mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	subslice_mask is an array indexed by slice, not subslice. Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Fixes:8cc7669355("drm/i915: store all subslice masks") Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=108712 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181112123931.2815-1-lionel.g.landwerlin@intel.com (cherry picked from commit63ac3328f0) Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
		
			
				
	
	
		
			916 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright © 2016 Intel Corporation
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a
 | 
						|
 * copy of this software and associated documentation files (the "Software"),
 | 
						|
 * to deal in the Software without restriction, including without limitation
 | 
						|
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | 
						|
 * and/or sell copies of the Software, and to permit persons to whom the
 | 
						|
 * Software is furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice (including the next
 | 
						|
 * paragraph) shall be included in all copies or substantial portions of the
 | 
						|
 * Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | 
						|
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | 
						|
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 | 
						|
 * IN THE SOFTWARE.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <drm/drm_print.h>
 | 
						|
 | 
						|
#include "intel_device_info.h"
 | 
						|
#include "i915_drv.h"
 | 
						|
 | 
						|
#define PLATFORM_NAME(x) [INTEL_##x] = #x
 | 
						|
static const char * const platform_names[] = {
 | 
						|
	PLATFORM_NAME(I830),
 | 
						|
	PLATFORM_NAME(I845G),
 | 
						|
	PLATFORM_NAME(I85X),
 | 
						|
	PLATFORM_NAME(I865G),
 | 
						|
	PLATFORM_NAME(I915G),
 | 
						|
	PLATFORM_NAME(I915GM),
 | 
						|
	PLATFORM_NAME(I945G),
 | 
						|
	PLATFORM_NAME(I945GM),
 | 
						|
	PLATFORM_NAME(G33),
 | 
						|
	PLATFORM_NAME(PINEVIEW),
 | 
						|
	PLATFORM_NAME(I965G),
 | 
						|
	PLATFORM_NAME(I965GM),
 | 
						|
	PLATFORM_NAME(G45),
 | 
						|
	PLATFORM_NAME(GM45),
 | 
						|
	PLATFORM_NAME(IRONLAKE),
 | 
						|
	PLATFORM_NAME(SANDYBRIDGE),
 | 
						|
	PLATFORM_NAME(IVYBRIDGE),
 | 
						|
	PLATFORM_NAME(VALLEYVIEW),
 | 
						|
	PLATFORM_NAME(HASWELL),
 | 
						|
	PLATFORM_NAME(BROADWELL),
 | 
						|
	PLATFORM_NAME(CHERRYVIEW),
 | 
						|
	PLATFORM_NAME(SKYLAKE),
 | 
						|
	PLATFORM_NAME(BROXTON),
 | 
						|
	PLATFORM_NAME(KABYLAKE),
 | 
						|
	PLATFORM_NAME(GEMINILAKE),
 | 
						|
	PLATFORM_NAME(COFFEELAKE),
 | 
						|
	PLATFORM_NAME(CANNONLAKE),
 | 
						|
	PLATFORM_NAME(ICELAKE),
 | 
						|
};
 | 
						|
#undef PLATFORM_NAME
 | 
						|
 | 
						|
const char *intel_platform_name(enum intel_platform platform)
 | 
						|
{
 | 
						|
	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
 | 
						|
			 platform_names[platform] == NULL))
 | 
						|
		return "<unknown>";
 | 
						|
 | 
						|
	return platform_names[platform];
 | 
						|
}
 | 
						|
 | 
						|
void intel_device_info_dump_flags(const struct intel_device_info *info,
 | 
						|
				  struct drm_printer *p)
 | 
						|
{
 | 
						|
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
 | 
						|
	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
 | 
						|
#undef PRINT_FLAG
 | 
						|
}
 | 
						|
 | 
						|
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
 | 
						|
{
 | 
						|
	int s;
 | 
						|
 | 
						|
	drm_printf(p, "slice total: %u, mask=%04x\n",
 | 
						|
		   hweight8(sseu->slice_mask), sseu->slice_mask);
 | 
						|
	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
 | 
						|
			   s, hweight8(sseu->subslice_mask[s]),
 | 
						|
			   sseu->subslice_mask[s]);
 | 
						|
	}
 | 
						|
	drm_printf(p, "EU total: %u\n", sseu->eu_total);
 | 
						|
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
 | 
						|
	drm_printf(p, "has slice power gating: %s\n",
 | 
						|
		   yesno(sseu->has_slice_pg));
 | 
						|
	drm_printf(p, "has subslice power gating: %s\n",
 | 
						|
		   yesno(sseu->has_subslice_pg));
 | 
						|
	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
 | 
						|
}
 | 
						|
 | 
						|
void intel_device_info_dump_runtime(const struct intel_device_info *info,
 | 
						|
				    struct drm_printer *p)
 | 
						|
{
 | 
						|
	sseu_dump(&info->sseu, p);
 | 
						|
 | 
						|
	drm_printf(p, "CS timestamp frequency: %u kHz\n",
 | 
						|
		   info->cs_timestamp_frequency_khz);
 | 
						|
}
 | 
						|
 | 
						|
void intel_device_info_dump(const struct intel_device_info *info,
 | 
						|
			    struct drm_printer *p)
 | 
						|
{
 | 
						|
	struct drm_i915_private *dev_priv =
 | 
						|
		container_of(info, struct drm_i915_private, info);
 | 
						|
 | 
						|
	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
 | 
						|
		   INTEL_DEVID(dev_priv),
 | 
						|
		   INTEL_REVID(dev_priv),
 | 
						|
		   intel_platform_name(info->platform),
 | 
						|
		   info->gen);
 | 
						|
 | 
						|
	intel_device_info_dump_flags(info, p);
 | 
						|
}
 | 
						|
 | 
						|
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
 | 
						|
				     struct drm_printer *p)
 | 
						|
{
 | 
						|
	int s, ss;
 | 
						|
 | 
						|
	if (sseu->max_slices == 0) {
 | 
						|
		drm_printf(p, "Unavailable\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
 | 
						|
			   s, hweight8(sseu->subslice_mask[s]),
 | 
						|
			   sseu->subslice_mask[s]);
 | 
						|
 | 
						|
		for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
 | 
						|
 | 
						|
			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
 | 
						|
				   ss, hweight16(enabled_eus), enabled_eus);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 | 
						|
{
 | 
						|
	u16 i, total = 0;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 | 
						|
		total += hweight8(sseu->eu_mask[i]);
 | 
						|
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 | 
						|
	u8 s_en;
 | 
						|
	u32 ss_en, ss_en_mask;
 | 
						|
	u8 eu_en;
 | 
						|
	int s;
 | 
						|
 | 
						|
	sseu->max_slices = 1;
 | 
						|
	sseu->max_subslices = 8;
 | 
						|
	sseu->max_eus_per_subslice = 8;
 | 
						|
 | 
						|
	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
 | 
						|
	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
 | 
						|
	ss_en_mask = BIT(sseu->max_subslices) - 1;
 | 
						|
	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
 | 
						|
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		if (s_en & BIT(s)) {
 | 
						|
			int ss_idx = sseu->max_subslices * s;
 | 
						|
			int ss;
 | 
						|
 | 
						|
			sseu->slice_mask |= BIT(s);
 | 
						|
			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
 | 
						|
			for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
				if (sseu->subslice_mask[s] & BIT(ss))
 | 
						|
					sseu_set_eus(sseu, s, ss, eu_en);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	sseu->eu_per_subslice = hweight8(eu_en);
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/* ICL has no power gating restrictions. */
 | 
						|
	sseu->has_slice_pg = 1;
 | 
						|
	sseu->has_subslice_pg = 1;
 | 
						|
	sseu->has_eu_pg = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 | 
						|
	const u32 fuse2 = I915_READ(GEN8_FUSE2);
 | 
						|
	int s, ss;
 | 
						|
	const int eu_mask = 0xff;
 | 
						|
	u32 subslice_mask, eu_en;
 | 
						|
 | 
						|
	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
 | 
						|
			    GEN10_F2_S_ENA_SHIFT;
 | 
						|
	sseu->max_slices = 6;
 | 
						|
	sseu->max_subslices = 4;
 | 
						|
	sseu->max_eus_per_subslice = 8;
 | 
						|
 | 
						|
	subslice_mask = (1 << 4) - 1;
 | 
						|
	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
 | 
						|
			   GEN10_F2_SS_DIS_SHIFT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Slice0 can have up to 3 subslices, but there are only 2 in
 | 
						|
	 * slice1/2.
 | 
						|
	 */
 | 
						|
	sseu->subslice_mask[0] = subslice_mask;
 | 
						|
	for (s = 1; s < sseu->max_slices; s++)
 | 
						|
		sseu->subslice_mask[s] = subslice_mask & 0x3;
 | 
						|
 | 
						|
	/* Slice0 */
 | 
						|
	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
 | 
						|
	for (ss = 0; ss < sseu->max_subslices; ss++)
 | 
						|
		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
 | 
						|
	/* Slice1 */
 | 
						|
	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
 | 
						|
	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
 | 
						|
	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
 | 
						|
	/* Slice2 */
 | 
						|
	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
 | 
						|
	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
 | 
						|
	/* Slice3 */
 | 
						|
	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
 | 
						|
	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
 | 
						|
	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
 | 
						|
	/* Slice4 */
 | 
						|
	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
 | 
						|
	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
 | 
						|
	/* Slice5 */
 | 
						|
	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
 | 
						|
	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
 | 
						|
	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
 | 
						|
 | 
						|
	/* Do a second pass where we mark the subslices disabled if all their
 | 
						|
	 * eus are off.
 | 
						|
	 */
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
			if (sseu_get_eus(sseu, s, ss) == 0)
 | 
						|
				sseu->subslice_mask[s] &= ~BIT(ss);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CNL is expected to always have a uniform distribution
 | 
						|
	 * of EU across subslices with the exception that any one
 | 
						|
	 * EU in any one subslice may be fused off for die
 | 
						|
	 * recovery.
 | 
						|
	 */
 | 
						|
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 | 
						|
				DIV_ROUND_UP(sseu->eu_total,
 | 
						|
					     sseu_subslice_total(sseu)) : 0;
 | 
						|
 | 
						|
	/* No restrictions on Power Gating */
 | 
						|
	sseu->has_slice_pg = 1;
 | 
						|
	sseu->has_subslice_pg = 1;
 | 
						|
	sseu->has_eu_pg = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 | 
						|
	u32 fuse;
 | 
						|
 | 
						|
	fuse = I915_READ(CHV_FUSE_GT);
 | 
						|
 | 
						|
	sseu->slice_mask = BIT(0);
 | 
						|
	sseu->max_slices = 1;
 | 
						|
	sseu->max_subslices = 2;
 | 
						|
	sseu->max_eus_per_subslice = 8;
 | 
						|
 | 
						|
	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
 | 
						|
		u8 disabled_mask =
 | 
						|
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
 | 
						|
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
 | 
						|
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
 | 
						|
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
 | 
						|
 | 
						|
		sseu->subslice_mask[0] |= BIT(0);
 | 
						|
		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
 | 
						|
		u8 disabled_mask =
 | 
						|
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
 | 
						|
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
 | 
						|
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
 | 
						|
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
 | 
						|
 | 
						|
		sseu->subslice_mask[0] |= BIT(1);
 | 
						|
		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CHV expected to always have a uniform distribution of EU
 | 
						|
	 * across subslices.
 | 
						|
	*/
 | 
						|
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 | 
						|
				sseu->eu_total / sseu_subslice_total(sseu) :
 | 
						|
				0;
 | 
						|
	/*
 | 
						|
	 * CHV supports subslice power gating on devices with more than
 | 
						|
	 * one subslice, and supports EU power gating on devices with
 | 
						|
	 * more than one EU pair per subslice.
 | 
						|
	*/
 | 
						|
	sseu->has_slice_pg = 0;
 | 
						|
	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
 | 
						|
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
 | 
						|
}
 | 
						|
 | 
						|
static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
 | 
						|
	struct sseu_dev_info *sseu = &info->sseu;
 | 
						|
	int s, ss;
 | 
						|
	u32 fuse2, eu_disable, subslice_mask;
 | 
						|
	const u8 eu_mask = 0xff;
 | 
						|
 | 
						|
	fuse2 = I915_READ(GEN8_FUSE2);
 | 
						|
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 | 
						|
 | 
						|
	/* BXT has a single slice and at most 3 subslices. */
 | 
						|
	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
 | 
						|
	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
 | 
						|
	sseu->max_eus_per_subslice = 8;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The subslice disable field is global, i.e. it applies
 | 
						|
	 * to each of the enabled slices.
 | 
						|
	*/
 | 
						|
	subslice_mask = (1 << sseu->max_subslices) - 1;
 | 
						|
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
 | 
						|
			   GEN9_F2_SS_DIS_SHIFT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate through enabled slices and subslices to
 | 
						|
	 * count the total enabled EU.
 | 
						|
	*/
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		if (!(sseu->slice_mask & BIT(s)))
 | 
						|
			/* skip disabled slice */
 | 
						|
			continue;
 | 
						|
 | 
						|
		sseu->subslice_mask[s] = subslice_mask;
 | 
						|
 | 
						|
		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
 | 
						|
		for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
			int eu_per_ss;
 | 
						|
			u8 eu_disabled_mask;
 | 
						|
 | 
						|
			if (!(sseu->subslice_mask[s] & BIT(ss)))
 | 
						|
				/* skip disabled subslice */
 | 
						|
				continue;
 | 
						|
 | 
						|
			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
 | 
						|
 | 
						|
			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 | 
						|
 | 
						|
			eu_per_ss = sseu->max_eus_per_subslice -
 | 
						|
				hweight8(eu_disabled_mask);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Record which subslice(s) has(have) 7 EUs. we
 | 
						|
			 * can tune the hash used to spread work among
 | 
						|
			 * subslices if they are unbalanced.
 | 
						|
			 */
 | 
						|
			if (eu_per_ss == 7)
 | 
						|
				sseu->subslice_7eu[s] |= BIT(ss);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SKL is expected to always have a uniform distribution
 | 
						|
	 * of EU across subslices with the exception that any one
 | 
						|
	 * EU in any one subslice may be fused off for die
 | 
						|
	 * recovery. BXT is expected to be perfectly uniform in EU
 | 
						|
	 * distribution.
 | 
						|
	*/
 | 
						|
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 | 
						|
				DIV_ROUND_UP(sseu->eu_total,
 | 
						|
					     sseu_subslice_total(sseu)) : 0;
 | 
						|
	/*
 | 
						|
	 * SKL+ supports slice power gating on devices with more than
 | 
						|
	 * one slice, and supports EU power gating on devices with
 | 
						|
	 * more than one EU pair per subslice. BXT+ supports subslice
 | 
						|
	 * power gating on devices with more than one subslice, and
 | 
						|
	 * supports EU power gating on devices with more than one EU
 | 
						|
	 * pair per subslice.
 | 
						|
	*/
 | 
						|
	sseu->has_slice_pg =
 | 
						|
		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
 | 
						|
	sseu->has_subslice_pg =
 | 
						|
		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
 | 
						|
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
 | 
						|
 | 
						|
	if (IS_GEN9_LP(dev_priv)) {
 | 
						|
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
 | 
						|
		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
 | 
						|
 | 
						|
		sseu->min_eu_in_pool = 0;
 | 
						|
		if (info->has_pooled_eu) {
 | 
						|
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
 | 
						|
				sseu->min_eu_in_pool = 3;
 | 
						|
			else if (IS_SS_DISABLED(1))
 | 
						|
				sseu->min_eu_in_pool = 6;
 | 
						|
			else
 | 
						|
				sseu->min_eu_in_pool = 9;
 | 
						|
		}
 | 
						|
#undef IS_SS_DISABLED
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 | 
						|
	int s, ss;
 | 
						|
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
 | 
						|
 | 
						|
	fuse2 = I915_READ(GEN8_FUSE2);
 | 
						|
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 | 
						|
	sseu->max_slices = 3;
 | 
						|
	sseu->max_subslices = 3;
 | 
						|
	sseu->max_eus_per_subslice = 8;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The subslice disable field is global, i.e. it applies
 | 
						|
	 * to each of the enabled slices.
 | 
						|
	 */
 | 
						|
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
 | 
						|
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
 | 
						|
			   GEN8_F2_SS_DIS_SHIFT);
 | 
						|
 | 
						|
	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
 | 
						|
	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
 | 
						|
			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
 | 
						|
			 (32 - GEN8_EU_DIS0_S1_SHIFT));
 | 
						|
	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
 | 
						|
			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
 | 
						|
			 (32 - GEN8_EU_DIS1_S2_SHIFT));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate through enabled slices and subslices to
 | 
						|
	 * count the total enabled EU.
 | 
						|
	 */
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		if (!(sseu->slice_mask & BIT(s)))
 | 
						|
			/* skip disabled slice */
 | 
						|
			continue;
 | 
						|
 | 
						|
		sseu->subslice_mask[s] = subslice_mask;
 | 
						|
 | 
						|
		for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
			u8 eu_disabled_mask;
 | 
						|
			u32 n_disabled;
 | 
						|
 | 
						|
			if (!(sseu->subslice_mask[s] & BIT(ss)))
 | 
						|
				/* skip disabled subslice */
 | 
						|
				continue;
 | 
						|
 | 
						|
			eu_disabled_mask =
 | 
						|
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
 | 
						|
 | 
						|
			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 | 
						|
 | 
						|
			n_disabled = hweight8(eu_disabled_mask);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Record which subslices have 7 EUs.
 | 
						|
			 */
 | 
						|
			if (sseu->max_eus_per_subslice - n_disabled == 7)
 | 
						|
				sseu->subslice_7eu[s] |= 1 << ss;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * BDW is expected to always have a uniform distribution of EU across
 | 
						|
	 * subslices with the exception that any one EU in any one subslice may
 | 
						|
	 * be fused off for die recovery.
 | 
						|
	 */
 | 
						|
	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 | 
						|
				DIV_ROUND_UP(sseu->eu_total,
 | 
						|
					     sseu_subslice_total(sseu)) : 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * BDW supports slice power gating on devices with more than
 | 
						|
	 * one slice.
 | 
						|
	 */
 | 
						|
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
 | 
						|
	sseu->has_subslice_pg = 0;
 | 
						|
	sseu->has_eu_pg = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
 | 
						|
	struct sseu_dev_info *sseu = &info->sseu;
 | 
						|
	u32 fuse1;
 | 
						|
	int s, ss;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There isn't a register to tell us how many slices/subslices. We
 | 
						|
	 * work off the PCI-ids here.
 | 
						|
	 */
 | 
						|
	switch (info->gt) {
 | 
						|
	default:
 | 
						|
		MISSING_CASE(info->gt);
 | 
						|
		/* fall through */
 | 
						|
	case 1:
 | 
						|
		sseu->slice_mask = BIT(0);
 | 
						|
		sseu->subslice_mask[0] = BIT(0);
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		sseu->slice_mask = BIT(0);
 | 
						|
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		sseu->slice_mask = BIT(0) | BIT(1);
 | 
						|
		sseu->subslice_mask[0] = BIT(0) | BIT(1);
 | 
						|
		sseu->subslice_mask[1] = BIT(0) | BIT(1);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->max_slices = hweight8(sseu->slice_mask);
 | 
						|
	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
 | 
						|
 | 
						|
	fuse1 = I915_READ(HSW_PAVP_FUSE1);
 | 
						|
	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
 | 
						|
	default:
 | 
						|
		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
 | 
						|
			     HSW_F1_EU_DIS_SHIFT);
 | 
						|
		/* fall through */
 | 
						|
	case HSW_F1_EU_DIS_10EUS:
 | 
						|
		sseu->eu_per_subslice = 10;
 | 
						|
		break;
 | 
						|
	case HSW_F1_EU_DIS_8EUS:
 | 
						|
		sseu->eu_per_subslice = 8;
 | 
						|
		break;
 | 
						|
	case HSW_F1_EU_DIS_6EUS:
 | 
						|
		sseu->eu_per_subslice = 6;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
 | 
						|
 | 
						|
	for (s = 0; s < sseu->max_slices; s++) {
 | 
						|
		for (ss = 0; ss < sseu->max_subslices; ss++) {
 | 
						|
			sseu_set_eus(sseu, s, ss,
 | 
						|
				     (1UL << sseu->eu_per_subslice) - 1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sseu->eu_total = compute_eu_total(sseu);
 | 
						|
 | 
						|
	/* No powergating for you. */
 | 
						|
	sseu->has_slice_pg = 0;
 | 
						|
	sseu->has_subslice_pg = 0;
 | 
						|
	sseu->has_eu_pg = 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
 | 
						|
	u32 base_freq, frac_freq;
 | 
						|
 | 
						|
	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 | 
						|
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 | 
						|
	base_freq *= 1000;
 | 
						|
 | 
						|
	frac_freq = ((ts_override &
 | 
						|
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 | 
						|
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 | 
						|
	frac_freq = 1000 / (frac_freq + 1);
 | 
						|
 | 
						|
	return base_freq + frac_freq;
 | 
						|
}
 | 
						|
 | 
						|
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 | 
						|
					u32 rpm_config_reg)
 | 
						|
{
 | 
						|
	u32 f19_2_mhz = 19200;
 | 
						|
	u32 f24_mhz = 24000;
 | 
						|
	u32 crystal_clock = (rpm_config_reg &
 | 
						|
			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 | 
						|
			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 | 
						|
 | 
						|
	switch (crystal_clock) {
 | 
						|
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 | 
						|
		return f19_2_mhz;
 | 
						|
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 | 
						|
		return f24_mhz;
 | 
						|
	default:
 | 
						|
		MISSING_CASE(crystal_clock);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 | 
						|
					u32 rpm_config_reg)
 | 
						|
{
 | 
						|
	u32 f19_2_mhz = 19200;
 | 
						|
	u32 f24_mhz = 24000;
 | 
						|
	u32 f25_mhz = 25000;
 | 
						|
	u32 f38_4_mhz = 38400;
 | 
						|
	u32 crystal_clock = (rpm_config_reg &
 | 
						|
			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 | 
						|
			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 | 
						|
 | 
						|
	switch (crystal_clock) {
 | 
						|
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 | 
						|
		return f24_mhz;
 | 
						|
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 | 
						|
		return f19_2_mhz;
 | 
						|
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 | 
						|
		return f38_4_mhz;
 | 
						|
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 | 
						|
		return f25_mhz;
 | 
						|
	default:
 | 
						|
		MISSING_CASE(crystal_clock);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	u32 f12_5_mhz = 12500;
 | 
						|
	u32 f19_2_mhz = 19200;
 | 
						|
	u32 f24_mhz = 24000;
 | 
						|
 | 
						|
	if (INTEL_GEN(dev_priv) <= 4) {
 | 
						|
		/* PRMs say:
 | 
						|
		 *
 | 
						|
		 *     "The value in this register increments once every 16
 | 
						|
		 *      hclks." (through the “Clocking Configuration”
 | 
						|
		 *      (“CLKCFG”) MCHBAR register)
 | 
						|
		 */
 | 
						|
		return dev_priv->rawclk_freq / 16;
 | 
						|
	} else if (INTEL_GEN(dev_priv) <= 8) {
 | 
						|
		/* PRMs say:
 | 
						|
		 *
 | 
						|
		 *     "The PCU TSC counts 10ns increments; this timestamp
 | 
						|
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
 | 
						|
		 *      rolling over every 1.5 hours).
 | 
						|
		 */
 | 
						|
		return f12_5_mhz;
 | 
						|
	} else if (INTEL_GEN(dev_priv) <= 9) {
 | 
						|
		u32 ctc_reg = I915_READ(CTC_MODE);
 | 
						|
		u32 freq = 0;
 | 
						|
 | 
						|
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 | 
						|
			freq = read_reference_ts_freq(dev_priv);
 | 
						|
		} else {
 | 
						|
			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
 | 
						|
 | 
						|
			/* Now figure out how the command stream's timestamp
 | 
						|
			 * register increments from this frequency (it might
 | 
						|
			 * increment only every few clock cycle).
 | 
						|
			 */
 | 
						|
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
 | 
						|
				      CTC_SHIFT_PARAMETER_SHIFT);
 | 
						|
		}
 | 
						|
 | 
						|
		return freq;
 | 
						|
	} else if (INTEL_GEN(dev_priv) <= 11) {
 | 
						|
		u32 ctc_reg = I915_READ(CTC_MODE);
 | 
						|
		u32 freq = 0;
 | 
						|
 | 
						|
		/* First figure out the reference frequency. There are 2 ways
 | 
						|
		 * we can compute the frequency, either through the
 | 
						|
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 | 
						|
		 * tells us which one we should use.
 | 
						|
		 */
 | 
						|
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 | 
						|
			freq = read_reference_ts_freq(dev_priv);
 | 
						|
		} else {
 | 
						|
			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
 | 
						|
 | 
						|
			if (INTEL_GEN(dev_priv) <= 10)
 | 
						|
				freq = gen10_get_crystal_clock_freq(dev_priv,
 | 
						|
								rpm_config_reg);
 | 
						|
			else
 | 
						|
				freq = gen11_get_crystal_clock_freq(dev_priv,
 | 
						|
								rpm_config_reg);
 | 
						|
 | 
						|
			/* Now figure out how the command stream's timestamp
 | 
						|
			 * register increments from this frequency (it might
 | 
						|
			 * increment only every few clock cycle).
 | 
						|
			 */
 | 
						|
			freq >>= 3 - ((rpm_config_reg &
 | 
						|
				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 | 
						|
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 | 
						|
		}
 | 
						|
 | 
						|
		return freq;
 | 
						|
	}
 | 
						|
 | 
						|
	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * intel_device_info_runtime_init - initialize runtime info
 | 
						|
 * @info: intel device info struct
 | 
						|
 *
 | 
						|
 * Determine various intel_device_info fields at runtime.
 | 
						|
 *
 | 
						|
 * Use it when either:
 | 
						|
 *   - it's judged too laborious to fill n static structures with the limit
 | 
						|
 *     when a simple if statement does the job,
 | 
						|
 *   - run-time checks (eg read fuse/strap registers) are needed.
 | 
						|
 *
 | 
						|
 * This function needs to be called:
 | 
						|
 *   - after the MMIO has been setup as we are reading registers,
 | 
						|
 *   - after the PCH has been detected,
 | 
						|
 *   - before the first usage of the fields it can tweak.
 | 
						|
 */
 | 
						|
void intel_device_info_runtime_init(struct intel_device_info *info)
 | 
						|
{
 | 
						|
	struct drm_i915_private *dev_priv =
 | 
						|
		container_of(info, struct drm_i915_private, info);
 | 
						|
	enum pipe pipe;
 | 
						|
 | 
						|
	if (INTEL_GEN(dev_priv) >= 10) {
 | 
						|
		for_each_pipe(dev_priv, pipe)
 | 
						|
			info->num_scalers[pipe] = 2;
 | 
						|
	} else if (IS_GEN9(dev_priv)) {
 | 
						|
		info->num_scalers[PIPE_A] = 2;
 | 
						|
		info->num_scalers[PIPE_B] = 2;
 | 
						|
		info->num_scalers[PIPE_C] = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	BUILD_BUG_ON(I915_NUM_ENGINES > BITS_PER_TYPE(intel_ring_mask_t));
 | 
						|
 | 
						|
	if (IS_GEN11(dev_priv))
 | 
						|
		for_each_pipe(dev_priv, pipe)
 | 
						|
			info->num_sprites[pipe] = 6;
 | 
						|
	else if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
 | 
						|
		for_each_pipe(dev_priv, pipe)
 | 
						|
			info->num_sprites[pipe] = 3;
 | 
						|
	else if (IS_BROXTON(dev_priv)) {
 | 
						|
		/*
 | 
						|
		 * Skylake and Broxton currently don't expose the topmost plane as its
 | 
						|
		 * use is exclusive with the legacy cursor and we only want to expose
 | 
						|
		 * one of those, not both. Until we can safely expose the topmost plane
 | 
						|
		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
 | 
						|
		 * we don't expose the topmost plane at all to prevent ABI breakage
 | 
						|
		 * down the line.
 | 
						|
		 */
 | 
						|
 | 
						|
		info->num_sprites[PIPE_A] = 2;
 | 
						|
		info->num_sprites[PIPE_B] = 2;
 | 
						|
		info->num_sprites[PIPE_C] = 1;
 | 
						|
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 | 
						|
		for_each_pipe(dev_priv, pipe)
 | 
						|
			info->num_sprites[pipe] = 2;
 | 
						|
	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
 | 
						|
		for_each_pipe(dev_priv, pipe)
 | 
						|
			info->num_sprites[pipe] = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i915_modparams.disable_display) {
 | 
						|
		DRM_INFO("Display disabled (module parameter)\n");
 | 
						|
		info->num_pipes = 0;
 | 
						|
	} else if (info->num_pipes > 0 &&
 | 
						|
		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
 | 
						|
		   HAS_PCH_SPLIT(dev_priv)) {
 | 
						|
		u32 fuse_strap = I915_READ(FUSE_STRAP);
 | 
						|
		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * SFUSE_STRAP is supposed to have a bit signalling the display
 | 
						|
		 * is fused off. Unfortunately it seems that, at least in
 | 
						|
		 * certain cases, fused off display means that PCH display
 | 
						|
		 * reads don't land anywhere. In that case, we read 0s.
 | 
						|
		 *
 | 
						|
		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
 | 
						|
		 * should be set when taking over after the firmware.
 | 
						|
		 */
 | 
						|
		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
 | 
						|
		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
 | 
						|
		    (HAS_PCH_CPT(dev_priv) &&
 | 
						|
		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
 | 
						|
			DRM_INFO("Display fused off, disabling\n");
 | 
						|
			info->num_pipes = 0;
 | 
						|
		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
 | 
						|
			DRM_INFO("PipeC fused off\n");
 | 
						|
			info->num_pipes -= 1;
 | 
						|
		}
 | 
						|
	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
 | 
						|
		u32 dfsm = I915_READ(SKL_DFSM);
 | 
						|
		u8 disabled_mask = 0;
 | 
						|
		bool invalid;
 | 
						|
		int num_bits;
 | 
						|
 | 
						|
		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
 | 
						|
			disabled_mask |= BIT(PIPE_A);
 | 
						|
		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
 | 
						|
			disabled_mask |= BIT(PIPE_B);
 | 
						|
		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
 | 
						|
			disabled_mask |= BIT(PIPE_C);
 | 
						|
 | 
						|
		num_bits = hweight8(disabled_mask);
 | 
						|
 | 
						|
		switch (disabled_mask) {
 | 
						|
		case BIT(PIPE_A):
 | 
						|
		case BIT(PIPE_B):
 | 
						|
		case BIT(PIPE_A) | BIT(PIPE_B):
 | 
						|
		case BIT(PIPE_A) | BIT(PIPE_C):
 | 
						|
			invalid = true;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			invalid = false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (num_bits > info->num_pipes || invalid)
 | 
						|
			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
 | 
						|
				  disabled_mask);
 | 
						|
		else
 | 
						|
			info->num_pipes -= num_bits;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize slice/subslice/EU info */
 | 
						|
	if (IS_HASWELL(dev_priv))
 | 
						|
		haswell_sseu_info_init(dev_priv);
 | 
						|
	else if (IS_CHERRYVIEW(dev_priv))
 | 
						|
		cherryview_sseu_info_init(dev_priv);
 | 
						|
	else if (IS_BROADWELL(dev_priv))
 | 
						|
		broadwell_sseu_info_init(dev_priv);
 | 
						|
	else if (IS_GEN9(dev_priv))
 | 
						|
		gen9_sseu_info_init(dev_priv);
 | 
						|
	else if (IS_GEN10(dev_priv))
 | 
						|
		gen10_sseu_info_init(dev_priv);
 | 
						|
	else if (INTEL_GEN(dev_priv) >= 11)
 | 
						|
		gen11_sseu_info_init(dev_priv);
 | 
						|
 | 
						|
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
 | 
						|
		DRM_INFO("Disabling ppGTT for VT-d support\n");
 | 
						|
		info->ppgtt = INTEL_PPGTT_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize command stream timestamp frequency */
 | 
						|
	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
 | 
						|
}
 | 
						|
 | 
						|
void intel_driver_caps_print(const struct intel_driver_caps *caps,
 | 
						|
			     struct drm_printer *p)
 | 
						|
{
 | 
						|
	drm_printf(p, "Has logical contexts? %s\n",
 | 
						|
		   yesno(caps->has_logical_contexts));
 | 
						|
	drm_printf(p, "scheduler: %x\n", caps->scheduler);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine which engines are fused off in our particular hardware. Since the
 | 
						|
 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 | 
						|
 * this point (but later we need to prune the forcewake domains for engines that
 | 
						|
 * are indeed fused off).
 | 
						|
 */
 | 
						|
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
 | 
						|
{
 | 
						|
	struct intel_device_info *info = mkwrite_device_info(dev_priv);
 | 
						|
	u32 media_fuse;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (INTEL_GEN(dev_priv) < 11)
 | 
						|
		return;
 | 
						|
 | 
						|
	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
 | 
						|
 | 
						|
	info->vdbox_enable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
 | 
						|
	info->vebox_enable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
 | 
						|
			     GEN11_GT_VEBOX_DISABLE_SHIFT;
 | 
						|
 | 
						|
	DRM_DEBUG_DRIVER("vdbox enable: %04x\n", info->vdbox_enable);
 | 
						|
	for (i = 0; i < I915_MAX_VCS; i++) {
 | 
						|
		if (!HAS_ENGINE(dev_priv, _VCS(i)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!(BIT(i) & info->vdbox_enable)) {
 | 
						|
			info->ring_mask &= ~ENGINE_MASK(_VCS(i));
 | 
						|
			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	DRM_DEBUG_DRIVER("vebox enable: %04x\n", info->vebox_enable);
 | 
						|
	for (i = 0; i < I915_MAX_VECS; i++) {
 | 
						|
		if (!HAS_ENGINE(dev_priv, _VECS(i)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!(BIT(i) & info->vebox_enable)) {
 | 
						|
			info->ring_mask &= ~ENGINE_MASK(_VECS(i));
 | 
						|
			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |