mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	In this round, we've mainly focused on discard, aka unmap, control along with fstrim for Android-specific usage model. In addition, we've fixed writepage flow which returned EAGAIN previously resulting in EIO of fsync(2) due to mapping's error state. In order to avoid old MM bug [1], we decided not to use __GFP_ZERO for the mapping for node and meta page caches. As always, we've cleaned up many places for future fsverity and symbol conflicts. Enhancement: - do discard/fstrim in lower priority considering fs utilization - split large discard commands into smaller ones for better responsiveness - add more sanity checks to address syzbot reports - add a mount option, fsync_mode=nobarrier, which can reduce # of cache flushes - clean up symbol namespace with modified function names - be strict on block allocation and IO control in corner cases Bug fix: - don't use __GFP_ZERO for mappings - fix error reports in writepage to avoid fsync() failure - avoid selinux denial on CAP_RESOURCE on resgid/resuid - fix some subtle race conditions in GC/atomic writes/shutdown - fix overflow bugs in sanity_check_raw_super - fix missing bits on get_flags Clean-up: - prepare the generic flow for future fsverity integration - fix some broken coding standard [1] https://lkml.org/lkml/2018/4/8/661 -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAlsepb8ACgkQQBSofoJI UNJdSw/+IhrYJFkJEN/pV4M5xSjYirl/P2WJ4AGi6HcpjEGmaDiBi2whod1Jw2NE 1auSMiby7K91VAmPvxMmmLhOdC8XgJ8jwY1nEaZMfmMXohlaD3FDY5bzYf5rJDF4 J184P6xUZ2IKlFVA4prwNQgYi3awPthVu1lxbFPp8GUHDbmr5ZXEysxPDzz2O0Em oE7WmklmyCHJPhmg/EcVXfF/Ekf3zMOVR+EI2otcDjnWIQioVetIK8CKi0MM4bkG X8Z318ANjGTd42woupXIzsiTrMRONY7zzkUvE+S6tfUjKZoIdofDM5OIXMdOxpxL DZ53WrwfeB74igD8jDZgqD6OaonIfDfCuKrwUASFAC2Ou4h3apj3ckUzoHtAhEUL z5yTSKTrtfuoSufhBp+nKKs3ijDgms76arw8x/pPdN6D6xDwIJtBPxC2sObPaj35 damv4GyM4+sbhGO/Gbie2q6za55IvYFZc7JNCC2D2K5tnBmUaa7/XdvxcyigniGk AZgkaddHePkAZpa5AYYirZR8bd7IFds0+m6VcybG0/pYb0qPEcI6U4mujBSCIwVy kXuD7su3jNjj6hWnCl5PSQo8yBWS5H8c6/o+5XHozzYA91dsLAmD8entuCreg6Hp NaIFio0qKULweLK86f66qQTsRPMpYRAtqPS0Ew0+3llKMcrlRp4= =JrW7 -----END PGP SIGNATURE----- Merge tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs Pull f2fs updates from Jaegeuk Kim: "In this round, we've mainly focused on discard, aka unmap, control along with fstrim for Android-specific usage model. In addition, we've fixed writepage flow which returned EAGAIN previously resulting in EIO of fsync(2) due to mapping's error state. In order to avoid old MM bug [1], we decided not to use __GFP_ZERO for the mapping for node and meta page caches. As always, we've cleaned up many places for future fsverity and symbol conflicts. Enhancements: - do discard/fstrim in lower priority considering fs utilization - split large discard commands into smaller ones for better responsiveness - add more sanity checks to address syzbot reports - add a mount option, fsync_mode=nobarrier, which can reduce # of cache flushes - clean up symbol namespace with modified function names - be strict on block allocation and IO control in corner cases Bug fixes: - don't use __GFP_ZERO for mappings - fix error reports in writepage to avoid fsync() failure - avoid selinux denial on CAP_RESOURCE on resgid/resuid - fix some subtle race conditions in GC/atomic writes/shutdown - fix overflow bugs in sanity_check_raw_super - fix missing bits on get_flags Clean-ups: - prepare the generic flow for future fsverity integration - fix some broken coding standard" [1] https://lkml.org/lkml/2018/4/8/661 * tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (79 commits) f2fs: fix to clear FI_VOLATILE_FILE correctly f2fs: let sync node IO interrupt async one f2fs: don't change wbc->sync_mode f2fs: fix to update mtime correctly fs: f2fs: insert space around that ':' and ', ' fs: f2fs: add missing blank lines after declarations fs: f2fs: changed variable type of offset "unsigned" to "loff_t" f2fs: clean up symbol namespace f2fs: make set_de_type() static f2fs: make __f2fs_write_data_pages() static f2fs: fix to avoid accessing cross the boundary f2fs: fix to let caller retry allocating block address disable loading f2fs module on PAGE_SIZE > 4KB f2fs: fix error path of move_data_page f2fs: don't drop dentry pages after fs shutdown f2fs: fix to avoid race during access gc_thread pointer f2fs: clean up with clear_radix_tree_dirty_tag f2fs: fix to don't trigger writeback during recovery f2fs: clear discard_wake earlier f2fs: let discard thread wait a little longer if dev is busy ...
		
			
				
	
	
		
			501 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			501 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This contains encryption functions for per-file encryption.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2015, Google, Inc.
 | 
						|
 * Copyright (C) 2015, Motorola Mobility
 | 
						|
 *
 | 
						|
 * Written by Michael Halcrow, 2014.
 | 
						|
 *
 | 
						|
 * Filename encryption additions
 | 
						|
 *	Uday Savagaonkar, 2014
 | 
						|
 * Encryption policy handling additions
 | 
						|
 *	Ildar Muslukhov, 2014
 | 
						|
 * Add fscrypt_pullback_bio_page()
 | 
						|
 *	Jaegeuk Kim, 2015.
 | 
						|
 *
 | 
						|
 * This has not yet undergone a rigorous security audit.
 | 
						|
 *
 | 
						|
 * The usage of AES-XTS should conform to recommendations in NIST
 | 
						|
 * Special Publication 800-38E and IEEE P1619/D16.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/mempool.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
#include <linux/dcache.h>
 | 
						|
#include <linux/namei.h>
 | 
						|
#include <crypto/aes.h>
 | 
						|
#include <crypto/skcipher.h>
 | 
						|
#include "fscrypt_private.h"
 | 
						|
 | 
						|
static unsigned int num_prealloc_crypto_pages = 32;
 | 
						|
static unsigned int num_prealloc_crypto_ctxs = 128;
 | 
						|
 | 
						|
module_param(num_prealloc_crypto_pages, uint, 0444);
 | 
						|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
 | 
						|
		"Number of crypto pages to preallocate");
 | 
						|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
 | 
						|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 | 
						|
		"Number of crypto contexts to preallocate");
 | 
						|
 | 
						|
static mempool_t *fscrypt_bounce_page_pool = NULL;
 | 
						|
 | 
						|
static LIST_HEAD(fscrypt_free_ctxs);
 | 
						|
static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 | 
						|
 | 
						|
static struct workqueue_struct *fscrypt_read_workqueue;
 | 
						|
static DEFINE_MUTEX(fscrypt_init_mutex);
 | 
						|
 | 
						|
static struct kmem_cache *fscrypt_ctx_cachep;
 | 
						|
struct kmem_cache *fscrypt_info_cachep;
 | 
						|
 | 
						|
void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	queue_work(fscrypt_read_workqueue, work);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_release_ctx() - Releases an encryption context
 | 
						|
 * @ctx: The encryption context to release.
 | 
						|
 *
 | 
						|
 * If the encryption context was allocated from the pre-allocated pool, returns
 | 
						|
 * it to that pool. Else, frees it.
 | 
						|
 *
 | 
						|
 * If there's a bounce page in the context, this frees that.
 | 
						|
 */
 | 
						|
void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
 | 
						|
		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 | 
						|
		ctx->w.bounce_page = NULL;
 | 
						|
	}
 | 
						|
	ctx->w.control_page = NULL;
 | 
						|
	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 | 
						|
		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 | 
						|
	} else {
 | 
						|
		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 | 
						|
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 | 
						|
		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_release_ctx);
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_get_ctx() - Gets an encryption context
 | 
						|
 * @inode:       The inode for which we are doing the crypto
 | 
						|
 * @gfp_flags:   The gfp flag for memory allocation
 | 
						|
 *
 | 
						|
 * Allocates and initializes an encryption context.
 | 
						|
 *
 | 
						|
 * Return: An allocated and initialized encryption context on success; error
 | 
						|
 * value or NULL otherwise.
 | 
						|
 */
 | 
						|
struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	struct fscrypt_ctx *ctx = NULL;
 | 
						|
	struct fscrypt_info *ci = inode->i_crypt_info;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (ci == NULL)
 | 
						|
		return ERR_PTR(-ENOKEY);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We first try getting the ctx from a free list because in
 | 
						|
	 * the common case the ctx will have an allocated and
 | 
						|
	 * initialized crypto tfm, so it's probably a worthwhile
 | 
						|
	 * optimization. For the bounce page, we first try getting it
 | 
						|
	 * from the kernel allocator because that's just about as fast
 | 
						|
	 * as getting it from a list and because a cache of free pages
 | 
						|
	 * should generally be a "last resort" option for a filesystem
 | 
						|
	 * to be able to do its job.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 | 
						|
	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
 | 
						|
					struct fscrypt_ctx, free_list);
 | 
						|
	if (ctx)
 | 
						|
		list_del(&ctx->free_list);
 | 
						|
	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 | 
						|
	if (!ctx) {
 | 
						|
		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
 | 
						|
		if (!ctx)
 | 
						|
			return ERR_PTR(-ENOMEM);
 | 
						|
		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | 
						|
	} else {
 | 
						|
		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | 
						|
	}
 | 
						|
	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
 | 
						|
	return ctx;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_get_ctx);
 | 
						|
 | 
						|
int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
 | 
						|
			   u64 lblk_num, struct page *src_page,
 | 
						|
			   struct page *dest_page, unsigned int len,
 | 
						|
			   unsigned int offs, gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	struct {
 | 
						|
		__le64 index;
 | 
						|
		u8 padding[FS_IV_SIZE - sizeof(__le64)];
 | 
						|
	} iv;
 | 
						|
	struct skcipher_request *req = NULL;
 | 
						|
	DECLARE_CRYPTO_WAIT(wait);
 | 
						|
	struct scatterlist dst, src;
 | 
						|
	struct fscrypt_info *ci = inode->i_crypt_info;
 | 
						|
	struct crypto_skcipher *tfm = ci->ci_ctfm;
 | 
						|
	int res = 0;
 | 
						|
 | 
						|
	BUG_ON(len == 0);
 | 
						|
 | 
						|
	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
 | 
						|
	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
 | 
						|
	iv.index = cpu_to_le64(lblk_num);
 | 
						|
	memset(iv.padding, 0, sizeof(iv.padding));
 | 
						|
 | 
						|
	if (ci->ci_essiv_tfm != NULL) {
 | 
						|
		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
 | 
						|
					  (u8 *)&iv);
 | 
						|
	}
 | 
						|
 | 
						|
	req = skcipher_request_alloc(tfm, gfp_flags);
 | 
						|
	if (!req)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	skcipher_request_set_callback(
 | 
						|
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 | 
						|
		crypto_req_done, &wait);
 | 
						|
 | 
						|
	sg_init_table(&dst, 1);
 | 
						|
	sg_set_page(&dst, dest_page, len, offs);
 | 
						|
	sg_init_table(&src, 1);
 | 
						|
	sg_set_page(&src, src_page, len, offs);
 | 
						|
	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
 | 
						|
	if (rw == FS_DECRYPT)
 | 
						|
		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
 | 
						|
	else
 | 
						|
		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 | 
						|
	skcipher_request_free(req);
 | 
						|
	if (res) {
 | 
						|
		fscrypt_err(inode->i_sb,
 | 
						|
			    "%scryption failed for inode %lu, block %llu: %d",
 | 
						|
			    (rw == FS_DECRYPT ? "de" : "en"),
 | 
						|
			    inode->i_ino, lblk_num, res);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
 | 
						|
				       gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 | 
						|
	if (ctx->w.bounce_page == NULL)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
 | 
						|
	return ctx->w.bounce_page;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fscypt_encrypt_page() - Encrypts a page
 | 
						|
 * @inode:     The inode for which the encryption should take place
 | 
						|
 * @page:      The page to encrypt. Must be locked for bounce-page
 | 
						|
 *             encryption.
 | 
						|
 * @len:       Length of data to encrypt in @page and encrypted
 | 
						|
 *             data in returned page.
 | 
						|
 * @offs:      Offset of data within @page and returned
 | 
						|
 *             page holding encrypted data.
 | 
						|
 * @lblk_num:  Logical block number. This must be unique for multiple
 | 
						|
 *             calls with same inode, except when overwriting
 | 
						|
 *             previously written data.
 | 
						|
 * @gfp_flags: The gfp flag for memory allocation
 | 
						|
 *
 | 
						|
 * Encrypts @page using the ctx encryption context. Performs encryption
 | 
						|
 * either in-place or into a newly allocated bounce page.
 | 
						|
 * Called on the page write path.
 | 
						|
 *
 | 
						|
 * Bounce page allocation is the default.
 | 
						|
 * In this case, the contents of @page are encrypted and stored in an
 | 
						|
 * allocated bounce page. @page has to be locked and the caller must call
 | 
						|
 * fscrypt_restore_control_page() on the returned ciphertext page to
 | 
						|
 * release the bounce buffer and the encryption context.
 | 
						|
 *
 | 
						|
 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
 | 
						|
 * fscrypt_operations. Here, the input-page is returned with its content
 | 
						|
 * encrypted.
 | 
						|
 *
 | 
						|
 * Return: A page with the encrypted content on success. Else, an
 | 
						|
 * error value or NULL.
 | 
						|
 */
 | 
						|
struct page *fscrypt_encrypt_page(const struct inode *inode,
 | 
						|
				struct page *page,
 | 
						|
				unsigned int len,
 | 
						|
				unsigned int offs,
 | 
						|
				u64 lblk_num, gfp_t gfp_flags)
 | 
						|
 | 
						|
{
 | 
						|
	struct fscrypt_ctx *ctx;
 | 
						|
	struct page *ciphertext_page = page;
 | 
						|
	int err;
 | 
						|
 | 
						|
	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
 | 
						|
 | 
						|
	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
 | 
						|
		/* with inplace-encryption we just encrypt the page */
 | 
						|
		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
 | 
						|
					     ciphertext_page, len, offs,
 | 
						|
					     gfp_flags);
 | 
						|
		if (err)
 | 
						|
			return ERR_PTR(err);
 | 
						|
 | 
						|
		return ciphertext_page;
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	ctx = fscrypt_get_ctx(inode, gfp_flags);
 | 
						|
	if (IS_ERR(ctx))
 | 
						|
		return (struct page *)ctx;
 | 
						|
 | 
						|
	/* The encryption operation will require a bounce page. */
 | 
						|
	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
 | 
						|
	if (IS_ERR(ciphertext_page))
 | 
						|
		goto errout;
 | 
						|
 | 
						|
	ctx->w.control_page = page;
 | 
						|
	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
 | 
						|
				     page, ciphertext_page, len, offs,
 | 
						|
				     gfp_flags);
 | 
						|
	if (err) {
 | 
						|
		ciphertext_page = ERR_PTR(err);
 | 
						|
		goto errout;
 | 
						|
	}
 | 
						|
	SetPagePrivate(ciphertext_page);
 | 
						|
	set_page_private(ciphertext_page, (unsigned long)ctx);
 | 
						|
	lock_page(ciphertext_page);
 | 
						|
	return ciphertext_page;
 | 
						|
 | 
						|
errout:
 | 
						|
	fscrypt_release_ctx(ctx);
 | 
						|
	return ciphertext_page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_encrypt_page);
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_decrypt_page() - Decrypts a page in-place
 | 
						|
 * @inode:     The corresponding inode for the page to decrypt.
 | 
						|
 * @page:      The page to decrypt. Must be locked in case
 | 
						|
 *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
 | 
						|
 * @len:       Number of bytes in @page to be decrypted.
 | 
						|
 * @offs:      Start of data in @page.
 | 
						|
 * @lblk_num:  Logical block number.
 | 
						|
 *
 | 
						|
 * Decrypts page in-place using the ctx encryption context.
 | 
						|
 *
 | 
						|
 * Called from the read completion callback.
 | 
						|
 *
 | 
						|
 * Return: Zero on success, non-zero otherwise.
 | 
						|
 */
 | 
						|
int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
 | 
						|
			unsigned int len, unsigned int offs, u64 lblk_num)
 | 
						|
{
 | 
						|
	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
 | 
						|
		BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
 | 
						|
				      len, offs, GFP_NOFS);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_decrypt_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate dentries for encrypted directories to make sure we aren't
 | 
						|
 * potentially caching stale data after a key has been added or
 | 
						|
 * removed.
 | 
						|
 */
 | 
						|
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
 | 
						|
{
 | 
						|
	struct dentry *dir;
 | 
						|
	int dir_has_key, cached_with_key;
 | 
						|
 | 
						|
	if (flags & LOOKUP_RCU)
 | 
						|
		return -ECHILD;
 | 
						|
 | 
						|
	dir = dget_parent(dentry);
 | 
						|
	if (!IS_ENCRYPTED(d_inode(dir))) {
 | 
						|
		dput(dir);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&dentry->d_lock);
 | 
						|
	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
 | 
						|
	spin_unlock(&dentry->d_lock);
 | 
						|
	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
 | 
						|
	dput(dir);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the dentry was cached without the key, and it is a
 | 
						|
	 * negative dentry, it might be a valid name.  We can't check
 | 
						|
	 * if the key has since been made available due to locking
 | 
						|
	 * reasons, so we fail the validation so ext4_lookup() can do
 | 
						|
	 * this check.
 | 
						|
	 *
 | 
						|
	 * We also fail the validation if the dentry was created with
 | 
						|
	 * the key present, but we no longer have the key, or vice versa.
 | 
						|
	 */
 | 
						|
	if ((!cached_with_key && d_is_negative(dentry)) ||
 | 
						|
			(!cached_with_key && dir_has_key) ||
 | 
						|
			(cached_with_key && !dir_has_key))
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
const struct dentry_operations fscrypt_d_ops = {
 | 
						|
	.d_revalidate = fscrypt_d_revalidate,
 | 
						|
};
 | 
						|
 | 
						|
void fscrypt_restore_control_page(struct page *page)
 | 
						|
{
 | 
						|
	struct fscrypt_ctx *ctx;
 | 
						|
 | 
						|
	ctx = (struct fscrypt_ctx *)page_private(page);
 | 
						|
	set_page_private(page, (unsigned long)NULL);
 | 
						|
	ClearPagePrivate(page);
 | 
						|
	unlock_page(page);
 | 
						|
	fscrypt_release_ctx(ctx);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fscrypt_restore_control_page);
 | 
						|
 | 
						|
static void fscrypt_destroy(void)
 | 
						|
{
 | 
						|
	struct fscrypt_ctx *pos, *n;
 | 
						|
 | 
						|
	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
 | 
						|
		kmem_cache_free(fscrypt_ctx_cachep, pos);
 | 
						|
	INIT_LIST_HEAD(&fscrypt_free_ctxs);
 | 
						|
	mempool_destroy(fscrypt_bounce_page_pool);
 | 
						|
	fscrypt_bounce_page_pool = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_initialize() - allocate major buffers for fs encryption.
 | 
						|
 * @cop_flags:  fscrypt operations flags
 | 
						|
 *
 | 
						|
 * We only call this when we start accessing encrypted files, since it
 | 
						|
 * results in memory getting allocated that wouldn't otherwise be used.
 | 
						|
 *
 | 
						|
 * Return: Zero on success, non-zero otherwise.
 | 
						|
 */
 | 
						|
int fscrypt_initialize(unsigned int cop_flags)
 | 
						|
{
 | 
						|
	int i, res = -ENOMEM;
 | 
						|
 | 
						|
	/* No need to allocate a bounce page pool if this FS won't use it. */
 | 
						|
	if (cop_flags & FS_CFLG_OWN_PAGES)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&fscrypt_init_mutex);
 | 
						|
	if (fscrypt_bounce_page_pool)
 | 
						|
		goto already_initialized;
 | 
						|
 | 
						|
	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
 | 
						|
		struct fscrypt_ctx *ctx;
 | 
						|
 | 
						|
		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
 | 
						|
		if (!ctx)
 | 
						|
			goto fail;
 | 
						|
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 | 
						|
	}
 | 
						|
 | 
						|
	fscrypt_bounce_page_pool =
 | 
						|
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
 | 
						|
	if (!fscrypt_bounce_page_pool)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
already_initialized:
 | 
						|
	mutex_unlock(&fscrypt_init_mutex);
 | 
						|
	return 0;
 | 
						|
fail:
 | 
						|
	fscrypt_destroy();
 | 
						|
	mutex_unlock(&fscrypt_init_mutex);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
void fscrypt_msg(struct super_block *sb, const char *level,
 | 
						|
		 const char *fmt, ...)
 | 
						|
{
 | 
						|
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 | 
						|
				      DEFAULT_RATELIMIT_BURST);
 | 
						|
	struct va_format vaf;
 | 
						|
	va_list args;
 | 
						|
 | 
						|
	if (!__ratelimit(&rs))
 | 
						|
		return;
 | 
						|
 | 
						|
	va_start(args, fmt);
 | 
						|
	vaf.fmt = fmt;
 | 
						|
	vaf.va = &args;
 | 
						|
	if (sb)
 | 
						|
		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
 | 
						|
	else
 | 
						|
		printk("%sfscrypt: %pV\n", level, &vaf);
 | 
						|
	va_end(args);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_init() - Set up for fs encryption.
 | 
						|
 */
 | 
						|
static int __init fscrypt_init(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Use an unbound workqueue to allow bios to be decrypted in parallel
 | 
						|
	 * even when they happen to complete on the same CPU.  This sacrifices
 | 
						|
	 * locality, but it's worthwhile since decryption is CPU-intensive.
 | 
						|
	 *
 | 
						|
	 * Also use a high-priority workqueue to prioritize decryption work,
 | 
						|
	 * which blocks reads from completing, over regular application tasks.
 | 
						|
	 */
 | 
						|
	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
 | 
						|
						 WQ_UNBOUND | WQ_HIGHPRI,
 | 
						|
						 num_online_cpus());
 | 
						|
	if (!fscrypt_read_workqueue)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
 | 
						|
	if (!fscrypt_ctx_cachep)
 | 
						|
		goto fail_free_queue;
 | 
						|
 | 
						|
	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
 | 
						|
	if (!fscrypt_info_cachep)
 | 
						|
		goto fail_free_ctx;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail_free_ctx:
 | 
						|
	kmem_cache_destroy(fscrypt_ctx_cachep);
 | 
						|
fail_free_queue:
 | 
						|
	destroy_workqueue(fscrypt_read_workqueue);
 | 
						|
fail:
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
module_init(fscrypt_init)
 | 
						|
 | 
						|
/**
 | 
						|
 * fscrypt_exit() - Shutdown the fs encryption system
 | 
						|
 */
 | 
						|
static void __exit fscrypt_exit(void)
 | 
						|
{
 | 
						|
	fscrypt_destroy();
 | 
						|
 | 
						|
	if (fscrypt_read_workqueue)
 | 
						|
		destroy_workqueue(fscrypt_read_workqueue);
 | 
						|
	kmem_cache_destroy(fscrypt_ctx_cachep);
 | 
						|
	kmem_cache_destroy(fscrypt_info_cachep);
 | 
						|
 | 
						|
	fscrypt_essiv_cleanup();
 | 
						|
}
 | 
						|
module_exit(fscrypt_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 |