mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 fcc384be06
			
		
	
	
		fcc384be06
		
	
	
	
	
		
			
			Since we have btrfs_meta_is_subpage(), we should make btrfs_is_subpage() to be data inode specific. This change involves: - Simplify btrfs_is_subpage() Now we only need to do a very simple sectorsize check against PAGE_SIZE. And since the function is pretty simple now, just make it an inline function. - Add an extra ASSERT() to make sure btrfs_is_subpage() is only called on data inode mapping - Migrate btree_csum_one_bio() to use btrfs_meta_folio_*() helpers - Migrate alloc_extent_buffer() to use btrfs_meta_folio_*() helpers - Migrate end_bbio_meta_write() to use btrfs_meta_folio_*() helpers Or we will trigger the ASSERT() due to calling btrfs_folio_*() on metadata folios. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			4312 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4312 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/fsverity.h>
 | |
| #include "extent_io.h"
 | |
| #include "extent-io-tree.h"
 | |
| #include "extent_map.h"
 | |
| #include "ctree.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "bio.h"
 | |
| #include "locking.h"
 | |
| #include "backref.h"
 | |
| #include "disk-io.h"
 | |
| #include "subpage.h"
 | |
| #include "zoned.h"
 | |
| #include "block-group.h"
 | |
| #include "compression.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "file-item.h"
 | |
| #include "file.h"
 | |
| #include "dev-replace.h"
 | |
| #include "super.h"
 | |
| #include "transaction.h"
 | |
| 
 | |
| static struct kmem_cache *extent_buffer_cache;
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
 | |
| 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
 | |
| 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
 | |
| 	list_del(&eb->leak_list);
 | |
| 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 | |
| }
 | |
| 
 | |
| void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we didn't get into open_ctree our allocated_ebs will not be
 | |
| 	 * initialized, so just skip this.
 | |
| 	 */
 | |
| 	if (!fs_info->allocated_ebs.next)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
 | |
| 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
 | |
| 	while (!list_empty(&fs_info->allocated_ebs)) {
 | |
| 		eb = list_first_entry(&fs_info->allocated_ebs,
 | |
| 				      struct extent_buffer, leak_list);
 | |
| 		pr_err(
 | |
| 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
 | |
| 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
 | |
| 		       btrfs_header_owner(eb));
 | |
| 		list_del(&eb->leak_list);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		kmem_cache_free(extent_buffer_cache, eb);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 | |
| }
 | |
| #else
 | |
| #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
 | |
| #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Structure to record info about the bio being assembled, and other info like
 | |
|  * how many bytes are there before stripe/ordered extent boundary.
 | |
|  */
 | |
| struct btrfs_bio_ctrl {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	enum btrfs_compression_type compress_type;
 | |
| 	u32 len_to_oe_boundary;
 | |
| 	blk_opf_t opf;
 | |
| 	btrfs_bio_end_io_t end_io_func;
 | |
| 	struct writeback_control *wbc;
 | |
| 
 | |
| 	/*
 | |
| 	 * The sectors of the page which are going to be submitted by
 | |
| 	 * extent_writepage_io().
 | |
| 	 * This is to avoid touching ranges covered by compression/inline.
 | |
| 	 */
 | |
| 	unsigned long submit_bitmap;
 | |
| };
 | |
| 
 | |
| static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = bio_ctrl->bbio;
 | |
| 
 | |
| 	if (!bbio)
 | |
| 		return;
 | |
| 
 | |
| 	/* Caller should ensure the bio has at least some range added */
 | |
| 	ASSERT(bbio->bio.bi_iter.bi_size);
 | |
| 
 | |
| 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 | |
| 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 | |
| 		btrfs_submit_compressed_read(bbio);
 | |
| 	else
 | |
| 		btrfs_submit_bbio(bbio, 0);
 | |
| 
 | |
| 	/* The bbio is owned by the end_io handler now */
 | |
| 	bio_ctrl->bbio = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit or fail the current bio in the bio_ctrl structure.
 | |
|  */
 | |
| static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = bio_ctrl->bbio;
 | |
| 
 | |
| 	if (!bbio)
 | |
| 		return;
 | |
| 
 | |
| 	if (ret) {
 | |
| 		ASSERT(ret < 0);
 | |
| 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 | |
| 		/* The bio is owned by the end_io handler now */
 | |
| 		bio_ctrl->bbio = NULL;
 | |
| 	} else {
 | |
| 		submit_one_bio(bio_ctrl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __init extent_buffer_init_cachep(void)
 | |
| {
 | |
| 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 | |
| 						sizeof(struct extent_buffer), 0, 0,
 | |
| 						NULL);
 | |
| 	if (!extent_buffer_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cold extent_buffer_free_cachep(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure all delayed rcu free are flushed before we
 | |
| 	 * destroy caches.
 | |
| 	 */
 | |
| 	rcu_barrier();
 | |
| 	kmem_cache_destroy(extent_buffer_cache);
 | |
| }
 | |
| 
 | |
| static void process_one_folio(struct btrfs_fs_info *fs_info,
 | |
| 			      struct folio *folio, const struct folio *locked_folio,
 | |
| 			      unsigned long page_ops, u64 start, u64 end)
 | |
| {
 | |
| 	u32 len;
 | |
| 
 | |
| 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 | |
| 	len = end + 1 - start;
 | |
| 
 | |
| 	if (page_ops & PAGE_SET_ORDERED)
 | |
| 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 | |
| 	if (page_ops & PAGE_START_WRITEBACK) {
 | |
| 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 | |
| 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 | |
| 	}
 | |
| 	if (page_ops & PAGE_END_WRITEBACK)
 | |
| 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 | |
| 
 | |
| 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
 | |
| 		btrfs_folio_end_lock(fs_info, folio, start, len);
 | |
| }
 | |
| 
 | |
| static void __process_folios_contig(struct address_space *mapping,
 | |
| 				    const struct folio *locked_folio, u64 start,
 | |
| 				    u64 end, unsigned long page_ops)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 | |
| 	pgoff_t index = start >> PAGE_SHIFT;
 | |
| 	pgoff_t end_index = end >> PAGE_SHIFT;
 | |
| 	struct folio_batch fbatch;
 | |
| 	int i;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	while (index <= end_index) {
 | |
| 		int found_folios;
 | |
| 
 | |
| 		found_folios = filemap_get_folios_contig(mapping, &index,
 | |
| 				end_index, &fbatch);
 | |
| 		for (i = 0; i < found_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			process_one_folio(fs_info, folio, locked_folio,
 | |
| 					  page_ops, start, end);
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void unlock_delalloc_folio(const struct inode *inode,
 | |
| 					   const struct folio *locked_folio,
 | |
| 					   u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_SHIFT;
 | |
| 
 | |
| 	ASSERT(locked_folio);
 | |
| 	if (index == locked_folio->index && end_index == index)
 | |
| 		return;
 | |
| 
 | |
| 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
 | |
| 				PAGE_UNLOCK);
 | |
| }
 | |
| 
 | |
| static noinline int lock_delalloc_folios(struct inode *inode,
 | |
| 					 const struct folio *locked_folio,
 | |
| 					 u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	pgoff_t index = start >> PAGE_SHIFT;
 | |
| 	pgoff_t end_index = end >> PAGE_SHIFT;
 | |
| 	u64 processed_end = start;
 | |
| 	struct folio_batch fbatch;
 | |
| 
 | |
| 	if (index == locked_folio->index && index == end_index)
 | |
| 		return 0;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	while (index <= end_index) {
 | |
| 		unsigned int found_folios, i;
 | |
| 
 | |
| 		found_folios = filemap_get_folios_contig(mapping, &index,
 | |
| 				end_index, &fbatch);
 | |
| 		if (found_folios == 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i < found_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 			u64 range_start;
 | |
| 			u32 range_len;
 | |
| 
 | |
| 			if (folio == locked_folio)
 | |
| 				continue;
 | |
| 
 | |
| 			folio_lock(folio);
 | |
| 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
 | |
| 				folio_unlock(folio);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			range_start = max_t(u64, folio_pos(folio), start);
 | |
| 			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 | |
| 					  end + 1) - range_start;
 | |
| 			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
 | |
| 
 | |
| 			processed_end = range_start + range_len - 1;
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	folio_batch_release(&fbatch);
 | |
| 	if (processed_end > start)
 | |
| 		unlock_delalloc_folio(inode, locked_folio, start, processed_end);
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 | |
|  * more than @max_bytes.
 | |
|  *
 | |
|  * @start:	The original start bytenr to search.
 | |
|  *		Will store the extent range start bytenr.
 | |
|  * @end:	The original end bytenr of the search range
 | |
|  *		Will store the extent range end bytenr.
 | |
|  *
 | |
|  * Return true if we find a delalloc range which starts inside the original
 | |
|  * range, and @start/@end will store the delalloc range start/end.
 | |
|  *
 | |
|  * Return false if we can't find any delalloc range which starts inside the
 | |
|  * original range, and @start/@end will be the non-delalloc range start/end.
 | |
|  */
 | |
| EXPORT_FOR_TESTS
 | |
| noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 | |
| 						 struct folio *locked_folio,
 | |
| 						 u64 *start, u64 *end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 | |
| 	const u64 orig_start = *start;
 | |
| 	const u64 orig_end = *end;
 | |
| 	/* The sanity tests may not set a valid fs_info. */
 | |
| 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 | |
| 	u64 delalloc_start;
 | |
| 	u64 delalloc_end;
 | |
| 	bool found;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int ret;
 | |
| 	int loops = 0;
 | |
| 
 | |
| 	/* Caller should pass a valid @end to indicate the search range end */
 | |
| 	ASSERT(orig_end > orig_start);
 | |
| 
 | |
| 	/* The range should at least cover part of the folio */
 | |
| 	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
 | |
| 		 orig_end <= folio_pos(locked_folio)));
 | |
| again:
 | |
| 	/* step one, find a bunch of delalloc bytes starting at start */
 | |
| 	delalloc_start = *start;
 | |
| 	delalloc_end = 0;
 | |
| 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 | |
| 					  max_bytes, &cached_state);
 | |
| 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 | |
| 		*start = delalloc_start;
 | |
| 
 | |
| 		/* @delalloc_end can be -1, never go beyond @orig_end */
 | |
| 		*end = min(delalloc_end, orig_end);
 | |
| 		free_extent_state(cached_state);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * start comes from the offset of locked_folio.  We have to lock
 | |
| 	 * folios in order, so we can't process delalloc bytes before
 | |
| 	 * locked_folio
 | |
| 	 */
 | |
| 	if (delalloc_start < *start)
 | |
| 		delalloc_start = *start;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure to limit the number of folios we try to lock down
 | |
| 	 */
 | |
| 	if (delalloc_end + 1 - delalloc_start > max_bytes)
 | |
| 		delalloc_end = delalloc_start + max_bytes - 1;
 | |
| 
 | |
| 	/* step two, lock all the folioss after the folios that has start */
 | |
| 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
 | |
| 				   delalloc_end);
 | |
| 	ASSERT(!ret || ret == -EAGAIN);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		/* some of the folios are gone, lets avoid looping by
 | |
| 		 * shortening the size of the delalloc range we're searching
 | |
| 		 */
 | |
| 		free_extent_state(cached_state);
 | |
| 		cached_state = NULL;
 | |
| 		if (!loops) {
 | |
| 			max_bytes = PAGE_SIZE;
 | |
| 			loops = 1;
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			found = false;
 | |
| 			goto out_failed;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* step three, lock the state bits for the whole range */
 | |
| 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 | |
| 
 | |
| 	/* then test to make sure it is all still delalloc */
 | |
| 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 | |
| 			     EXTENT_DELALLOC, cached_state);
 | |
| 
 | |
| 	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 | |
| 	if (!ret) {
 | |
| 		unlock_delalloc_folio(inode, locked_folio, delalloc_start,
 | |
| 				      delalloc_end);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	*start = delalloc_start;
 | |
| 	*end = delalloc_end;
 | |
| out_failed:
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 | |
| 				  const struct folio *locked_folio,
 | |
| 				  struct extent_state **cached,
 | |
| 				  u32 clear_bits, unsigned long page_ops)
 | |
| {
 | |
| 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
 | |
| 
 | |
| 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
 | |
| 				end, page_ops);
 | |
| }
 | |
| 
 | |
| static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 
 | |
| 	if (!fsverity_active(folio->mapping->host) ||
 | |
| 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
 | |
| 	    start >= i_size_read(folio->mapping->host))
 | |
| 		return true;
 | |
| 	return fsverity_verify_folio(folio);
 | |
| }
 | |
| 
 | |
| static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 
 | |
| 	ASSERT(folio_pos(folio) <= start &&
 | |
| 	       start + len <= folio_pos(folio) + PAGE_SIZE);
 | |
| 
 | |
| 	if (uptodate && btrfs_verify_folio(folio, start, len))
 | |
| 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 | |
| 	else
 | |
| 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 | |
| 
 | |
| 	if (!btrfs_is_subpage(fs_info, folio->mapping))
 | |
| 		folio_unlock(folio);
 | |
| 	else
 | |
| 		btrfs_folio_end_lock(fs_info, folio, start, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a write IO is done, we need to:
 | |
|  *
 | |
|  * - clear the uptodate bits on error
 | |
|  * - clear the writeback bits in the extent tree for the range
 | |
|  * - filio_end_writeback()  if there is no more pending io for the folio
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bbio_data_write(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	struct bio *bio = &bbio->bio;
 | |
| 	int error = blk_status_to_errno(bio->bi_status);
 | |
| 	struct folio_iter fi;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 
 | |
| 	ASSERT(!bio_flagged(bio, BIO_CLONED));
 | |
| 	bio_for_each_folio_all(fi, bio) {
 | |
| 		struct folio *folio = fi.folio;
 | |
| 		u64 start = folio_pos(folio) + fi.offset;
 | |
| 		u32 len = fi.length;
 | |
| 
 | |
| 		/* Only order 0 (single page) folios are allowed for data. */
 | |
| 		ASSERT(folio_order(folio) == 0);
 | |
| 
 | |
| 		/* Our read/write should always be sector aligned. */
 | |
| 		if (!IS_ALIGNED(fi.offset, sectorsize))
 | |
| 			btrfs_err(fs_info,
 | |
| 		"partial page write in btrfs with offset %zu and length %zu",
 | |
| 				  fi.offset, fi.length);
 | |
| 		else if (!IS_ALIGNED(fi.length, sectorsize))
 | |
| 			btrfs_info(fs_info,
 | |
| 		"incomplete page write with offset %zu and length %zu",
 | |
| 				   fi.offset, fi.length);
 | |
| 
 | |
| 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
 | |
| 					    !error);
 | |
| 		if (error)
 | |
| 			mapping_set_error(folio->mapping, error);
 | |
| 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
 | |
| {
 | |
| 	ASSERT(folio_test_locked(folio));
 | |
| 	if (!btrfs_is_subpage(fs_info, folio->mapping))
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT(folio_test_private(folio));
 | |
| 	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a data read IO is done, we need to:
 | |
|  *
 | |
|  * - clear the uptodate bits on error
 | |
|  * - set the uptodate bits if things worked
 | |
|  * - set the folio up to date if all extents in the tree are uptodate
 | |
|  * - clear the lock bit in the extent tree
 | |
|  * - unlock the folio if there are no other extents locked for it
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bbio_data_read(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	struct bio *bio = &bbio->bio;
 | |
| 	struct folio_iter fi;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 
 | |
| 	ASSERT(!bio_flagged(bio, BIO_CLONED));
 | |
| 	bio_for_each_folio_all(fi, &bbio->bio) {
 | |
| 		bool uptodate = !bio->bi_status;
 | |
| 		struct folio *folio = fi.folio;
 | |
| 		struct inode *inode = folio->mapping->host;
 | |
| 		u64 start;
 | |
| 		u64 end;
 | |
| 		u32 len;
 | |
| 
 | |
| 		btrfs_debug(fs_info,
 | |
| 			"%s: bi_sector=%llu, err=%d, mirror=%u",
 | |
| 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 | |
| 			bbio->mirror_num);
 | |
| 
 | |
| 		/*
 | |
| 		 * We always issue full-sector reads, but if some block in a
 | |
| 		 * folio fails to read, blk_update_request() will advance
 | |
| 		 * bv_offset and adjust bv_len to compensate.  Print a warning
 | |
| 		 * for unaligned offsets, and an error if they don't add up to
 | |
| 		 * a full sector.
 | |
| 		 */
 | |
| 		if (!IS_ALIGNED(fi.offset, sectorsize))
 | |
| 			btrfs_err(fs_info,
 | |
| 		"partial page read in btrfs with offset %zu and length %zu",
 | |
| 				  fi.offset, fi.length);
 | |
| 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 | |
| 			btrfs_info(fs_info,
 | |
| 		"incomplete page read with offset %zu and length %zu",
 | |
| 				   fi.offset, fi.length);
 | |
| 
 | |
| 		start = folio_pos(folio) + fi.offset;
 | |
| 		end = start + fi.length - 1;
 | |
| 		len = fi.length;
 | |
| 
 | |
| 		if (likely(uptodate)) {
 | |
| 			loff_t i_size = i_size_read(inode);
 | |
| 
 | |
| 			/*
 | |
| 			 * Zero out the remaining part if this range straddles
 | |
| 			 * i_size.
 | |
| 			 *
 | |
| 			 * Here we should only zero the range inside the folio,
 | |
| 			 * not touch anything else.
 | |
| 			 *
 | |
| 			 * NOTE: i_size is exclusive while end is inclusive and
 | |
| 			 * folio_contains() takes PAGE_SIZE units.
 | |
| 			 */
 | |
| 			if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
 | |
| 			    i_size <= end) {
 | |
| 				u32 zero_start = max(offset_in_folio(folio, i_size),
 | |
| 						     offset_in_folio(folio, start));
 | |
| 				u32 zero_len = offset_in_folio(folio, end) + 1 -
 | |
| 					       zero_start;
 | |
| 
 | |
| 				folio_zero_range(folio, zero_start, zero_len);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Update page status and unlock. */
 | |
| 		end_folio_read(folio, uptodate, start, len);
 | |
| 	}
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate every free slot in a provided array with folios using GFP_NOFS.
 | |
|  *
 | |
|  * @nr_folios:   number of folios to allocate
 | |
|  * @folio_array: the array to fill with folios; any existing non-NULL entries in
 | |
|  *		 the array will be skipped
 | |
|  *
 | |
|  * Return: 0        if all folios were able to be allocated;
 | |
|  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
 | |
|  *                  the array slots zeroed
 | |
|  */
 | |
| int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
 | |
| {
 | |
| 	for (int i = 0; i < nr_folios; i++) {
 | |
| 		if (folio_array[i])
 | |
| 			continue;
 | |
| 		folio_array[i] = folio_alloc(GFP_NOFS, 0);
 | |
| 		if (!folio_array[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 	return 0;
 | |
| error:
 | |
| 	for (int i = 0; i < nr_folios; i++) {
 | |
| 		if (folio_array[i])
 | |
| 			folio_put(folio_array[i]);
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate every free slot in a provided array with pages, using GFP_NOFS.
 | |
|  *
 | |
|  * @nr_pages:   number of pages to allocate
 | |
|  * @page_array: the array to fill with pages; any existing non-null entries in
 | |
|  *		the array will be skipped
 | |
|  * @nofail:	whether using __GFP_NOFAIL flag
 | |
|  *
 | |
|  * Return: 0        if all pages were able to be allocated;
 | |
|  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 | |
|  *                  the array slots zeroed
 | |
|  */
 | |
| int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 | |
| 			   bool nofail)
 | |
| {
 | |
| 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
 | |
| 	unsigned int allocated;
 | |
| 
 | |
| 	for (allocated = 0; allocated < nr_pages;) {
 | |
| 		unsigned int last = allocated;
 | |
| 
 | |
| 		allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
 | |
| 		if (unlikely(allocated == last)) {
 | |
| 			/* No progress, fail and do cleanup. */
 | |
| 			for (int i = 0; i < allocated; i++) {
 | |
| 				__free_page(page_array[i]);
 | |
| 				page_array[i] = NULL;
 | |
| 			}
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate needed folios for the extent buffer.
 | |
|  *
 | |
|  * For now, the folios populated are always in order 0 (aka, single page).
 | |
|  */
 | |
| static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
 | |
| {
 | |
| 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 | |
| 	int num_pages = num_extent_pages(eb);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (int i = 0; i < num_pages; i++)
 | |
| 		eb->folios[i] = page_folio(page_array[i]);
 | |
| 	eb->folio_size = PAGE_SIZE;
 | |
| 	eb->folio_shift = PAGE_SHIFT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 | |
| 				struct folio *folio, u64 disk_bytenr,
 | |
| 				unsigned int pg_offset)
 | |
| {
 | |
| 	struct bio *bio = &bio_ctrl->bbio->bio;
 | |
| 	struct bio_vec *bvec = bio_last_bvec_all(bio);
 | |
| 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 | |
| 	struct folio *bv_folio = page_folio(bvec->bv_page);
 | |
| 
 | |
| 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 | |
| 		/*
 | |
| 		 * For compression, all IO should have its logical bytenr set
 | |
| 		 * to the starting bytenr of the compressed extent.
 | |
| 		 */
 | |
| 		return bio->bi_iter.bi_sector == sector;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The contig check requires the following conditions to be met:
 | |
| 	 *
 | |
| 	 * 1) The folios are belonging to the same inode
 | |
| 	 *    This is implied by the call chain.
 | |
| 	 *
 | |
| 	 * 2) The range has adjacent logical bytenr
 | |
| 	 *
 | |
| 	 * 3) The range has adjacent file offset
 | |
| 	 *    This is required for the usage of btrfs_bio->file_offset.
 | |
| 	 */
 | |
| 	return bio_end_sector(bio) == sector &&
 | |
| 		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
 | |
| 		folio_pos(folio) + pg_offset;
 | |
| }
 | |
| 
 | |
| static void alloc_new_bio(struct btrfs_inode *inode,
 | |
| 			  struct btrfs_bio_ctrl *bio_ctrl,
 | |
| 			  u64 disk_bytenr, u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 
 | |
| 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 | |
| 			       bio_ctrl->end_io_func, NULL);
 | |
| 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 | |
| 	bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
 | |
| 	bbio->inode = inode;
 | |
| 	bbio->file_offset = file_offset;
 | |
| 	bio_ctrl->bbio = bbio;
 | |
| 	bio_ctrl->len_to_oe_boundary = U32_MAX;
 | |
| 
 | |
| 	/* Limit data write bios to the ordered boundary. */
 | |
| 	if (bio_ctrl->wbc) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 | |
| 		if (ordered) {
 | |
| 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 | |
| 					ordered->file_offset +
 | |
| 					ordered->disk_num_bytes - file_offset);
 | |
| 			bbio->ordered = ordered;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Pick the last added device to support cgroup writeback.  For
 | |
| 		 * multi-device file systems this means blk-cgroup policies have
 | |
| 		 * to always be set on the last added/replaced device.
 | |
| 		 * This is a bit odd but has been like that for a long time.
 | |
| 		 */
 | |
| 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 | |
| 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @disk_bytenr: logical bytenr where the write will be
 | |
|  * @page:	page to add to the bio
 | |
|  * @size:	portion of page that we want to write to
 | |
|  * @pg_offset:	offset of the new bio or to check whether we are adding
 | |
|  *              a contiguous page to the previous one
 | |
|  *
 | |
|  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 | |
|  * new one in @bio_ctrl->bbio.
 | |
|  * The mirror number for this IO should already be initizlied in
 | |
|  * @bio_ctrl->mirror_num.
 | |
|  */
 | |
| static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
 | |
| 			       u64 disk_bytenr, struct folio *folio,
 | |
| 			       size_t size, unsigned long pg_offset)
 | |
| {
 | |
| 	struct btrfs_inode *inode = folio_to_inode(folio);
 | |
| 
 | |
| 	ASSERT(pg_offset + size <= PAGE_SIZE);
 | |
| 	ASSERT(bio_ctrl->end_io_func);
 | |
| 
 | |
| 	if (bio_ctrl->bbio &&
 | |
| 	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
 | |
| 		submit_one_bio(bio_ctrl);
 | |
| 
 | |
| 	do {
 | |
| 		u32 len = size;
 | |
| 
 | |
| 		/* Allocate new bio if needed */
 | |
| 		if (!bio_ctrl->bbio) {
 | |
| 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 | |
| 				      folio_pos(folio) + pg_offset);
 | |
| 		}
 | |
| 
 | |
| 		/* Cap to the current ordered extent boundary if there is one. */
 | |
| 		if (len > bio_ctrl->len_to_oe_boundary) {
 | |
| 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 | |
| 			ASSERT(is_data_inode(inode));
 | |
| 			len = bio_ctrl->len_to_oe_boundary;
 | |
| 		}
 | |
| 
 | |
| 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
 | |
| 			/* bio full: move on to a new one */
 | |
| 			submit_one_bio(bio_ctrl);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (bio_ctrl->wbc)
 | |
| 			wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
 | |
| 						 len);
 | |
| 
 | |
| 		size -= len;
 | |
| 		pg_offset += len;
 | |
| 		disk_bytenr += len;
 | |
| 
 | |
| 		/*
 | |
| 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
 | |
| 		 * sector aligned.  alloc_new_bio() then sets it to the end of
 | |
| 		 * our ordered extent for writes into zoned devices.
 | |
| 		 *
 | |
| 		 * When len_to_oe_boundary is tracking an ordered extent, we
 | |
| 		 * trust the ordered extent code to align things properly, and
 | |
| 		 * the check above to cap our write to the ordered extent
 | |
| 		 * boundary is correct.
 | |
| 		 *
 | |
| 		 * When len_to_oe_boundary is U32_MAX, the cap above would
 | |
| 		 * result in a 4095 byte IO for the last folio right before
 | |
| 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
 | |
| 		 * the checks required to make sure we don't overflow the bio,
 | |
| 		 * and we should just ignore len_to_oe_boundary completely
 | |
| 		 * unless we're using it to track an ordered extent.
 | |
| 		 *
 | |
| 		 * It's pretty hard to make a bio sized U32_MAX, but it can
 | |
| 		 * happen when the page cache is able to feed us contiguous
 | |
| 		 * folios for large extents.
 | |
| 		 */
 | |
| 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 | |
| 			bio_ctrl->len_to_oe_boundary -= len;
 | |
| 
 | |
| 		/* Ordered extent boundary: move on to a new bio. */
 | |
| 		if (bio_ctrl->len_to_oe_boundary == 0)
 | |
| 			submit_one_bio(bio_ctrl);
 | |
| 	} while (size);
 | |
| }
 | |
| 
 | |
| static int attach_extent_buffer_folio(struct extent_buffer *eb,
 | |
| 				      struct folio *folio,
 | |
| 				      struct btrfs_subpage *prealloc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page is mapped to btree inode, we should hold the private
 | |
| 	 * lock to prevent race.
 | |
| 	 * For cloned or dummy extent buffers, their pages are not mapped and
 | |
| 	 * will not race with any other ebs.
 | |
| 	 */
 | |
| 	if (folio->mapping)
 | |
| 		lockdep_assert_held(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 	if (!btrfs_meta_is_subpage(fs_info)) {
 | |
| 		if (!folio_test_private(folio))
 | |
| 			folio_attach_private(folio, eb);
 | |
| 		else
 | |
| 			WARN_ON(folio_get_private(folio) != eb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Already mapped, just free prealloc */
 | |
| 	if (folio_test_private(folio)) {
 | |
| 		btrfs_free_subpage(prealloc);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (prealloc)
 | |
| 		/* Has preallocated memory for subpage */
 | |
| 		folio_attach_private(folio, prealloc);
 | |
| 	else
 | |
| 		/* Do new allocation to attach subpage */
 | |
| 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_folio_extent_mapped(struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 
 | |
| 	ASSERT(folio->mapping);
 | |
| 
 | |
| 	if (folio_test_private(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	fs_info = folio_to_fs_info(folio);
 | |
| 
 | |
| 	if (btrfs_is_subpage(fs_info, folio->mapping))
 | |
| 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 | |
| 
 | |
| 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void clear_folio_extent_mapped(struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 
 | |
| 	ASSERT(folio->mapping);
 | |
| 
 | |
| 	if (!folio_test_private(folio))
 | |
| 		return;
 | |
| 
 | |
| 	fs_info = folio_to_fs_info(folio);
 | |
| 	if (btrfs_is_subpage(fs_info, folio->mapping))
 | |
| 		return btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 | |
| 
 | |
| 	folio_detach_private(folio);
 | |
| }
 | |
| 
 | |
| static struct extent_map *get_extent_map(struct btrfs_inode *inode,
 | |
| 					 struct folio *folio, u64 start,
 | |
| 					 u64 len, struct extent_map **em_cached)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	ASSERT(em_cached);
 | |
| 
 | |
| 	if (*em_cached) {
 | |
| 		em = *em_cached;
 | |
| 		if (extent_map_in_tree(em) && start >= em->start &&
 | |
| 		    start < extent_map_end(em)) {
 | |
| 			refcount_inc(&em->refs);
 | |
| 			return em;
 | |
| 		}
 | |
| 
 | |
| 		free_extent_map(em);
 | |
| 		*em_cached = NULL;
 | |
| 	}
 | |
| 
 | |
| 	em = btrfs_get_extent(inode, folio, start, len);
 | |
| 	if (!IS_ERR(em)) {
 | |
| 		BUG_ON(*em_cached);
 | |
| 		refcount_inc(&em->refs);
 | |
| 		*em_cached = em;
 | |
| 	}
 | |
| 
 | |
| 	return em;
 | |
| }
 | |
| /*
 | |
|  * basic readpage implementation.  Locked extent state structs are inserted
 | |
|  * into the tree that are removed when the IO is done (by the end_io
 | |
|  * handlers)
 | |
|  * XXX JDM: This needs looking at to ensure proper page locking
 | |
|  * return 0 on success, otherwise return error
 | |
|  */
 | |
| static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
 | |
| 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 | |
| {
 | |
| 	struct inode *inode = folio->mapping->host;
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	u64 start = folio_pos(folio);
 | |
| 	const u64 end = start + PAGE_SIZE - 1;
 | |
| 	u64 cur = start;
 | |
| 	u64 extent_offset;
 | |
| 	u64 last_byte = i_size_read(inode);
 | |
| 	struct extent_map *em;
 | |
| 	int ret = 0;
 | |
| 	size_t pg_offset = 0;
 | |
| 	size_t iosize;
 | |
| 	size_t blocksize = fs_info->sectorsize;
 | |
| 
 | |
| 	ret = set_folio_extent_mapped(folio);
 | |
| 	if (ret < 0) {
 | |
| 		folio_unlock(folio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
 | |
| 		size_t zero_offset = offset_in_folio(folio, last_byte);
 | |
| 
 | |
| 		if (zero_offset) {
 | |
| 			iosize = folio_size(folio) - zero_offset;
 | |
| 			folio_zero_range(folio, zero_offset, iosize);
 | |
| 		}
 | |
| 	}
 | |
| 	bio_ctrl->end_io_func = end_bbio_data_read;
 | |
| 	begin_folio_read(fs_info, folio);
 | |
| 	while (cur <= end) {
 | |
| 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
 | |
| 		bool force_bio_submit = false;
 | |
| 		u64 disk_bytenr;
 | |
| 		u64 block_start;
 | |
| 
 | |
| 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
 | |
| 		if (cur >= last_byte) {
 | |
| 			iosize = folio_size(folio) - pg_offset;
 | |
| 			folio_zero_range(folio, pg_offset, iosize);
 | |
| 			end_folio_read(folio, true, cur, iosize);
 | |
| 			break;
 | |
| 		}
 | |
| 		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
 | |
| 		if (IS_ERR(em)) {
 | |
| 			end_folio_read(folio, false, cur, end + 1 - cur);
 | |
| 			return PTR_ERR(em);
 | |
| 		}
 | |
| 		extent_offset = cur - em->start;
 | |
| 		BUG_ON(extent_map_end(em) <= cur);
 | |
| 		BUG_ON(end < cur);
 | |
| 
 | |
| 		compress_type = extent_map_compression(em);
 | |
| 
 | |
| 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | |
| 		iosize = ALIGN(iosize, blocksize);
 | |
| 		if (compress_type != BTRFS_COMPRESS_NONE)
 | |
| 			disk_bytenr = em->disk_bytenr;
 | |
| 		else
 | |
| 			disk_bytenr = extent_map_block_start(em) + extent_offset;
 | |
| 
 | |
| 		if (em->flags & EXTENT_FLAG_PREALLOC)
 | |
| 			block_start = EXTENT_MAP_HOLE;
 | |
| 		else
 | |
| 			block_start = extent_map_block_start(em);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a file range that points to a compressed extent
 | |
| 		 * and it's followed by a consecutive file range that points
 | |
| 		 * to the same compressed extent (possibly with a different
 | |
| 		 * offset and/or length, so it either points to the whole extent
 | |
| 		 * or only part of it), we must make sure we do not submit a
 | |
| 		 * single bio to populate the folios for the 2 ranges because
 | |
| 		 * this makes the compressed extent read zero out the folios
 | |
| 		 * belonging to the 2nd range. Imagine the following scenario:
 | |
| 		 *
 | |
| 		 *  File layout
 | |
| 		 *  [0 - 8K]                     [8K - 24K]
 | |
| 		 *    |                               |
 | |
| 		 *    |                               |
 | |
| 		 * points to extent X,         points to extent X,
 | |
| 		 * offset 4K, length of 8K     offset 0, length 16K
 | |
| 		 *
 | |
| 		 * [extent X, compressed length = 4K uncompressed length = 16K]
 | |
| 		 *
 | |
| 		 * If the bio to read the compressed extent covers both ranges,
 | |
| 		 * it will decompress extent X into the folios belonging to the
 | |
| 		 * first range and then it will stop, zeroing out the remaining
 | |
| 		 * folios that belong to the other range that points to extent X.
 | |
| 		 * So here we make sure we submit 2 bios, one for the first
 | |
| 		 * range and another one for the third range. Both will target
 | |
| 		 * the same physical extent from disk, but we can't currently
 | |
| 		 * make the compressed bio endio callback populate the folios
 | |
| 		 * for both ranges because each compressed bio is tightly
 | |
| 		 * coupled with a single extent map, and each range can have
 | |
| 		 * an extent map with a different offset value relative to the
 | |
| 		 * uncompressed data of our extent and different lengths. This
 | |
| 		 * is a corner case so we prioritize correctness over
 | |
| 		 * non-optimal behavior (submitting 2 bios for the same extent).
 | |
| 		 */
 | |
| 		if (compress_type != BTRFS_COMPRESS_NONE &&
 | |
| 		    prev_em_start && *prev_em_start != (u64)-1 &&
 | |
| 		    *prev_em_start != em->start)
 | |
| 			force_bio_submit = true;
 | |
| 
 | |
| 		if (prev_em_start)
 | |
| 			*prev_em_start = em->start;
 | |
| 
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		/* we've found a hole, just zero and go on */
 | |
| 		if (block_start == EXTENT_MAP_HOLE) {
 | |
| 			folio_zero_range(folio, pg_offset, iosize);
 | |
| 
 | |
| 			end_folio_read(folio, true, cur, iosize);
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* the get_extent function already copied into the folio */
 | |
| 		if (block_start == EXTENT_MAP_INLINE) {
 | |
| 			end_folio_read(folio, true, cur, iosize);
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (bio_ctrl->compress_type != compress_type) {
 | |
| 			submit_one_bio(bio_ctrl);
 | |
| 			bio_ctrl->compress_type = compress_type;
 | |
| 		}
 | |
| 
 | |
| 		if (force_bio_submit)
 | |
| 			submit_one_bio(bio_ctrl);
 | |
| 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
 | |
| 				    pg_offset);
 | |
| 		cur = cur + iosize;
 | |
| 		pg_offset += iosize;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_read_folio(struct file *file, struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_inode *inode = folio_to_inode(folio);
 | |
| 	const u64 start = folio_pos(folio);
 | |
| 	const u64 end = start + folio_size(folio) - 1;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
 | |
| 	struct extent_map *em_cached = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
 | |
| 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
 | |
| 	unlock_extent(&inode->io_tree, start, end, &cached_state);
 | |
| 
 | |
| 	free_extent_map(em_cached);
 | |
| 
 | |
| 	/*
 | |
| 	 * If btrfs_do_readpage() failed we will want to submit the assembled
 | |
| 	 * bio to do the cleanup.
 | |
| 	 */
 | |
| 	submit_one_bio(&bio_ctrl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
 | |
| 				u64 start, u32 len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 	const u64 folio_start = folio_pos(folio);
 | |
| 	unsigned int start_bit;
 | |
| 	unsigned int nbits;
 | |
| 
 | |
| 	ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
 | |
| 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
 | |
| 	nbits = len >> fs_info->sectorsize_bits;
 | |
| 	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
 | |
| 	bitmap_set(delalloc_bitmap, start_bit, nbits);
 | |
| }
 | |
| 
 | |
| static bool find_next_delalloc_bitmap(struct folio *folio,
 | |
| 				      unsigned long *delalloc_bitmap, u64 start,
 | |
| 				      u64 *found_start, u32 *found_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 	const u64 folio_start = folio_pos(folio);
 | |
| 	const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
 | |
| 	unsigned int start_bit;
 | |
| 	unsigned int first_zero;
 | |
| 	unsigned int first_set;
 | |
| 
 | |
| 	ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
 | |
| 
 | |
| 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
 | |
| 	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
 | |
| 	if (first_set >= bitmap_size)
 | |
| 		return false;
 | |
| 
 | |
| 	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
 | |
| 	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
 | |
| 	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do all of the delayed allocation setup.
 | |
|  *
 | |
|  * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
 | |
|  * The @folio should no longer be touched (treat it as already unlocked).
 | |
|  *
 | |
|  * Return 0 if there is still dirty block that needs to be submitted through
 | |
|  * extent_writepage_io().
 | |
|  * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
 | |
|  * submitted, and @folio is still kept locked.
 | |
|  *
 | |
|  * Return <0 if there is any error hit.
 | |
|  * Any allocated ordered extent range covering this folio will be marked
 | |
|  * finished (IOERR), and @folio is still kept locked.
 | |
|  */
 | |
| static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
 | |
| 						 struct folio *folio,
 | |
| 						 struct btrfs_bio_ctrl *bio_ctrl)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
 | |
| 	struct writeback_control *wbc = bio_ctrl->wbc;
 | |
| 	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
 | |
| 	const u64 page_start = folio_pos(folio);
 | |
| 	const u64 page_end = page_start + folio_size(folio) - 1;
 | |
| 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
 | |
| 	unsigned long delalloc_bitmap = 0;
 | |
| 	/*
 | |
| 	 * Save the last found delalloc end. As the delalloc end can go beyond
 | |
| 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
 | |
| 	 * last delalloc end.
 | |
| 	 */
 | |
| 	u64 last_delalloc_end = 0;
 | |
| 	/*
 | |
| 	 * The range end (exclusive) of the last successfully finished delalloc
 | |
| 	 * range.
 | |
| 	 * Any range covered by ordered extent must either be manually marked
 | |
| 	 * finished (error handling), or has IO submitted (and finish the
 | |
| 	 * ordered extent normally).
 | |
| 	 *
 | |
| 	 * This records the end of ordered extent cleanup if we hit an error.
 | |
| 	 */
 | |
| 	u64 last_finished_delalloc_end = page_start;
 | |
| 	u64 delalloc_start = page_start;
 | |
| 	u64 delalloc_end = page_end;
 | |
| 	u64 delalloc_to_write = 0;
 | |
| 	int ret = 0;
 | |
| 	int bit;
 | |
| 
 | |
| 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
 | |
| 	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
 | |
| 		ASSERT(blocks_per_folio > 1);
 | |
| 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
 | |
| 	} else {
 | |
| 		bio_ctrl->submit_bitmap = 1;
 | |
| 	}
 | |
| 
 | |
| 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
 | |
| 		u64 start = page_start + (bit << fs_info->sectorsize_bits);
 | |
| 
 | |
| 		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
 | |
| 	}
 | |
| 
 | |
| 	/* Lock all (subpage) delalloc ranges inside the folio first. */
 | |
| 	while (delalloc_start < page_end) {
 | |
| 		delalloc_end = page_end;
 | |
| 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
 | |
| 					      &delalloc_start, &delalloc_end)) {
 | |
| 			delalloc_start = delalloc_end + 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
 | |
| 				    min(delalloc_end, page_end) + 1 - delalloc_start);
 | |
| 		last_delalloc_end = delalloc_end;
 | |
| 		delalloc_start = delalloc_end + 1;
 | |
| 	}
 | |
| 	delalloc_start = page_start;
 | |
| 
 | |
| 	if (!last_delalloc_end)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Run the delalloc ranges for the above locked ranges. */
 | |
| 	while (delalloc_start < page_end) {
 | |
| 		u64 found_start;
 | |
| 		u32 found_len;
 | |
| 		bool found;
 | |
| 
 | |
| 		if (!is_subpage) {
 | |
| 			/*
 | |
| 			 * For non-subpage case, the found delalloc range must
 | |
| 			 * cover this folio and there must be only one locked
 | |
| 			 * delalloc range.
 | |
| 			 */
 | |
| 			found_start = page_start;
 | |
| 			found_len = last_delalloc_end + 1 - found_start;
 | |
| 			found = true;
 | |
| 		} else {
 | |
| 			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
 | |
| 					delalloc_start, &found_start, &found_len);
 | |
| 		}
 | |
| 		if (!found)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * The subpage range covers the last sector, the delalloc range may
 | |
| 		 * end beyond the folio boundary, use the saved delalloc_end
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		if (found_start + found_len >= page_end)
 | |
| 			found_len = last_delalloc_end + 1 - found_start;
 | |
| 
 | |
| 		if (ret >= 0) {
 | |
| 			/*
 | |
| 			 * Some delalloc range may be created by previous folios.
 | |
| 			 * Thus we still need to clean up this range during error
 | |
| 			 * handling.
 | |
| 			 */
 | |
| 			last_finished_delalloc_end = found_start;
 | |
| 			/* No errors hit so far, run the current delalloc range. */
 | |
| 			ret = btrfs_run_delalloc_range(inode, folio,
 | |
| 						       found_start,
 | |
| 						       found_start + found_len - 1,
 | |
| 						       wbc);
 | |
| 			if (ret >= 0)
 | |
| 				last_finished_delalloc_end = found_start + found_len;
 | |
| 			if (unlikely(ret < 0))
 | |
| 				btrfs_err_rl(fs_info,
 | |
| "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
 | |
| 					     btrfs_root_id(inode->root),
 | |
| 					     btrfs_ino(inode),
 | |
| 					     folio_pos(folio),
 | |
| 					     blocks_per_folio,
 | |
| 					     &bio_ctrl->submit_bitmap,
 | |
| 					     found_start, found_len, ret);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We've hit an error during previous delalloc range,
 | |
| 			 * have to cleanup the remaining locked ranges.
 | |
| 			 */
 | |
| 			unlock_extent(&inode->io_tree, found_start,
 | |
| 				      found_start + found_len - 1, NULL);
 | |
| 			unlock_delalloc_folio(&inode->vfs_inode, folio,
 | |
| 					      found_start,
 | |
| 					      found_start + found_len - 1);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We have some ranges that's going to be submitted asynchronously
 | |
| 		 * (compression or inline).  These range have their own control
 | |
| 		 * on when to unlock the pages.  We should not touch them
 | |
| 		 * anymore, so clear the range from the submission bitmap.
 | |
| 		 */
 | |
| 		if (ret > 0) {
 | |
| 			unsigned int start_bit = (found_start - page_start) >>
 | |
| 						 fs_info->sectorsize_bits;
 | |
| 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
 | |
| 						page_start) >> fs_info->sectorsize_bits;
 | |
| 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
 | |
| 		 * thus for the last range, we cannot touch the folio anymore.
 | |
| 		 */
 | |
| 		if (found_start + found_len >= last_delalloc_end + 1)
 | |
| 			break;
 | |
| 
 | |
| 		delalloc_start = found_start + found_len;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * It's possible we had some ordered extents created before we hit
 | |
| 	 * an error, cleanup non-async successfully created delalloc ranges.
 | |
| 	 */
 | |
| 	if (unlikely(ret < 0)) {
 | |
| 		unsigned int bitmap_size = min(
 | |
| 				(last_finished_delalloc_end - page_start) >>
 | |
| 				fs_info->sectorsize_bits,
 | |
| 				blocks_per_folio);
 | |
| 
 | |
| 		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
 | |
| 			btrfs_mark_ordered_io_finished(inode, folio,
 | |
| 				page_start + (bit << fs_info->sectorsize_bits),
 | |
| 				fs_info->sectorsize, false);
 | |
| 		return ret;
 | |
| 	}
 | |
| out:
 | |
| 	if (last_delalloc_end)
 | |
| 		delalloc_end = last_delalloc_end;
 | |
| 	else
 | |
| 		delalloc_end = page_end;
 | |
| 	/*
 | |
| 	 * delalloc_end is already one less than the total length, so
 | |
| 	 * we don't subtract one from PAGE_SIZE
 | |
| 	 */
 | |
| 	delalloc_to_write +=
 | |
| 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If all ranges are submitted asynchronously, we just need to account
 | |
| 	 * for them here.
 | |
| 	 */
 | |
| 	if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
 | |
| 		wbc->nr_to_write -= delalloc_to_write;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (wbc->nr_to_write < delalloc_to_write) {
 | |
| 		int thresh = 8192;
 | |
| 
 | |
| 		if (delalloc_to_write < thresh * 2)
 | |
| 			thresh = delalloc_to_write;
 | |
| 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
 | |
| 					 thresh);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if we have submitted or queued the sector for submission.
 | |
|  * Return <0 for critical errors.
 | |
|  *
 | |
|  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
 | |
|  */
 | |
| static int submit_one_sector(struct btrfs_inode *inode,
 | |
| 			     struct folio *folio,
 | |
| 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
 | |
| 			     loff_t i_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct extent_map *em;
 | |
| 	u64 block_start;
 | |
| 	u64 disk_bytenr;
 | |
| 	u64 extent_offset;
 | |
| 	u64 em_end;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(filepos, sectorsize));
 | |
| 
 | |
| 	/* @filepos >= i_size case should be handled by the caller. */
 | |
| 	ASSERT(filepos < i_size);
 | |
| 
 | |
| 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
 | |
| 	if (IS_ERR(em))
 | |
| 		return PTR_ERR(em);
 | |
| 
 | |
| 	extent_offset = filepos - em->start;
 | |
| 	em_end = extent_map_end(em);
 | |
| 	ASSERT(filepos <= em_end);
 | |
| 	ASSERT(IS_ALIGNED(em->start, sectorsize));
 | |
| 	ASSERT(IS_ALIGNED(em->len, sectorsize));
 | |
| 
 | |
| 	block_start = extent_map_block_start(em);
 | |
| 	disk_bytenr = extent_map_block_start(em) + extent_offset;
 | |
| 
 | |
| 	ASSERT(!extent_map_is_compressed(em));
 | |
| 	ASSERT(block_start != EXTENT_MAP_HOLE);
 | |
| 	ASSERT(block_start != EXTENT_MAP_INLINE);
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	em = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Although the PageDirty bit is cleared before entering this
 | |
| 	 * function, subpage dirty bit is not cleared.
 | |
| 	 * So clear subpage dirty bit here so next time we won't submit
 | |
| 	 * a folio for a range already written to disk.
 | |
| 	 */
 | |
| 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
 | |
| 	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
 | |
| 	/*
 | |
| 	 * Above call should set the whole folio with writeback flag, even
 | |
| 	 * just for a single subpage sector.
 | |
| 	 * As long as the folio is properly locked and the range is correct,
 | |
| 	 * we should always get the folio with writeback flag.
 | |
| 	 */
 | |
| 	ASSERT(folio_test_writeback(folio));
 | |
| 
 | |
| 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
 | |
| 			    sectorsize, filepos - folio_pos(folio));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for extent_writepage().  This calls the writepage start hooks,
 | |
|  * and does the loop to map the page into extents and bios.
 | |
|  *
 | |
|  * We return 1 if the IO is started and the page is unlocked,
 | |
|  * 0 if all went well (page still locked)
 | |
|  * < 0 if there were errors (page still locked)
 | |
|  */
 | |
| static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
 | |
| 						  struct folio *folio,
 | |
| 						  u64 start, u32 len,
 | |
| 						  struct btrfs_bio_ctrl *bio_ctrl,
 | |
| 						  loff_t i_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	unsigned long range_bitmap = 0;
 | |
| 	bool submitted_io = false;
 | |
| 	bool error = false;
 | |
| 	const u64 folio_start = folio_pos(folio);
 | |
| 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
 | |
| 	u64 cur;
 | |
| 	int bit;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ASSERT(start >= folio_start &&
 | |
| 	       start + len <= folio_start + folio_size(folio));
 | |
| 
 | |
| 	ret = btrfs_writepage_cow_fixup(folio);
 | |
| 	if (ret) {
 | |
| 		/* Fixup worker will requeue */
 | |
| 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
 | |
| 		folio_unlock(folio);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
 | |
| 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
 | |
| 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
 | |
| 		   blocks_per_folio);
 | |
| 
 | |
| 	bio_ctrl->end_io_func = end_bbio_data_write;
 | |
| 
 | |
| 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
 | |
| 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
 | |
| 
 | |
| 		if (cur >= i_size) {
 | |
| 			btrfs_mark_ordered_io_finished(inode, folio, cur,
 | |
| 						       start + len - cur, true);
 | |
| 			/*
 | |
| 			 * This range is beyond i_size, thus we don't need to
 | |
| 			 * bother writing back.
 | |
| 			 * But we still need to clear the dirty subpage bit, or
 | |
| 			 * the next time the folio gets dirtied, we will try to
 | |
| 			 * writeback the sectors with subpage dirty bits,
 | |
| 			 * causing writeback without ordered extent.
 | |
| 			 */
 | |
| 			btrfs_folio_clear_dirty(fs_info, folio, cur,
 | |
| 						start + len - cur);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
 | |
| 		if (unlikely(ret < 0)) {
 | |
| 			/*
 | |
| 			 * bio_ctrl may contain a bio crossing several folios.
 | |
| 			 * Submit it immediately so that the bio has a chance
 | |
| 			 * to finish normally, other than marked as error.
 | |
| 			 */
 | |
| 			submit_one_bio(bio_ctrl);
 | |
| 			/*
 | |
| 			 * Failed to grab the extent map which should be very rare.
 | |
| 			 * Since there is no bio submitted to finish the ordered
 | |
| 			 * extent, we have to manually finish this sector.
 | |
| 			 */
 | |
| 			btrfs_mark_ordered_io_finished(inode, folio, cur,
 | |
| 						       fs_info->sectorsize, false);
 | |
| 			error = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		submitted_io = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we didn't submitted any sector (>= i_size), folio dirty get
 | |
| 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
 | |
| 	 * by folio_start_writeback() if the folio is not dirty).
 | |
| 	 *
 | |
| 	 * Here we set writeback and clear for the range. If the full folio
 | |
| 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
 | |
| 	 *
 | |
| 	 * If we hit any error, the corresponding sector will still be dirty
 | |
| 	 * thus no need to clear PAGECACHE_TAG_DIRTY.
 | |
| 	 */
 | |
| 	if (!submitted_io && !error) {
 | |
| 		btrfs_folio_set_writeback(fs_info, folio, start, len);
 | |
| 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the writepage semantics are similar to regular writepage.  extent
 | |
|  * records are inserted to lock ranges in the tree, and as dirty areas
 | |
|  * are found, they are marked writeback.  Then the lock bits are removed
 | |
|  * and the end_io handler clears the writeback ranges
 | |
|  *
 | |
|  * Return 0 if everything goes well.
 | |
|  * Return <0 for error.
 | |
|  */
 | |
| static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	int ret;
 | |
| 	size_t pg_offset;
 | |
| 	loff_t i_size = i_size_read(&inode->vfs_inode);
 | |
| 	unsigned long end_index = i_size >> PAGE_SHIFT;
 | |
| 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
 | |
| 
 | |
| 	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
 | |
| 
 | |
| 	WARN_ON(!folio_test_locked(folio));
 | |
| 
 | |
| 	pg_offset = offset_in_folio(folio, i_size);
 | |
| 	if (folio->index > end_index ||
 | |
| 	   (folio->index == end_index && !pg_offset)) {
 | |
| 		folio_invalidate(folio, 0, folio_size(folio));
 | |
| 		folio_unlock(folio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (folio->index == end_index)
 | |
| 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Default to unlock the whole folio.
 | |
| 	 * The proper bitmap can only be initialized until writepage_delalloc().
 | |
| 	 */
 | |
| 	bio_ctrl->submit_bitmap = (unsigned long)-1;
 | |
| 	ret = set_folio_extent_mapped(folio);
 | |
| 	if (ret < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	ret = writepage_delalloc(inode, folio, bio_ctrl);
 | |
| 	if (ret == 1)
 | |
| 		return 0;
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	ret = extent_writepage_io(inode, folio, folio_pos(folio),
 | |
| 				  PAGE_SIZE, bio_ctrl, i_size);
 | |
| 	if (ret == 1)
 | |
| 		return 0;
 | |
| 	if (ret < 0)
 | |
| 		btrfs_err_rl(fs_info,
 | |
| "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
 | |
| 			     btrfs_root_id(inode->root), btrfs_ino(inode),
 | |
| 			     folio_pos(folio), blocks_per_folio,
 | |
| 			     &bio_ctrl->submit_bitmap, ret);
 | |
| 
 | |
| 	bio_ctrl->wbc->nr_to_write--;
 | |
| 
 | |
| done:
 | |
| 	if (ret < 0)
 | |
| 		mapping_set_error(folio->mapping, ret);
 | |
| 	/*
 | |
| 	 * Only unlock ranges that are submitted. As there can be some async
 | |
| 	 * submitted ranges inside the folio.
 | |
| 	 */
 | |
| 	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
 | |
| 	ASSERT(ret <= 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock extent buffer status and pages for writeback.
 | |
|  *
 | |
|  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
 | |
|  * extent buffer is not dirty)
 | |
|  * Return %true is the extent buffer is submitted to bio.
 | |
|  */
 | |
| static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
 | |
| 			  struct writeback_control *wbc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	btrfs_tree_lock(eb);
 | |
| 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
 | |
| 		btrfs_tree_unlock(eb);
 | |
| 		if (wbc->sync_mode != WB_SYNC_ALL)
 | |
| 			return false;
 | |
| 		wait_on_extent_buffer_writeback(eb);
 | |
| 		btrfs_tree_lock(eb);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to do this to prevent races in people who check if the eb is
 | |
| 	 * under IO since we can end up having no IO bits set for a short period
 | |
| 	 * of time.
 | |
| 	 */
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
 | |
| 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
 | |
| 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
 | |
| 					 -eb->len,
 | |
| 					 fs_info->dirty_metadata_batch);
 | |
| 		ret = true;
 | |
| 	} else {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 	}
 | |
| 	btrfs_tree_unlock(eb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void set_btree_ioerr(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 
 | |
| 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * A read may stumble upon this buffer later, make sure that it gets an
 | |
| 	 * error and knows there was an error.
 | |
| 	 */
 | |
| 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to set the mapping with the io error as well because a write
 | |
| 	 * error will flip the file system readonly, and then syncfs() will
 | |
| 	 * return a 0 because we are readonly if we don't modify the err seq for
 | |
| 	 * the superblock.
 | |
| 	 */
 | |
| 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
 | |
| 
 | |
| 	/*
 | |
| 	 * If writeback for a btree extent that doesn't belong to a log tree
 | |
| 	 * failed, increment the counter transaction->eb_write_errors.
 | |
| 	 * We do this because while the transaction is running and before it's
 | |
| 	 * committing (when we call filemap_fdata[write|wait]_range against
 | |
| 	 * the btree inode), we might have
 | |
| 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
 | |
| 	 * returns an error or an error happens during writeback, when we're
 | |
| 	 * committing the transaction we wouldn't know about it, since the pages
 | |
| 	 * can be no longer dirty nor marked anymore for writeback (if a
 | |
| 	 * subsequent modification to the extent buffer didn't happen before the
 | |
| 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
 | |
| 	 * able to find the pages which contain errors at transaction
 | |
| 	 * commit time. So if this happens we must abort the transaction,
 | |
| 	 * otherwise we commit a super block with btree roots that point to
 | |
| 	 * btree nodes/leafs whose content on disk is invalid - either garbage
 | |
| 	 * or the content of some node/leaf from a past generation that got
 | |
| 	 * cowed or deleted and is no longer valid.
 | |
| 	 *
 | |
| 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
 | |
| 	 * not be enough - we need to distinguish between log tree extents vs
 | |
| 	 * non-log tree extents, and the next filemap_fdatawait_range() call
 | |
| 	 * will catch and clear such errors in the mapping - and that call might
 | |
| 	 * be from a log sync and not from a transaction commit. Also, checking
 | |
| 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
 | |
| 	 * not done and would not be reliable - the eb might have been released
 | |
| 	 * from memory and reading it back again means that flag would not be
 | |
| 	 * set (since it's a runtime flag, not persisted on disk).
 | |
| 	 *
 | |
| 	 * Using the flags below in the btree inode also makes us achieve the
 | |
| 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
 | |
| 	 * writeback for all dirty pages and before filemap_fdatawait_range()
 | |
| 	 * is called, the writeback for all dirty pages had already finished
 | |
| 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
 | |
| 	 * filemap_fdatawait_range() would return success, as it could not know
 | |
| 	 * that writeback errors happened (the pages were no longer tagged for
 | |
| 	 * writeback).
 | |
| 	 */
 | |
| 	switch (eb->log_index) {
 | |
| 	case -1:
 | |
| 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG(); /* unexpected, logic error */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The endio specific version which won't touch any unsafe spinlock in endio
 | |
|  * context.
 | |
|  */
 | |
| static struct extent_buffer *find_extent_buffer_nolock(
 | |
| 		const struct btrfs_fs_info *fs_info, u64 start)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	eb = radix_tree_lookup(&fs_info->buffer_radix,
 | |
| 			       start >> fs_info->sectorsize_bits);
 | |
| 	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return eb;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void end_bbio_meta_write(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct extent_buffer *eb = bbio->private;
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct folio_iter fi;
 | |
| 
 | |
| 	if (bbio->bio.bi_status != BLK_STS_OK)
 | |
| 		set_btree_ioerr(eb);
 | |
| 
 | |
| 	bio_for_each_folio_all(fi, &bbio->bio) {
 | |
| 		struct folio *folio = fi.folio;
 | |
| 
 | |
| 		btrfs_meta_folio_clear_writeback(fs_info, folio, eb->start, eb->len);
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 | |
| 
 | |
| 	bio_put(&bbio->bio);
 | |
| }
 | |
| 
 | |
| static void prepare_eb_write(struct extent_buffer *eb)
 | |
| {
 | |
| 	u32 nritems;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 | |
| 
 | |
| 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	if (btrfs_header_level(eb) > 0) {
 | |
| 		end = btrfs_node_key_ptr_offset(eb, nritems);
 | |
| 		memzero_extent_buffer(eb, end, eb->len - end);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Leaf:
 | |
| 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
 | |
| 		 */
 | |
| 		start = btrfs_item_nr_offset(eb, nritems);
 | |
| 		end = btrfs_item_nr_offset(eb, 0);
 | |
| 		if (nritems == 0)
 | |
| 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
 | |
| 		else
 | |
| 			end += btrfs_item_offset(eb, nritems - 1);
 | |
| 		memzero_extent_buffer(eb, start, end - start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
 | |
| 					    struct writeback_control *wbc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	const int num_folios = num_extent_folios(eb);
 | |
| 
 | |
| 	prepare_eb_write(eb);
 | |
| 
 | |
| 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
 | |
| 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
 | |
| 			       eb->fs_info, end_bbio_meta_write, eb);
 | |
| 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
 | |
| 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 | |
| 	wbc_init_bio(wbc, &bbio->bio);
 | |
| 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
 | |
| 	bbio->file_offset = eb->start;
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
 | |
| 		u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 | |
| 				      eb->start + eb->len) - range_start;
 | |
| 
 | |
| 		folio_lock(folio);
 | |
| 		btrfs_meta_folio_clear_dirty(fs_info, folio, eb->start, eb->len);
 | |
| 		btrfs_meta_folio_set_writeback(fs_info, folio, eb->start, eb->len);
 | |
| 		if (!folio_test_dirty(folio))
 | |
| 			wbc->nr_to_write -= folio_nr_pages(folio);
 | |
| 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
 | |
| 				     offset_in_folio(folio, range_start));
 | |
| 		wbc_account_cgroup_owner(wbc, folio, range_len);
 | |
| 		folio_unlock(folio);
 | |
| 	}
 | |
| 	btrfs_submit_bbio(bbio, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit one subpage btree page.
 | |
|  *
 | |
|  * The main difference to submit_eb_page() is:
 | |
|  * - Page locking
 | |
|  *   For subpage, we don't rely on page locking at all.
 | |
|  *
 | |
|  * - Flush write bio
 | |
|  *   We only flush bio if we may be unable to fit current extent buffers into
 | |
|  *   current bio.
 | |
|  *
 | |
|  * Return >=0 for the number of submitted extent buffers.
 | |
|  * Return <0 for fatal error.
 | |
|  */
 | |
| static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 	int submitted = 0;
 | |
| 	u64 folio_start = folio_pos(folio);
 | |
| 	int bit_start = 0;
 | |
| 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
 | |
| 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
 | |
| 
 | |
| 	/* Lock and write each dirty extent buffers in the range */
 | |
| 	while (bit_start < blocks_per_folio) {
 | |
| 		struct btrfs_subpage *subpage = folio_get_private(folio);
 | |
| 		struct extent_buffer *eb;
 | |
| 		unsigned long flags;
 | |
| 		u64 start;
 | |
| 
 | |
| 		/*
 | |
| 		 * Take private lock to ensure the subpage won't be detached
 | |
| 		 * in the meantime.
 | |
| 		 */
 | |
| 		spin_lock(&folio->mapping->i_private_lock);
 | |
| 		if (!folio_test_private(folio)) {
 | |
| 			spin_unlock(&folio->mapping->i_private_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_lock_irqsave(&subpage->lock, flags);
 | |
| 		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * blocks_per_folio,
 | |
| 			      subpage->bitmaps)) {
 | |
| 			spin_unlock_irqrestore(&subpage->lock, flags);
 | |
| 			spin_unlock(&folio->mapping->i_private_lock);
 | |
| 			bit_start++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		start = folio_start + bit_start * fs_info->sectorsize;
 | |
| 		bit_start += sectors_per_node;
 | |
| 
 | |
| 		/*
 | |
| 		 * Here we just want to grab the eb without touching extra
 | |
| 		 * spin locks, so call find_extent_buffer_nolock().
 | |
| 		 */
 | |
| 		eb = find_extent_buffer_nolock(fs_info, start);
 | |
| 		spin_unlock_irqrestore(&subpage->lock, flags);
 | |
| 		spin_unlock(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * The eb has already reached 0 refs thus find_extent_buffer()
 | |
| 		 * doesn't return it. We don't need to write back such eb
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!eb)
 | |
| 			continue;
 | |
| 
 | |
| 		if (lock_extent_buffer_for_io(eb, wbc)) {
 | |
| 			write_one_eb(eb, wbc);
 | |
| 			submitted++;
 | |
| 		}
 | |
| 		free_extent_buffer(eb);
 | |
| 	}
 | |
| 	return submitted;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit all page(s) of one extent buffer.
 | |
|  *
 | |
|  * @page:	the page of one extent buffer
 | |
|  * @eb_context:	to determine if we need to submit this page, if current page
 | |
|  *		belongs to this eb, we don't need to submit
 | |
|  *
 | |
|  * The caller should pass each page in their bytenr order, and here we use
 | |
|  * @eb_context to determine if we have submitted pages of one extent buffer.
 | |
|  *
 | |
|  * If we have, we just skip until we hit a new page that doesn't belong to
 | |
|  * current @eb_context.
 | |
|  *
 | |
|  * If not, we submit all the page(s) of the extent buffer.
 | |
|  *
 | |
|  * Return >0 if we have submitted the extent buffer successfully.
 | |
|  * Return 0 if we don't need to submit the page, as it's already submitted by
 | |
|  * previous call.
 | |
|  * Return <0 for fatal error.
 | |
|  */
 | |
| static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
 | |
| {
 | |
| 	struct writeback_control *wbc = ctx->wbc;
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!folio_test_private(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
 | |
| 		return submit_eb_subpage(folio, wbc);
 | |
| 
 | |
| 	spin_lock(&mapping->i_private_lock);
 | |
| 	if (!folio_test_private(folio)) {
 | |
| 		spin_unlock(&mapping->i_private_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	eb = folio_get_private(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Shouldn't happen and normally this would be a BUG_ON but no point
 | |
| 	 * crashing the machine for something we can survive anyway.
 | |
| 	 */
 | |
| 	if (WARN_ON(!eb)) {
 | |
| 		spin_unlock(&mapping->i_private_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (eb == ctx->eb) {
 | |
| 		spin_unlock(&mapping->i_private_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ret = atomic_inc_not_zero(&eb->refs);
 | |
| 	spin_unlock(&mapping->i_private_lock);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	ctx->eb = eb;
 | |
| 
 | |
| 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
 | |
| 	if (ret) {
 | |
| 		if (ret == -EBUSY)
 | |
| 			ret = 0;
 | |
| 		free_extent_buffer(eb);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!lock_extent_buffer_for_io(eb, wbc)) {
 | |
| 		free_extent_buffer(eb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Implies write in zoned mode. */
 | |
| 	if (ctx->zoned_bg) {
 | |
| 		/* Mark the last eb in the block group. */
 | |
| 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
 | |
| 		ctx->zoned_bg->meta_write_pointer += eb->len;
 | |
| 	}
 | |
| 	write_one_eb(eb, wbc);
 | |
| 	free_extent_buffer(eb);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int btree_write_cache_pages(struct address_space *mapping,
 | |
| 				   struct writeback_control *wbc)
 | |
| {
 | |
| 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int nr_to_write_done = 0;
 | |
| 	struct folio_batch fbatch;
 | |
| 	unsigned int nr_folios;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	int scanned = 0;
 | |
| 	xa_mark_t tag;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 		/*
 | |
| 		 * Start from the beginning does not need to cycle over the
 | |
| 		 * range, mark it as scanned.
 | |
| 		 */
 | |
| 		scanned = (index == 0);
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_SHIFT;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	else
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| 	btrfs_zoned_meta_io_lock(fs_info);
 | |
| retry:
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag_pages_for_writeback(mapping, index, end);
 | |
| 	while (!done && !nr_to_write_done && (index <= end) &&
 | |
| 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
 | |
| 					    tag, &fbatch))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		for (i = 0; i < nr_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			ret = submit_eb_page(folio, &ctx);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0) {
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * the filesystem may choose to bump up nr_to_write.
 | |
| 			 * We have to make sure to honor the new nr_to_write
 | |
| 			 * at any time
 | |
| 			 */
 | |
| 			nr_to_write_done = wbc->nr_to_write <= 0;
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If something went wrong, don't allow any metadata write bio to be
 | |
| 	 * submitted.
 | |
| 	 *
 | |
| 	 * This would prevent use-after-free if we had dirty pages not
 | |
| 	 * cleaned up, which can still happen by fuzzed images.
 | |
| 	 *
 | |
| 	 * - Bad extent tree
 | |
| 	 *   Allowing existing tree block to be allocated for other trees.
 | |
| 	 *
 | |
| 	 * - Log tree operations
 | |
| 	 *   Exiting tree blocks get allocated to log tree, bumps its
 | |
| 	 *   generation, then get cleaned in tree re-balance.
 | |
| 	 *   Such tree block will not be written back, since it's clean,
 | |
| 	 *   thus no WRITTEN flag set.
 | |
| 	 *   And after log writes back, this tree block is not traced by
 | |
| 	 *   any dirty extent_io_tree.
 | |
| 	 *
 | |
| 	 * - Offending tree block gets re-dirtied from its original owner
 | |
| 	 *   Since it has bumped generation, no WRITTEN flag, it can be
 | |
| 	 *   reused without COWing. This tree block will not be traced
 | |
| 	 *   by btrfs_transaction::dirty_pages.
 | |
| 	 *
 | |
| 	 *   Now such dirty tree block will not be cleaned by any dirty
 | |
| 	 *   extent io tree. Thus we don't want to submit such wild eb
 | |
| 	 *   if the fs already has error.
 | |
| 	 *
 | |
| 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
 | |
| 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
 | |
| 	 */
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 	if (!ret && BTRFS_FS_ERROR(fs_info))
 | |
| 		ret = -EROFS;
 | |
| 
 | |
| 	if (ctx.zoned_bg)
 | |
| 		btrfs_put_block_group(ctx.zoned_bg);
 | |
| 	btrfs_zoned_meta_io_unlock(fs_info);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the list of dirty pages of the given address space and write all of them.
 | |
|  *
 | |
|  * @mapping:   address space structure to write
 | |
|  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
 | |
|  * @bio_ctrl:  holds context for the write, namely the bio
 | |
|  *
 | |
|  * If a page is already under I/O, write_cache_pages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  */
 | |
| static int extent_write_cache_pages(struct address_space *mapping,
 | |
| 			     struct btrfs_bio_ctrl *bio_ctrl)
 | |
| {
 | |
| 	struct writeback_control *wbc = bio_ctrl->wbc;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int nr_to_write_done = 0;
 | |
| 	struct folio_batch fbatch;
 | |
| 	unsigned int nr_folios;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	pgoff_t done_index;
 | |
| 	int range_whole = 0;
 | |
| 	int scanned = 0;
 | |
| 	xa_mark_t tag;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to hold onto the inode so that ordered extents can do their
 | |
| 	 * work when the IO finishes.  The alternative to this is failing to add
 | |
| 	 * an ordered extent if the igrab() fails there and that is a huge pain
 | |
| 	 * to deal with, so instead just hold onto the inode throughout the
 | |
| 	 * writepages operation.  If it fails here we are freeing up the inode
 | |
| 	 * anyway and we'd rather not waste our time writing out stuff that is
 | |
| 	 * going to be truncated anyway.
 | |
| 	 */
 | |
| 	if (!igrab(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 		/*
 | |
| 		 * Start from the beginning does not need to cycle over the
 | |
| 		 * range, mark it as scanned.
 | |
| 		 */
 | |
| 		scanned = (index == 0);
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_SHIFT;
 | |
| 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 | |
| 			range_whole = 1;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We do the tagged writepage as long as the snapshot flush bit is set
 | |
| 	 * and we are the first one who do the filemap_flush() on this inode.
 | |
| 	 *
 | |
| 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
 | |
| 	 * not race in and drop the bit.
 | |
| 	 */
 | |
| 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
 | |
| 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
 | |
| 			       &BTRFS_I(inode)->runtime_flags))
 | |
| 		wbc->tagged_writepages = 1;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	else
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| retry:
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 | |
| 		tag_pages_for_writeback(mapping, index, end);
 | |
| 	done_index = index;
 | |
| 	while (!done && !nr_to_write_done && (index <= end) &&
 | |
| 			(nr_folios = filemap_get_folios_tag(mapping, &index,
 | |
| 							end, tag, &fbatch))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		for (i = 0; i < nr_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			done_index = folio_next_index(folio);
 | |
| 			/*
 | |
| 			 * At this point we hold neither the i_pages lock nor
 | |
| 			 * the folio lock: the folio may be truncated or
 | |
| 			 * invalidated (changing folio->mapping to NULL).
 | |
| 			 */
 | |
| 			if (!folio_trylock(folio)) {
 | |
| 				submit_write_bio(bio_ctrl, 0);
 | |
| 				folio_lock(folio);
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(folio->mapping != mapping)) {
 | |
| 				folio_unlock(folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!folio_test_dirty(folio)) {
 | |
| 				/* Someone wrote it for us. */
 | |
| 				folio_unlock(folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * For subpage case, compression can lead to mixed
 | |
| 			 * writeback and dirty flags, e.g:
 | |
| 			 * 0     32K    64K    96K    128K
 | |
| 			 * |     |//////||/////|   |//|
 | |
| 			 *
 | |
| 			 * In above case, [32K, 96K) is asynchronously submitted
 | |
| 			 * for compression, and [124K, 128K) needs to be written back.
 | |
| 			 *
 | |
| 			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
 | |
| 			 * won't be submitted as the page still has writeback flag
 | |
| 			 * and will be skipped in the next check.
 | |
| 			 *
 | |
| 			 * This mixed writeback and dirty case is only possible for
 | |
| 			 * subpage case.
 | |
| 			 *
 | |
| 			 * TODO: Remove this check after migrating compression to
 | |
| 			 * regular submission.
 | |
| 			 */
 | |
| 			if (wbc->sync_mode != WB_SYNC_NONE ||
 | |
| 			    btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
 | |
| 				if (folio_test_writeback(folio))
 | |
| 					submit_write_bio(bio_ctrl, 0);
 | |
| 				folio_wait_writeback(folio);
 | |
| 			}
 | |
| 
 | |
| 			if (folio_test_writeback(folio) ||
 | |
| 			    !folio_clear_dirty_for_io(folio)) {
 | |
| 				folio_unlock(folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = extent_writepage(folio, bio_ctrl);
 | |
| 			if (ret < 0) {
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The filesystem may choose to bump up nr_to_write.
 | |
| 			 * We have to make sure to honor the new nr_to_write
 | |
| 			 * at any time.
 | |
| 			 */
 | |
| 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
 | |
| 					    wbc->nr_to_write <= 0);
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're looping we could run into a page that is locked by a
 | |
| 		 * writer and that writer could be waiting on writeback for a
 | |
| 		 * page in our current bio, and thus deadlock, so flush the
 | |
| 		 * write bio here.
 | |
| 		 */
 | |
| 		submit_write_bio(bio_ctrl, 0);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
 | |
| 		mapping->writeback_index = done_index;
 | |
| 
 | |
| 	btrfs_add_delayed_iput(BTRFS_I(inode));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit the pages in the range to bio for call sites which delalloc range has
 | |
|  * already been ran (aka, ordered extent inserted) and all pages are still
 | |
|  * locked.
 | |
|  */
 | |
| void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
 | |
| 			       u64 start, u64 end, struct writeback_control *wbc,
 | |
| 			       bool pages_dirty)
 | |
| {
 | |
| 	bool found_error = false;
 | |
| 	int ret = 0;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	loff_t i_size = i_size_read(inode);
 | |
| 	u64 cur = start;
 | |
| 	struct btrfs_bio_ctrl bio_ctrl = {
 | |
| 		.wbc = wbc,
 | |
| 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 | |
| 	};
 | |
| 
 | |
| 	if (wbc->no_cgroup_owner)
 | |
| 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 | |
| 
 | |
| 	while (cur <= end) {
 | |
| 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
 | |
| 		u32 cur_len = cur_end + 1 - cur;
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
 | |
| 
 | |
| 		/*
 | |
| 		 * This shouldn't happen, the pages are pinned and locked, this
 | |
| 		 * code is just in case, but shouldn't actually be run.
 | |
| 		 */
 | |
| 		if (IS_ERR(folio)) {
 | |
| 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
 | |
| 						       cur, cur_len, false);
 | |
| 			mapping_set_error(mapping, PTR_ERR(folio));
 | |
| 			cur = cur_end + 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(folio_test_locked(folio));
 | |
| 		if (pages_dirty && folio != locked_folio)
 | |
| 			ASSERT(folio_test_dirty(folio));
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the submission bitmap to submit all sectors.
 | |
| 		 * extent_writepage_io() will do the truncation correctly.
 | |
| 		 */
 | |
| 		bio_ctrl.submit_bitmap = (unsigned long)-1;
 | |
| 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
 | |
| 					  &bio_ctrl, i_size);
 | |
| 		if (ret == 1)
 | |
| 			goto next_page;
 | |
| 
 | |
| 		if (ret)
 | |
| 			mapping_set_error(mapping, ret);
 | |
| 		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
 | |
| 		if (ret < 0)
 | |
| 			found_error = true;
 | |
| next_page:
 | |
| 		folio_put(folio);
 | |
| 		cur = cur_end + 1;
 | |
| 	}
 | |
| 
 | |
| 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 | |
| }
 | |
| 
 | |
| int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_bio_ctrl bio_ctrl = {
 | |
| 		.wbc = wbc,
 | |
| 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow only a single thread to do the reloc work in zoned mode to
 | |
| 	 * protect the write pointer updates.
 | |
| 	 */
 | |
| 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
 | |
| 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
 | |
| 	submit_write_bio(&bio_ctrl, ret);
 | |
| 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_readahead(struct readahead_control *rac)
 | |
| {
 | |
| 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
 | |
| 	struct folio *folio;
 | |
| 	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
 | |
| 	const u64 start = readahead_pos(rac);
 | |
| 	const u64 end = start + readahead_length(rac) - 1;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_map *em_cached = NULL;
 | |
| 	u64 prev_em_start = (u64)-1;
 | |
| 
 | |
| 	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
 | |
| 
 | |
| 	while ((folio = readahead_folio(rac)) != NULL)
 | |
| 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
 | |
| 
 | |
| 	unlock_extent(&inode->io_tree, start, end, &cached_state);
 | |
| 
 | |
| 	if (em_cached)
 | |
| 		free_extent_map(em_cached);
 | |
| 	submit_one_bio(&bio_ctrl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * basic invalidate_folio code, this waits on any locked or writeback
 | |
|  * ranges corresponding to the folio, and then deletes any extent state
 | |
|  * records from the tree
 | |
|  */
 | |
| int extent_invalidate_folio(struct extent_io_tree *tree,
 | |
| 			  struct folio *folio, size_t offset)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = folio_pos(folio);
 | |
| 	u64 end = start + folio_size(folio) - 1;
 | |
| 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
 | |
| 
 | |
| 	/* This function is only called for the btree inode */
 | |
| 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
 | |
| 
 | |
| 	start += ALIGN(offset, blocksize);
 | |
| 	if (start > end)
 | |
| 		return 0;
 | |
| 
 | |
| 	lock_extent(tree, start, end, &cached_state);
 | |
| 	folio_wait_writeback(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
 | |
| 	 * so here we only need to unlock the extent range to free any
 | |
| 	 * existing extent state.
 | |
| 	 */
 | |
| 	unlock_extent(tree, start, end, &cached_state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for release_folio, this tests for areas of the page that
 | |
|  * are locked or under IO and drops the related state bits if it is safe
 | |
|  * to drop the page.
 | |
|  */
 | |
| static bool try_release_extent_state(struct extent_io_tree *tree,
 | |
| 				     struct folio *folio)
 | |
| {
 | |
| 	u64 start = folio_pos(folio);
 | |
| 	u64 end = start + PAGE_SIZE - 1;
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
 | |
| 		ret = false;
 | |
| 	} else {
 | |
| 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
 | |
| 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
 | |
| 				   EXTENT_QGROUP_RESERVED);
 | |
| 		int ret2;
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point we can safely clear everything except the
 | |
| 		 * locked bit, the nodatasum bit and the delalloc new bit.
 | |
| 		 * The delalloc new bit will be cleared by ordered extent
 | |
| 		 * completion.
 | |
| 		 */
 | |
| 		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 | |
| 
 | |
| 		/* if clear_extent_bit failed for enomem reasons,
 | |
| 		 * we can't allow the release to continue.
 | |
| 		 */
 | |
| 		if (ret2 < 0)
 | |
| 			ret = false;
 | |
| 		else
 | |
| 			ret = true;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for release_folio.  As long as there are no locked extents
 | |
|  * in the range corresponding to the page, both state records and extent
 | |
|  * map records are removed
 | |
|  */
 | |
| bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
 | |
| {
 | |
| 	u64 start = folio_pos(folio);
 | |
| 	u64 end = start + PAGE_SIZE - 1;
 | |
| 	struct btrfs_inode *inode = folio_to_inode(folio);
 | |
| 	struct extent_io_tree *io_tree = &inode->io_tree;
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
 | |
| 		const u64 len = end - start + 1;
 | |
| 		struct extent_map_tree *extent_tree = &inode->extent_tree;
 | |
| 		struct extent_map *em;
 | |
| 
 | |
| 		write_lock(&extent_tree->lock);
 | |
| 		em = lookup_extent_mapping(extent_tree, start, len);
 | |
| 		if (!em) {
 | |
| 			write_unlock(&extent_tree->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
 | |
| 			write_unlock(&extent_tree->lock);
 | |
| 			free_extent_map(em);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (test_range_bit_exists(io_tree, em->start,
 | |
| 					  extent_map_end(em) - 1, EXTENT_LOCKED))
 | |
| 			goto next;
 | |
| 		/*
 | |
| 		 * If it's not in the list of modified extents, used by a fast
 | |
| 		 * fsync, we can remove it. If it's being logged we can safely
 | |
| 		 * remove it since fsync took an extra reference on the em.
 | |
| 		 */
 | |
| 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
 | |
| 			goto remove_em;
 | |
| 		/*
 | |
| 		 * If it's in the list of modified extents, remove it only if
 | |
| 		 * its generation is older then the current one, in which case
 | |
| 		 * we don't need it for a fast fsync. Otherwise don't remove it,
 | |
| 		 * we could be racing with an ongoing fast fsync that could miss
 | |
| 		 * the new extent.
 | |
| 		 */
 | |
| 		if (em->generation >= cur_gen)
 | |
| 			goto next;
 | |
| remove_em:
 | |
| 		/*
 | |
| 		 * We only remove extent maps that are not in the list of
 | |
| 		 * modified extents or that are in the list but with a
 | |
| 		 * generation lower then the current generation, so there is no
 | |
| 		 * need to set the full fsync flag on the inode (it hurts the
 | |
| 		 * fsync performance for workloads with a data size that exceeds
 | |
| 		 * or is close to the system's memory).
 | |
| 		 */
 | |
| 		remove_extent_mapping(inode, em);
 | |
| 		/* Once for the inode's extent map tree. */
 | |
| 		free_extent_map(em);
 | |
| next:
 | |
| 		start = extent_map_end(em);
 | |
| 		write_unlock(&extent_tree->lock);
 | |
| 
 | |
| 		/* Once for us, for the lookup_extent_mapping() reference. */
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			/*
 | |
| 			 * If we need to resched but we can't block just exit
 | |
| 			 * and leave any remaining extent maps.
 | |
| 			 */
 | |
| 			if (!gfpflags_allow_blocking(mask))
 | |
| 				break;
 | |
| 
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 	return try_release_extent_state(io_tree, folio);
 | |
| }
 | |
| 
 | |
| static int extent_buffer_under_io(const struct extent_buffer *eb)
 | |
| {
 | |
| 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 | |
| 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| }
 | |
| 
 | |
| static bool folio_range_has_eb(struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_subpage *subpage;
 | |
| 
 | |
| 	lockdep_assert_held(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 	if (folio_test_private(folio)) {
 | |
| 		subpage = folio_get_private(folio);
 | |
| 		if (atomic_read(&subpage->eb_refs))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * For mapped eb, we're going to change the folio private, which should
 | |
| 	 * be done under the i_private_lock.
 | |
| 	 */
 | |
| 	if (mapped)
 | |
| 		spin_lock(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 	if (!folio_test_private(folio)) {
 | |
| 		if (mapped)
 | |
| 			spin_unlock(&folio->mapping->i_private_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!btrfs_meta_is_subpage(fs_info)) {
 | |
| 		/*
 | |
| 		 * We do this since we'll remove the pages after we've
 | |
| 		 * removed the eb from the radix tree, so we could race
 | |
| 		 * and have this page now attached to the new eb.  So
 | |
| 		 * only clear folio if it's still connected to
 | |
| 		 * this eb.
 | |
| 		 */
 | |
| 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 | |
| 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| 			BUG_ON(folio_test_dirty(folio));
 | |
| 			BUG_ON(folio_test_writeback(folio));
 | |
| 			/* We need to make sure we haven't be attached to a new eb. */
 | |
| 			folio_detach_private(folio);
 | |
| 		}
 | |
| 		if (mapped)
 | |
| 			spin_unlock(&folio->mapping->i_private_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For subpage, we can have dummy eb with folio private attached.  In
 | |
| 	 * this case, we can directly detach the private as such folio is only
 | |
| 	 * attached to one dummy eb, no sharing.
 | |
| 	 */
 | |
| 	if (!mapped) {
 | |
| 		btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_folio_dec_eb_refs(fs_info, folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can only detach the folio private if there are no other ebs in the
 | |
| 	 * page range and no unfinished IO.
 | |
| 	 */
 | |
| 	if (!folio_range_has_eb(folio))
 | |
| 		btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 | |
| 
 | |
| 	spin_unlock(&folio->mapping->i_private_lock);
 | |
| }
 | |
| 
 | |
| /* Release all folios attached to the extent buffer */
 | |
| static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
 | |
| {
 | |
| 	ASSERT(!extent_buffer_under_io(eb));
 | |
| 
 | |
| 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 
 | |
| 		if (!folio)
 | |
| 			continue;
 | |
| 
 | |
| 		detach_extent_buffer_folio(eb, folio);
 | |
| 
 | |
| 		/* One for when we allocated the folio. */
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for releasing the extent buffer.
 | |
|  */
 | |
| static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	btrfs_release_extent_buffer_folios(eb);
 | |
| 	btrfs_leak_debug_del_eb(eb);
 | |
| 	kmem_cache_free(extent_buffer_cache, eb);
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *
 | |
| __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
 | |
| 		      unsigned long len)
 | |
| {
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| 
 | |
| 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
 | |
| 	eb->start = start;
 | |
| 	eb->len = len;
 | |
| 	eb->fs_info = fs_info;
 | |
| 	init_rwsem(&eb->lock);
 | |
| 
 | |
| 	btrfs_leak_debug_add_eb(eb);
 | |
| 
 | |
| 	spin_lock_init(&eb->refs_lock);
 | |
| 	atomic_set(&eb->refs, 1);
 | |
| 
 | |
| 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
 | |
| {
 | |
| 	struct extent_buffer *new;
 | |
| 	int num_folios = num_extent_folios(src);
 | |
| 	int ret;
 | |
| 
 | |
| 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
 | |
| 	if (new == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
 | |
| 	 * btrfs_release_extent_buffer() have different behavior for
 | |
| 	 * UNMAPPED subpage extent buffer.
 | |
| 	 */
 | |
| 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
 | |
| 
 | |
| 	ret = alloc_eb_folio_array(new, false);
 | |
| 	if (ret) {
 | |
| 		btrfs_release_extent_buffer(new);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = new->folios[i];
 | |
| 
 | |
| 		ret = attach_extent_buffer_folio(new, folio, NULL);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_extent_buffer(new);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		WARN_ON(folio_test_dirty(folio));
 | |
| 	}
 | |
| 	copy_extent_buffer_full(new, src);
 | |
| 	set_extent_buffer_uptodate(new);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 						  u64 start, unsigned long len)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 	int num_folios = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	eb = __alloc_extent_buffer(fs_info, start, len);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = alloc_eb_folio_array(eb, false);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	num_folios = num_extent_folios(eb);
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	set_extent_buffer_uptodate(eb);
 | |
| 	btrfs_set_header_nritems(eb, 0);
 | |
| 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 | |
| 
 | |
| 	return eb;
 | |
| err:
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		if (eb->folios[i]) {
 | |
| 			detach_extent_buffer_folio(eb, eb->folios[i]);
 | |
| 			folio_put(eb->folios[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	kmem_cache_free(extent_buffer_cache, eb);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 						u64 start)
 | |
| {
 | |
| 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
 | |
| }
 | |
| 
 | |
| static void check_buffer_tree_ref(struct extent_buffer *eb)
 | |
| {
 | |
| 	int refs;
 | |
| 	/*
 | |
| 	 * The TREE_REF bit is first set when the extent_buffer is added
 | |
| 	 * to the radix tree. It is also reset, if unset, when a new reference
 | |
| 	 * is created by find_extent_buffer.
 | |
| 	 *
 | |
| 	 * It is only cleared in two cases: freeing the last non-tree
 | |
| 	 * reference to the extent_buffer when its STALE bit is set or
 | |
| 	 * calling release_folio when the tree reference is the only reference.
 | |
| 	 *
 | |
| 	 * In both cases, care is taken to ensure that the extent_buffer's
 | |
| 	 * pages are not under io. However, release_folio can be concurrently
 | |
| 	 * called with creating new references, which is prone to race
 | |
| 	 * conditions between the calls to check_buffer_tree_ref in those
 | |
| 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 | |
| 	 *
 | |
| 	 * The actual lifetime of the extent_buffer in the radix tree is
 | |
| 	 * adequately protected by the refcount, but the TREE_REF bit and
 | |
| 	 * its corresponding reference are not. To protect against this
 | |
| 	 * class of races, we call check_buffer_tree_ref from the codepaths
 | |
| 	 * which trigger io. Note that once io is initiated, TREE_REF can no
 | |
| 	 * longer be cleared, so that is the moment at which any such race is
 | |
| 	 * best fixed.
 | |
| 	 */
 | |
| 	refs = atomic_read(&eb->refs);
 | |
| 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_inc(&eb->refs);
 | |
| 	spin_unlock(&eb->refs_lock);
 | |
| }
 | |
| 
 | |
| static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 | |
| {
 | |
| 	int num_folios= num_extent_folios(eb);
 | |
| 
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 
 | |
| 	for (int i = 0; i < num_folios; i++)
 | |
| 		folio_mark_accessed(eb->folios[i]);
 | |
| }
 | |
| 
 | |
| struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					 u64 start)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	eb = find_extent_buffer_nolock(fs_info, start);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
 | |
| 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
 | |
| 	 * another task running free_extent_buffer() might have seen that flag
 | |
| 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
 | |
| 	 * writeback flags not set) and it's still in the tree (flag
 | |
| 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
 | |
| 	 * decrementing the extent buffer's reference count twice.  So here we
 | |
| 	 * could race and increment the eb's reference count, clear its stale
 | |
| 	 * flag, mark it as dirty and drop our reference before the other task
 | |
| 	 * finishes executing free_extent_buffer, which would later result in
 | |
| 	 * an attempt to free an extent buffer that is dirty.
 | |
| 	 */
 | |
| 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
 | |
| 		spin_lock(&eb->refs_lock);
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 	}
 | |
| 	mark_extent_buffer_accessed(eb);
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					u64 start)
 | |
| {
 | |
| 	struct extent_buffer *eb, *exists = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	eb = find_extent_buffer(fs_info, start);
 | |
| 	if (eb)
 | |
| 		return eb;
 | |
| 	eb = alloc_dummy_extent_buffer(fs_info, start);
 | |
| 	if (!eb)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	eb->fs_info = fs_info;
 | |
| again:
 | |
| 	ret = radix_tree_preload(GFP_NOFS);
 | |
| 	if (ret) {
 | |
| 		exists = ERR_PTR(ret);
 | |
| 		goto free_eb;
 | |
| 	}
 | |
| 	spin_lock(&fs_info->buffer_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->buffer_radix,
 | |
| 				start >> fs_info->sectorsize_bits, eb);
 | |
| 	spin_unlock(&fs_info->buffer_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (ret == -EEXIST) {
 | |
| 		exists = find_extent_buffer(fs_info, start);
 | |
| 		if (exists)
 | |
| 			goto free_eb;
 | |
| 		else
 | |
| 			goto again;
 | |
| 	}
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 | |
| 
 | |
| 	return eb;
 | |
| free_eb:
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| 	return exists;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 						struct folio *folio)
 | |
| {
 | |
| 	struct extent_buffer *exists;
 | |
| 
 | |
| 	lockdep_assert_held(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * For subpage case, we completely rely on radix tree to ensure we
 | |
| 	 * don't try to insert two ebs for the same bytenr.  So here we always
 | |
| 	 * return NULL and just continue.
 | |
| 	 */
 | |
| 	if (btrfs_meta_is_subpage(fs_info))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Page not yet attached to an extent buffer */
 | |
| 	if (!folio_test_private(folio))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We could have already allocated an eb for this folio and attached one
 | |
| 	 * so lets see if we can get a ref on the existing eb, and if we can we
 | |
| 	 * know it's good and we can just return that one, else we know we can
 | |
| 	 * just overwrite folio private.
 | |
| 	 */
 | |
| 	exists = folio_get_private(folio);
 | |
| 	if (atomic_inc_not_zero(&exists->refs))
 | |
| 		return exists;
 | |
| 
 | |
| 	WARN_ON(folio_test_dirty(folio));
 | |
| 	folio_detach_private(folio);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate alignment constraints of eb at logical address @start.
 | |
|  */
 | |
| static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
 | |
| {
 | |
| 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
 | |
| 		btrfs_err(fs_info, "bad tree block start %llu", start);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->nodesize < PAGE_SIZE &&
 | |
| 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"tree block crosses page boundary, start %llu nodesize %u",
 | |
| 			  start, fs_info->nodesize);
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (fs_info->nodesize >= PAGE_SIZE &&
 | |
| 	    !PAGE_ALIGNED(start)) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"tree block is not page aligned, start %llu nodesize %u",
 | |
| 			  start, fs_info->nodesize);
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
 | |
| 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
 | |
| 		btrfs_warn(fs_info,
 | |
| "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
 | |
| 			      start, fs_info->nodesize);
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if eb->folios[i] is attached to btree inode successfully.
 | |
|  * Return >0 if there is already another extent buffer for the range,
 | |
|  * and @found_eb_ret would be updated.
 | |
|  * Return -EAGAIN if the filemap has an existing folio but with different size
 | |
|  * than @eb.
 | |
|  * The caller needs to free the existing folios and retry using the same order.
 | |
|  */
 | |
| static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
 | |
| 				      struct btrfs_subpage *prealloc,
 | |
| 				      struct extent_buffer **found_eb_ret)
 | |
| {
 | |
| 
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 | |
| 	const unsigned long index = eb->start >> PAGE_SHIFT;
 | |
| 	struct folio *existing_folio = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(found_eb_ret);
 | |
| 
 | |
| 	/* Caller should ensure the folio exists. */
 | |
| 	ASSERT(eb->folios[i]);
 | |
| 
 | |
| retry:
 | |
| 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
 | |
| 				GFP_NOFS | __GFP_NOFAIL);
 | |
| 	if (!ret)
 | |
| 		goto finish;
 | |
| 
 | |
| 	existing_folio = filemap_lock_folio(mapping, index + i);
 | |
| 	/* The page cache only exists for a very short time, just retry. */
 | |
| 	if (IS_ERR(existing_folio)) {
 | |
| 		existing_folio = NULL;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* For now, we should only have single-page folios for btree inode. */
 | |
| 	ASSERT(folio_nr_pages(existing_folio) == 1);
 | |
| 
 | |
| 	if (folio_size(existing_folio) != eb->folio_size) {
 | |
| 		folio_unlock(existing_folio);
 | |
| 		folio_put(existing_folio);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| finish:
 | |
| 	spin_lock(&mapping->i_private_lock);
 | |
| 	if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
 | |
| 		/* We're going to reuse the existing page, can drop our folio now. */
 | |
| 		__free_page(folio_page(eb->folios[i], 0));
 | |
| 		eb->folios[i] = existing_folio;
 | |
| 	} else if (existing_folio) {
 | |
| 		struct extent_buffer *existing_eb;
 | |
| 
 | |
| 		existing_eb = grab_extent_buffer(fs_info, existing_folio);
 | |
| 		if (existing_eb) {
 | |
| 			/* The extent buffer still exists, we can use it directly. */
 | |
| 			*found_eb_ret = existing_eb;
 | |
| 			spin_unlock(&mapping->i_private_lock);
 | |
| 			folio_unlock(existing_folio);
 | |
| 			folio_put(existing_folio);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* The extent buffer no longer exists, we can reuse the folio. */
 | |
| 		__free_page(folio_page(eb->folios[i], 0));
 | |
| 		eb->folios[i] = existing_folio;
 | |
| 	}
 | |
| 	eb->folio_size = folio_size(eb->folios[i]);
 | |
| 	eb->folio_shift = folio_shift(eb->folios[i]);
 | |
| 	/* Should not fail, as we have preallocated the memory. */
 | |
| 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
 | |
| 	ASSERT(!ret);
 | |
| 	/*
 | |
| 	 * To inform we have an extra eb under allocation, so that
 | |
| 	 * detach_extent_buffer_page() won't release the folio private when the
 | |
| 	 * eb hasn't been inserted into radix tree yet.
 | |
| 	 *
 | |
| 	 * The ref will be decreased when the eb releases the page, in
 | |
| 	 * detach_extent_buffer_page().  Thus needs no special handling in the
 | |
| 	 * error path.
 | |
| 	 */
 | |
| 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
 | |
| 	spin_unlock(&mapping->i_private_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					  u64 start, u64 owner_root, int level)
 | |
| {
 | |
| 	unsigned long len = fs_info->nodesize;
 | |
| 	int num_folios;
 | |
| 	int attached = 0;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct extent_buffer *existing_eb = NULL;
 | |
| 	struct btrfs_subpage *prealloc = NULL;
 | |
| 	u64 lockdep_owner = owner_root;
 | |
| 	bool page_contig = true;
 | |
| 	int uptodate = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (check_eb_alignment(fs_info, start))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| #if BITS_PER_LONG == 32
 | |
| 	if (start >= MAX_LFS_FILESIZE) {
 | |
| 		btrfs_err_rl(fs_info,
 | |
| 		"extent buffer %llu is beyond 32bit page cache limit", start);
 | |
| 		btrfs_err_32bit_limit(fs_info);
 | |
| 		return ERR_PTR(-EOVERFLOW);
 | |
| 	}
 | |
| 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
 | |
| 		btrfs_warn_32bit_limit(fs_info);
 | |
| #endif
 | |
| 
 | |
| 	eb = find_extent_buffer(fs_info, start);
 | |
| 	if (eb)
 | |
| 		return eb;
 | |
| 
 | |
| 	eb = __alloc_extent_buffer(fs_info, start, len);
 | |
| 	if (!eb)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * The reloc trees are just snapshots, so we need them to appear to be
 | |
| 	 * just like any other fs tree WRT lockdep.
 | |
| 	 */
 | |
| 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
 | |
| 
 | |
| 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preallocate folio private for subpage case, so that we won't
 | |
| 	 * allocate memory with i_private_lock nor page lock hold.
 | |
| 	 *
 | |
| 	 * The memory will be freed by attach_extent_buffer_page() or freed
 | |
| 	 * manually if we exit earlier.
 | |
| 	 */
 | |
| 	if (btrfs_meta_is_subpage(fs_info)) {
 | |
| 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
 | |
| 		if (IS_ERR(prealloc)) {
 | |
| 			ret = PTR_ERR(prealloc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| reallocate:
 | |
| 	/* Allocate all pages first. */
 | |
| 	ret = alloc_eb_folio_array(eb, true);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_free_subpage(prealloc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	num_folios = num_extent_folios(eb);
 | |
| 	/* Attach all pages to the filemap. */
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
 | |
| 		if (ret > 0) {
 | |
| 			ASSERT(existing_eb);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO: Special handling for a corner case where the order of
 | |
| 		 * folios mismatch between the new eb and filemap.
 | |
| 		 *
 | |
| 		 * This happens when:
 | |
| 		 *
 | |
| 		 * - the new eb is using higher order folio
 | |
| 		 *
 | |
| 		 * - the filemap is still using 0-order folios for the range
 | |
| 		 *   This can happen at the previous eb allocation, and we don't
 | |
| 		 *   have higher order folio for the call.
 | |
| 		 *
 | |
| 		 * - the existing eb has already been freed
 | |
| 		 *
 | |
| 		 * In this case, we have to free the existing folios first, and
 | |
| 		 * re-allocate using the same order.
 | |
| 		 * Thankfully this is not going to happen yet, as we're still
 | |
| 		 * using 0-order folios.
 | |
| 		 */
 | |
| 		if (unlikely(ret == -EAGAIN)) {
 | |
| 			ASSERT(0);
 | |
| 			goto reallocate;
 | |
| 		}
 | |
| 		attached++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
 | |
| 		 * reliable, as we may choose to reuse the existing page cache
 | |
| 		 * and free the allocated page.
 | |
| 		 */
 | |
| 		folio = eb->folios[i];
 | |
| 		WARN_ON(btrfs_meta_folio_test_dirty(fs_info, folio, eb->start, eb->len));
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if the current page is physically contiguous with previous eb
 | |
| 		 * page.
 | |
| 		 * At this stage, either we allocated a large folio, thus @i
 | |
| 		 * would only be 0, or we fall back to per-page allocation.
 | |
| 		 */
 | |
| 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
 | |
| 			page_contig = false;
 | |
| 
 | |
| 		if (!btrfs_meta_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
 | |
| 			uptodate = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't unlock the pages just yet since the extent buffer
 | |
| 		 * hasn't been properly inserted in the radix tree, this
 | |
| 		 * opens a race with btree_release_folio which can free a page
 | |
| 		 * while we are still filling in all pages for the buffer and
 | |
| 		 * we could crash.
 | |
| 		 */
 | |
| 	}
 | |
| 	if (uptodate)
 | |
| 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	/* All pages are physically contiguous, can skip cross page handling. */
 | |
| 	if (page_contig)
 | |
| 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
 | |
| again:
 | |
| 	ret = radix_tree_preload(GFP_NOFS);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&fs_info->buffer_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->buffer_radix,
 | |
| 				start >> fs_info->sectorsize_bits, eb);
 | |
| 	spin_unlock(&fs_info->buffer_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (ret == -EEXIST) {
 | |
| 		ret = 0;
 | |
| 		existing_eb = find_extent_buffer(fs_info, start);
 | |
| 		if (existing_eb)
 | |
| 			goto out;
 | |
| 		else
 | |
| 			goto again;
 | |
| 	}
 | |
| 	/* add one reference for the tree */
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now it's safe to unlock the pages because any calls to
 | |
| 	 * btree_release_folio will correctly detect that a page belongs to a
 | |
| 	 * live buffer and won't free them prematurely.
 | |
| 	 */
 | |
| 	for (int i = 0; i < num_folios; i++)
 | |
| 		folio_unlock(eb->folios[i]);
 | |
| 	return eb;
 | |
| 
 | |
| out:
 | |
| 	WARN_ON(!atomic_dec_and_test(&eb->refs));
 | |
| 
 | |
| 	/*
 | |
| 	 * Any attached folios need to be detached before we unlock them.  This
 | |
| 	 * is because when we're inserting our new folios into the mapping, and
 | |
| 	 * then attaching our eb to that folio.  If we fail to insert our folio
 | |
| 	 * we'll lookup the folio for that index, and grab that EB.  We do not
 | |
| 	 * want that to grab this eb, as we're getting ready to free it.  So we
 | |
| 	 * have to detach it first and then unlock it.
 | |
| 	 *
 | |
| 	 * We have to drop our reference and NULL it out here because in the
 | |
| 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
 | |
| 	 * Below when we call btrfs_release_extent_buffer() we will call
 | |
| 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
 | |
| 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
 | |
| 	 * double put our reference and be super sad.
 | |
| 	 */
 | |
| 	for (int i = 0; i < attached; i++) {
 | |
| 		ASSERT(eb->folios[i]);
 | |
| 		detach_extent_buffer_folio(eb, eb->folios[i]);
 | |
| 		folio_unlock(eb->folios[i]);
 | |
| 		folio_put(eb->folios[i]);
 | |
| 		eb->folios[i] = NULL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
 | |
| 	 * so it can be cleaned up without utilizing folio->mapping.
 | |
| 	 */
 | |
| 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 | |
| 
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 	ASSERT(existing_eb);
 | |
| 	return existing_eb;
 | |
| }
 | |
| 
 | |
| static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct extent_buffer *eb =
 | |
| 			container_of(head, struct extent_buffer, rcu_head);
 | |
| 
 | |
| 	kmem_cache_free(extent_buffer_cache, eb);
 | |
| }
 | |
| 
 | |
| static int release_extent_buffer(struct extent_buffer *eb)
 | |
| 	__releases(&eb->refs_lock)
 | |
| {
 | |
| 	lockdep_assert_held(&eb->refs_lock);
 | |
| 
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| 	if (atomic_dec_and_test(&eb->refs)) {
 | |
| 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
 | |
| 			struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 
 | |
| 			spin_lock(&fs_info->buffer_lock);
 | |
| 			radix_tree_delete(&fs_info->buffer_radix,
 | |
| 					  eb->start >> fs_info->sectorsize_bits);
 | |
| 			spin_unlock(&fs_info->buffer_lock);
 | |
| 		} else {
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 		}
 | |
| 
 | |
| 		btrfs_leak_debug_del_eb(eb);
 | |
| 		/* Should be safe to release folios at this point. */
 | |
| 		btrfs_release_extent_buffer_folios(eb);
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
 | |
| 			kmem_cache_free(extent_buffer_cache, eb);
 | |
| 			return 1;
 | |
| 		}
 | |
| #endif
 | |
| 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	spin_unlock(&eb->refs_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void free_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	int refs;
 | |
| 	if (!eb)
 | |
| 		return;
 | |
| 
 | |
| 	refs = atomic_read(&eb->refs);
 | |
| 	while (1) {
 | |
| 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
 | |
| 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
 | |
| 			refs == 1))
 | |
| 			break;
 | |
| 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (atomic_read(&eb->refs) == 2 &&
 | |
| 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
 | |
| 	    !extent_buffer_under_io(eb) &&
 | |
| 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_dec(&eb->refs);
 | |
| 
 | |
| 	/*
 | |
| 	 * I know this is terrible, but it's temporary until we stop tracking
 | |
| 	 * the uptodate bits and such for the extent buffers.
 | |
| 	 */
 | |
| 	release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| void free_extent_buffer_stale(struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!eb)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
 | |
| 
 | |
| 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
 | |
| 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_dec(&eb->refs);
 | |
| 	release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| static void btree_clear_folio_dirty_tag(struct folio *folio)
 | |
| {
 | |
| 	ASSERT(!folio_test_dirty(folio));
 | |
| 	ASSERT(folio_test_locked(folio));
 | |
| 	xa_lock_irq(&folio->mapping->i_pages);
 | |
| 	if (!folio_test_dirty(folio))
 | |
| 		__xa_clear_mark(&folio->mapping->i_pages,
 | |
| 				folio_index(folio), PAGECACHE_TAG_DIRTY);
 | |
| 	xa_unlock_irq(&folio->mapping->i_pages);
 | |
| }
 | |
| 
 | |
| void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
 | |
| 			      struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	const int num_folios = num_extent_folios(eb);
 | |
| 
 | |
| 	btrfs_assert_tree_write_locked(eb);
 | |
| 
 | |
| 	if (trans && btrfs_header_generation(eb) != trans->transid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of clearing the dirty flag off of the buffer, mark it as
 | |
| 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
 | |
| 	 * write-ordering in zoned mode, without the need to later re-dirty
 | |
| 	 * the extent_buffer.
 | |
| 	 *
 | |
| 	 * The actual zeroout of the buffer will happen later in
 | |
| 	 * btree_csum_one_bio.
 | |
| 	 */
 | |
| 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
 | |
| 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
 | |
| 		return;
 | |
| 
 | |
| 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
 | |
| 				 fs_info->dirty_metadata_batch);
 | |
| 
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 		bool last;
 | |
| 
 | |
| 		if (!folio_test_dirty(folio))
 | |
| 			continue;
 | |
| 		folio_lock(folio);
 | |
| 		last = btrfs_meta_folio_clear_and_test_dirty(fs_info, folio,
 | |
| 							     eb->start, eb->len);
 | |
| 		if (last)
 | |
| 			btree_clear_folio_dirty_tag(folio);
 | |
| 		folio_unlock(folio);
 | |
| 	}
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| }
 | |
| 
 | |
| void set_extent_buffer_dirty(struct extent_buffer *eb)
 | |
| {
 | |
| 	int num_folios;
 | |
| 	bool was_dirty;
 | |
| 
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 
 | |
| 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 | |
| 
 | |
| 	num_folios = num_extent_folios(eb);
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
 | |
| 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
 | |
| 
 | |
| 	if (!was_dirty) {
 | |
| 		bool subpage = btrfs_meta_is_subpage(eb->fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * For subpage case, we can have other extent buffers in the
 | |
| 		 * same page, and in clear_extent_buffer_dirty() we
 | |
| 		 * have to clear page dirty without subpage lock held.
 | |
| 		 * This can cause race where our page gets dirty cleared after
 | |
| 		 * we just set it.
 | |
| 		 *
 | |
| 		 * Thankfully, clear_extent_buffer_dirty() has locked
 | |
| 		 * its page for other reasons, we can use page lock to prevent
 | |
| 		 * the above race.
 | |
| 		 */
 | |
| 		if (subpage)
 | |
| 			folio_lock(eb->folios[0]);
 | |
| 		for (int i = 0; i < num_folios; i++)
 | |
| 			btrfs_meta_folio_set_dirty(eb->fs_info, eb->folios[i],
 | |
| 						   eb->start, eb->len);
 | |
| 		if (subpage)
 | |
| 			folio_unlock(eb->folios[0]);
 | |
| 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
 | |
| 					 eb->len,
 | |
| 					 eb->fs_info->dirty_metadata_batch);
 | |
| 	}
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	for (int i = 0; i < num_folios; i++)
 | |
| 		ASSERT(folio_test_dirty(eb->folios[i]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void clear_extent_buffer_uptodate(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	int num_folios = num_extent_folios(eb);
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 
 | |
| 		if (!folio)
 | |
| 			continue;
 | |
| 
 | |
| 		btrfs_meta_folio_clear_uptodate(fs_info, folio, eb->start, eb->len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void set_extent_buffer_uptodate(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	int num_folios = num_extent_folios(eb);
 | |
| 
 | |
| 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 
 | |
| 		btrfs_meta_folio_set_uptodate(fs_info, folio, eb->start, eb->len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_extent_buffer_reading(struct extent_buffer *eb)
 | |
| {
 | |
| 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
 | |
| }
 | |
| 
 | |
| static void end_bbio_meta_read(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct extent_buffer *eb = bbio->private;
 | |
| 	bool uptodate = !bbio->bio.bi_status;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the extent buffer is marked UPTODATE before the read operation
 | |
| 	 * completes, other calls to read_extent_buffer_pages() will return
 | |
| 	 * early without waiting for the read to finish, causing data races.
 | |
| 	 */
 | |
| 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
 | |
| 
 | |
| 	eb->read_mirror = bbio->mirror_num;
 | |
| 
 | |
| 	if (uptodate &&
 | |
| 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
 | |
| 		uptodate = false;
 | |
| 
 | |
| 	if (uptodate) {
 | |
| 		set_extent_buffer_uptodate(eb);
 | |
| 	} else {
 | |
| 		clear_extent_buffer_uptodate(eb);
 | |
| 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 | |
| 	}
 | |
| 
 | |
| 	clear_extent_buffer_reading(eb);
 | |
| 	free_extent_buffer(eb);
 | |
| 
 | |
| 	bio_put(&bbio->bio);
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
 | |
| 				    const struct btrfs_tree_parent_check *check)
 | |
| {
 | |
| 	const int num_folios = num_extent_folios(eb);
 | |
| 	struct btrfs_bio *bbio;
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
 | |
| 	 * operation, which could potentially still be in flight.  In this case
 | |
| 	 * we simply want to return an error.
 | |
| 	 */
 | |
| 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Someone else is already reading the buffer, just wait for it. */
 | |
| 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
 | |
| 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
 | |
| 	 * started and finished reading the same eb.  In this case, UPTODATE
 | |
| 	 * will now be set, and we shouldn't read it in again.
 | |
| 	 */
 | |
| 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
 | |
| 		clear_extent_buffer_reading(eb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 | |
| 	eb->read_mirror = 0;
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 	atomic_inc(&eb->refs);
 | |
| 
 | |
| 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
 | |
| 			       REQ_OP_READ | REQ_META, eb->fs_info,
 | |
| 			       end_bbio_meta_read, eb);
 | |
| 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
 | |
| 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
 | |
| 	bbio->file_offset = eb->start;
 | |
| 	memcpy(&bbio->parent_check, check, sizeof(*check));
 | |
| 	for (int i = 0; i < num_folios; i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
 | |
| 		u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 | |
| 				      eb->start + eb->len) - range_start;
 | |
| 
 | |
| 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
 | |
| 				     offset_in_folio(folio, range_start));
 | |
| 	}
 | |
| 	btrfs_submit_bbio(bbio, mirror_num);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
 | |
| 			     const struct btrfs_tree_parent_check *check)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
 | |
| 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
 | |
| 			    unsigned long len)
 | |
| {
 | |
| 	btrfs_warn(eb->fs_info,
 | |
| 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
 | |
| 		eb->start, eb->len, start, len);
 | |
| 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the [start, start + len) range is valid before reading/writing
 | |
|  * the eb.
 | |
|  * NOTE: @start and @len are offset inside the eb, not logical address.
 | |
|  *
 | |
|  * Caller should not touch the dst/src memory if this function returns error.
 | |
|  */
 | |
| static inline int check_eb_range(const struct extent_buffer *eb,
 | |
| 				 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	/* start, start + len should not go beyond eb->len nor overflow */
 | |
| 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
 | |
| 		return report_eb_range(eb, start, len);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
 | |
| 			unsigned long start, unsigned long len)
 | |
| {
 | |
| 	const int unit_size = eb->folio_size;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	char *dst = (char *)dstv;
 | |
| 	unsigned long i = get_eb_folio_index(eb, start);
 | |
| 
 | |
| 	if (check_eb_range(eb, start, len)) {
 | |
| 		/*
 | |
| 		 * Invalid range hit, reset the memory, so callers won't get
 | |
| 		 * some random garbage for their uninitialized memory.
 | |
| 		 */
 | |
| 		memset(dstv, 0, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (eb->addr) {
 | |
| 		memcpy(dstv, eb->addr + start, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	offset = get_eb_offset_in_folio(eb, start);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		char *kaddr;
 | |
| 
 | |
| 		cur = min(len, unit_size - offset);
 | |
| 		kaddr = folio_address(eb->folios[i]);
 | |
| 		memcpy(dst, kaddr + offset, cur);
 | |
| 
 | |
| 		dst += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
 | |
| 				       void __user *dstv,
 | |
| 				       unsigned long start, unsigned long len)
 | |
| {
 | |
| 	const int unit_size = eb->folio_size;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	char __user *dst = (char __user *)dstv;
 | |
| 	unsigned long i = get_eb_folio_index(eb, start);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	if (eb->addr) {
 | |
| 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
 | |
| 			ret = -EFAULT;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	offset = get_eb_offset_in_folio(eb, start);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		char *kaddr;
 | |
| 
 | |
| 		cur = min(len, unit_size - offset);
 | |
| 		kaddr = folio_address(eb->folios[i]);
 | |
| 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dst += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
 | |
| 			 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	const int unit_size = eb->folio_size;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	char *kaddr;
 | |
| 	char *ptr = (char *)ptrv;
 | |
| 	unsigned long i = get_eb_folio_index(eb, start);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (check_eb_range(eb, start, len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (eb->addr)
 | |
| 		return memcmp(ptrv, eb->addr + start, len);
 | |
| 
 | |
| 	offset = get_eb_offset_in_folio(eb, start);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		cur = min(len, unit_size - offset);
 | |
| 		kaddr = folio_address(eb->folios[i]);
 | |
| 		ret = memcmp(ptr, kaddr + offset, cur);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ptr += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the extent buffer is uptodate.
 | |
|  *
 | |
|  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 | |
|  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 | |
|  */
 | |
| static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct folio *folio = eb->folios[i];
 | |
| 
 | |
| 	ASSERT(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using the commit root we could potentially clear a page
 | |
| 	 * Uptodate while we're using the extent buffer that we've previously
 | |
| 	 * looked up.  We don't want to complain in this case, as the page was
 | |
| 	 * valid before, we just didn't write it out.  Instead we want to catch
 | |
| 	 * the case where we didn't actually read the block properly, which
 | |
| 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
 | |
| 	 */
 | |
| 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
 | |
| 		return;
 | |
| 
 | |
| 	if (btrfs_meta_is_subpage(fs_info)) {
 | |
| 		folio = eb->folios[0];
 | |
| 		ASSERT(i == 0);
 | |
| 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
 | |
| 							 eb->start, eb->len)))
 | |
| 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
 | |
| 	} else {
 | |
| 		WARN_ON(!folio_test_uptodate(folio));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __write_extent_buffer(const struct extent_buffer *eb,
 | |
| 				  const void *srcv, unsigned long start,
 | |
| 				  unsigned long len, bool use_memmove)
 | |
| {
 | |
| 	const int unit_size = eb->folio_size;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	char *kaddr;
 | |
| 	const char *src = (const char *)srcv;
 | |
| 	unsigned long i = get_eb_folio_index(eb, start);
 | |
| 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
 | |
| 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 | |
| 
 | |
| 	if (check_eb_range(eb, start, len))
 | |
| 		return;
 | |
| 
 | |
| 	if (eb->addr) {
 | |
| 		if (use_memmove)
 | |
| 			memmove(eb->addr + start, srcv, len);
 | |
| 		else
 | |
| 			memcpy(eb->addr + start, srcv, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	offset = get_eb_offset_in_folio(eb, start);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		if (check_uptodate)
 | |
| 			assert_eb_folio_uptodate(eb, i);
 | |
| 
 | |
| 		cur = min(len, unit_size - offset);
 | |
| 		kaddr = folio_address(eb->folios[i]);
 | |
| 		if (use_memmove)
 | |
| 			memmove(kaddr + offset, src, cur);
 | |
| 		else
 | |
| 			memcpy(kaddr + offset, src, cur);
 | |
| 
 | |
| 		src += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
 | |
| 			 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	return __write_extent_buffer(eb, srcv, start, len, false);
 | |
| }
 | |
| 
 | |
| static void memset_extent_buffer(const struct extent_buffer *eb, int c,
 | |
| 				 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	const int unit_size = eb->folio_size;
 | |
| 	unsigned long cur = start;
 | |
| 
 | |
| 	if (eb->addr) {
 | |
| 		memset(eb->addr + start, c, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (cur < start + len) {
 | |
| 		unsigned long index = get_eb_folio_index(eb, cur);
 | |
| 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
 | |
| 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
 | |
| 
 | |
| 		assert_eb_folio_uptodate(eb, index);
 | |
| 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 | |
| 
 | |
| 		cur += cur_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
 | |
| 			   unsigned long len)
 | |
| {
 | |
| 	if (check_eb_range(eb, start, len))
 | |
| 		return;
 | |
| 	return memset_extent_buffer(eb, 0, start, len);
 | |
| }
 | |
| 
 | |
| void copy_extent_buffer_full(const struct extent_buffer *dst,
 | |
| 			     const struct extent_buffer *src)
 | |
| {
 | |
| 	const int unit_size = src->folio_size;
 | |
| 	unsigned long cur = 0;
 | |
| 
 | |
| 	ASSERT(dst->len == src->len);
 | |
| 
 | |
| 	while (cur < src->len) {
 | |
| 		unsigned long index = get_eb_folio_index(src, cur);
 | |
| 		unsigned long offset = get_eb_offset_in_folio(src, cur);
 | |
| 		unsigned long cur_len = min(src->len, unit_size - offset);
 | |
| 		void *addr = folio_address(src->folios[index]) + offset;
 | |
| 
 | |
| 		write_extent_buffer(dst, addr, cur, cur_len);
 | |
| 
 | |
| 		cur += cur_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void copy_extent_buffer(const struct extent_buffer *dst,
 | |
| 			const struct extent_buffer *src,
 | |
| 			unsigned long dst_offset, unsigned long src_offset,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	const int unit_size = dst->folio_size;
 | |
| 	u64 dst_len = dst->len;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	char *kaddr;
 | |
| 	unsigned long i = get_eb_folio_index(dst, dst_offset);
 | |
| 
 | |
| 	if (check_eb_range(dst, dst_offset, len) ||
 | |
| 	    check_eb_range(src, src_offset, len))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(src->len != dst_len);
 | |
| 
 | |
| 	offset = get_eb_offset_in_folio(dst, dst_offset);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		assert_eb_folio_uptodate(dst, i);
 | |
| 
 | |
| 		cur = min(len, (unsigned long)(unit_size - offset));
 | |
| 
 | |
| 		kaddr = folio_address(dst->folios[i]);
 | |
| 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
 | |
| 
 | |
| 		src_offset += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the folio and offset of the byte containing the given bit number.
 | |
|  *
 | |
|  * @eb:           the extent buffer
 | |
|  * @start:        offset of the bitmap item in the extent buffer
 | |
|  * @nr:           bit number
 | |
|  * @folio_index:  return index of the folio in the extent buffer that contains
 | |
|  *                the given bit number
 | |
|  * @folio_offset: return offset into the folio given by folio_index
 | |
|  *
 | |
|  * This helper hides the ugliness of finding the byte in an extent buffer which
 | |
|  * contains a given bit.
 | |
|  */
 | |
| static inline void eb_bitmap_offset(const struct extent_buffer *eb,
 | |
| 				    unsigned long start, unsigned long nr,
 | |
| 				    unsigned long *folio_index,
 | |
| 				    size_t *folio_offset)
 | |
| {
 | |
| 	size_t byte_offset = BIT_BYTE(nr);
 | |
| 	size_t offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The byte we want is the offset of the extent buffer + the offset of
 | |
| 	 * the bitmap item in the extent buffer + the offset of the byte in the
 | |
| 	 * bitmap item.
 | |
| 	 */
 | |
| 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
 | |
| 
 | |
| 	*folio_index = offset >> eb->folio_shift;
 | |
| 	*folio_offset = offset_in_eb_folio(eb, offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether a bit in a bitmap item is set.
 | |
|  *
 | |
|  * @eb:     the extent buffer
 | |
|  * @start:  offset of the bitmap item in the extent buffer
 | |
|  * @nr:     bit number to test
 | |
|  */
 | |
| int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
 | |
| 			   unsigned long nr)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	size_t offset;
 | |
| 	u8 *kaddr;
 | |
| 
 | |
| 	eb_bitmap_offset(eb, start, nr, &i, &offset);
 | |
| 	assert_eb_folio_uptodate(eb, i);
 | |
| 	kaddr = folio_address(eb->folios[i]);
 | |
| 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
 | |
| }
 | |
| 
 | |
| static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
 | |
| {
 | |
| 	unsigned long index = get_eb_folio_index(eb, bytenr);
 | |
| 
 | |
| 	if (check_eb_range(eb, bytenr, 1))
 | |
| 		return NULL;
 | |
| 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set an area of a bitmap to 1.
 | |
|  *
 | |
|  * @eb:     the extent buffer
 | |
|  * @start:  offset of the bitmap item in the extent buffer
 | |
|  * @pos:    bit number of the first bit
 | |
|  * @len:    number of bits to set
 | |
|  */
 | |
| void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
 | |
| 			      unsigned long pos, unsigned long len)
 | |
| {
 | |
| 	unsigned int first_byte = start + BIT_BYTE(pos);
 | |
| 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
 | |
| 	const bool same_byte = (first_byte == last_byte);
 | |
| 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
 | |
| 	u8 *kaddr;
 | |
| 
 | |
| 	if (same_byte)
 | |
| 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
 | |
| 
 | |
| 	/* Handle the first byte. */
 | |
| 	kaddr = extent_buffer_get_byte(eb, first_byte);
 | |
| 	*kaddr |= mask;
 | |
| 	if (same_byte)
 | |
| 		return;
 | |
| 
 | |
| 	/* Handle the byte aligned part. */
 | |
| 	ASSERT(first_byte + 1 <= last_byte);
 | |
| 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
 | |
| 
 | |
| 	/* Handle the last byte. */
 | |
| 	kaddr = extent_buffer_get_byte(eb, last_byte);
 | |
| 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Clear an area of a bitmap.
 | |
|  *
 | |
|  * @eb:     the extent buffer
 | |
|  * @start:  offset of the bitmap item in the extent buffer
 | |
|  * @pos:    bit number of the first bit
 | |
|  * @len:    number of bits to clear
 | |
|  */
 | |
| void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
 | |
| 				unsigned long start, unsigned long pos,
 | |
| 				unsigned long len)
 | |
| {
 | |
| 	unsigned int first_byte = start + BIT_BYTE(pos);
 | |
| 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
 | |
| 	const bool same_byte = (first_byte == last_byte);
 | |
| 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
 | |
| 	u8 *kaddr;
 | |
| 
 | |
| 	if (same_byte)
 | |
| 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
 | |
| 
 | |
| 	/* Handle the first byte. */
 | |
| 	kaddr = extent_buffer_get_byte(eb, first_byte);
 | |
| 	*kaddr &= ~mask;
 | |
| 	if (same_byte)
 | |
| 		return;
 | |
| 
 | |
| 	/* Handle the byte aligned part. */
 | |
| 	ASSERT(first_byte + 1 <= last_byte);
 | |
| 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
 | |
| 
 | |
| 	/* Handle the last byte. */
 | |
| 	kaddr = extent_buffer_get_byte(eb, last_byte);
 | |
| 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 | |
| }
 | |
| 
 | |
| static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
 | |
| {
 | |
| 	unsigned long distance = (src > dst) ? src - dst : dst - src;
 | |
| 	return distance < len;
 | |
| }
 | |
| 
 | |
| void memcpy_extent_buffer(const struct extent_buffer *dst,
 | |
| 			  unsigned long dst_offset, unsigned long src_offset,
 | |
| 			  unsigned long len)
 | |
| {
 | |
| 	const int unit_size = dst->folio_size;
 | |
| 	unsigned long cur_off = 0;
 | |
| 
 | |
| 	if (check_eb_range(dst, dst_offset, len) ||
 | |
| 	    check_eb_range(dst, src_offset, len))
 | |
| 		return;
 | |
| 
 | |
| 	if (dst->addr) {
 | |
| 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 | |
| 
 | |
| 		if (use_memmove)
 | |
| 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
 | |
| 		else
 | |
| 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (cur_off < len) {
 | |
| 		unsigned long cur_src = cur_off + src_offset;
 | |
| 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
 | |
| 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
 | |
| 		unsigned long cur_len = min(src_offset + len - cur_src,
 | |
| 					    unit_size - folio_off);
 | |
| 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
 | |
| 		const bool use_memmove = areas_overlap(src_offset + cur_off,
 | |
| 						       dst_offset + cur_off, cur_len);
 | |
| 
 | |
| 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
 | |
| 				      use_memmove);
 | |
| 		cur_off += cur_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memmove_extent_buffer(const struct extent_buffer *dst,
 | |
| 			   unsigned long dst_offset, unsigned long src_offset,
 | |
| 			   unsigned long len)
 | |
| {
 | |
| 	unsigned long dst_end = dst_offset + len - 1;
 | |
| 	unsigned long src_end = src_offset + len - 1;
 | |
| 
 | |
| 	if (check_eb_range(dst, dst_offset, len) ||
 | |
| 	    check_eb_range(dst, src_offset, len))
 | |
| 		return;
 | |
| 
 | |
| 	if (dst_offset < src_offset) {
 | |
| 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (dst->addr) {
 | |
| 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		unsigned long src_i;
 | |
| 		size_t cur;
 | |
| 		size_t dst_off_in_folio;
 | |
| 		size_t src_off_in_folio;
 | |
| 		void *src_addr;
 | |
| 		bool use_memmove;
 | |
| 
 | |
| 		src_i = get_eb_folio_index(dst, src_end);
 | |
| 
 | |
| 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
 | |
| 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
 | |
| 
 | |
| 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
 | |
| 		cur = min(cur, dst_off_in_folio + 1);
 | |
| 
 | |
| 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
 | |
| 					 cur + 1;
 | |
| 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
 | |
| 					    cur);
 | |
| 
 | |
| 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
 | |
| 				      use_memmove);
 | |
| 
 | |
| 		dst_end -= cur;
 | |
| 		src_end -= cur;
 | |
| 		len -= cur;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define GANG_LOOKUP_SIZE	16
 | |
| static struct extent_buffer *get_next_extent_buffer(
 | |
| 		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
 | |
| {
 | |
| 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
 | |
| 	struct extent_buffer *found = NULL;
 | |
| 	u64 folio_start = folio_pos(folio);
 | |
| 	u64 cur = folio_start;
 | |
| 
 | |
| 	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
 | |
| 	lockdep_assert_held(&fs_info->buffer_lock);
 | |
| 
 | |
| 	while (cur < folio_start + PAGE_SIZE) {
 | |
| 		int ret;
 | |
| 		int i;
 | |
| 
 | |
| 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
 | |
| 				(void **)gang, cur >> fs_info->sectorsize_bits,
 | |
| 				min_t(unsigned int, GANG_LOOKUP_SIZE,
 | |
| 				      PAGE_SIZE / fs_info->nodesize));
 | |
| 		if (ret == 0)
 | |
| 			goto out;
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			/* Already beyond page end */
 | |
| 			if (gang[i]->start >= folio_start + PAGE_SIZE)
 | |
| 				goto out;
 | |
| 			/* Found one */
 | |
| 			if (gang[i]->start >= bytenr) {
 | |
| 				found = gang[i];
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
 | |
| 	}
 | |
| out:
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static int try_release_subpage_extent_buffer(struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 | |
| 	u64 cur = folio_pos(folio);
 | |
| 	const u64 end = cur + PAGE_SIZE;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (cur < end) {
 | |
| 		struct extent_buffer *eb = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Unlike try_release_extent_buffer() which uses folio private
 | |
| 		 * to grab buffer, for subpage case we rely on radix tree, thus
 | |
| 		 * we need to ensure radix tree consistency.
 | |
| 		 *
 | |
| 		 * We also want an atomic snapshot of the radix tree, thus go
 | |
| 		 * with spinlock rather than RCU.
 | |
| 		 */
 | |
| 		spin_lock(&fs_info->buffer_lock);
 | |
| 		eb = get_next_extent_buffer(fs_info, folio, cur);
 | |
| 		if (!eb) {
 | |
| 			/* No more eb in the page range after or at cur */
 | |
| 			spin_unlock(&fs_info->buffer_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		cur = eb->start + eb->len;
 | |
| 
 | |
| 		/*
 | |
| 		 * The same as try_release_extent_buffer(), to ensure the eb
 | |
| 		 * won't disappear out from under us.
 | |
| 		 */
 | |
| 		spin_lock(&eb->refs_lock);
 | |
| 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 			spin_unlock(&fs_info->buffer_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&fs_info->buffer_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If tree ref isn't set then we know the ref on this eb is a
 | |
| 		 * real ref, so just return, this eb will likely be freed soon
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Here we don't care about the return value, we will always
 | |
| 		 * check the folio private at the end.  And
 | |
| 		 * release_extent_buffer() will release the refs_lock.
 | |
| 		 */
 | |
| 		release_extent_buffer(eb);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Finally to check if we have cleared folio private, as if we have
 | |
| 	 * released all ebs in the page, the folio private should be cleared now.
 | |
| 	 */
 | |
| 	spin_lock(&folio->mapping->i_private_lock);
 | |
| 	if (!folio_test_private(folio))
 | |
| 		ret = 1;
 | |
| 	else
 | |
| 		ret = 0;
 | |
| 	spin_unlock(&folio->mapping->i_private_lock);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| int try_release_extent_buffer(struct folio *folio)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
 | |
| 		return try_release_subpage_extent_buffer(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make sure nobody is changing folio private, as we rely on
 | |
| 	 * folio private as the pointer to extent buffer.
 | |
| 	 */
 | |
| 	spin_lock(&folio->mapping->i_private_lock);
 | |
| 	if (!folio_test_private(folio)) {
 | |
| 		spin_unlock(&folio->mapping->i_private_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	eb = folio_get_private(folio);
 | |
| 	BUG_ON(!eb);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a little awful but should be ok, we need to make sure that
 | |
| 	 * the eb doesn't disappear out from under us while we're looking at
 | |
| 	 * this page.
 | |
| 	 */
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		spin_unlock(&folio->mapping->i_private_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&folio->mapping->i_private_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
 | |
| 	 * so just return, this page will likely be freed soon anyway.
 | |
| 	 */
 | |
| 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to readahead a child block.
 | |
|  *
 | |
|  * @fs_info:	the fs_info
 | |
|  * @bytenr:	bytenr to read
 | |
|  * @owner_root: objectid of the root that owns this eb
 | |
|  * @gen:	generation for the uptodate check, can be 0
 | |
|  * @level:	level for the eb
 | |
|  *
 | |
|  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 | |
|  * normal uptodate check of the eb, without checking the generation.  If we have
 | |
|  * to read the block we will not block on anything.
 | |
|  */
 | |
| void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
 | |
| 				u64 bytenr, u64 owner_root, u64 gen, int level)
 | |
| {
 | |
| 	struct btrfs_tree_parent_check check = {
 | |
| 		.level = level,
 | |
| 		.transid = gen
 | |
| 	};
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret;
 | |
| 
 | |
| 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
 | |
| 	if (IS_ERR(eb))
 | |
| 		return;
 | |
| 
 | |
| 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
 | |
| 		free_extent_buffer(eb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = read_extent_buffer_pages_nowait(eb, 0, &check);
 | |
| 	if (ret < 0)
 | |
| 		free_extent_buffer_stale(eb);
 | |
| 	else
 | |
| 		free_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Readahead a node's child block.
 | |
|  *
 | |
|  * @node:	parent node we're reading from
 | |
|  * @slot:	slot in the parent node for the child we want to read
 | |
|  *
 | |
|  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 | |
|  * the slot in the node provided.
 | |
|  */
 | |
| void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
 | |
| {
 | |
| 	btrfs_readahead_tree_block(node->fs_info,
 | |
| 				   btrfs_node_blockptr(node, slot),
 | |
| 				   btrfs_header_owner(node),
 | |
| 				   btrfs_node_ptr_generation(node, slot),
 | |
| 				   btrfs_header_level(node) - 1);
 | |
| }
 |