most common case is to emit a branch at the end of such
 | 
						|
 * a code sequence.  So this would be two instructions, the
 | 
						|
 * branch and it's delay slot.
 | 
						|
 *
 | 
						|
 * Therefore by default the branch emitters calculate the branch
 | 
						|
 * offset field as:
 | 
						|
 *
 | 
						|
 *	destination - (addrs[i] - 8)
 | 
						|
 *
 | 
						|
 * This "addrs[i] - 8" is the address of the branch itself or
 | 
						|
 * what "." would be in assembler notation.  The "8" part is
 | 
						|
 * how we take into consideration the branch and it's delay
 | 
						|
 * slot mentioned above.
 | 
						|
 *
 | 
						|
 * Sometimes we need to emit a branch earlier in the code
 | 
						|
 * sequence.  And in these situations we adjust "destination"
 | 
						|
 * to accommodate this difference.  For example, if we needed
 | 
						|
 * to emit a branch (and it's delay slot) right before the
 | 
						|
 * final instruction emitted for a BPF opcode, we'd use
 | 
						|
 * "destination + 4" instead of just plain "destination" above.
 | 
						|
 *
 | 
						|
 * This is why you see all of these funny emit_branch() and
 | 
						|
 * emit_jump() calls with adjusted offsets.
 | 
						|
 */
 | 
						|
 | 
						|
void bpf_jit_compile(struct bpf_prog *fp)
 | 
						|
{
 | 
						|
	unsigned int cleanup_addr, proglen, oldproglen = 0;
 | 
						|
	u32 temp[8], *prog, *func, seen = 0, pass;
 | 
						|
	const struct sock_filter *filter = fp->insns;
 | 
						|
	int i, flen = fp->len, pc_ret0 = -1;
 | 
						|
	unsigned int *addrs;
 | 
						|
	void *image;
 | 
						|
 | 
						|
	if (!bpf_jit_enable)
 | 
						|
		return;
 | 
						|
 | 
						|
	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
 | 
						|
	if (addrs == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Before first pass, make a rough estimation of addrs[]
 | 
						|
	 * each bpf instruction is translated to less than 64 bytes
 | 
						|
	 */
 | 
						|
	for (proglen = 0, i = 0; i < flen; i++) {
 | 
						|
		proglen += 64;
 | 
						|
		addrs[i] = proglen;
 | 
						|
	}
 | 
						|
	cleanup_addr = proglen; /* epilogue address */
 | 
						|
	image = NULL;
 | 
						|
	for (pass = 0; pass < 10; pass++) {
 | 
						|
		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
 | 
						|
 | 
						|
		/* no prologue/epilogue for trivial filters (RET something) */
 | 
						|
		proglen = 0;
 | 
						|
		prog = temp;
 | 
						|
 | 
						|
		/* Prologue */
 | 
						|
		if (seen_or_pass0) {
 | 
						|
			if (seen_or_pass0 & SEEN_MEM) {
 | 
						|
				unsigned int sz = BASE_STACKFRAME;
 | 
						|
				sz += BPF_MEMWORDS * sizeof(u32);
 | 
						|
				emit_alloc_stack(sz);
 | 
						|
			}
 | 
						|
 | 
						|
			/* Make sure we dont leek kernel memory. */
 | 
						|
			if (seen_or_pass0 & SEEN_XREG)
 | 
						|
				emit_clear(r_X);
 | 
						|
 | 
						|
			/* If this filter needs to access skb data,
 | 
						|
			 * load %o4 and %o5 with:
 | 
						|
			 *  %o4 = skb->len - skb->data_len
 | 
						|
			 *  %o5 = skb->data
 | 
						|
			 * And also back up %o7 into r_saved_O7 so we can
 | 
						|
			 * invoke the stubs using 'call'.
 | 
						|
			 */
 | 
						|
			if (seen_or_pass0 & SEEN_DATAREF) {
 | 
						|
				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
 | 
						|
				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
 | 
						|
				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
 | 
						|
				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		emit_reg_move(O7, r_saved_O7);
 | 
						|
 | 
						|
		/* Make sure we dont leak kernel information to the user. */
 | 
						|
		if (bpf_needs_clear_a(&filter[0]))
 | 
						|
			emit_clear(r_A); /* A = 0 */
 | 
						|
 | 
						|
		for (i = 0; i < flen; i++) {
 | 
						|
			unsigned int K = filter[i].k;
 | 
						|
			unsigned int t_offset;
 | 
						|
			unsigned int f_offset;
 | 
						|
			u32 t_op, f_op;
 | 
						|
			u16 code = bpf_anc_helper(&filter[i]);
 | 
						|
			int ilen;
 | 
						|
 | 
						|
			switch (code) {
 | 
						|
			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
 | 
						|
				emit_alu_X(ADD);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
 | 
						|
				emit_alu_K(ADD, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
 | 
						|
				emit_alu_X(SUB);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
 | 
						|
				emit_alu_K(SUB, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
 | 
						|
				emit_alu_X(AND);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
 | 
						|
				emit_alu_K(AND, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
 | 
						|
				emit_alu_X(OR);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
 | 
						|
				emit_alu_K(OR, K);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
 | 
						|
			case BPF_ALU | BPF_XOR | BPF_X:
 | 
						|
				emit_alu_X(XOR);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
 | 
						|
				emit_alu_K(XOR, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
 | 
						|
				emit_alu_X(SLL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
 | 
						|
				emit_alu_K(SLL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
 | 
						|
				emit_alu_X(SRL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
 | 
						|
				emit_alu_K(SRL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
 | 
						|
				emit_alu_X(MUL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
 | 
						|
				emit_alu_K(MUL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
 | 
						|
				if (K == 1)
 | 
						|
					break;
 | 
						|
				emit_write_y(G0);
 | 
						|
				/* The Sparc v8 architecture requires
 | 
						|
				 * three instructions between a %y
 | 
						|
				 * register write and the first use.
 | 
						|
				 */
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_alu_K(DIV, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
 | 
						|
				emit_cmpi(r_X, 0);
 | 
						|
				if (pc_ret0 > 0) {
 | 
						|
					t_offset = addrs[pc_ret0 - 1];
 | 
						|
					emit_branch(BE, t_offset + 20);
 | 
						|
					emit_nop(); /* delay slot */
 | 
						|
				} else {
 | 
						|
					emit_branch_off(BNE, 16);
 | 
						|
					emit_nop();
 | 
						|
					emit_jump(cleanup_addr + 20);
 | 
						|
					emit_clear(r_A);
 | 
						|
				}
 | 
						|
				emit_write_y(G0);
 | 
						|
				/* The Sparc v8 architecture requires
 | 
						|
				 * three instructions between a %y
 | 
						|
				 * register write and the first use.
 | 
						|
				 */
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_alu_X(DIV);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_NEG:
 | 
						|
				emit_neg();
 | 
						|
				break;
 | 
						|
			case BPF_RET | BPF_K:
 | 
						|
				if (!K) {
 | 
						|
					if (pc_ret0 == -1)
 | 
						|
						pc_ret0 = i;
 | 
						|
					emit_clear(r_A);
 | 
						|
				} else {
 | 
						|
					emit_loadimm(K, r_A);
 | 
						|
				}
 | 
						|
				/* Fallthrough */
 | 
						|
			case BPF_RET | BPF_A:
 | 
						|
				if (seen_or_pass0) {
 | 
						|
					if (i != flen - 1) {
 | 
						|
						emit_jump(cleanup_addr);
 | 
						|
						emit_nop();
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					if (seen_or_pass0 & SEEN_MEM) {
 | 
						|
						unsigned int sz = BASE_STACKFRAME;
 | 
						|
						sz += BPF_MEMWORDS * sizeof(u32);
 | 
						|
						emit_release_stack(sz);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				/* jmpl %r_saved_O7 + 8, %g0 */
 | 
						|
				emit_jmpl(r_saved_O7, 8, G0);
 | 
						|
				emit_reg_move(r_A, O0); /* delay slot */
 | 
						|
				break;
 | 
						|
			case BPF_MISC | BPF_TAX:
 | 
						|
				seen |= SEEN_XREG;
 | 
						|
				emit_reg_move(r_A, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_MISC | BPF_TXA:
 | 
						|
				seen |= SEEN_XREG;
 | 
						|
				emit_reg_move(r_X, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_CPU:
 | 
						|
				emit_load_cpu(r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_PROTOCOL:
 | 
						|
				emit_skb_load16(protocol, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_PKTTYPE:
 | 
						|
				__emit_skb_load8(__pkt_type_offset, r_A);
 | 
						|
				emit_andi(r_A, PKT_TYPE_MAX, r_A);
 | 
						|
				emit_alu_K(SRL, 5);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_IFINDEX:
 | 
						|
				emit_skb_loadptr(dev, r_A);
 | 
						|
				emit_cmpi(r_A, 0);
 | 
						|
				emit_branch(BE_PTR, cleanup_addr + 4);
 | 
						|
				emit_nop();
 | 
						|
				emit_load32(r_A, struct net_device, ifindex, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_MARK:
 | 
						|
				emit_skb_load32(mark, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_QUEUE:
 | 
						|
				emit_skb_load16(queue_mapping, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_HATYPE:
 | 
						|
				emit_skb_loadptr(dev, r_A);
 | 
						|
				emit_cmpi(r_A, 0);
 | 
						|
				emit_branch(BE_PTR, cleanup_addr + 4);
 | 
						|
				emit_nop();
 | 
						|
				emit_load16(r_A, struct net_device, type, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_RXHASH:
 | 
						|
				emit_skb_load32(hash, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_VLAN_TAG:
 | 
						|
			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 | 
						|
				emit_skb_load16(vlan_tci, r_A);
 | 
						|
				if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
 | 
						|
					emit_alu_K(SRL, 12);
 | 
						|
					emit_andi(r_A, 1, r_A);
 | 
						|
				} else {
 | 
						|
					emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
 | 
						|
					emit_and(r_A, r_TMP, r_A);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_W | BPF_LEN:
 | 
						|
				emit_skb_load32(len, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_W | BPF_LEN:
 | 
						|
				emit_skb_load32(len, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_IMM:
 | 
						|
				emit_loadimm(K, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_IMM:
 | 
						|
				emit_loadimm(K, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_MEM:
 | 
						|
				seen |= SEEN_MEM;
 | 
						|
				emit_ldmem(K * 4, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_MEM:
 | 
						|
				seen |= SEEN_MEM | SEEN_XREG;
 | 
						|
				emit_ldmem(K * 4, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_ST:
 | 
						|
				seen |= SEEN_MEM;
 | 
						|
				emit_stmem(K * 4, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_STX:
 | 
						|
				seen |= SEEN_MEM | SEEN_XREG;
 | 
						|
				emit_stmem(K * 4, r_X);
 | 
						|
				break;
 | 
						|
 | 
						|
#define CHOOSE_LOAD_FUNC(K, func) \
 | 
						|
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 | 
						|
 | 
						|
			case BPF_LD | BPF_W | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
 | 
						|
common_load:			seen |= SEEN_DATAREF;
 | 
						|
				emit_loadimm(K, r_OFF);
 | 
						|
				emit_call(func);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_H | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LD | BPF_B | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LDX | BPF_B | BPF_MSH:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LD | BPF_W | BPF_IND:
 | 
						|
				func = bpf_jit_load_word;
 | 
						|
common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
 | 
						|
				if (K) {
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_addi(r_X, K, r_OFF);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_add(r_X, r_TMP, r_OFF);
 | 
						|
					}
 | 
						|
				} else {
 | 
						|
					emit_reg_move(r_X, r_OFF);
 | 
						|
				}
 | 
						|
				emit_call(func);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_H | BPF_IND:
 | 
						|
				func = bpf_jit_load_half;
 | 
						|
				goto common_load_ind;
 | 
						|
			case BPF_LD | BPF_B | BPF_IND:
 | 
						|
				func = bpf_jit_load_byte;
 | 
						|
				goto common_load_ind;
 | 
						|
			case BPF_JMP | BPF_JA:
 | 
						|
				emit_jump(addrs[i + K]);
 | 
						|
				emit_nop();
 | 
						|
				break;
 | 
						|
 | 
						|
#define COND_SEL(CODE, TOP, FOP)	\
 | 
						|
	case CODE:			\
 | 
						|
		t_op = TOP;		\
 | 
						|
		f_op = FOP;		\
 | 
						|
		goto cond_branch
 | 
						|
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
 | 
						|
 | 
						|
cond_branch:			f_offset = addrs[i + filter[i].jf];
 | 
						|
				t_offset = addrs[i + filter[i].jt];
 | 
						|
 | 
						|
				/* same targets, can avoid doing the test :) */
 | 
						|
				if (filter[i].jt == filter[i].jf) {
 | 
						|
					emit_jump(t_offset);
 | 
						|
					emit_nop();
 | 
						|
					break;
 | 
						|
				}
 | 
						|
 | 
						|
				switch (code) {
 | 
						|
				case BPF_JMP | BPF_JGT | BPF_X:
 | 
						|
				case BPF_JMP | BPF_JGE | BPF_X:
 | 
						|
				case BPF_JMP | BPF_JEQ | BPF_X:
 | 
						|
					seen |= SEEN_XREG;
 | 
						|
					emit_cmp(r_A, r_X);
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JSET | BPF_X:
 | 
						|
					seen |= SEEN_XREG;
 | 
						|
					emit_btst(r_A, r_X);
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JEQ | BPF_K:
 | 
						|
				case BPF_JMP | BPF_JGT | BPF_K:
 | 
						|
				case BPF_JMP | BPF_JGE | BPF_K:
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_cmpi(r_A, K);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_cmp(r_A, r_TMP);
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JSET | BPF_K:
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_btsti(r_A, K);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_btst(r_A, r_TMP);
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				if (filter[i].jt != 0) {
 | 
						|
					if (filter[i].jf)
 | 
						|
						t_offset += 8;
 | 
						|
					emit_branch(t_op, t_offset);
 | 
						|
					emit_nop(); /* delay slot */
 | 
						|
					if (filter[i].jf) {
 | 
						|
						emit_jump(f_offset);
 | 
						|
						emit_nop();
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				emit_branch(f_op, f_offset);
 | 
						|
				emit_nop(); /* delay slot */
 | 
						|
				break;
 | 
						|
 | 
						|
			default:
 | 
						|
				/* hmm, too complex filter, give up with jit compiler */
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			ilen = (void *) prog - (void *) temp;
 | 
						|
			if (image) {
 | 
						|
				if (unlikely(proglen + ilen > oldproglen)) {
 | 
						|
					pr_err("bpb_jit_compile fatal error\n");
 | 
						|
					kfree(addrs);
 | 
						|
					module_memfree(image);
 | 
						|
					return;
 | 
						|
				}
 | 
						|
				memcpy(image + proglen, temp, ilen);
 | 
						|
			}
 | 
						|
			proglen += ilen;
 | 
						|
			addrs[i] = proglen;
 | 
						|
			prog = temp;
 | 
						|
		}
 | 
						|
		/* last bpf instruction is always a RET :
 | 
						|
		 * use it to give the cleanup instruction(s) addr
 | 
						|
		 */
 | 
						|
		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
 | 
						|
		if (seen_or_pass0 & SEEN_MEM)
 | 
						|
			cleanup_addr -= 4; /* add %sp, X, %sp; */
 | 
						|
 | 
						|
		if (image) {
 | 
						|
			if (proglen != oldproglen)
 | 
						|
				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
 | 
						|
				       proglen, oldproglen);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (proglen == oldproglen) {
 | 
						|
			image = module_alloc(proglen);
 | 
						|
			if (!image)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		oldproglen = proglen;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bpf_jit_enable > 1)
 | 
						|
		bpf_jit_dump(flen, proglen, pass + 1, image);
 | 
						|
 | 
						|
	if (image) {
 | 
						|
		fp->bpf_func = (void *)image;
 | 
						|
		fp->jited = 1;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	kfree(addrs);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
void bpf_jit_free(struct bpf_prog *fp)
 | 
						|
{
 | 
						|
	if (fp->jited)
 | 
						|
		module_memfree(fp->bpf_func);
 | 
						|
 | 
						|
	bpf_prog_unlock_free(fp);
 | 
						|
}
 |