mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	When the kernel.print-fatal-signals sysctl has been enabled, a simple
userspace crash will cause the kernel to write a crash dump that contains,
among other things, the kernel gsbase into dmesg.
As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE
in this case.
This also moves the bitness-specific logic from show_regs() into
process_{32,64}.c.
Fixes: 45807a1df9 ("vdso: print fatal signals")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
		
	
			
		
			
				
	
	
		
			419 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			419 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 | 
						|
 */
 | 
						|
#include <linux/kallsyms.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/sched/debug.h>
 | 
						|
#include <linux/sched/task_stack.h>
 | 
						|
#include <linux/ftrace.h>
 | 
						|
#include <linux/kexec.h>
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/nmi.h>
 | 
						|
#include <linux/sysfs.h>
 | 
						|
#include <linux/kasan.h>
 | 
						|
 | 
						|
#include <asm/cpu_entry_area.h>
 | 
						|
#include <asm/stacktrace.h>
 | 
						|
#include <asm/unwind.h>
 | 
						|
 | 
						|
int panic_on_unrecovered_nmi;
 | 
						|
int panic_on_io_nmi;
 | 
						|
static int die_counter;
 | 
						|
 | 
						|
static struct pt_regs exec_summary_regs;
 | 
						|
 | 
						|
bool in_task_stack(unsigned long *stack, struct task_struct *task,
 | 
						|
		   struct stack_info *info)
 | 
						|
{
 | 
						|
	unsigned long *begin = task_stack_page(task);
 | 
						|
	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 | 
						|
 | 
						|
	if (stack < begin || stack >= end)
 | 
						|
		return false;
 | 
						|
 | 
						|
	info->type	= STACK_TYPE_TASK;
 | 
						|
	info->begin	= begin;
 | 
						|
	info->end	= end;
 | 
						|
	info->next_sp	= NULL;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 | 
						|
{
 | 
						|
	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 | 
						|
 | 
						|
	void *begin = ss;
 | 
						|
	void *end = ss + 1;
 | 
						|
 | 
						|
	if ((void *)stack < begin || (void *)stack >= end)
 | 
						|
		return false;
 | 
						|
 | 
						|
	info->type	= STACK_TYPE_ENTRY;
 | 
						|
	info->begin	= begin;
 | 
						|
	info->end	= end;
 | 
						|
	info->next_sp	= NULL;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void printk_stack_address(unsigned long address, int reliable,
 | 
						|
				 char *log_lvl)
 | 
						|
{
 | 
						|
	touch_nmi_watchdog();
 | 
						|
	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 | 
						|
 *
 | 
						|
 * In case where we don't have the exact kernel image (which, if we did, we can
 | 
						|
 * simply disassemble and navigate to the RIP), the purpose of the bigger
 | 
						|
 * prologue is to have more context and to be able to correlate the code from
 | 
						|
 * the different toolchains better.
 | 
						|
 *
 | 
						|
 * In addition, it helps in recreating the register allocation of the failing
 | 
						|
 * kernel and thus make sense of the register dump.
 | 
						|
 *
 | 
						|
 * What is more, the additional complication of a variable length insn arch like
 | 
						|
 * x86 warrants having longer byte sequence before rIP so that the disassembler
 | 
						|
 * can "sync" up properly and find instruction boundaries when decoding the
 | 
						|
 * opcode bytes.
 | 
						|
 *
 | 
						|
 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 | 
						|
 * guesstimate in attempt to achieve all of the above.
 | 
						|
 */
 | 
						|
void show_opcodes(struct pt_regs *regs, const char *loglvl)
 | 
						|
{
 | 
						|
#define PROLOGUE_SIZE 42
 | 
						|
#define EPILOGUE_SIZE 21
 | 
						|
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
 | 
						|
	u8 opcodes[OPCODE_BUFSIZE];
 | 
						|
	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
 | 
						|
	bool bad_ip;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure userspace isn't trying to trick us into dumping kernel
 | 
						|
	 * memory by pointing the userspace instruction pointer at it.
 | 
						|
	 */
 | 
						|
	bad_ip = user_mode(regs) &&
 | 
						|
		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
 | 
						|
 | 
						|
	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
 | 
						|
					OPCODE_BUFSIZE)) {
 | 
						|
		printk("%sCode: Bad RIP value.\n", loglvl);
 | 
						|
	} else {
 | 
						|
		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
 | 
						|
		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
 | 
						|
		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void show_ip(struct pt_regs *regs, const char *loglvl)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
 | 
						|
#else
 | 
						|
	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
 | 
						|
#endif
 | 
						|
	show_opcodes(regs, loglvl);
 | 
						|
}
 | 
						|
 | 
						|
void show_iret_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	show_ip(regs, KERN_DEFAULT);
 | 
						|
	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
 | 
						|
		regs->sp, regs->flags);
 | 
						|
}
 | 
						|
 | 
						|
static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
 | 
						|
				  bool partial)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * These on_stack() checks aren't strictly necessary: the unwind code
 | 
						|
	 * has already validated the 'regs' pointer.  The checks are done for
 | 
						|
	 * ordering reasons: if the registers are on the next stack, we don't
 | 
						|
	 * want to print them out yet.  Otherwise they'll be shown as part of
 | 
						|
	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
 | 
						|
	 * next stack, this function will be called again with the same regs so
 | 
						|
	 * they can be printed in the right context.
 | 
						|
	 */
 | 
						|
	if (!partial && on_stack(info, regs, sizeof(*regs))) {
 | 
						|
		__show_regs(regs, SHOW_REGS_SHORT);
 | 
						|
 | 
						|
	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
 | 
						|
				       IRET_FRAME_SIZE)) {
 | 
						|
		/*
 | 
						|
		 * When an interrupt or exception occurs in entry code, the
 | 
						|
		 * full pt_regs might not have been saved yet.  In that case
 | 
						|
		 * just print the iret frame.
 | 
						|
		 */
 | 
						|
		show_iret_regs(regs);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
 | 
						|
			unsigned long *stack, char *log_lvl)
 | 
						|
{
 | 
						|
	struct unwind_state state;
 | 
						|
	struct stack_info stack_info = {0};
 | 
						|
	unsigned long visit_mask = 0;
 | 
						|
	int graph_idx = 0;
 | 
						|
	bool partial = false;
 | 
						|
 | 
						|
	printk("%sCall Trace:\n", log_lvl);
 | 
						|
 | 
						|
	unwind_start(&state, task, regs, stack);
 | 
						|
	stack = stack ? : get_stack_pointer(task, regs);
 | 
						|
	regs = unwind_get_entry_regs(&state, &partial);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate through the stacks, starting with the current stack pointer.
 | 
						|
	 * Each stack has a pointer to the next one.
 | 
						|
	 *
 | 
						|
	 * x86-64 can have several stacks:
 | 
						|
	 * - task stack
 | 
						|
	 * - interrupt stack
 | 
						|
	 * - HW exception stacks (double fault, nmi, debug, mce)
 | 
						|
	 * - entry stack
 | 
						|
	 *
 | 
						|
	 * x86-32 can have up to four stacks:
 | 
						|
	 * - task stack
 | 
						|
	 * - softirq stack
 | 
						|
	 * - hardirq stack
 | 
						|
	 * - entry stack
 | 
						|
	 */
 | 
						|
	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
 | 
						|
		const char *stack_name;
 | 
						|
 | 
						|
		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
 | 
						|
			/*
 | 
						|
			 * We weren't on a valid stack.  It's possible that
 | 
						|
			 * we overflowed a valid stack into a guard page.
 | 
						|
			 * See if the next page up is valid so that we can
 | 
						|
			 * generate some kind of backtrace if this happens.
 | 
						|
			 */
 | 
						|
			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
 | 
						|
			if (get_stack_info(stack, task, &stack_info, &visit_mask))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		stack_name = stack_type_name(stack_info.type);
 | 
						|
		if (stack_name)
 | 
						|
			printk("%s <%s>\n", log_lvl, stack_name);
 | 
						|
 | 
						|
		if (regs)
 | 
						|
			show_regs_if_on_stack(&stack_info, regs, partial);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Scan the stack, printing any text addresses we find.  At the
 | 
						|
		 * same time, follow proper stack frames with the unwinder.
 | 
						|
		 *
 | 
						|
		 * Addresses found during the scan which are not reported by
 | 
						|
		 * the unwinder are considered to be additional clues which are
 | 
						|
		 * sometimes useful for debugging and are prefixed with '?'.
 | 
						|
		 * This also serves as a failsafe option in case the unwinder
 | 
						|
		 * goes off in the weeds.
 | 
						|
		 */
 | 
						|
		for (; stack < stack_info.end; stack++) {
 | 
						|
			unsigned long real_addr;
 | 
						|
			int reliable = 0;
 | 
						|
			unsigned long addr = READ_ONCE_NOCHECK(*stack);
 | 
						|
			unsigned long *ret_addr_p =
 | 
						|
				unwind_get_return_address_ptr(&state);
 | 
						|
 | 
						|
			if (!__kernel_text_address(addr))
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Don't print regs->ip again if it was already printed
 | 
						|
			 * by show_regs_if_on_stack().
 | 
						|
			 */
 | 
						|
			if (regs && stack == ®s->ip)
 | 
						|
				goto next;
 | 
						|
 | 
						|
			if (stack == ret_addr_p)
 | 
						|
				reliable = 1;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * When function graph tracing is enabled for a
 | 
						|
			 * function, its return address on the stack is
 | 
						|
			 * replaced with the address of an ftrace handler
 | 
						|
			 * (return_to_handler).  In that case, before printing
 | 
						|
			 * the "real" address, we want to print the handler
 | 
						|
			 * address as an "unreliable" hint that function graph
 | 
						|
			 * tracing was involved.
 | 
						|
			 */
 | 
						|
			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
 | 
						|
							  addr, stack);
 | 
						|
			if (real_addr != addr)
 | 
						|
				printk_stack_address(addr, 0, log_lvl);
 | 
						|
			printk_stack_address(real_addr, reliable, log_lvl);
 | 
						|
 | 
						|
			if (!reliable)
 | 
						|
				continue;
 | 
						|
 | 
						|
next:
 | 
						|
			/*
 | 
						|
			 * Get the next frame from the unwinder.  No need to
 | 
						|
			 * check for an error: if anything goes wrong, the rest
 | 
						|
			 * of the addresses will just be printed as unreliable.
 | 
						|
			 */
 | 
						|
			unwind_next_frame(&state);
 | 
						|
 | 
						|
			/* if the frame has entry regs, print them */
 | 
						|
			regs = unwind_get_entry_regs(&state, &partial);
 | 
						|
			if (regs)
 | 
						|
				show_regs_if_on_stack(&stack_info, regs, partial);
 | 
						|
		}
 | 
						|
 | 
						|
		if (stack_name)
 | 
						|
			printk("%s </%s>\n", log_lvl, stack_name);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void show_stack(struct task_struct *task, unsigned long *sp)
 | 
						|
{
 | 
						|
	task = task ? : current;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Stack frames below this one aren't interesting.  Don't show them
 | 
						|
	 * if we're printing for %current.
 | 
						|
	 */
 | 
						|
	if (!sp && task == current)
 | 
						|
		sp = get_stack_pointer(current, NULL);
 | 
						|
 | 
						|
	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
 | 
						|
}
 | 
						|
 | 
						|
void show_stack_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 | 
						|
}
 | 
						|
 | 
						|
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 | 
						|
static int die_owner = -1;
 | 
						|
static unsigned int die_nest_count;
 | 
						|
 | 
						|
unsigned long oops_begin(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	oops_enter();
 | 
						|
 | 
						|
	/* racy, but better than risking deadlock. */
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	cpu = smp_processor_id();
 | 
						|
	if (!arch_spin_trylock(&die_lock)) {
 | 
						|
		if (cpu == die_owner)
 | 
						|
			/* nested oops. should stop eventually */;
 | 
						|
		else
 | 
						|
			arch_spin_lock(&die_lock);
 | 
						|
	}
 | 
						|
	die_nest_count++;
 | 
						|
	die_owner = cpu;
 | 
						|
	console_verbose();
 | 
						|
	bust_spinlocks(1);
 | 
						|
	return flags;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(oops_begin);
 | 
						|
 | 
						|
void __noreturn rewind_stack_do_exit(int signr);
 | 
						|
 | 
						|
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
 | 
						|
{
 | 
						|
	if (regs && kexec_should_crash(current))
 | 
						|
		crash_kexec(regs);
 | 
						|
 | 
						|
	bust_spinlocks(0);
 | 
						|
	die_owner = -1;
 | 
						|
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 | 
						|
	die_nest_count--;
 | 
						|
	if (!die_nest_count)
 | 
						|
		/* Nest count reaches zero, release the lock. */
 | 
						|
		arch_spin_unlock(&die_lock);
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
	oops_exit();
 | 
						|
 | 
						|
	/* Executive summary in case the oops scrolled away */
 | 
						|
	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
 | 
						|
 | 
						|
	if (!signr)
 | 
						|
		return;
 | 
						|
	if (in_interrupt())
 | 
						|
		panic("Fatal exception in interrupt");
 | 
						|
	if (panic_on_oops)
 | 
						|
		panic("Fatal exception");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're not going to return, but we might be on an IST stack or
 | 
						|
	 * have very little stack space left.  Rewind the stack and kill
 | 
						|
	 * the task.
 | 
						|
	 * Before we rewind the stack, we have to tell KASAN that we're going to
 | 
						|
	 * reuse the task stack and that existing poisons are invalid.
 | 
						|
	 */
 | 
						|
	kasan_unpoison_task_stack(current);
 | 
						|
	rewind_stack_do_exit(signr);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(oops_end);
 | 
						|
 | 
						|
int __die(const char *str, struct pt_regs *regs, long err)
 | 
						|
{
 | 
						|
	/* Save the regs of the first oops for the executive summary later. */
 | 
						|
	if (!die_counter)
 | 
						|
		exec_summary_regs = *regs;
 | 
						|
 | 
						|
	printk(KERN_DEFAULT
 | 
						|
	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
 | 
						|
	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
 | 
						|
	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
 | 
						|
	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
 | 
						|
	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
 | 
						|
	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
 | 
						|
	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
 | 
						|
 | 
						|
	show_regs(regs);
 | 
						|
	print_modules();
 | 
						|
 | 
						|
	if (notify_die(DIE_OOPS, str, regs, err,
 | 
						|
			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(__die);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is gone through when something in the kernel has done something bad
 | 
						|
 * and is about to be terminated:
 | 
						|
 */
 | 
						|
void die(const char *str, struct pt_regs *regs, long err)
 | 
						|
{
 | 
						|
	unsigned long flags = oops_begin();
 | 
						|
	int sig = SIGSEGV;
 | 
						|
 | 
						|
	if (__die(str, regs, err))
 | 
						|
		sig = 0;
 | 
						|
	oops_end(flags, regs, sig);
 | 
						|
}
 | 
						|
 | 
						|
void show_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	show_regs_print_info(KERN_DEFAULT);
 | 
						|
 | 
						|
	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When in-kernel, we also print out the stack at the time of the fault..
 | 
						|
	 */
 | 
						|
	if (!user_mode(regs))
 | 
						|
		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 | 
						|
}
 |