mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Pull x86 paravirt updates from Ingo Molnar:
 "Two main changes:
   - Remove no longer used parts of the paravirt infrastructure and put
     large quantities of paravirt ops under a new config option
     PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
   - Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/hyperv: Enable PV qspinlock for Hyper-V
  x86/hyperv: Add GUEST_IDLE_MSR support
  x86/paravirt: Clean up native_patch()
  x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
  x86/xen: Make xen_reservation_lock static
  x86/paravirt: Remove unneeded mmu related paravirt ops bits
  x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
  x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
  x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
  x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
  x86/paravirt: Introduce new config option PARAVIRT_XXL
  x86/paravirt: Remove unused paravirt bits
  x86/paravirt: Use a single ops structure
  x86/paravirt: Remove clobbers from struct paravirt_patch_site
  x86/paravirt: Remove clobbers parameter from paravirt patch functions
  x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
  x86/xen: Add SPDX identifier in arch/x86/xen files
  x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
  x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
  x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
		
	
			
		
			
				
	
	
		
			373 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*  KVM paravirtual clock driver. A clocksource implementation
 | 
						|
    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
 | 
						|
 | 
						|
    This program is free software; you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU General Public License as published by
 | 
						|
    the Free Software Foundation; either version 2 of the License, or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    This program is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU General Public License
 | 
						|
    along with this program; if not, write to the Free Software
 | 
						|
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
*/
 | 
						|
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/kvm_para.h>
 | 
						|
#include <asm/pvclock.h>
 | 
						|
#include <asm/msr.h>
 | 
						|
#include <asm/apic.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/cpuhotplug.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/clock.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/set_memory.h>
 | 
						|
 | 
						|
#include <asm/hypervisor.h>
 | 
						|
#include <asm/mem_encrypt.h>
 | 
						|
#include <asm/x86_init.h>
 | 
						|
#include <asm/reboot.h>
 | 
						|
#include <asm/kvmclock.h>
 | 
						|
 | 
						|
static int kvmclock __initdata = 1;
 | 
						|
static int kvmclock_vsyscall __initdata = 1;
 | 
						|
static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
 | 
						|
static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
 | 
						|
static u64 kvm_sched_clock_offset __ro_after_init;
 | 
						|
 | 
						|
static int __init parse_no_kvmclock(char *arg)
 | 
						|
{
 | 
						|
	kvmclock = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("no-kvmclock", parse_no_kvmclock);
 | 
						|
 | 
						|
static int __init parse_no_kvmclock_vsyscall(char *arg)
 | 
						|
{
 | 
						|
	kvmclock_vsyscall = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 | 
						|
 | 
						|
/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
 | 
						|
#define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
 | 
						|
#define HVC_BOOT_ARRAY_SIZE \
 | 
						|
	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
 | 
						|
 | 
						|
static struct pvclock_vsyscall_time_info
 | 
						|
			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
 | 
						|
static struct pvclock_wall_clock wall_clock __bss_decrypted;
 | 
						|
static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
 | 
						|
static struct pvclock_vsyscall_time_info *hvclock_mem;
 | 
						|
 | 
						|
static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
 | 
						|
{
 | 
						|
	return &this_cpu_read(hv_clock_per_cpu)->pvti;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
 | 
						|
{
 | 
						|
	return this_cpu_read(hv_clock_per_cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The wallclock is the time of day when we booted. Since then, some time may
 | 
						|
 * have elapsed since the hypervisor wrote the data. So we try to account for
 | 
						|
 * that with system time
 | 
						|
 */
 | 
						|
static void kvm_get_wallclock(struct timespec64 *now)
 | 
						|
{
 | 
						|
	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
 | 
						|
	preempt_disable();
 | 
						|
	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_set_wallclock(const struct timespec64 *now)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static u64 kvm_clock_read(void)
 | 
						|
{
 | 
						|
	u64 ret;
 | 
						|
 | 
						|
	preempt_disable_notrace();
 | 
						|
	ret = pvclock_clocksource_read(this_cpu_pvti());
 | 
						|
	preempt_enable_notrace();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static u64 kvm_clock_get_cycles(struct clocksource *cs)
 | 
						|
{
 | 
						|
	return kvm_clock_read();
 | 
						|
}
 | 
						|
 | 
						|
static u64 kvm_sched_clock_read(void)
 | 
						|
{
 | 
						|
	return kvm_clock_read() - kvm_sched_clock_offset;
 | 
						|
}
 | 
						|
 | 
						|
static inline void kvm_sched_clock_init(bool stable)
 | 
						|
{
 | 
						|
	if (!stable) {
 | 
						|
		pv_ops.time.sched_clock = kvm_clock_read;
 | 
						|
		clear_sched_clock_stable();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	kvm_sched_clock_offset = kvm_clock_read();
 | 
						|
	pv_ops.time.sched_clock = kvm_sched_clock_read;
 | 
						|
 | 
						|
	pr_info("kvm-clock: using sched offset of %llu cycles",
 | 
						|
		kvm_sched_clock_offset);
 | 
						|
 | 
						|
	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
 | 
						|
		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If we don't do that, there is the possibility that the guest
 | 
						|
 * will calibrate under heavy load - thus, getting a lower lpj -
 | 
						|
 * and execute the delays themselves without load. This is wrong,
 | 
						|
 * because no delay loop can finish beforehand.
 | 
						|
 * Any heuristics is subject to fail, because ultimately, a large
 | 
						|
 * poll of guests can be running and trouble each other. So we preset
 | 
						|
 * lpj here
 | 
						|
 */
 | 
						|
static unsigned long kvm_get_tsc_khz(void)
 | 
						|
{
 | 
						|
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 | 
						|
	return pvclock_tsc_khz(this_cpu_pvti());
 | 
						|
}
 | 
						|
 | 
						|
static void __init kvm_get_preset_lpj(void)
 | 
						|
{
 | 
						|
	unsigned long khz;
 | 
						|
	u64 lpj;
 | 
						|
 | 
						|
	khz = kvm_get_tsc_khz();
 | 
						|
 | 
						|
	lpj = ((u64)khz * 1000);
 | 
						|
	do_div(lpj, HZ);
 | 
						|
	preset_lpj = lpj;
 | 
						|
}
 | 
						|
 | 
						|
bool kvm_check_and_clear_guest_paused(void)
 | 
						|
{
 | 
						|
	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	if (!src)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
 | 
						|
		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
 | 
						|
		pvclock_touch_watchdogs();
 | 
						|
		ret = true;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct clocksource kvm_clock = {
 | 
						|
	.name	= "kvm-clock",
 | 
						|
	.read	= kvm_clock_get_cycles,
 | 
						|
	.rating	= 400,
 | 
						|
	.mask	= CLOCKSOURCE_MASK(64),
 | 
						|
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(kvm_clock);
 | 
						|
 | 
						|
static void kvm_register_clock(char *txt)
 | 
						|
{
 | 
						|
	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
 | 
						|
	u64 pa;
 | 
						|
 | 
						|
	if (!src)
 | 
						|
		return;
 | 
						|
 | 
						|
	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
 | 
						|
	wrmsrl(msr_kvm_system_time, pa);
 | 
						|
	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_save_sched_clock_state(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_restore_sched_clock_state(void)
 | 
						|
{
 | 
						|
	kvm_register_clock("primary cpu clock, resume");
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_LOCAL_APIC
 | 
						|
static void kvm_setup_secondary_clock(void)
 | 
						|
{
 | 
						|
	kvm_register_clock("secondary cpu clock");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * After the clock is registered, the host will keep writing to the
 | 
						|
 * registered memory location. If the guest happens to shutdown, this memory
 | 
						|
 * won't be valid. In cases like kexec, in which you install a new kernel, this
 | 
						|
 * means a random memory location will be kept being written. So before any
 | 
						|
 * kind of shutdown from our side, we unregister the clock by writing anything
 | 
						|
 * that does not have the 'enable' bit set in the msr
 | 
						|
 */
 | 
						|
#ifdef CONFIG_KEXEC_CORE
 | 
						|
static void kvm_crash_shutdown(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	native_write_msr(msr_kvm_system_time, 0, 0);
 | 
						|
	kvm_disable_steal_time();
 | 
						|
	native_machine_crash_shutdown(regs);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void kvm_shutdown(void)
 | 
						|
{
 | 
						|
	native_write_msr(msr_kvm_system_time, 0, 0);
 | 
						|
	kvm_disable_steal_time();
 | 
						|
	native_machine_shutdown();
 | 
						|
}
 | 
						|
 | 
						|
static void __init kvmclock_init_mem(void)
 | 
						|
{
 | 
						|
	unsigned long ncpus;
 | 
						|
	unsigned int order;
 | 
						|
	struct page *p;
 | 
						|
	int r;
 | 
						|
 | 
						|
	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
 | 
						|
		return;
 | 
						|
 | 
						|
	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
 | 
						|
	order = get_order(ncpus * sizeof(*hvclock_mem));
 | 
						|
 | 
						|
	p = alloc_pages(GFP_KERNEL, order);
 | 
						|
	if (!p) {
 | 
						|
		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	hvclock_mem = page_address(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hvclock is shared between the guest and the hypervisor, must
 | 
						|
	 * be mapped decrypted.
 | 
						|
	 */
 | 
						|
	if (sev_active()) {
 | 
						|
		r = set_memory_decrypted((unsigned long) hvclock_mem,
 | 
						|
					 1UL << order);
 | 
						|
		if (r) {
 | 
						|
			__free_pages(p, order);
 | 
						|
			hvclock_mem = NULL;
 | 
						|
			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	memset(hvclock_mem, 0, PAGE_SIZE << order);
 | 
						|
}
 | 
						|
 | 
						|
static int __init kvm_setup_vsyscall_timeinfo(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	u8 flags;
 | 
						|
 | 
						|
	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
 | 
						|
	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
 | 
						|
#endif
 | 
						|
 | 
						|
	kvmclock_init_mem();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_initcall(kvm_setup_vsyscall_timeinfo);
 | 
						|
 | 
						|
static int kvmclock_setup_percpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The per cpu area setup replicates CPU0 data to all cpu
 | 
						|
	 * pointers. So carefully check. CPU0 has been set up in init
 | 
						|
	 * already.
 | 
						|
	 */
 | 
						|
	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Use the static page for the first CPUs, allocate otherwise */
 | 
						|
	if (cpu < HVC_BOOT_ARRAY_SIZE)
 | 
						|
		p = &hv_clock_boot[cpu];
 | 
						|
	else if (hvclock_mem)
 | 
						|
		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
 | 
						|
	else
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	per_cpu(hv_clock_per_cpu, cpu) = p;
 | 
						|
	return p ? 0 : -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
void __init kvmclock_init(void)
 | 
						|
{
 | 
						|
	u8 flags;
 | 
						|
 | 
						|
	if (!kvm_para_available() || !kvmclock)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 | 
						|
		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 | 
						|
		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 | 
						|
	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
 | 
						|
			      kvmclock_setup_percpu, NULL) < 0) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_info("kvm-clock: Using msrs %x and %x",
 | 
						|
		msr_kvm_system_time, msr_kvm_wall_clock);
 | 
						|
 | 
						|
	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
 | 
						|
	kvm_register_clock("primary cpu clock");
 | 
						|
	pvclock_set_pvti_cpu0_va(hv_clock_boot);
 | 
						|
 | 
						|
	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 | 
						|
		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 | 
						|
 | 
						|
	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
 | 
						|
	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
 | 
						|
 | 
						|
	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 | 
						|
	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
 | 
						|
	x86_platform.get_wallclock = kvm_get_wallclock;
 | 
						|
	x86_platform.set_wallclock = kvm_set_wallclock;
 | 
						|
#ifdef CONFIG_X86_LOCAL_APIC
 | 
						|
	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
 | 
						|
#endif
 | 
						|
	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
 | 
						|
	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 | 
						|
	machine_ops.shutdown  = kvm_shutdown;
 | 
						|
#ifdef CONFIG_KEXEC_CORE
 | 
						|
	machine_ops.crash_shutdown  = kvm_crash_shutdown;
 | 
						|
#endif
 | 
						|
	kvm_get_preset_lpj();
 | 
						|
	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 | 
						|
	pv_info.name = "KVM";
 | 
						|
}
 |