mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 fc11fd0cb8
			
		
	
	
		fc11fd0cb8
		
	
	
	
	
		
			
			Pass a struct btrfs_inode to btrfs_defrag_file() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1497 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1497 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "locking.h"
 | |
| #include "accessors.h"
 | |
| #include "messages.h"
 | |
| #include "delalloc-space.h"
 | |
| #include "subpage.h"
 | |
| #include "defrag.h"
 | |
| #include "file-item.h"
 | |
| #include "super.h"
 | |
| 
 | |
| static struct kmem_cache *btrfs_inode_defrag_cachep;
 | |
| 
 | |
| /*
 | |
|  * When auto defrag is enabled we queue up these defrag structs to remember
 | |
|  * which inodes need defragging passes.
 | |
|  */
 | |
| struct inode_defrag {
 | |
| 	struct rb_node rb_node;
 | |
| 	/* Inode number */
 | |
| 	u64 ino;
 | |
| 	/*
 | |
| 	 * Transid where the defrag was added, we search for extents newer than
 | |
| 	 * this.
 | |
| 	 */
 | |
| 	u64 transid;
 | |
| 
 | |
| 	/* Root objectid */
 | |
| 	u64 root;
 | |
| 
 | |
| 	/*
 | |
| 	 * The extent size threshold for autodefrag.
 | |
| 	 *
 | |
| 	 * This value is different for compressed/non-compressed extents, thus
 | |
| 	 * needs to be passed from higher layer.
 | |
| 	 * (aka, inode_should_defrag())
 | |
| 	 */
 | |
| 	u32 extent_thresh;
 | |
| };
 | |
| 
 | |
| static int compare_inode_defrag(const struct inode_defrag *defrag1,
 | |
| 				const struct inode_defrag *defrag2)
 | |
| {
 | |
| 	if (defrag1->root > defrag2->root)
 | |
| 		return 1;
 | |
| 	else if (defrag1->root < defrag2->root)
 | |
| 		return -1;
 | |
| 	else if (defrag1->ino > defrag2->ino)
 | |
| 		return 1;
 | |
| 	else if (defrag1->ino < defrag2->ino)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a record for an inode into the defrag tree.  The lock must be held
 | |
|  * already.
 | |
|  *
 | |
|  * If you're inserting a record for an older transid than an existing record,
 | |
|  * the transid already in the tree is lowered.
 | |
|  */
 | |
| static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
 | |
| 				     struct inode_defrag *defrag)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct inode_defrag *entry;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	p = &fs_info->defrag_inodes.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 
 | |
| 		ret = compare_inode_defrag(defrag, entry);
 | |
| 		if (ret < 0)
 | |
| 			p = &parent->rb_left;
 | |
| 		else if (ret > 0)
 | |
| 			p = &parent->rb_right;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * If we're reinserting an entry for an old defrag run,
 | |
| 			 * make sure to lower the transid of our existing
 | |
| 			 * record.
 | |
| 			 */
 | |
| 			if (defrag->transid < entry->transid)
 | |
| 				entry->transid = defrag->transid;
 | |
| 			entry->extent_thresh = min(defrag->extent_thresh,
 | |
| 						   entry->extent_thresh);
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	}
 | |
| 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 | |
| 	rb_link_node(&defrag->rb_node, parent, p);
 | |
| 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int need_auto_defrag(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_fs_closing(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a defrag record for this inode if auto defrag is enabled. No errors
 | |
|  * returned as they're not considered fatal.
 | |
|  */
 | |
| void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
 | |
| {
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct inode_defrag *defrag;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!need_auto_defrag(fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 | |
| 		return;
 | |
| 
 | |
| 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 | |
| 	if (!defrag)
 | |
| 		return;
 | |
| 
 | |
| 	defrag->ino = btrfs_ino(inode);
 | |
| 	defrag->transid = btrfs_get_root_last_trans(root);
 | |
| 	defrag->root = btrfs_root_id(root);
 | |
| 	defrag->extent_thresh = extent_thresh;
 | |
| 
 | |
| 	spin_lock(&fs_info->defrag_inodes_lock);
 | |
| 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 | |
| 		/*
 | |
| 		 * If we set IN_DEFRAG flag and evict the inode from memory,
 | |
| 		 * and then re-read this inode, this new inode doesn't have
 | |
| 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 | |
| 		 */
 | |
| 		ret = btrfs_insert_inode_defrag(inode, defrag);
 | |
| 		if (ret)
 | |
| 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	} else {
 | |
| 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->defrag_inodes_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pick the defragable inode that we want, if it doesn't exist, we will get the
 | |
|  * next one.
 | |
|  */
 | |
| static struct inode_defrag *btrfs_pick_defrag_inode(
 | |
| 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 | |
| {
 | |
| 	struct inode_defrag *entry = NULL;
 | |
| 	struct inode_defrag tmp;
 | |
| 	struct rb_node *p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	tmp.ino = ino;
 | |
| 	tmp.root = root;
 | |
| 
 | |
| 	spin_lock(&fs_info->defrag_inodes_lock);
 | |
| 	p = fs_info->defrag_inodes.rb_node;
 | |
| 	while (p) {
 | |
| 		parent = p;
 | |
| 		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 
 | |
| 		ret = compare_inode_defrag(&tmp, entry);
 | |
| 		if (ret < 0)
 | |
| 			p = parent->rb_left;
 | |
| 		else if (ret > 0)
 | |
| 			p = parent->rb_right;
 | |
| 		else
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (parent && compare_inode_defrag(&tmp, entry) > 0) {
 | |
| 		parent = rb_next(parent);
 | |
| 		if (parent)
 | |
| 			entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 		else
 | |
| 			entry = NULL;
 | |
| 	}
 | |
| out:
 | |
| 	if (entry)
 | |
| 		rb_erase(parent, &fs_info->defrag_inodes);
 | |
| 	spin_unlock(&fs_info->defrag_inodes_lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct inode_defrag *defrag, *next;
 | |
| 
 | |
| 	spin_lock(&fs_info->defrag_inodes_lock);
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(defrag, next,
 | |
| 					     &fs_info->defrag_inodes, rb_node)
 | |
| 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 
 | |
| 	fs_info->defrag_inodes = RB_ROOT;
 | |
| 
 | |
| 	spin_unlock(&fs_info->defrag_inodes_lock);
 | |
| }
 | |
| 
 | |
| #define BTRFS_DEFRAG_BATCH	1024
 | |
| 
 | |
| static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 | |
| 				  struct inode_defrag *defrag,
 | |
| 				  struct file_ra_state *ra)
 | |
| {
 | |
| 	struct btrfs_root *inode_root;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_ioctl_defrag_range_args range;
 | |
| 	int ret = 0;
 | |
| 	u64 cur = 0;
 | |
| 
 | |
| again:
 | |
| 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
 | |
| 		goto cleanup;
 | |
| 	if (!need_auto_defrag(fs_info))
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	/* Get the inode */
 | |
| 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 | |
| 	if (IS_ERR(inode_root)) {
 | |
| 		ret = PTR_ERR(inode_root);
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	inode = btrfs_iget(defrag->ino, inode_root);
 | |
| 	btrfs_put_root(inode_root);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ret = PTR_ERR(inode);
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (cur >= i_size_read(inode)) {
 | |
| 		iput(inode);
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	/* Do a chunk of defrag */
 | |
| 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 | |
| 	memset(&range, 0, sizeof(range));
 | |
| 	range.len = (u64)-1;
 | |
| 	range.start = cur;
 | |
| 	range.extent_thresh = defrag->extent_thresh;
 | |
| 	file_ra_state_init(ra, inode->i_mapping);
 | |
| 
 | |
| 	sb_start_write(fs_info->sb);
 | |
| 	ret = btrfs_defrag_file(BTRFS_I(inode), ra, &range, defrag->transid,
 | |
| 				BTRFS_DEFRAG_BATCH);
 | |
| 	sb_end_write(fs_info->sb);
 | |
| 	iput(inode);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	cur = max(cur + fs_info->sectorsize, range.start);
 | |
| 	goto again;
 | |
| 
 | |
| cleanup:
 | |
| 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run through the list of inodes in the FS that need defragging.
 | |
|  */
 | |
| int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct inode_defrag *defrag;
 | |
| 	u64 first_ino = 0;
 | |
| 	u64 root_objectid = 0;
 | |
| 
 | |
| 	atomic_inc(&fs_info->defrag_running);
 | |
| 	while (1) {
 | |
| 		struct file_ra_state ra = { 0 };
 | |
| 
 | |
| 		/* Pause the auto defragger. */
 | |
| 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
 | |
| 			break;
 | |
| 
 | |
| 		if (!need_auto_defrag(fs_info))
 | |
| 			break;
 | |
| 
 | |
| 		/* find an inode to defrag */
 | |
| 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
 | |
| 		if (!defrag) {
 | |
| 			if (root_objectid || first_ino) {
 | |
| 				root_objectid = 0;
 | |
| 				first_ino = 0;
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		first_ino = defrag->ino + 1;
 | |
| 		root_objectid = defrag->root;
 | |
| 
 | |
| 		btrfs_run_defrag_inode(fs_info, defrag, &ra);
 | |
| 	}
 | |
| 	atomic_dec(&fs_info->defrag_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * During unmount, we use the transaction_wait queue to wait for the
 | |
| 	 * defragger to stop.
 | |
| 	 */
 | |
| 	wake_up(&fs_info->transaction_wait);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if two blocks addresses are close, used by defrag.
 | |
|  */
 | |
| static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
 | |
| {
 | |
| 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
 | |
| 		return true;
 | |
| 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Go through all the leaves pointed to by a node and reallocate them so that
 | |
|  * disk order is close to key order.
 | |
|  */
 | |
| static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root,
 | |
| 			      struct extent_buffer *parent,
 | |
| 			      int start_slot, u64 *last_ret,
 | |
| 			      struct btrfs_key *progress)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	const u32 blocksize = fs_info->nodesize;
 | |
| 	const int end_slot = btrfs_header_nritems(parent) - 1;
 | |
| 	u64 search_start = *last_ret;
 | |
| 	u64 last_block = 0;
 | |
| 	int ret = 0;
 | |
| 	bool progress_passed = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * COWing must happen through a running transaction, which always
 | |
| 	 * matches the current fs generation (it's a transaction with a state
 | |
| 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 | |
| 	 * into error state to prevent the commit of any transaction.
 | |
| 	 */
 | |
| 	if (unlikely(trans->transaction != fs_info->running_transaction ||
 | |
| 		     trans->transid != fs_info->generation)) {
 | |
| 		btrfs_abort_transaction(trans, -EUCLEAN);
 | |
| 		btrfs_crit(fs_info,
 | |
| "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
 | |
| 			   parent->start, btrfs_root_id(root), trans->transid,
 | |
| 			   fs_info->running_transaction->transid,
 | |
| 			   fs_info->generation);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_header_nritems(parent) <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (int i = start_slot; i <= end_slot; i++) {
 | |
| 		struct extent_buffer *cur;
 | |
| 		struct btrfs_disk_key disk_key;
 | |
| 		u64 blocknr;
 | |
| 		u64 other;
 | |
| 		bool close = true;
 | |
| 
 | |
| 		btrfs_node_key(parent, &disk_key, i);
 | |
| 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		progress_passed = true;
 | |
| 		blocknr = btrfs_node_blockptr(parent, i);
 | |
| 		if (last_block == 0)
 | |
| 			last_block = blocknr;
 | |
| 
 | |
| 		if (i > 0) {
 | |
| 			other = btrfs_node_blockptr(parent, i - 1);
 | |
| 			close = close_blocks(blocknr, other, blocksize);
 | |
| 		}
 | |
| 		if (!close && i < end_slot) {
 | |
| 			other = btrfs_node_blockptr(parent, i + 1);
 | |
| 			close = close_blocks(blocknr, other, blocksize);
 | |
| 		}
 | |
| 		if (close) {
 | |
| 			last_block = blocknr;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		cur = btrfs_read_node_slot(parent, i);
 | |
| 		if (IS_ERR(cur))
 | |
| 			return PTR_ERR(cur);
 | |
| 		if (search_start == 0)
 | |
| 			search_start = last_block;
 | |
| 
 | |
| 		btrfs_tree_lock(cur);
 | |
| 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
 | |
| 					    &cur, search_start,
 | |
| 					    min(16 * blocksize,
 | |
| 						(end_slot - i) * blocksize),
 | |
| 					    BTRFS_NESTING_COW);
 | |
| 		if (ret) {
 | |
| 			btrfs_tree_unlock(cur);
 | |
| 			free_extent_buffer(cur);
 | |
| 			break;
 | |
| 		}
 | |
| 		search_start = cur->start;
 | |
| 		last_block = cur->start;
 | |
| 		*last_ret = search_start;
 | |
| 		btrfs_tree_unlock(cur);
 | |
| 		free_extent_buffer(cur);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Defrag all the leaves in a given btree.
 | |
|  * Read all the leaves and try to get key order to
 | |
|  * better reflect disk order
 | |
|  */
 | |
| 
 | |
| static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int level;
 | |
| 	int next_key_ret = 0;
 | |
| 	u64 last_ret = 0;
 | |
| 
 | |
| 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 | |
| 		goto out;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	level = btrfs_header_level(root->node);
 | |
| 
 | |
| 	if (level == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (root->defrag_progress.objectid == 0) {
 | |
| 		struct extent_buffer *root_node;
 | |
| 		u32 nritems;
 | |
| 
 | |
| 		root_node = btrfs_lock_root_node(root);
 | |
| 		nritems = btrfs_header_nritems(root_node);
 | |
| 		root->defrag_max.objectid = 0;
 | |
| 		/* from above we know this is not a leaf */
 | |
| 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
 | |
| 				      nritems - 1);
 | |
| 		btrfs_tree_unlock(root_node);
 | |
| 		free_extent_buffer(root_node);
 | |
| 		memset(&key, 0, sizeof(key));
 | |
| 	} else {
 | |
| 		memcpy(&key, &root->defrag_progress, sizeof(key));
 | |
| 	}
 | |
| 
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	/*
 | |
| 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
 | |
| 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
 | |
| 	 * a deadlock (attempting to write lock an already write locked leaf).
 | |
| 	 */
 | |
| 	path->lowest_level = 1;
 | |
| 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 
 | |
| 	if (wret < 0) {
 | |
| 		ret = wret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (!path->nodes[1]) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * The node at level 1 must always be locked when our path has
 | |
| 	 * keep_locks set and lowest_level is 1, regardless of the value of
 | |
| 	 * path->slots[1].
 | |
| 	 */
 | |
| 	ASSERT(path->locks[1] != 0);
 | |
| 	ret = btrfs_realloc_node(trans, root,
 | |
| 				 path->nodes[1], 0,
 | |
| 				 &last_ret,
 | |
| 				 &root->defrag_progress);
 | |
| 	if (ret) {
 | |
| 		WARN_ON(ret == -EAGAIN);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Now that we reallocated the node we can find the next key. Note that
 | |
| 	 * btrfs_find_next_key() can release our path and do another search
 | |
| 	 * without COWing, this is because even with path->keep_locks = 1,
 | |
| 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
 | |
| 	 * node when path->slots[node_level - 1] does not point to the last
 | |
| 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
 | |
| 	 * we search for the next key after reallocating our node.
 | |
| 	 */
 | |
| 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
 | |
| 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
 | |
| 					   BTRFS_OLDEST_GENERATION);
 | |
| 	if (next_key_ret == 0) {
 | |
| 		memcpy(&root->defrag_progress, &key, sizeof(key));
 | |
| 		ret = -EAGAIN;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
 | |
| 			goto done;
 | |
| 		if (root->defrag_max.type > root->defrag_progress.type)
 | |
| 			goto done;
 | |
| 		if (root->defrag_max.offset > root->defrag_progress.offset)
 | |
| 			goto done;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| done:
 | |
| 	if (ret != -EAGAIN)
 | |
| 		memset(&root->defrag_progress, 0,
 | |
| 		       sizeof(root->defrag_progress));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
 | |
|  */
 | |
| int btrfs_defrag_root(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 		trans = btrfs_start_transaction(root, 0);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_defrag_leaves(trans, root);
 | |
| 
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		btrfs_btree_balance_dirty(fs_info);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
 | |
| 			break;
 | |
| 
 | |
| 		if (btrfs_defrag_cancelled(fs_info)) {
 | |
| 			btrfs_debug(fs_info, "defrag_root cancelled");
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Defrag specific helper to get an extent map.
 | |
|  *
 | |
|  * Differences between this and btrfs_get_extent() are:
 | |
|  *
 | |
|  * - No extent_map will be added to inode->extent_tree
 | |
|  *   To reduce memory usage in the long run.
 | |
|  *
 | |
|  * - Extra optimization to skip file extents older than @newer_than
 | |
|  *   By using btrfs_search_forward() we can skip entire file ranges that
 | |
|  *   have extents created in past transactions, because btrfs_search_forward()
 | |
|  *   will not visit leaves and nodes with a generation smaller than given
 | |
|  *   minimal generation threshold (@newer_than).
 | |
|  *
 | |
|  * Return valid em if we find a file extent matching the requirement.
 | |
|  * Return NULL if we can not find a file extent matching the requirement.
 | |
|  *
 | |
|  * Return ERR_PTR() for error.
 | |
|  */
 | |
| static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
 | |
| 					    u64 start, u64 newer_than)
 | |
| {
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_path path = { 0 };
 | |
| 	struct extent_map *em;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 	int ret;
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = start;
 | |
| 
 | |
| 	if (newer_than) {
 | |
| 		ret = btrfs_search_forward(root, &key, &path, newer_than);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 		/* Can't find anything newer */
 | |
| 		if (ret > 0)
 | |
| 			goto not_found;
 | |
| 	} else {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 	}
 | |
| 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
 | |
| 		/*
 | |
| 		 * If btrfs_search_slot() makes path to point beyond nritems,
 | |
| 		 * we should not have an empty leaf, as this inode must at
 | |
| 		 * least have its INODE_ITEM.
 | |
| 		 */
 | |
| 		ASSERT(btrfs_header_nritems(path.nodes[0]));
 | |
| 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
 | |
| 	}
 | |
| 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
 | |
| 	/* Perfect match, no need to go one slot back */
 | |
| 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
 | |
| 	    key.offset == start)
 | |
| 		goto iterate;
 | |
| 
 | |
| 	/* We didn't find a perfect match, needs to go one slot back */
 | |
| 	if (path.slots[0] > 0) {
 | |
| 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
 | |
| 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
 | |
| 			path.slots[0]--;
 | |
| 	}
 | |
| 
 | |
| iterate:
 | |
| 	/* Iterate through the path to find a file extent covering @start */
 | |
| 	while (true) {
 | |
| 		u64 extent_end;
 | |
| 
 | |
| 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
 | |
| 			goto next;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
 | |
| 
 | |
| 		/*
 | |
| 		 * We may go one slot back to INODE_REF/XATTR item, then
 | |
| 		 * need to go forward until we reach an EXTENT_DATA.
 | |
| 		 * But we should still has the correct ino as key.objectid.
 | |
| 		 */
 | |
| 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* It's beyond our target range, definitely not extent found */
 | |
| 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
 | |
| 			goto not_found;
 | |
| 
 | |
| 		/*
 | |
| 		 *	|	|<- File extent ->|
 | |
| 		 *	\- start
 | |
| 		 *
 | |
| 		 * This means there is a hole between start and key.offset.
 | |
| 		 */
 | |
| 		if (key.offset > start) {
 | |
| 			em->start = start;
 | |
| 			em->disk_bytenr = EXTENT_MAP_HOLE;
 | |
| 			em->disk_num_bytes = 0;
 | |
| 			em->ram_bytes = 0;
 | |
| 			em->offset = 0;
 | |
| 			em->len = key.offset - start;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		extent_end = btrfs_file_extent_end(&path);
 | |
| 
 | |
| 		/*
 | |
| 		 *	|<- file extent ->|	|
 | |
| 		 *				\- start
 | |
| 		 *
 | |
| 		 * We haven't reached start, search next slot.
 | |
| 		 */
 | |
| 		if (extent_end <= start)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* Now this extent covers @start, convert it to em */
 | |
| 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
 | |
| 		break;
 | |
| next:
 | |
| 		ret = btrfs_next_item(root, &path);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 		if (ret > 0)
 | |
| 			goto not_found;
 | |
| 	}
 | |
| 	btrfs_release_path(&path);
 | |
| 	return em;
 | |
| 
 | |
| not_found:
 | |
| 	btrfs_release_path(&path);
 | |
| 	free_extent_map(em);
 | |
| 	return NULL;
 | |
| 
 | |
| err:
 | |
| 	btrfs_release_path(&path);
 | |
| 	free_extent_map(em);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
 | |
| 					       u64 newer_than, bool locked)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | |
| 	struct extent_map *em;
 | |
| 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hopefully we have this extent in the tree already, try without the
 | |
| 	 * full extent lock.
 | |
| 	 */
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, start, sectorsize);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can get a merged extent, in that case, we need to re-search
 | |
| 	 * tree to get the original em for defrag.
 | |
| 	 *
 | |
| 	 * This is because even if we have adjacent extents that are contiguous
 | |
| 	 * and compatible (same type and flags), we still want to defrag them
 | |
| 	 * so that we use less metadata (extent items in the extent tree and
 | |
| 	 * file extent items in the inode's subvolume tree).
 | |
| 	 */
 | |
| 	if (em && (em->flags & EXTENT_FLAG_MERGED)) {
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!em) {
 | |
| 		struct extent_state *cached = NULL;
 | |
| 		u64 end = start + sectorsize - 1;
 | |
| 
 | |
| 		/* Get the big lock and read metadata off disk. */
 | |
| 		if (!locked)
 | |
| 			lock_extent(io_tree, start, end, &cached);
 | |
| 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
 | |
| 		if (!locked)
 | |
| 			unlock_extent(io_tree, start, end, &cached);
 | |
| 
 | |
| 		if (IS_ERR(em))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return em;
 | |
| }
 | |
| 
 | |
| static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
 | |
| 				   const struct extent_map *em)
 | |
| {
 | |
| 	if (extent_map_is_compressed(em))
 | |
| 		return BTRFS_MAX_COMPRESSED;
 | |
| 	return fs_info->max_extent_size;
 | |
| }
 | |
| 
 | |
| static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
 | |
| 				     u32 extent_thresh, u64 newer_than, bool locked)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct extent_map *next;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	/* This is the last extent */
 | |
| 	if (em->start + em->len >= i_size_read(inode))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we need to pass @newer_then when checking the next extent, or
 | |
| 	 * we will hit a case we mark current extent for defrag, but the next
 | |
| 	 * one will not be a target.
 | |
| 	 * This will just cause extra IO without really reducing the fragments.
 | |
| 	 */
 | |
| 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
 | |
| 	/* No more em or hole */
 | |
| 	if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
 | |
| 		goto out;
 | |
| 	if (next->flags & EXTENT_FLAG_PREALLOC)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * If the next extent is at its max capacity, defragging current extent
 | |
| 	 * makes no sense, as the total number of extents won't change.
 | |
| 	 */
 | |
| 	if (next->len >= get_extent_max_capacity(fs_info, em))
 | |
| 		goto out;
 | |
| 	/* Skip older extent */
 | |
| 	if (next->generation < newer_than)
 | |
| 		goto out;
 | |
| 	/* Also check extent size */
 | |
| 	if (next->len >= extent_thresh)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = true;
 | |
| out:
 | |
| 	free_extent_map(next);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare one page to be defragged.
 | |
|  *
 | |
|  * This will ensure:
 | |
|  *
 | |
|  * - Returned page is locked and has been set up properly.
 | |
|  * - No ordered extent exists in the page.
 | |
|  * - The page is uptodate.
 | |
|  *
 | |
|  * NOTE: Caller should also wait for page writeback after the cluster is
 | |
|  * prepared, here we don't do writeback wait for each page.
 | |
|  */
 | |
| static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
 | |
| {
 | |
| 	struct address_space *mapping = inode->vfs_inode.i_mapping;
 | |
| 	gfp_t mask = btrfs_alloc_write_mask(mapping);
 | |
| 	u64 page_start = (u64)index << PAGE_SHIFT;
 | |
| 	u64 page_end = page_start + PAGE_SIZE - 1;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct folio *folio;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	folio = __filemap_get_folio(mapping, index,
 | |
| 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
 | |
| 	if (IS_ERR(folio))
 | |
| 		return folio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we can defragment files opened read-only, we can encounter
 | |
| 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
 | |
| 	 * can't do I/O using huge pages yet, so return an error for now.
 | |
| 	 * Filesystem transparent huge pages are typically only used for
 | |
| 	 * executables that explicitly enable them, so this isn't very
 | |
| 	 * restrictive.
 | |
| 	 */
 | |
| 	if (folio_test_large(folio)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return ERR_PTR(-ETXTBSY);
 | |
| 	}
 | |
| 
 | |
| 	ret = set_folio_extent_mapped(folio);
 | |
| 	if (ret < 0) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for any existing ordered extent in the range */
 | |
| 	while (1) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
 | |
| 		unlock_extent(&inode->io_tree, page_start, page_end,
 | |
| 			      &cached_state);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 
 | |
| 		folio_unlock(folio);
 | |
| 		btrfs_start_ordered_extent(ordered);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		folio_lock(folio);
 | |
| 		/*
 | |
| 		 * We unlocked the folio above, so we need check if it was
 | |
| 		 * released or not.
 | |
| 		 */
 | |
| 		if (folio->mapping != mapping || !folio->private) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now the page range has no ordered extent any more.  Read the page to
 | |
| 	 * make it uptodate.
 | |
| 	 */
 | |
| 	if (!folio_test_uptodate(folio)) {
 | |
| 		btrfs_read_folio(NULL, folio);
 | |
| 		folio_lock(folio);
 | |
| 		if (folio->mapping != mapping || !folio->private) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (!folio_test_uptodate(folio)) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			return ERR_PTR(-EIO);
 | |
| 		}
 | |
| 	}
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| struct defrag_target_range {
 | |
| 	struct list_head list;
 | |
| 	u64 start;
 | |
| 	u64 len;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Collect all valid target extents.
 | |
|  *
 | |
|  * @start:	   file offset to lookup
 | |
|  * @len:	   length to lookup
 | |
|  * @extent_thresh: file extent size threshold, any extent size >= this value
 | |
|  *		   will be ignored
 | |
|  * @newer_than:    only defrag extents newer than this value
 | |
|  * @do_compress:   whether the defrag is doing compression
 | |
|  *		   if true, @extent_thresh will be ignored and all regular
 | |
|  *		   file extents meeting @newer_than will be targets.
 | |
|  * @locked:	   if the range has already held extent lock
 | |
|  * @target_list:   list of targets file extents
 | |
|  */
 | |
| static int defrag_collect_targets(struct btrfs_inode *inode,
 | |
| 				  u64 start, u64 len, u32 extent_thresh,
 | |
| 				  u64 newer_than, bool do_compress,
 | |
| 				  bool locked, struct list_head *target_list,
 | |
| 				  u64 *last_scanned_ret)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	bool last_is_target = false;
 | |
| 	u64 cur = start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (cur < start + len) {
 | |
| 		struct extent_map *em;
 | |
| 		struct defrag_target_range *new;
 | |
| 		bool next_mergeable = true;
 | |
| 		u64 range_len;
 | |
| 
 | |
| 		last_is_target = false;
 | |
| 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
 | |
| 		if (!em)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the file extent is an inlined one, we may still want to
 | |
| 		 * defrag it (fallthrough) if it will cause a regular extent.
 | |
| 		 * This is for users who want to convert inline extents to
 | |
| 		 * regular ones through max_inline= mount option.
 | |
| 		 */
 | |
| 		if (em->disk_bytenr == EXTENT_MAP_INLINE &&
 | |
| 		    em->len <= inode->root->fs_info->max_inline)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* Skip holes and preallocated extents. */
 | |
| 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
 | |
| 		    (em->flags & EXTENT_FLAG_PREALLOC))
 | |
| 			goto next;
 | |
| 
 | |
| 		/* Skip older extent */
 | |
| 		if (em->generation < newer_than)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* This em is under writeback, no need to defrag */
 | |
| 		if (em->generation == (u64)-1)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * Our start offset might be in the middle of an existing extent
 | |
| 		 * map, so take that into account.
 | |
| 		 */
 | |
| 		range_len = em->len - (cur - em->start);
 | |
| 		/*
 | |
| 		 * If this range of the extent map is already flagged for delalloc,
 | |
| 		 * skip it, because:
 | |
| 		 *
 | |
| 		 * 1) We could deadlock later, when trying to reserve space for
 | |
| 		 *    delalloc, because in case we can't immediately reserve space
 | |
| 		 *    the flusher can start delalloc and wait for the respective
 | |
| 		 *    ordered extents to complete. The deadlock would happen
 | |
| 		 *    because we do the space reservation while holding the range
 | |
| 		 *    locked, and starting writeback, or finishing an ordered
 | |
| 		 *    extent, requires locking the range;
 | |
| 		 *
 | |
| 		 * 2) If there's delalloc there, it means there's dirty pages for
 | |
| 		 *    which writeback has not started yet (we clean the delalloc
 | |
| 		 *    flag when starting writeback and after creating an ordered
 | |
| 		 *    extent). If we mark pages in an adjacent range for defrag,
 | |
| 		 *    then we will have a larger contiguous range for delalloc,
 | |
| 		 *    very likely resulting in a larger extent after writeback is
 | |
| 		 *    triggered (except in a case of free space fragmentation).
 | |
| 		 */
 | |
| 		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
 | |
| 					  EXTENT_DELALLOC))
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * For do_compress case, we want to compress all valid file
 | |
| 		 * extents, thus no @extent_thresh or mergeable check.
 | |
| 		 */
 | |
| 		if (do_compress)
 | |
| 			goto add;
 | |
| 
 | |
| 		/* Skip too large extent */
 | |
| 		if (em->len >= extent_thresh)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip extents already at its max capacity, this is mostly for
 | |
| 		 * compressed extents, which max cap is only 128K.
 | |
| 		 */
 | |
| 		if (em->len >= get_extent_max_capacity(fs_info, em))
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * Normally there are no more extents after an inline one, thus
 | |
| 		 * @next_mergeable will normally be false and not defragged.
 | |
| 		 * So if an inline extent passed all above checks, just add it
 | |
| 		 * for defrag, and be converted to regular extents.
 | |
| 		 */
 | |
| 		if (em->disk_bytenr == EXTENT_MAP_INLINE)
 | |
| 			goto add;
 | |
| 
 | |
| 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
 | |
| 						extent_thresh, newer_than, locked);
 | |
| 		if (!next_mergeable) {
 | |
| 			struct defrag_target_range *last;
 | |
| 
 | |
| 			/* Empty target list, no way to merge with last entry */
 | |
| 			if (list_empty(target_list))
 | |
| 				goto next;
 | |
| 			last = list_entry(target_list->prev,
 | |
| 					  struct defrag_target_range, list);
 | |
| 			/* Not mergeable with last entry */
 | |
| 			if (last->start + last->len != cur)
 | |
| 				goto next;
 | |
| 
 | |
| 			/* Mergeable, fall through to add it to @target_list. */
 | |
| 		}
 | |
| 
 | |
| add:
 | |
| 		last_is_target = true;
 | |
| 		range_len = min(extent_map_end(em), start + len) - cur;
 | |
| 		/*
 | |
| 		 * This one is a good target, check if it can be merged into
 | |
| 		 * last range of the target list.
 | |
| 		 */
 | |
| 		if (!list_empty(target_list)) {
 | |
| 			struct defrag_target_range *last;
 | |
| 
 | |
| 			last = list_entry(target_list->prev,
 | |
| 					  struct defrag_target_range, list);
 | |
| 			ASSERT(last->start + last->len <= cur);
 | |
| 			if (last->start + last->len == cur) {
 | |
| 				/* Mergeable, enlarge the last entry */
 | |
| 				last->len += range_len;
 | |
| 				goto next;
 | |
| 			}
 | |
| 			/* Fall through to allocate a new entry */
 | |
| 		}
 | |
| 
 | |
| 		/* Allocate new defrag_target_range */
 | |
| 		new = kmalloc(sizeof(*new), GFP_NOFS);
 | |
| 		if (!new) {
 | |
| 			free_extent_map(em);
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 		new->start = cur;
 | |
| 		new->len = range_len;
 | |
| 		list_add_tail(&new->list, target_list);
 | |
| 
 | |
| next:
 | |
| 		cur = extent_map_end(em);
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	if (ret < 0) {
 | |
| 		struct defrag_target_range *entry;
 | |
| 		struct defrag_target_range *tmp;
 | |
| 
 | |
| 		list_for_each_entry_safe(entry, tmp, target_list, list) {
 | |
| 			list_del_init(&entry->list);
 | |
| 			kfree(entry);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!ret && last_scanned_ret) {
 | |
| 		/*
 | |
| 		 * If the last extent is not a target, the caller can skip to
 | |
| 		 * the end of that extent.
 | |
| 		 * Otherwise, we can only go the end of the specified range.
 | |
| 		 */
 | |
| 		if (!last_is_target)
 | |
| 			*last_scanned_ret = max(cur, *last_scanned_ret);
 | |
| 		else
 | |
| 			*last_scanned_ret = max(start + len, *last_scanned_ret);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define CLUSTER_SIZE	(SZ_256K)
 | |
| static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
 | |
| 
 | |
| /*
 | |
|  * Defrag one contiguous target range.
 | |
|  *
 | |
|  * @inode:	target inode
 | |
|  * @target:	target range to defrag
 | |
|  * @pages:	locked pages covering the defrag range
 | |
|  * @nr_pages:	number of locked pages
 | |
|  *
 | |
|  * Caller should ensure:
 | |
|  *
 | |
|  * - Pages are prepared
 | |
|  *   Pages should be locked, no ordered extent in the pages range,
 | |
|  *   no writeback.
 | |
|  *
 | |
|  * - Extent bits are locked
 | |
|  */
 | |
| static int defrag_one_locked_target(struct btrfs_inode *inode,
 | |
| 				    struct defrag_target_range *target,
 | |
| 				    struct folio **folios, int nr_pages,
 | |
| 				    struct extent_state **cached_state)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	const u64 start = target->start;
 | |
| 	const u64 len = target->len;
 | |
| 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
 | |
| 	unsigned long start_index = start >> PAGE_SHIFT;
 | |
| 	unsigned long first_index = folios[0]->index;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(last_index - first_index + 1 <= nr_pages);
 | |
| 
 | |
| 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
 | |
| 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
 | |
| 			 EXTENT_DEFRAG, cached_state);
 | |
| 	set_extent_bit(&inode->io_tree, start, start + len - 1,
 | |
| 		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
 | |
| 
 | |
| 	/* Update the page status */
 | |
| 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
 | |
| 		folio_clear_checked(folios[i]);
 | |
| 		btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
 | |
| 	}
 | |
| 	btrfs_delalloc_release_extents(inode, len);
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
 | |
| 			    u32 extent_thresh, u64 newer_than, bool do_compress,
 | |
| 			    u64 *last_scanned_ret)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct defrag_target_range *entry;
 | |
| 	struct defrag_target_range *tmp;
 | |
| 	LIST_HEAD(target_list);
 | |
| 	struct folio **folios;
 | |
| 	const u32 sectorsize = inode->root->fs_info->sectorsize;
 | |
| 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
 | |
| 	u64 start_index = start >> PAGE_SHIFT;
 | |
| 	unsigned int nr_pages = last_index - start_index + 1;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
 | |
| 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
 | |
| 
 | |
| 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
 | |
| 	if (!folios)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Prepare all pages */
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		folios[i] = defrag_prepare_one_folio(inode, start_index + i);
 | |
| 		if (IS_ERR(folios[i])) {
 | |
| 			ret = PTR_ERR(folios[i]);
 | |
| 			nr_pages = i;
 | |
| 			goto free_folios;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < nr_pages; i++)
 | |
| 		folio_wait_writeback(folios[i]);
 | |
| 
 | |
| 	/* Lock the pages range */
 | |
| 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
 | |
| 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
 | |
| 		    &cached_state);
 | |
| 	/*
 | |
| 	 * Now we have a consistent view about the extent map, re-check
 | |
| 	 * which range really needs to be defragged.
 | |
| 	 *
 | |
| 	 * And this time we have extent locked already, pass @locked = true
 | |
| 	 * so that we won't relock the extent range and cause deadlock.
 | |
| 	 */
 | |
| 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
 | |
| 				     newer_than, do_compress, true,
 | |
| 				     &target_list, last_scanned_ret);
 | |
| 	if (ret < 0)
 | |
| 		goto unlock_extent;
 | |
| 
 | |
| 	list_for_each_entry(entry, &target_list, list) {
 | |
| 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
 | |
| 					       &cached_state);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
 | |
| 		list_del_init(&entry->list);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| unlock_extent:
 | |
| 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
 | |
| 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
 | |
| 		      &cached_state);
 | |
| free_folios:
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		folio_unlock(folios[i]);
 | |
| 		folio_put(folios[i]);
 | |
| 	}
 | |
| 	kfree(folios);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int defrag_one_cluster(struct btrfs_inode *inode,
 | |
| 			      struct file_ra_state *ra,
 | |
| 			      u64 start, u32 len, u32 extent_thresh,
 | |
| 			      u64 newer_than, bool do_compress,
 | |
| 			      unsigned long *sectors_defragged,
 | |
| 			      unsigned long max_sectors,
 | |
| 			      u64 *last_scanned_ret)
 | |
| {
 | |
| 	const u32 sectorsize = inode->root->fs_info->sectorsize;
 | |
| 	struct defrag_target_range *entry;
 | |
| 	struct defrag_target_range *tmp;
 | |
| 	LIST_HEAD(target_list);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
 | |
| 				     newer_than, do_compress, false,
 | |
| 				     &target_list, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(entry, &target_list, list) {
 | |
| 		u32 range_len = entry->len;
 | |
| 
 | |
| 		/* Reached or beyond the limit */
 | |
| 		if (max_sectors && *sectors_defragged >= max_sectors) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (max_sectors)
 | |
| 			range_len = min_t(u32, range_len,
 | |
| 				(max_sectors - *sectors_defragged) * sectorsize);
 | |
| 
 | |
| 		/*
 | |
| 		 * If defrag_one_range() has updated last_scanned_ret,
 | |
| 		 * our range may already be invalid (e.g. hole punched).
 | |
| 		 * Skip if our range is before last_scanned_ret, as there is
 | |
| 		 * no need to defrag the range anymore.
 | |
| 		 */
 | |
| 		if (entry->start + range_len <= *last_scanned_ret)
 | |
| 			continue;
 | |
| 
 | |
| 		page_cache_sync_readahead(inode->vfs_inode.i_mapping,
 | |
| 				ra, NULL, entry->start >> PAGE_SHIFT,
 | |
| 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
 | |
| 				(entry->start >> PAGE_SHIFT) + 1);
 | |
| 		/*
 | |
| 		 * Here we may not defrag any range if holes are punched before
 | |
| 		 * we locked the pages.
 | |
| 		 * But that's fine, it only affects the @sectors_defragged
 | |
| 		 * accounting.
 | |
| 		 */
 | |
| 		ret = defrag_one_range(inode, entry->start, range_len,
 | |
| 				       extent_thresh, newer_than, do_compress,
 | |
| 				       last_scanned_ret);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		*sectors_defragged += range_len >>
 | |
| 				      inode->root->fs_info->sectorsize_bits;
 | |
| 	}
 | |
| out:
 | |
| 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
 | |
| 		list_del_init(&entry->list);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 	if (ret >= 0)
 | |
| 		*last_scanned_ret = max(*last_scanned_ret, start + len);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Entry point to file defragmentation.
 | |
|  *
 | |
|  * @inode:	   inode to be defragged
 | |
|  * @ra:		   readahead state
 | |
|  * @range:	   defrag options including range and flags
 | |
|  * @newer_than:	   minimum transid to defrag
 | |
|  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
 | |
|  *		   will be defragged.
 | |
|  *
 | |
|  * Return <0 for error.
 | |
|  * Return >=0 for the number of sectors defragged, and range->start will be updated
 | |
|  * to indicate the file offset where next defrag should be started at.
 | |
|  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
 | |
|  *  defragging all the range).
 | |
|  */
 | |
| int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra,
 | |
| 		      struct btrfs_ioctl_defrag_range_args *range,
 | |
| 		      u64 newer_than, unsigned long max_to_defrag)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	unsigned long sectors_defragged = 0;
 | |
| 	u64 isize = i_size_read(&inode->vfs_inode);
 | |
| 	u64 cur;
 | |
| 	u64 last_byte;
 | |
| 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
 | |
| 	int compress_type = BTRFS_COMPRESS_ZLIB;
 | |
| 	int ret = 0;
 | |
| 	u32 extent_thresh = range->extent_thresh;
 | |
| 	pgoff_t start_index;
 | |
| 
 | |
| 	ASSERT(ra);
 | |
| 
 | |
| 	if (isize == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (range->start >= isize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (do_compress) {
 | |
| 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
 | |
| 			return -EINVAL;
 | |
| 		if (range->compress_type)
 | |
| 			compress_type = range->compress_type;
 | |
| 	}
 | |
| 
 | |
| 	if (extent_thresh == 0)
 | |
| 		extent_thresh = SZ_256K;
 | |
| 
 | |
| 	if (range->start + range->len > range->start) {
 | |
| 		/* Got a specific range */
 | |
| 		last_byte = min(isize, range->start + range->len);
 | |
| 	} else {
 | |
| 		/* Defrag until file end */
 | |
| 		last_byte = isize;
 | |
| 	}
 | |
| 
 | |
| 	/* Align the range */
 | |
| 	cur = round_down(range->start, fs_info->sectorsize);
 | |
| 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make writeback start from the beginning of the range, so that the
 | |
| 	 * defrag range can be written sequentially.
 | |
| 	 */
 | |
| 	start_index = cur >> PAGE_SHIFT;
 | |
| 	if (start_index < inode->vfs_inode.i_mapping->writeback_index)
 | |
| 		inode->vfs_inode.i_mapping->writeback_index = start_index;
 | |
| 
 | |
| 	while (cur < last_byte) {
 | |
| 		const unsigned long prev_sectors_defragged = sectors_defragged;
 | |
| 		u64 last_scanned = cur;
 | |
| 		u64 cluster_end;
 | |
| 
 | |
| 		if (btrfs_defrag_cancelled(fs_info)) {
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* We want the cluster end at page boundary when possible */
 | |
| 		cluster_end = (((cur >> PAGE_SHIFT) +
 | |
| 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
 | |
| 		cluster_end = min(cluster_end, last_byte);
 | |
| 
 | |
| 		btrfs_inode_lock(inode, 0);
 | |
| 		if (IS_SWAPFILE(&inode->vfs_inode)) {
 | |
| 			ret = -ETXTBSY;
 | |
| 			btrfs_inode_unlock(inode, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) {
 | |
| 			btrfs_inode_unlock(inode, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (do_compress)
 | |
| 			inode->defrag_compress = compress_type;
 | |
| 		ret = defrag_one_cluster(inode, ra, cur,
 | |
| 				cluster_end + 1 - cur, extent_thresh,
 | |
| 				newer_than, do_compress, §ors_defragged,
 | |
| 				max_to_defrag, &last_scanned);
 | |
| 
 | |
| 		if (sectors_defragged > prev_sectors_defragged)
 | |
| 			balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping);
 | |
| 
 | |
| 		btrfs_inode_unlock(inode, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		cur = max(cluster_end + 1, last_scanned);
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update range.start for autodefrag, this will indicate where to start
 | |
| 	 * in next run.
 | |
| 	 */
 | |
| 	range->start = cur;
 | |
| 	if (sectors_defragged) {
 | |
| 		/*
 | |
| 		 * We have defragged some sectors, for compression case they
 | |
| 		 * need to be written back immediately.
 | |
| 		 */
 | |
| 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
 | |
| 			filemap_flush(inode->vfs_inode.i_mapping);
 | |
| 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | |
| 				     &inode->runtime_flags))
 | |
| 				filemap_flush(inode->vfs_inode.i_mapping);
 | |
| 		}
 | |
| 		if (range->compress_type == BTRFS_COMPRESS_LZO)
 | |
| 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
 | |
| 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
 | |
| 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
 | |
| 		ret = sectors_defragged;
 | |
| 	}
 | |
| 	if (do_compress) {
 | |
| 		btrfs_inode_lock(inode, 0);
 | |
| 		inode->defrag_compress = BTRFS_COMPRESS_NONE;
 | |
| 		btrfs_inode_unlock(inode, 0);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_auto_defrag_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
 | |
| }
 | |
| 
 | |
| int __init btrfs_auto_defrag_init(void)
 | |
| {
 | |
| 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
 | |
| 					sizeof(struct inode_defrag), 0, 0, NULL);
 | |
| 	if (!btrfs_inode_defrag_cachep)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |