mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	We're interested in getting rid of all of the stack allocated arrays in the kernel [1]. This patch simply hardcodes the iv length to match that of the hardcoded cipher. [1]: https://lkml.org/lkml/2018/3/7/621 v2: hardcode the length of the nonce to be the GCM AES IV length, and do a sanity check in init(), Eric Biggers v3: * remember to free big_key_aead when sanity check fails * define a constant for big key IV size so it can be changed along side the algorithm in the code Signed-off-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> CC: David Howells <dhowells@redhat.com> CC: James Morris <jmorris@namei.org> CC: "Serge E. Hallyn" <serge@hallyn.com> CC: Jason A. Donenfeld <Jason@zx2c4.com> CC: Eric Biggers <ebiggers3@gmail.com> Signed-off-by: James Morris <james.morris@microsoft.com>
		
			
				
	
	
		
			456 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			456 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Large capacity key type
 | 
						|
 *
 | 
						|
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 | 
						|
 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
 | 
						|
 * Written by David Howells (dhowells@redhat.com)
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public Licence
 | 
						|
 * as published by the Free Software Foundation; either version
 | 
						|
 * 2 of the Licence, or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) "big_key: "fmt
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/shmem_fs.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <keys/user-type.h>
 | 
						|
#include <keys/big_key-type.h>
 | 
						|
#include <crypto/aead.h>
 | 
						|
#include <crypto/gcm.h>
 | 
						|
 | 
						|
struct big_key_buf {
 | 
						|
	unsigned int		nr_pages;
 | 
						|
	void			*virt;
 | 
						|
	struct scatterlist	*sg;
 | 
						|
	struct page		*pages[];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Layout of key payload words.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	big_key_data,
 | 
						|
	big_key_path,
 | 
						|
	big_key_path_2nd_part,
 | 
						|
	big_key_len,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Crypto operation with big_key data
 | 
						|
 */
 | 
						|
enum big_key_op {
 | 
						|
	BIG_KEY_ENC,
 | 
						|
	BIG_KEY_DEC,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * If the data is under this limit, there's no point creating a shm file to
 | 
						|
 * hold it as the permanently resident metadata for the shmem fs will be at
 | 
						|
 * least as large as the data.
 | 
						|
 */
 | 
						|
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
 | 
						|
 | 
						|
/*
 | 
						|
 * Key size for big_key data encryption
 | 
						|
 */
 | 
						|
#define ENC_KEY_SIZE 32
 | 
						|
 | 
						|
/*
 | 
						|
 * Authentication tag length
 | 
						|
 */
 | 
						|
#define ENC_AUTHTAG_SIZE 16
 | 
						|
 | 
						|
/*
 | 
						|
 * big_key defined keys take an arbitrary string as the description and an
 | 
						|
 * arbitrary blob of data as the payload
 | 
						|
 */
 | 
						|
struct key_type key_type_big_key = {
 | 
						|
	.name			= "big_key",
 | 
						|
	.preparse		= big_key_preparse,
 | 
						|
	.free_preparse		= big_key_free_preparse,
 | 
						|
	.instantiate		= generic_key_instantiate,
 | 
						|
	.revoke			= big_key_revoke,
 | 
						|
	.destroy		= big_key_destroy,
 | 
						|
	.describe		= big_key_describe,
 | 
						|
	.read			= big_key_read,
 | 
						|
	/* no ->update(); don't add it without changing big_key_crypt() nonce */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Crypto names for big_key data authenticated encryption
 | 
						|
 */
 | 
						|
static const char big_key_alg_name[] = "gcm(aes)";
 | 
						|
#define BIG_KEY_IV_SIZE		GCM_AES_IV_SIZE
 | 
						|
 | 
						|
/*
 | 
						|
 * Crypto algorithms for big_key data authenticated encryption
 | 
						|
 */
 | 
						|
static struct crypto_aead *big_key_aead;
 | 
						|
 | 
						|
/*
 | 
						|
 * Since changing the key affects the entire object, we need a mutex.
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(big_key_aead_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Encrypt/decrypt big_key data
 | 
						|
 */
 | 
						|
static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct aead_request *aead_req;
 | 
						|
	/* We always use a zero nonce. The reason we can get away with this is
 | 
						|
	 * because we're using a different randomly generated key for every
 | 
						|
	 * different encryption. Notably, too, key_type_big_key doesn't define
 | 
						|
	 * an .update function, so there's no chance we'll wind up reusing the
 | 
						|
	 * key to encrypt updated data. Simply put: one key, one encryption.
 | 
						|
	 */
 | 
						|
	u8 zero_nonce[BIG_KEY_IV_SIZE];
 | 
						|
 | 
						|
	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
 | 
						|
	if (!aead_req)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	memset(zero_nonce, 0, sizeof(zero_nonce));
 | 
						|
	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
 | 
						|
	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 | 
						|
	aead_request_set_ad(aead_req, 0);
 | 
						|
 | 
						|
	mutex_lock(&big_key_aead_lock);
 | 
						|
	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
 | 
						|
		ret = -EAGAIN;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	if (op == BIG_KEY_ENC)
 | 
						|
		ret = crypto_aead_encrypt(aead_req);
 | 
						|
	else
 | 
						|
		ret = crypto_aead_decrypt(aead_req);
 | 
						|
error:
 | 
						|
	mutex_unlock(&big_key_aead_lock);
 | 
						|
	aead_request_free(aead_req);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free up the buffer.
 | 
						|
 */
 | 
						|
static void big_key_free_buffer(struct big_key_buf *buf)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (buf->virt) {
 | 
						|
		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
 | 
						|
		vunmap(buf->virt);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < buf->nr_pages; i++)
 | 
						|
		if (buf->pages[i])
 | 
						|
			__free_page(buf->pages[i]);
 | 
						|
 | 
						|
	kfree(buf);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a buffer consisting of a set of pages with a virtual mapping
 | 
						|
 * applied over them.
 | 
						|
 */
 | 
						|
static void *big_key_alloc_buffer(size_t len)
 | 
						|
{
 | 
						|
	struct big_key_buf *buf;
 | 
						|
	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | 
						|
	unsigned int i, l;
 | 
						|
 | 
						|
	buf = kzalloc(sizeof(struct big_key_buf) +
 | 
						|
		      sizeof(struct page) * npg +
 | 
						|
		      sizeof(struct scatterlist) * npg,
 | 
						|
		      GFP_KERNEL);
 | 
						|
	if (!buf)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	buf->nr_pages = npg;
 | 
						|
	buf->sg = (void *)(buf->pages + npg);
 | 
						|
	sg_init_table(buf->sg, npg);
 | 
						|
 | 
						|
	for (i = 0; i < buf->nr_pages; i++) {
 | 
						|
		buf->pages[i] = alloc_page(GFP_KERNEL);
 | 
						|
		if (!buf->pages[i])
 | 
						|
			goto nomem;
 | 
						|
 | 
						|
		l = min_t(size_t, len, PAGE_SIZE);
 | 
						|
		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
 | 
						|
		len -= l;
 | 
						|
	}
 | 
						|
 | 
						|
	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
 | 
						|
	if (!buf->virt)
 | 
						|
		goto nomem;
 | 
						|
 | 
						|
	return buf;
 | 
						|
 | 
						|
nomem:
 | 
						|
	big_key_free_buffer(buf);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Preparse a big key
 | 
						|
 */
 | 
						|
int big_key_preparse(struct key_preparsed_payload *prep)
 | 
						|
{
 | 
						|
	struct big_key_buf *buf;
 | 
						|
	struct path *path = (struct path *)&prep->payload.data[big_key_path];
 | 
						|
	struct file *file;
 | 
						|
	u8 *enckey;
 | 
						|
	ssize_t written;
 | 
						|
	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Set an arbitrary quota */
 | 
						|
	prep->quotalen = 16;
 | 
						|
 | 
						|
	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
 | 
						|
 | 
						|
	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 | 
						|
		/* Create a shmem file to store the data in.  This will permit the data
 | 
						|
		 * to be swapped out if needed.
 | 
						|
		 *
 | 
						|
		 * File content is stored encrypted with randomly generated key.
 | 
						|
		 */
 | 
						|
		loff_t pos = 0;
 | 
						|
 | 
						|
		buf = big_key_alloc_buffer(enclen);
 | 
						|
		if (!buf)
 | 
						|
			return -ENOMEM;
 | 
						|
		memcpy(buf->virt, prep->data, datalen);
 | 
						|
 | 
						|
		/* generate random key */
 | 
						|
		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
 | 
						|
		if (!enckey) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
 | 
						|
		if (unlikely(ret))
 | 
						|
			goto err_enckey;
 | 
						|
 | 
						|
		/* encrypt aligned data */
 | 
						|
		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
 | 
						|
		if (ret)
 | 
						|
			goto err_enckey;
 | 
						|
 | 
						|
		/* save aligned data to file */
 | 
						|
		file = shmem_kernel_file_setup("", enclen, 0);
 | 
						|
		if (IS_ERR(file)) {
 | 
						|
			ret = PTR_ERR(file);
 | 
						|
			goto err_enckey;
 | 
						|
		}
 | 
						|
 | 
						|
		written = kernel_write(file, buf->virt, enclen, &pos);
 | 
						|
		if (written != enclen) {
 | 
						|
			ret = written;
 | 
						|
			if (written >= 0)
 | 
						|
				ret = -ENOMEM;
 | 
						|
			goto err_fput;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Pin the mount and dentry to the key so that we can open it again
 | 
						|
		 * later
 | 
						|
		 */
 | 
						|
		prep->payload.data[big_key_data] = enckey;
 | 
						|
		*path = file->f_path;
 | 
						|
		path_get(path);
 | 
						|
		fput(file);
 | 
						|
		big_key_free_buffer(buf);
 | 
						|
	} else {
 | 
						|
		/* Just store the data in a buffer */
 | 
						|
		void *data = kmalloc(datalen, GFP_KERNEL);
 | 
						|
 | 
						|
		if (!data)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		prep->payload.data[big_key_data] = data;
 | 
						|
		memcpy(data, prep->data, prep->datalen);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_fput:
 | 
						|
	fput(file);
 | 
						|
err_enckey:
 | 
						|
	kzfree(enckey);
 | 
						|
error:
 | 
						|
	big_key_free_buffer(buf);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear preparsement.
 | 
						|
 */
 | 
						|
void big_key_free_preparse(struct key_preparsed_payload *prep)
 | 
						|
{
 | 
						|
	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
 | 
						|
		struct path *path = (struct path *)&prep->payload.data[big_key_path];
 | 
						|
 | 
						|
		path_put(path);
 | 
						|
	}
 | 
						|
	kzfree(prep->payload.data[big_key_data]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * dispose of the links from a revoked keyring
 | 
						|
 * - called with the key sem write-locked
 | 
						|
 */
 | 
						|
void big_key_revoke(struct key *key)
 | 
						|
{
 | 
						|
	struct path *path = (struct path *)&key->payload.data[big_key_path];
 | 
						|
 | 
						|
	/* clear the quota */
 | 
						|
	key_payload_reserve(key, 0);
 | 
						|
	if (key_is_positive(key) &&
 | 
						|
	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
 | 
						|
		vfs_truncate(path, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * dispose of the data dangling from the corpse of a big_key key
 | 
						|
 */
 | 
						|
void big_key_destroy(struct key *key)
 | 
						|
{
 | 
						|
	size_t datalen = (size_t)key->payload.data[big_key_len];
 | 
						|
 | 
						|
	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 | 
						|
		struct path *path = (struct path *)&key->payload.data[big_key_path];
 | 
						|
 | 
						|
		path_put(path);
 | 
						|
		path->mnt = NULL;
 | 
						|
		path->dentry = NULL;
 | 
						|
	}
 | 
						|
	kzfree(key->payload.data[big_key_data]);
 | 
						|
	key->payload.data[big_key_data] = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * describe the big_key key
 | 
						|
 */
 | 
						|
void big_key_describe(const struct key *key, struct seq_file *m)
 | 
						|
{
 | 
						|
	size_t datalen = (size_t)key->payload.data[big_key_len];
 | 
						|
 | 
						|
	seq_puts(m, key->description);
 | 
						|
 | 
						|
	if (key_is_positive(key))
 | 
						|
		seq_printf(m, ": %zu [%s]",
 | 
						|
			   datalen,
 | 
						|
			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * read the key data
 | 
						|
 * - the key's semaphore is read-locked
 | 
						|
 */
 | 
						|
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
 | 
						|
{
 | 
						|
	size_t datalen = (size_t)key->payload.data[big_key_len];
 | 
						|
	long ret;
 | 
						|
 | 
						|
	if (!buffer || buflen < datalen)
 | 
						|
		return datalen;
 | 
						|
 | 
						|
	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 | 
						|
		struct big_key_buf *buf;
 | 
						|
		struct path *path = (struct path *)&key->payload.data[big_key_path];
 | 
						|
		struct file *file;
 | 
						|
		u8 *enckey = (u8 *)key->payload.data[big_key_data];
 | 
						|
		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
 | 
						|
		loff_t pos = 0;
 | 
						|
 | 
						|
		buf = big_key_alloc_buffer(enclen);
 | 
						|
		if (!buf)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		file = dentry_open(path, O_RDONLY, current_cred());
 | 
						|
		if (IS_ERR(file)) {
 | 
						|
			ret = PTR_ERR(file);
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
 | 
						|
		/* read file to kernel and decrypt */
 | 
						|
		ret = kernel_read(file, buf->virt, enclen, &pos);
 | 
						|
		if (ret >= 0 && ret != enclen) {
 | 
						|
			ret = -EIO;
 | 
						|
			goto err_fput;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
 | 
						|
		if (ret)
 | 
						|
			goto err_fput;
 | 
						|
 | 
						|
		ret = datalen;
 | 
						|
 | 
						|
		/* copy decrypted data to user */
 | 
						|
		if (copy_to_user(buffer, buf->virt, datalen) != 0)
 | 
						|
			ret = -EFAULT;
 | 
						|
 | 
						|
err_fput:
 | 
						|
		fput(file);
 | 
						|
error:
 | 
						|
		big_key_free_buffer(buf);
 | 
						|
	} else {
 | 
						|
		ret = datalen;
 | 
						|
		if (copy_to_user(buffer, key->payload.data[big_key_data],
 | 
						|
				 datalen) != 0)
 | 
						|
			ret = -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Register key type
 | 
						|
 */
 | 
						|
static int __init big_key_init(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* init block cipher */
 | 
						|
	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
 | 
						|
	if (IS_ERR(big_key_aead)) {
 | 
						|
		ret = PTR_ERR(big_key_aead);
 | 
						|
		pr_err("Can't alloc crypto: %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
 | 
						|
		WARN(1, "big key algorithm changed?");
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto free_aead;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
 | 
						|
	if (ret < 0) {
 | 
						|
		pr_err("Can't set crypto auth tag len: %d\n", ret);
 | 
						|
		goto free_aead;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = register_key_type(&key_type_big_key);
 | 
						|
	if (ret < 0) {
 | 
						|
		pr_err("Can't register type: %d\n", ret);
 | 
						|
		goto free_aead;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_aead:
 | 
						|
	crypto_free_aead(big_key_aead);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
late_initcall(big_key_init);
 |