mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	GRO/LRO can be controlled through ethtool so this is unnecessary. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2312 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2312 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/****************************************************************************
 | 
						|
 * Driver for Solarflare Solarstorm network controllers and boards
 | 
						|
 * Copyright 2005-2006 Fen Systems Ltd.
 | 
						|
 * Copyright 2005-2008 Solarflare Communications Inc.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License version 2 as published
 | 
						|
 * by the Free Software Foundation, incorporated herein by reference.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/pci.h>
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <linux/etherdevice.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/ip.h>
 | 
						|
#include <linux/tcp.h>
 | 
						|
#include <linux/in.h>
 | 
						|
#include <linux/crc32.h>
 | 
						|
#include <linux/ethtool.h>
 | 
						|
#include <linux/topology.h>
 | 
						|
#include "net_driver.h"
 | 
						|
#include "ethtool.h"
 | 
						|
#include "tx.h"
 | 
						|
#include "rx.h"
 | 
						|
#include "efx.h"
 | 
						|
#include "mdio_10g.h"
 | 
						|
#include "falcon.h"
 | 
						|
 | 
						|
#define EFX_MAX_MTU (9 * 1024)
 | 
						|
 | 
						|
/* RX slow fill workqueue. If memory allocation fails in the fast path,
 | 
						|
 * a work item is pushed onto this work queue to retry the allocation later,
 | 
						|
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 | 
						|
 * workqueue, there is nothing to be gained in making it per NIC
 | 
						|
 */
 | 
						|
static struct workqueue_struct *refill_workqueue;
 | 
						|
 | 
						|
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 | 
						|
 * queued onto this work queue. This is not a per-nic work queue, because
 | 
						|
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 | 
						|
 */
 | 
						|
static struct workqueue_struct *reset_workqueue;
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Configurable values
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Use separate channels for TX and RX events
 | 
						|
 *
 | 
						|
 * Set this to 1 to use separate channels for TX and RX. It allows us
 | 
						|
 * to control interrupt affinity separately for TX and RX.
 | 
						|
 *
 | 
						|
 * This is only used in MSI-X interrupt mode
 | 
						|
 */
 | 
						|
static unsigned int separate_tx_channels;
 | 
						|
module_param(separate_tx_channels, uint, 0644);
 | 
						|
MODULE_PARM_DESC(separate_tx_channels,
 | 
						|
		 "Use separate channels for TX and RX");
 | 
						|
 | 
						|
/* This is the weight assigned to each of the (per-channel) virtual
 | 
						|
 * NAPI devices.
 | 
						|
 */
 | 
						|
static int napi_weight = 64;
 | 
						|
 | 
						|
/* This is the time (in jiffies) between invocations of the hardware
 | 
						|
 * monitor, which checks for known hardware bugs and resets the
 | 
						|
 * hardware and driver as necessary.
 | 
						|
 */
 | 
						|
unsigned int efx_monitor_interval = 1 * HZ;
 | 
						|
 | 
						|
/* This controls whether or not the driver will initialise devices
 | 
						|
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 | 
						|
 * such devices will be initialised with a random locally-generated
 | 
						|
 * MAC address.  This allows for loading the sfc_mtd driver to
 | 
						|
 * reprogram the flash, even if the flash contents (including the MAC
 | 
						|
 * address) have previously been erased.
 | 
						|
 */
 | 
						|
static unsigned int allow_bad_hwaddr;
 | 
						|
 | 
						|
/* Initial interrupt moderation settings.  They can be modified after
 | 
						|
 * module load with ethtool.
 | 
						|
 *
 | 
						|
 * The default for RX should strike a balance between increasing the
 | 
						|
 * round-trip latency and reducing overhead.
 | 
						|
 */
 | 
						|
static unsigned int rx_irq_mod_usec = 60;
 | 
						|
 | 
						|
/* Initial interrupt moderation settings.  They can be modified after
 | 
						|
 * module load with ethtool.
 | 
						|
 *
 | 
						|
 * This default is chosen to ensure that a 10G link does not go idle
 | 
						|
 * while a TX queue is stopped after it has become full.  A queue is
 | 
						|
 * restarted when it drops below half full.  The time this takes (assuming
 | 
						|
 * worst case 3 descriptors per packet and 1024 descriptors) is
 | 
						|
 *   512 / 3 * 1.2 = 205 usec.
 | 
						|
 */
 | 
						|
static unsigned int tx_irq_mod_usec = 150;
 | 
						|
 | 
						|
/* This is the first interrupt mode to try out of:
 | 
						|
 * 0 => MSI-X
 | 
						|
 * 1 => MSI
 | 
						|
 * 2 => legacy
 | 
						|
 */
 | 
						|
static unsigned int interrupt_mode;
 | 
						|
 | 
						|
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 | 
						|
 * i.e. the number of CPUs among which we may distribute simultaneous
 | 
						|
 * interrupt handling.
 | 
						|
 *
 | 
						|
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 | 
						|
 * The default (0) means to assign an interrupt to each package (level II cache)
 | 
						|
 */
 | 
						|
static unsigned int rss_cpus;
 | 
						|
module_param(rss_cpus, uint, 0444);
 | 
						|
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 | 
						|
 | 
						|
static int phy_flash_cfg;
 | 
						|
module_param(phy_flash_cfg, int, 0644);
 | 
						|
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 | 
						|
 | 
						|
static unsigned irq_adapt_low_thresh = 10000;
 | 
						|
module_param(irq_adapt_low_thresh, uint, 0644);
 | 
						|
MODULE_PARM_DESC(irq_adapt_low_thresh,
 | 
						|
		 "Threshold score for reducing IRQ moderation");
 | 
						|
 | 
						|
static unsigned irq_adapt_high_thresh = 20000;
 | 
						|
module_param(irq_adapt_high_thresh, uint, 0644);
 | 
						|
MODULE_PARM_DESC(irq_adapt_high_thresh,
 | 
						|
		 "Threshold score for increasing IRQ moderation");
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Utility functions and prototypes
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
static void efx_remove_channel(struct efx_channel *channel);
 | 
						|
static void efx_remove_port(struct efx_nic *efx);
 | 
						|
static void efx_fini_napi(struct efx_nic *efx);
 | 
						|
static void efx_fini_channels(struct efx_nic *efx);
 | 
						|
 | 
						|
#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 | 
						|
	do {						\
 | 
						|
		if (efx->state == STATE_RUNNING)	\
 | 
						|
			ASSERT_RTNL();			\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Event queue processing
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
/* Process channel's event queue
 | 
						|
 *
 | 
						|
 * This function is responsible for processing the event queue of a
 | 
						|
 * single channel.  The caller must guarantee that this function will
 | 
						|
 * never be concurrently called more than once on the same channel,
 | 
						|
 * though different channels may be being processed concurrently.
 | 
						|
 */
 | 
						|
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = channel->efx;
 | 
						|
	int rx_packets;
 | 
						|
 | 
						|
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
 | 
						|
		     !channel->enabled))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rx_packets = falcon_process_eventq(channel, rx_quota);
 | 
						|
	if (rx_packets == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Deliver last RX packet. */
 | 
						|
	if (channel->rx_pkt) {
 | 
						|
		__efx_rx_packet(channel, channel->rx_pkt,
 | 
						|
				channel->rx_pkt_csummed);
 | 
						|
		channel->rx_pkt = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	efx_rx_strategy(channel);
 | 
						|
 | 
						|
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
 | 
						|
 | 
						|
	return rx_packets;
 | 
						|
}
 | 
						|
 | 
						|
/* Mark channel as finished processing
 | 
						|
 *
 | 
						|
 * Note that since we will not receive further interrupts for this
 | 
						|
 * channel before we finish processing and call the eventq_read_ack()
 | 
						|
 * method, there is no need to use the interrupt hold-off timers.
 | 
						|
 */
 | 
						|
static inline void efx_channel_processed(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	/* The interrupt handler for this channel may set work_pending
 | 
						|
	 * as soon as we acknowledge the events we've seen.  Make sure
 | 
						|
	 * it's cleared before then. */
 | 
						|
	channel->work_pending = false;
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	falcon_eventq_read_ack(channel);
 | 
						|
}
 | 
						|
 | 
						|
/* NAPI poll handler
 | 
						|
 *
 | 
						|
 * NAPI guarantees serialisation of polls of the same device, which
 | 
						|
 * provides the guarantee required by efx_process_channel().
 | 
						|
 */
 | 
						|
static int efx_poll(struct napi_struct *napi, int budget)
 | 
						|
{
 | 
						|
	struct efx_channel *channel =
 | 
						|
		container_of(napi, struct efx_channel, napi_str);
 | 
						|
	int rx_packets;
 | 
						|
 | 
						|
	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
 | 
						|
		  channel->channel, raw_smp_processor_id());
 | 
						|
 | 
						|
	rx_packets = efx_process_channel(channel, budget);
 | 
						|
 | 
						|
	if (rx_packets < budget) {
 | 
						|
		struct efx_nic *efx = channel->efx;
 | 
						|
 | 
						|
		if (channel->used_flags & EFX_USED_BY_RX &&
 | 
						|
		    efx->irq_rx_adaptive &&
 | 
						|
		    unlikely(++channel->irq_count == 1000)) {
 | 
						|
			unsigned old_irq_moderation = channel->irq_moderation;
 | 
						|
 | 
						|
			if (unlikely(channel->irq_mod_score <
 | 
						|
				     irq_adapt_low_thresh)) {
 | 
						|
				channel->irq_moderation =
 | 
						|
					max_t(int,
 | 
						|
					      channel->irq_moderation -
 | 
						|
					      FALCON_IRQ_MOD_RESOLUTION,
 | 
						|
					      FALCON_IRQ_MOD_RESOLUTION);
 | 
						|
			} else if (unlikely(channel->irq_mod_score >
 | 
						|
					    irq_adapt_high_thresh)) {
 | 
						|
				channel->irq_moderation =
 | 
						|
					min(channel->irq_moderation +
 | 
						|
					    FALCON_IRQ_MOD_RESOLUTION,
 | 
						|
					    efx->irq_rx_moderation);
 | 
						|
			}
 | 
						|
 | 
						|
			if (channel->irq_moderation != old_irq_moderation)
 | 
						|
				falcon_set_int_moderation(channel);
 | 
						|
 | 
						|
			channel->irq_count = 0;
 | 
						|
			channel->irq_mod_score = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* There is no race here; although napi_disable() will
 | 
						|
		 * only wait for napi_complete(), this isn't a problem
 | 
						|
		 * since efx_channel_processed() will have no effect if
 | 
						|
		 * interrupts have already been disabled.
 | 
						|
		 */
 | 
						|
		napi_complete(napi);
 | 
						|
		efx_channel_processed(channel);
 | 
						|
	}
 | 
						|
 | 
						|
	return rx_packets;
 | 
						|
}
 | 
						|
 | 
						|
/* Process the eventq of the specified channel immediately on this CPU
 | 
						|
 *
 | 
						|
 * Disable hardware generated interrupts, wait for any existing
 | 
						|
 * processing to finish, then directly poll (and ack ) the eventq.
 | 
						|
 * Finally reenable NAPI and interrupts.
 | 
						|
 *
 | 
						|
 * Since we are touching interrupts the caller should hold the suspend lock
 | 
						|
 */
 | 
						|
void efx_process_channel_now(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = channel->efx;
 | 
						|
 | 
						|
	BUG_ON(!channel->used_flags);
 | 
						|
	BUG_ON(!channel->enabled);
 | 
						|
 | 
						|
	/* Disable interrupts and wait for ISRs to complete */
 | 
						|
	falcon_disable_interrupts(efx);
 | 
						|
	if (efx->legacy_irq)
 | 
						|
		synchronize_irq(efx->legacy_irq);
 | 
						|
	if (channel->irq)
 | 
						|
		synchronize_irq(channel->irq);
 | 
						|
 | 
						|
	/* Wait for any NAPI processing to complete */
 | 
						|
	napi_disable(&channel->napi_str);
 | 
						|
 | 
						|
	/* Poll the channel */
 | 
						|
	efx_process_channel(channel, efx->type->evq_size);
 | 
						|
 | 
						|
	/* Ack the eventq. This may cause an interrupt to be generated
 | 
						|
	 * when they are reenabled */
 | 
						|
	efx_channel_processed(channel);
 | 
						|
 | 
						|
	napi_enable(&channel->napi_str);
 | 
						|
	falcon_enable_interrupts(efx);
 | 
						|
}
 | 
						|
 | 
						|
/* Create event queue
 | 
						|
 * Event queue memory allocations are done only once.  If the channel
 | 
						|
 * is reset, the memory buffer will be reused; this guards against
 | 
						|
 * errors during channel reset and also simplifies interrupt handling.
 | 
						|
 */
 | 
						|
static int efx_probe_eventq(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
 | 
						|
 | 
						|
	return falcon_probe_eventq(channel);
 | 
						|
}
 | 
						|
 | 
						|
/* Prepare channel's event queue */
 | 
						|
static void efx_init_eventq(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
 | 
						|
 | 
						|
	channel->eventq_read_ptr = 0;
 | 
						|
 | 
						|
	falcon_init_eventq(channel);
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_eventq(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
 | 
						|
 | 
						|
	falcon_fini_eventq(channel);
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_eventq(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
 | 
						|
 | 
						|
	falcon_remove_eventq(channel);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Channel handling
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
static int efx_probe_channel(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
 | 
						|
 | 
						|
	rc = efx_probe_eventq(channel);
 | 
						|
	if (rc)
 | 
						|
		goto fail1;
 | 
						|
 | 
						|
	efx_for_each_channel_tx_queue(tx_queue, channel) {
 | 
						|
		rc = efx_probe_tx_queue(tx_queue);
 | 
						|
		if (rc)
 | 
						|
			goto fail2;
 | 
						|
	}
 | 
						|
 | 
						|
	efx_for_each_channel_rx_queue(rx_queue, channel) {
 | 
						|
		rc = efx_probe_rx_queue(rx_queue);
 | 
						|
		if (rc)
 | 
						|
			goto fail3;
 | 
						|
	}
 | 
						|
 | 
						|
	channel->n_rx_frm_trunc = 0;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail3:
 | 
						|
	efx_for_each_channel_rx_queue(rx_queue, channel)
 | 
						|
		efx_remove_rx_queue(rx_queue);
 | 
						|
 fail2:
 | 
						|
	efx_for_each_channel_tx_queue(tx_queue, channel)
 | 
						|
		efx_remove_tx_queue(tx_queue);
 | 
						|
 fail1:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void efx_set_channel_names(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
	const char *type = "";
 | 
						|
	int number;
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		number = channel->channel;
 | 
						|
		if (efx->n_channels > efx->n_rx_queues) {
 | 
						|
			if (channel->channel < efx->n_rx_queues) {
 | 
						|
				type = "-rx";
 | 
						|
			} else {
 | 
						|
				type = "-tx";
 | 
						|
				number -= efx->n_rx_queues;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		snprintf(channel->name, sizeof(channel->name),
 | 
						|
			 "%s%s-%d", efx->name, type, number);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Channels are shutdown and reinitialised whilst the NIC is running
 | 
						|
 * to propagate configuration changes (mtu, checksum offload), or
 | 
						|
 * to clear hardware error conditions
 | 
						|
 */
 | 
						|
static void efx_init_channels(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	/* Calculate the rx buffer allocation parameters required to
 | 
						|
	 * support the current MTU, including padding for header
 | 
						|
	 * alignment and overruns.
 | 
						|
	 */
 | 
						|
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
 | 
						|
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 | 
						|
			      efx->type->rx_buffer_padding);
 | 
						|
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
 | 
						|
 | 
						|
	/* Initialise the channels */
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
 | 
						|
 | 
						|
		efx_init_eventq(channel);
 | 
						|
 | 
						|
		efx_for_each_channel_tx_queue(tx_queue, channel)
 | 
						|
			efx_init_tx_queue(tx_queue);
 | 
						|
 | 
						|
		/* The rx buffer allocation strategy is MTU dependent */
 | 
						|
		efx_rx_strategy(channel);
 | 
						|
 | 
						|
		efx_for_each_channel_rx_queue(rx_queue, channel)
 | 
						|
			efx_init_rx_queue(rx_queue);
 | 
						|
 | 
						|
		WARN_ON(channel->rx_pkt != NULL);
 | 
						|
		efx_rx_strategy(channel);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* This enables event queue processing and packet transmission.
 | 
						|
 *
 | 
						|
 * Note that this function is not allowed to fail, since that would
 | 
						|
 * introduce too much complexity into the suspend/resume path.
 | 
						|
 */
 | 
						|
static void efx_start_channel(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
 | 
						|
 | 
						|
	/* The interrupt handler for this channel may set work_pending
 | 
						|
	 * as soon as we enable it.  Make sure it's cleared before
 | 
						|
	 * then.  Similarly, make sure it sees the enabled flag set. */
 | 
						|
	channel->work_pending = false;
 | 
						|
	channel->enabled = true;
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	napi_enable(&channel->napi_str);
 | 
						|
 | 
						|
	/* Load up RX descriptors */
 | 
						|
	efx_for_each_channel_rx_queue(rx_queue, channel)
 | 
						|
		efx_fast_push_rx_descriptors(rx_queue);
 | 
						|
}
 | 
						|
 | 
						|
/* This disables event queue processing and packet transmission.
 | 
						|
 * This function does not guarantee that all queue processing
 | 
						|
 * (e.g. RX refill) is complete.
 | 
						|
 */
 | 
						|
static void efx_stop_channel(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	if (!channel->enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
 | 
						|
 | 
						|
	channel->enabled = false;
 | 
						|
	napi_disable(&channel->napi_str);
 | 
						|
 | 
						|
	/* Ensure that any worker threads have exited or will be no-ops */
 | 
						|
	efx_for_each_channel_rx_queue(rx_queue, channel) {
 | 
						|
		spin_lock_bh(&rx_queue->add_lock);
 | 
						|
		spin_unlock_bh(&rx_queue->add_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_channels(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
	BUG_ON(efx->port_enabled);
 | 
						|
 | 
						|
	rc = falcon_flush_queues(efx);
 | 
						|
	if (rc)
 | 
						|
		EFX_ERR(efx, "failed to flush queues\n");
 | 
						|
	else
 | 
						|
		EFX_LOG(efx, "successfully flushed all queues\n");
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
 | 
						|
 | 
						|
		efx_for_each_channel_rx_queue(rx_queue, channel)
 | 
						|
			efx_fini_rx_queue(rx_queue);
 | 
						|
		efx_for_each_channel_tx_queue(tx_queue, channel)
 | 
						|
			efx_fini_tx_queue(tx_queue);
 | 
						|
		efx_fini_eventq(channel);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_channel(struct efx_channel *channel)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
 | 
						|
 | 
						|
	efx_for_each_channel_rx_queue(rx_queue, channel)
 | 
						|
		efx_remove_rx_queue(rx_queue);
 | 
						|
	efx_for_each_channel_tx_queue(tx_queue, channel)
 | 
						|
		efx_remove_tx_queue(tx_queue);
 | 
						|
	efx_remove_eventq(channel);
 | 
						|
 | 
						|
	channel->used_flags = 0;
 | 
						|
}
 | 
						|
 | 
						|
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
 | 
						|
{
 | 
						|
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Port handling
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* This ensures that the kernel is kept informed (via
 | 
						|
 * netif_carrier_on/off) of the link status, and also maintains the
 | 
						|
 * link status's stop on the port's TX queue.
 | 
						|
 */
 | 
						|
static void efx_link_status_changed(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 | 
						|
	 * that no events are triggered between unregister_netdev() and the
 | 
						|
	 * driver unloading. A more general condition is that NETDEV_CHANGE
 | 
						|
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 | 
						|
	if (!netif_running(efx->net_dev))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (efx->port_inhibited) {
 | 
						|
		netif_carrier_off(efx->net_dev);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
 | 
						|
		efx->n_link_state_changes++;
 | 
						|
 | 
						|
		if (efx->link_up)
 | 
						|
			netif_carrier_on(efx->net_dev);
 | 
						|
		else
 | 
						|
			netif_carrier_off(efx->net_dev);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Status message for kernel log */
 | 
						|
	if (efx->link_up) {
 | 
						|
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
 | 
						|
			 efx->link_speed, efx->link_fd ? "full" : "half",
 | 
						|
			 efx->net_dev->mtu,
 | 
						|
			 (efx->promiscuous ? " [PROMISC]" : ""));
 | 
						|
	} else {
 | 
						|
		EFX_INFO(efx, "link down\n");
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_port(struct efx_nic *efx);
 | 
						|
 | 
						|
/* This call reinitialises the MAC to pick up new PHY settings. The
 | 
						|
 * caller must hold the mac_lock */
 | 
						|
void __efx_reconfigure_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 | 
						|
 | 
						|
	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
 | 
						|
		raw_smp_processor_id());
 | 
						|
 | 
						|
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
 | 
						|
	if (efx_dev_registered(efx)) {
 | 
						|
		netif_addr_lock_bh(efx->net_dev);
 | 
						|
		netif_addr_unlock_bh(efx->net_dev);
 | 
						|
	}
 | 
						|
 | 
						|
	falcon_deconfigure_mac_wrapper(efx);
 | 
						|
 | 
						|
	/* Reconfigure the PHY, disabling transmit in mac level loopback. */
 | 
						|
	if (LOOPBACK_INTERNAL(efx))
 | 
						|
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
 | 
						|
	else
 | 
						|
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 | 
						|
	efx->phy_op->reconfigure(efx);
 | 
						|
 | 
						|
	if (falcon_switch_mac(efx))
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	efx->mac_op->reconfigure(efx);
 | 
						|
 | 
						|
	/* Inform kernel of loss/gain of carrier */
 | 
						|
	efx_link_status_changed(efx);
 | 
						|
	return;
 | 
						|
 | 
						|
fail:
 | 
						|
	EFX_ERR(efx, "failed to reconfigure MAC\n");
 | 
						|
	efx->port_enabled = false;
 | 
						|
	efx_fini_port(efx);
 | 
						|
}
 | 
						|
 | 
						|
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 | 
						|
 * disabled. */
 | 
						|
void efx_reconfigure_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	__efx_reconfigure_port(efx);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
 | 
						|
 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
 | 
						|
 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
 | 
						|
static void efx_phy_work(struct work_struct *data)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
 | 
						|
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	if (efx->port_enabled)
 | 
						|
		__efx_reconfigure_port(efx);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void efx_mac_work(struct work_struct *data)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 | 
						|
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	if (efx->port_enabled)
 | 
						|
		efx->mac_op->irq(efx);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int efx_probe_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_LOG(efx, "create port\n");
 | 
						|
 | 
						|
	/* Connect up MAC/PHY operations table and read MAC address */
 | 
						|
	rc = falcon_probe_port(efx);
 | 
						|
	if (rc)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	if (phy_flash_cfg)
 | 
						|
		efx->phy_mode = PHY_MODE_SPECIAL;
 | 
						|
 | 
						|
	/* Sanity check MAC address */
 | 
						|
	if (is_valid_ether_addr(efx->mac_address)) {
 | 
						|
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
 | 
						|
	} else {
 | 
						|
		EFX_ERR(efx, "invalid MAC address %pM\n",
 | 
						|
			efx->mac_address);
 | 
						|
		if (!allow_bad_hwaddr) {
 | 
						|
			rc = -EINVAL;
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
		random_ether_addr(efx->net_dev->dev_addr);
 | 
						|
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
 | 
						|
			 efx->net_dev->dev_addr);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 err:
 | 
						|
	efx_remove_port(efx);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int efx_init_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_LOG(efx, "init port\n");
 | 
						|
 | 
						|
	rc = efx->phy_op->init(efx);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	efx->phy_op->reconfigure(efx);
 | 
						|
	rc = falcon_switch_mac(efx);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
	if (rc)
 | 
						|
		goto fail;
 | 
						|
	efx->mac_op->reconfigure(efx);
 | 
						|
 | 
						|
	efx->port_initialized = true;
 | 
						|
	efx_stats_enable(efx);
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
	efx->phy_op->fini(efx);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* Allow efx_reconfigure_port() to be scheduled, and close the window
 | 
						|
 * between efx_stop_port and efx_flush_all whereby a previously scheduled
 | 
						|
 * efx_phy_work()/efx_mac_work() may have been cancelled */
 | 
						|
static void efx_start_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "start port\n");
 | 
						|
	BUG_ON(efx->port_enabled);
 | 
						|
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	efx->port_enabled = true;
 | 
						|
	__efx_reconfigure_port(efx);
 | 
						|
	efx->mac_op->irq(efx);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
 | 
						|
 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
 | 
						|
 * and efx_mac_work may still be scheduled via NAPI processing until
 | 
						|
 * efx_flush_all() is called */
 | 
						|
static void efx_stop_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "stop port\n");
 | 
						|
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	efx->port_enabled = false;
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
 | 
						|
	/* Serialise against efx_set_multicast_list() */
 | 
						|
	if (efx_dev_registered(efx)) {
 | 
						|
		netif_addr_lock_bh(efx->net_dev);
 | 
						|
		netif_addr_unlock_bh(efx->net_dev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "shut down port\n");
 | 
						|
 | 
						|
	if (!efx->port_initialized)
 | 
						|
		return;
 | 
						|
 | 
						|
	efx_stats_disable(efx);
 | 
						|
	efx->phy_op->fini(efx);
 | 
						|
	efx->port_initialized = false;
 | 
						|
 | 
						|
	efx->link_up = false;
 | 
						|
	efx_link_status_changed(efx);
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_port(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "destroying port\n");
 | 
						|
 | 
						|
	falcon_remove_port(efx);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * NIC handling
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* This configures the PCI device to enable I/O and DMA. */
 | 
						|
static int efx_init_io(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct pci_dev *pci_dev = efx->pci_dev;
 | 
						|
	dma_addr_t dma_mask = efx->type->max_dma_mask;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_LOG(efx, "initialising I/O\n");
 | 
						|
 | 
						|
	rc = pci_enable_device(pci_dev);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to enable PCI device\n");
 | 
						|
		goto fail1;
 | 
						|
	}
 | 
						|
 | 
						|
	pci_set_master(pci_dev);
 | 
						|
 | 
						|
	/* Set the PCI DMA mask.  Try all possibilities from our
 | 
						|
	 * genuine mask down to 32 bits, because some architectures
 | 
						|
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
 | 
						|
	 * masks event though they reject 46 bit masks.
 | 
						|
	 */
 | 
						|
	while (dma_mask > 0x7fffffffUL) {
 | 
						|
		if (pci_dma_supported(pci_dev, dma_mask) &&
 | 
						|
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
 | 
						|
			break;
 | 
						|
		dma_mask >>= 1;
 | 
						|
	}
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
 | 
						|
		goto fail2;
 | 
						|
	}
 | 
						|
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
 | 
						|
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
 | 
						|
	if (rc) {
 | 
						|
		/* pci_set_consistent_dma_mask() is not *allowed* to
 | 
						|
		 * fail with a mask that pci_set_dma_mask() accepted,
 | 
						|
		 * but just in case...
 | 
						|
		 */
 | 
						|
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
 | 
						|
		goto fail2;
 | 
						|
	}
 | 
						|
 | 
						|
	efx->membase_phys = pci_resource_start(efx->pci_dev,
 | 
						|
					       efx->type->mem_bar);
 | 
						|
	rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "request for memory BAR failed\n");
 | 
						|
		rc = -EIO;
 | 
						|
		goto fail3;
 | 
						|
	}
 | 
						|
	efx->membase = ioremap_nocache(efx->membase_phys,
 | 
						|
				       efx->type->mem_map_size);
 | 
						|
	if (!efx->membase) {
 | 
						|
		EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
 | 
						|
			efx->type->mem_bar,
 | 
						|
			(unsigned long long)efx->membase_phys,
 | 
						|
			efx->type->mem_map_size);
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto fail4;
 | 
						|
	}
 | 
						|
	EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
 | 
						|
		efx->type->mem_bar, (unsigned long long)efx->membase_phys,
 | 
						|
		efx->type->mem_map_size, efx->membase);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail4:
 | 
						|
	pci_release_region(efx->pci_dev, efx->type->mem_bar);
 | 
						|
 fail3:
 | 
						|
	efx->membase_phys = 0;
 | 
						|
 fail2:
 | 
						|
	pci_disable_device(efx->pci_dev);
 | 
						|
 fail1:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_io(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "shutting down I/O\n");
 | 
						|
 | 
						|
	if (efx->membase) {
 | 
						|
		iounmap(efx->membase);
 | 
						|
		efx->membase = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (efx->membase_phys) {
 | 
						|
		pci_release_region(efx->pci_dev, efx->type->mem_bar);
 | 
						|
		efx->membase_phys = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	pci_disable_device(efx->pci_dev);
 | 
						|
}
 | 
						|
 | 
						|
/* Get number of RX queues wanted.  Return number of online CPU
 | 
						|
 * packages in the expectation that an IRQ balancer will spread
 | 
						|
 * interrupts across them. */
 | 
						|
static int efx_wanted_rx_queues(void)
 | 
						|
{
 | 
						|
	cpumask_var_t core_mask;
 | 
						|
	int count;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (unlikely(!alloc_cpumask_var(&core_mask, GFP_KERNEL))) {
 | 
						|
		printk(KERN_WARNING
 | 
						|
		       "sfc: RSS disabled due to allocation failure\n");
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	cpumask_clear(core_mask);
 | 
						|
	count = 0;
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		if (!cpumask_test_cpu(cpu, core_mask)) {
 | 
						|
			++count;
 | 
						|
			cpumask_or(core_mask, core_mask,
 | 
						|
				   topology_core_cpumask(cpu));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	free_cpumask_var(core_mask);
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
/* Probe the number and type of interrupts we are able to obtain, and
 | 
						|
 * the resulting numbers of channels and RX queues.
 | 
						|
 */
 | 
						|
static void efx_probe_interrupts(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	int max_channels =
 | 
						|
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
 | 
						|
	int rc, i;
 | 
						|
 | 
						|
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
 | 
						|
		struct msix_entry xentries[EFX_MAX_CHANNELS];
 | 
						|
		int wanted_ints;
 | 
						|
		int rx_queues;
 | 
						|
 | 
						|
		/* We want one RX queue and interrupt per CPU package
 | 
						|
		 * (or as specified by the rss_cpus module parameter).
 | 
						|
		 * We will need one channel per interrupt.
 | 
						|
		 */
 | 
						|
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
 | 
						|
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
 | 
						|
		wanted_ints = min(wanted_ints, max_channels);
 | 
						|
 | 
						|
		for (i = 0; i < wanted_ints; i++)
 | 
						|
			xentries[i].entry = i;
 | 
						|
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
 | 
						|
		if (rc > 0) {
 | 
						|
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
 | 
						|
				" available (%d < %d).\n", rc, wanted_ints);
 | 
						|
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
 | 
						|
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
 | 
						|
			wanted_ints = rc;
 | 
						|
			rc = pci_enable_msix(efx->pci_dev, xentries,
 | 
						|
					     wanted_ints);
 | 
						|
		}
 | 
						|
 | 
						|
		if (rc == 0) {
 | 
						|
			efx->n_rx_queues = min(rx_queues, wanted_ints);
 | 
						|
			efx->n_channels = wanted_ints;
 | 
						|
			for (i = 0; i < wanted_ints; i++)
 | 
						|
				efx->channel[i].irq = xentries[i].vector;
 | 
						|
		} else {
 | 
						|
			/* Fall back to single channel MSI */
 | 
						|
			efx->interrupt_mode = EFX_INT_MODE_MSI;
 | 
						|
			EFX_ERR(efx, "could not enable MSI-X\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Try single interrupt MSI */
 | 
						|
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
 | 
						|
		efx->n_rx_queues = 1;
 | 
						|
		efx->n_channels = 1;
 | 
						|
		rc = pci_enable_msi(efx->pci_dev);
 | 
						|
		if (rc == 0) {
 | 
						|
			efx->channel[0].irq = efx->pci_dev->irq;
 | 
						|
		} else {
 | 
						|
			EFX_ERR(efx, "could not enable MSI\n");
 | 
						|
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Assume legacy interrupts */
 | 
						|
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
 | 
						|
		efx->n_rx_queues = 1;
 | 
						|
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
 | 
						|
		efx->legacy_irq = efx->pci_dev->irq;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_interrupts(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	/* Remove MSI/MSI-X interrupts */
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		channel->irq = 0;
 | 
						|
	pci_disable_msi(efx->pci_dev);
 | 
						|
	pci_disable_msix(efx->pci_dev);
 | 
						|
 | 
						|
	/* Remove legacy interrupt */
 | 
						|
	efx->legacy_irq = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_set_channels(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	efx_for_each_tx_queue(tx_queue, efx) {
 | 
						|
		if (separate_tx_channels)
 | 
						|
			tx_queue->channel = &efx->channel[efx->n_channels-1];
 | 
						|
		else
 | 
						|
			tx_queue->channel = &efx->channel[0];
 | 
						|
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
 | 
						|
	}
 | 
						|
 | 
						|
	efx_for_each_rx_queue(rx_queue, efx) {
 | 
						|
		rx_queue->channel = &efx->channel[rx_queue->queue];
 | 
						|
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int efx_probe_nic(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_LOG(efx, "creating NIC\n");
 | 
						|
 | 
						|
	/* Carry out hardware-type specific initialisation */
 | 
						|
	rc = falcon_probe_nic(efx);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	/* Determine the number of channels and RX queues by trying to hook
 | 
						|
	 * in MSI-X interrupts. */
 | 
						|
	efx_probe_interrupts(efx);
 | 
						|
 | 
						|
	efx_set_channels(efx);
 | 
						|
 | 
						|
	/* Initialise the interrupt moderation settings */
 | 
						|
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_nic(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_LOG(efx, "destroying NIC\n");
 | 
						|
 | 
						|
	efx_remove_interrupts(efx);
 | 
						|
	falcon_remove_nic(efx);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * NIC startup/shutdown
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
static int efx_probe_all(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	/* Create NIC */
 | 
						|
	rc = efx_probe_nic(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to create NIC\n");
 | 
						|
		goto fail1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create port */
 | 
						|
	rc = efx_probe_port(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to create port\n");
 | 
						|
		goto fail2;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create channels */
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		rc = efx_probe_channel(channel);
 | 
						|
		if (rc) {
 | 
						|
			EFX_ERR(efx, "failed to create channel %d\n",
 | 
						|
				channel->channel);
 | 
						|
			goto fail3;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	efx_set_channel_names(efx);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail3:
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		efx_remove_channel(channel);
 | 
						|
	efx_remove_port(efx);
 | 
						|
 fail2:
 | 
						|
	efx_remove_nic(efx);
 | 
						|
 fail1:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* Called after previous invocation(s) of efx_stop_all, restarts the
 | 
						|
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 | 
						|
 * and ensures that the port is scheduled to be reconfigured.
 | 
						|
 * This function is safe to call multiple times when the NIC is in any
 | 
						|
 * state. */
 | 
						|
static void efx_start_all(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	/* Check that it is appropriate to restart the interface. All
 | 
						|
	 * of these flags are safe to read under just the rtnl lock */
 | 
						|
	if (efx->port_enabled)
 | 
						|
		return;
 | 
						|
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
 | 
						|
		return;
 | 
						|
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Mark the port as enabled so port reconfigurations can start, then
 | 
						|
	 * restart the transmit interface early so the watchdog timer stops */
 | 
						|
	efx_start_port(efx);
 | 
						|
	if (efx_dev_registered(efx))
 | 
						|
		efx_wake_queue(efx);
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		efx_start_channel(channel);
 | 
						|
 | 
						|
	falcon_enable_interrupts(efx);
 | 
						|
 | 
						|
	/* Start hardware monitor if we're in RUNNING */
 | 
						|
	if (efx->state == STATE_RUNNING)
 | 
						|
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
 | 
						|
				   efx_monitor_interval);
 | 
						|
}
 | 
						|
 | 
						|
/* Flush all delayed work. Should only be called when no more delayed work
 | 
						|
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 | 
						|
 * since we're holding the rtnl_lock at this point. */
 | 
						|
static void efx_flush_all(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	/* Make sure the hardware monitor is stopped */
 | 
						|
	cancel_delayed_work_sync(&efx->monitor_work);
 | 
						|
 | 
						|
	/* Ensure that all RX slow refills are complete. */
 | 
						|
	efx_for_each_rx_queue(rx_queue, efx)
 | 
						|
		cancel_delayed_work_sync(&rx_queue->work);
 | 
						|
 | 
						|
	/* Stop scheduled port reconfigurations */
 | 
						|
	cancel_work_sync(&efx->mac_work);
 | 
						|
	cancel_work_sync(&efx->phy_work);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Quiesce hardware and software without bringing the link down.
 | 
						|
 * Safe to call multiple times, when the nic and interface is in any
 | 
						|
 * state. The caller is guaranteed to subsequently be in a position
 | 
						|
 * to modify any hardware and software state they see fit without
 | 
						|
 * taking locks. */
 | 
						|
static void efx_stop_all(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	/* port_enabled can be read safely under the rtnl lock */
 | 
						|
	if (!efx->port_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Disable interrupts and wait for ISR to complete */
 | 
						|
	falcon_disable_interrupts(efx);
 | 
						|
	if (efx->legacy_irq)
 | 
						|
		synchronize_irq(efx->legacy_irq);
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		if (channel->irq)
 | 
						|
			synchronize_irq(channel->irq);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Stop all NAPI processing and synchronous rx refills */
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		efx_stop_channel(channel);
 | 
						|
 | 
						|
	/* Stop all asynchronous port reconfigurations. Since all
 | 
						|
	 * event processing has already been stopped, there is no
 | 
						|
	 * window to loose phy events */
 | 
						|
	efx_stop_port(efx);
 | 
						|
 | 
						|
	/* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
 | 
						|
	efx_flush_all(efx);
 | 
						|
 | 
						|
	/* Isolate the MAC from the TX and RX engines, so that queue
 | 
						|
	 * flushes will complete in a timely fashion. */
 | 
						|
	falcon_drain_tx_fifo(efx);
 | 
						|
 | 
						|
	/* Stop the kernel transmit interface late, so the watchdog
 | 
						|
	 * timer isn't ticking over the flush */
 | 
						|
	if (efx_dev_registered(efx)) {
 | 
						|
		efx_stop_queue(efx);
 | 
						|
		netif_tx_lock_bh(efx->net_dev);
 | 
						|
		netif_tx_unlock_bh(efx->net_dev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void efx_remove_all(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		efx_remove_channel(channel);
 | 
						|
	efx_remove_port(efx);
 | 
						|
	efx_remove_nic(efx);
 | 
						|
}
 | 
						|
 | 
						|
/* A convinience function to safely flush all the queues */
 | 
						|
void efx_flush_queues(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	efx_stop_all(efx);
 | 
						|
 | 
						|
	efx_fini_channels(efx);
 | 
						|
	efx_init_channels(efx);
 | 
						|
 | 
						|
	efx_start_all(efx);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Interrupt moderation
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* Set interrupt moderation parameters */
 | 
						|
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
 | 
						|
			     bool rx_adaptive)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	efx_for_each_tx_queue(tx_queue, efx)
 | 
						|
		tx_queue->channel->irq_moderation = tx_usecs;
 | 
						|
 | 
						|
	efx->irq_rx_adaptive = rx_adaptive;
 | 
						|
	efx->irq_rx_moderation = rx_usecs;
 | 
						|
	efx_for_each_rx_queue(rx_queue, efx)
 | 
						|
		rx_queue->channel->irq_moderation = rx_usecs;
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Hardware monitor
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* Run periodically off the general workqueue. Serialised against
 | 
						|
 * efx_reconfigure_port via the mac_lock */
 | 
						|
static void efx_monitor(struct work_struct *data)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = container_of(data, struct efx_nic,
 | 
						|
					   monitor_work.work);
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
 | 
						|
		  raw_smp_processor_id());
 | 
						|
 | 
						|
	/* If the mac_lock is already held then it is likely a port
 | 
						|
	 * reconfiguration is already in place, which will likely do
 | 
						|
	 * most of the work of check_hw() anyway. */
 | 
						|
	if (!mutex_trylock(&efx->mac_lock))
 | 
						|
		goto out_requeue;
 | 
						|
	if (!efx->port_enabled)
 | 
						|
		goto out_unlock;
 | 
						|
	rc = efx->board_info.monitor(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
 | 
						|
			(rc == -ERANGE) ? "reported fault" : "failed");
 | 
						|
		efx->phy_mode |= PHY_MODE_LOW_POWER;
 | 
						|
		falcon_sim_phy_event(efx);
 | 
						|
	}
 | 
						|
	efx->phy_op->poll(efx);
 | 
						|
	efx->mac_op->poll(efx);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
out_requeue:
 | 
						|
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
 | 
						|
			   efx_monitor_interval);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * ioctls
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
/* Net device ioctl
 | 
						|
 * Context: process, rtnl_lock() held.
 | 
						|
 */
 | 
						|
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	struct mii_ioctl_data *data = if_mii(ifr);
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	/* Convert phy_id from older PRTAD/DEVAD format */
 | 
						|
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 | 
						|
	    (data->phy_id & 0xfc00) == 0x0400)
 | 
						|
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 | 
						|
 | 
						|
	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * NAPI interface
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
static int efx_init_napi(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		channel->napi_dev = efx->net_dev;
 | 
						|
		netif_napi_add(channel->napi_dev, &channel->napi_str,
 | 
						|
			       efx_poll, napi_weight);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_napi(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx) {
 | 
						|
		if (channel->napi_dev)
 | 
						|
			netif_napi_del(&channel->napi_str);
 | 
						|
		channel->napi_dev = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Kernel netpoll interface
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
#ifdef CONFIG_NET_POLL_CONTROLLER
 | 
						|
 | 
						|
/* Although in the common case interrupts will be disabled, this is not
 | 
						|
 * guaranteed. However, all our work happens inside the NAPI callback,
 | 
						|
 * so no locking is required.
 | 
						|
 */
 | 
						|
static void efx_netpoll(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	struct efx_channel *channel;
 | 
						|
 | 
						|
	efx_for_each_channel(channel, efx)
 | 
						|
		efx_schedule_channel(channel);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Kernel net device interface
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
/* Context: process, rtnl_lock() held. */
 | 
						|
static int efx_net_open(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
 | 
						|
		raw_smp_processor_id());
 | 
						|
 | 
						|
	if (efx->state == STATE_DISABLED)
 | 
						|
		return -EIO;
 | 
						|
	if (efx->phy_mode & PHY_MODE_SPECIAL)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	efx_start_all(efx);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Context: process, rtnl_lock() held.
 | 
						|
 * Note that the kernel will ignore our return code; this method
 | 
						|
 * should really be a void.
 | 
						|
 */
 | 
						|
static int efx_net_stop(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
 | 
						|
	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
 | 
						|
		raw_smp_processor_id());
 | 
						|
 | 
						|
	if (efx->state != STATE_DISABLED) {
 | 
						|
		/* Stop the device and flush all the channels */
 | 
						|
		efx_stop_all(efx);
 | 
						|
		efx_fini_channels(efx);
 | 
						|
		efx_init_channels(efx);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void efx_stats_disable(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	spin_lock(&efx->stats_lock);
 | 
						|
	++efx->stats_disable_count;
 | 
						|
	spin_unlock(&efx->stats_lock);
 | 
						|
}
 | 
						|
 | 
						|
void efx_stats_enable(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	spin_lock(&efx->stats_lock);
 | 
						|
	--efx->stats_disable_count;
 | 
						|
	spin_unlock(&efx->stats_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
 | 
						|
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
 | 
						|
	struct net_device_stats *stats = &net_dev->stats;
 | 
						|
 | 
						|
	/* Update stats if possible, but do not wait if another thread
 | 
						|
	 * is updating them or if MAC stats fetches are temporarily
 | 
						|
	 * disabled; slightly stale stats are acceptable.
 | 
						|
	 */
 | 
						|
	if (!spin_trylock(&efx->stats_lock))
 | 
						|
		return stats;
 | 
						|
	if (!efx->stats_disable_count) {
 | 
						|
		efx->mac_op->update_stats(efx);
 | 
						|
		falcon_update_nic_stats(efx);
 | 
						|
	}
 | 
						|
	spin_unlock(&efx->stats_lock);
 | 
						|
 | 
						|
	stats->rx_packets = mac_stats->rx_packets;
 | 
						|
	stats->tx_packets = mac_stats->tx_packets;
 | 
						|
	stats->rx_bytes = mac_stats->rx_bytes;
 | 
						|
	stats->tx_bytes = mac_stats->tx_bytes;
 | 
						|
	stats->multicast = mac_stats->rx_multicast;
 | 
						|
	stats->collisions = mac_stats->tx_collision;
 | 
						|
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
 | 
						|
				   mac_stats->rx_length_error);
 | 
						|
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
 | 
						|
	stats->rx_crc_errors = mac_stats->rx_bad;
 | 
						|
	stats->rx_frame_errors = mac_stats->rx_align_error;
 | 
						|
	stats->rx_fifo_errors = mac_stats->rx_overflow;
 | 
						|
	stats->rx_missed_errors = mac_stats->rx_missed;
 | 
						|
	stats->tx_window_errors = mac_stats->tx_late_collision;
 | 
						|
 | 
						|
	stats->rx_errors = (stats->rx_length_errors +
 | 
						|
			    stats->rx_over_errors +
 | 
						|
			    stats->rx_crc_errors +
 | 
						|
			    stats->rx_frame_errors +
 | 
						|
			    stats->rx_fifo_errors +
 | 
						|
			    stats->rx_missed_errors +
 | 
						|
			    mac_stats->rx_symbol_error);
 | 
						|
	stats->tx_errors = (stats->tx_window_errors +
 | 
						|
			    mac_stats->tx_bad);
 | 
						|
 | 
						|
	return stats;
 | 
						|
}
 | 
						|
 | 
						|
/* Context: netif_tx_lock held, BHs disabled. */
 | 
						|
static void efx_watchdog(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
 | 
						|
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
 | 
						|
		" resetting channels\n",
 | 
						|
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
 | 
						|
 | 
						|
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Context: process, rtnl_lock() held. */
 | 
						|
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	if (new_mtu > EFX_MAX_MTU)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	efx_stop_all(efx);
 | 
						|
 | 
						|
	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
 | 
						|
 | 
						|
	efx_fini_channels(efx);
 | 
						|
	net_dev->mtu = new_mtu;
 | 
						|
	efx_init_channels(efx);
 | 
						|
 | 
						|
	efx_start_all(efx);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int efx_set_mac_address(struct net_device *net_dev, void *data)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	struct sockaddr *addr = data;
 | 
						|
	char *new_addr = addr->sa_data;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	if (!is_valid_ether_addr(new_addr)) {
 | 
						|
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
 | 
						|
			new_addr);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
 | 
						|
 | 
						|
	/* Reconfigure the MAC */
 | 
						|
	efx_reconfigure_port(efx);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Context: netif_addr_lock held, BHs disabled. */
 | 
						|
static void efx_set_multicast_list(struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = netdev_priv(net_dev);
 | 
						|
	struct dev_mc_list *mc_list = net_dev->mc_list;
 | 
						|
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
 | 
						|
	bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
 | 
						|
	bool changed = (efx->promiscuous != promiscuous);
 | 
						|
	u32 crc;
 | 
						|
	int bit;
 | 
						|
	int i;
 | 
						|
 | 
						|
	efx->promiscuous = promiscuous;
 | 
						|
 | 
						|
	/* Build multicast hash table */
 | 
						|
	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
 | 
						|
		memset(mc_hash, 0xff, sizeof(*mc_hash));
 | 
						|
	} else {
 | 
						|
		memset(mc_hash, 0x00, sizeof(*mc_hash));
 | 
						|
		for (i = 0; i < net_dev->mc_count; i++) {
 | 
						|
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
 | 
						|
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
 | 
						|
			set_bit_le(bit, mc_hash->byte);
 | 
						|
			mc_list = mc_list->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!efx->port_enabled)
 | 
						|
		/* Delay pushing settings until efx_start_port() */
 | 
						|
		return;
 | 
						|
 | 
						|
	if (changed)
 | 
						|
		queue_work(efx->workqueue, &efx->phy_work);
 | 
						|
 | 
						|
	/* Create and activate new global multicast hash table */
 | 
						|
	falcon_set_multicast_hash(efx);
 | 
						|
}
 | 
						|
 | 
						|
static const struct net_device_ops efx_netdev_ops = {
 | 
						|
	.ndo_open		= efx_net_open,
 | 
						|
	.ndo_stop		= efx_net_stop,
 | 
						|
	.ndo_get_stats		= efx_net_stats,
 | 
						|
	.ndo_tx_timeout		= efx_watchdog,
 | 
						|
	.ndo_start_xmit		= efx_hard_start_xmit,
 | 
						|
	.ndo_validate_addr	= eth_validate_addr,
 | 
						|
	.ndo_do_ioctl		= efx_ioctl,
 | 
						|
	.ndo_change_mtu		= efx_change_mtu,
 | 
						|
	.ndo_set_mac_address	= efx_set_mac_address,
 | 
						|
	.ndo_set_multicast_list = efx_set_multicast_list,
 | 
						|
#ifdef CONFIG_NET_POLL_CONTROLLER
 | 
						|
	.ndo_poll_controller = efx_netpoll,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static void efx_update_name(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	strcpy(efx->name, efx->net_dev->name);
 | 
						|
	efx_mtd_rename(efx);
 | 
						|
	efx_set_channel_names(efx);
 | 
						|
}
 | 
						|
 | 
						|
static int efx_netdev_event(struct notifier_block *this,
 | 
						|
			    unsigned long event, void *ptr)
 | 
						|
{
 | 
						|
	struct net_device *net_dev = ptr;
 | 
						|
 | 
						|
	if (net_dev->netdev_ops == &efx_netdev_ops &&
 | 
						|
	    event == NETDEV_CHANGENAME)
 | 
						|
		efx_update_name(netdev_priv(net_dev));
 | 
						|
 | 
						|
	return NOTIFY_DONE;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block efx_netdev_notifier = {
 | 
						|
	.notifier_call = efx_netdev_event,
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t
 | 
						|
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 | 
						|
	return sprintf(buf, "%d\n", efx->phy_type);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
 | 
						|
 | 
						|
static int efx_register_netdev(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct net_device *net_dev = efx->net_dev;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	net_dev->watchdog_timeo = 5 * HZ;
 | 
						|
	net_dev->irq = efx->pci_dev->irq;
 | 
						|
	net_dev->netdev_ops = &efx_netdev_ops;
 | 
						|
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
 | 
						|
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
 | 
						|
 | 
						|
	/* Always start with carrier off; PHY events will detect the link */
 | 
						|
	netif_carrier_off(efx->net_dev);
 | 
						|
 | 
						|
	/* Clear MAC statistics */
 | 
						|
	efx->mac_op->update_stats(efx);
 | 
						|
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
 | 
						|
 | 
						|
	rc = register_netdev(net_dev);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "could not register net dev\n");
 | 
						|
		return rc;
 | 
						|
	}
 | 
						|
 | 
						|
	rtnl_lock();
 | 
						|
	efx_update_name(efx);
 | 
						|
	rtnl_unlock();
 | 
						|
 | 
						|
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to init net dev attributes\n");
 | 
						|
		goto fail_registered;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail_registered:
 | 
						|
	unregister_netdev(net_dev);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_unregister_netdev(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
 | 
						|
	if (!efx->net_dev)
 | 
						|
		return;
 | 
						|
 | 
						|
	BUG_ON(netdev_priv(efx->net_dev) != efx);
 | 
						|
 | 
						|
	/* Free up any skbs still remaining. This has to happen before
 | 
						|
	 * we try to unregister the netdev as running their destructors
 | 
						|
	 * may be needed to get the device ref. count to 0. */
 | 
						|
	efx_for_each_tx_queue(tx_queue, efx)
 | 
						|
		efx_release_tx_buffers(tx_queue);
 | 
						|
 | 
						|
	if (efx_dev_registered(efx)) {
 | 
						|
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 | 
						|
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 | 
						|
		unregister_netdev(efx->net_dev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Device reset and suspend
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* Tears down the entire software state and most of the hardware state
 | 
						|
 * before reset.  */
 | 
						|
void efx_reset_down(struct efx_nic *efx, enum reset_type method,
 | 
						|
		    struct ethtool_cmd *ecmd)
 | 
						|
{
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	efx_stats_disable(efx);
 | 
						|
	efx_stop_all(efx);
 | 
						|
	mutex_lock(&efx->mac_lock);
 | 
						|
	mutex_lock(&efx->spi_lock);
 | 
						|
 | 
						|
	efx->phy_op->get_settings(efx, ecmd);
 | 
						|
 | 
						|
	efx_fini_channels(efx);
 | 
						|
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
 | 
						|
		efx->phy_op->fini(efx);
 | 
						|
}
 | 
						|
 | 
						|
/* This function will always ensure that the locks acquired in
 | 
						|
 * efx_reset_down() are released. A failure return code indicates
 | 
						|
 * that we were unable to reinitialise the hardware, and the
 | 
						|
 * driver should be disabled. If ok is false, then the rx and tx
 | 
						|
 * engines are not restarted, pending a RESET_DISABLE. */
 | 
						|
int efx_reset_up(struct efx_nic *efx, enum reset_type method,
 | 
						|
		 struct ethtool_cmd *ecmd, bool ok)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	rc = falcon_init_nic(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to initialise NIC\n");
 | 
						|
		ok = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
 | 
						|
		if (ok) {
 | 
						|
			rc = efx->phy_op->init(efx);
 | 
						|
			if (rc)
 | 
						|
				ok = false;
 | 
						|
		}
 | 
						|
		if (!ok)
 | 
						|
			efx->port_initialized = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ok) {
 | 
						|
		efx_init_channels(efx);
 | 
						|
 | 
						|
		if (efx->phy_op->set_settings(efx, ecmd))
 | 
						|
			EFX_ERR(efx, "could not restore PHY settings\n");
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&efx->spi_lock);
 | 
						|
	mutex_unlock(&efx->mac_lock);
 | 
						|
 | 
						|
	if (ok) {
 | 
						|
		efx_start_all(efx);
 | 
						|
		efx_stats_enable(efx);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* Reset the NIC as transparently as possible. Do not reset the PHY
 | 
						|
 * Note that the reset may fail, in which case the card will be left
 | 
						|
 * in a most-probably-unusable state.
 | 
						|
 *
 | 
						|
 * This function will sleep.  You cannot reset from within an atomic
 | 
						|
 * state; use efx_schedule_reset() instead.
 | 
						|
 *
 | 
						|
 * Grabs the rtnl_lock.
 | 
						|
 */
 | 
						|
static int efx_reset(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	struct ethtool_cmd ecmd;
 | 
						|
	enum reset_type method = efx->reset_pending;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	/* Serialise with kernel interfaces */
 | 
						|
	rtnl_lock();
 | 
						|
 | 
						|
	/* If we're not RUNNING then don't reset. Leave the reset_pending
 | 
						|
	 * flag set so that efx_pci_probe_main will be retried */
 | 
						|
	if (efx->state != STATE_RUNNING) {
 | 
						|
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	EFX_INFO(efx, "resetting (%d)\n", method);
 | 
						|
 | 
						|
	efx_reset_down(efx, method, &ecmd);
 | 
						|
 | 
						|
	rc = falcon_reset_hw(efx, method);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to reset hardware\n");
 | 
						|
		goto out_disable;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Allow resets to be rescheduled. */
 | 
						|
	efx->reset_pending = RESET_TYPE_NONE;
 | 
						|
 | 
						|
	/* Reinitialise bus-mastering, which may have been turned off before
 | 
						|
	 * the reset was scheduled. This is still appropriate, even in the
 | 
						|
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
 | 
						|
	 * can respond to requests. */
 | 
						|
	pci_set_master(efx->pci_dev);
 | 
						|
 | 
						|
	/* Leave device stopped if necessary */
 | 
						|
	if (method == RESET_TYPE_DISABLE) {
 | 
						|
		efx_reset_up(efx, method, &ecmd, false);
 | 
						|
		rc = -EIO;
 | 
						|
	} else {
 | 
						|
		rc = efx_reset_up(efx, method, &ecmd, true);
 | 
						|
	}
 | 
						|
 | 
						|
out_disable:
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "has been disabled\n");
 | 
						|
		efx->state = STATE_DISABLED;
 | 
						|
		dev_close(efx->net_dev);
 | 
						|
	} else {
 | 
						|
		EFX_LOG(efx, "reset complete\n");
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	rtnl_unlock();
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* The worker thread exists so that code that cannot sleep can
 | 
						|
 * schedule a reset for later.
 | 
						|
 */
 | 
						|
static void efx_reset_work(struct work_struct *data)
 | 
						|
{
 | 
						|
	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
 | 
						|
 | 
						|
	efx_reset(nic);
 | 
						|
}
 | 
						|
 | 
						|
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
 | 
						|
{
 | 
						|
	enum reset_type method;
 | 
						|
 | 
						|
	if (efx->reset_pending != RESET_TYPE_NONE) {
 | 
						|
		EFX_INFO(efx, "quenching already scheduled reset\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case RESET_TYPE_INVISIBLE:
 | 
						|
	case RESET_TYPE_ALL:
 | 
						|
	case RESET_TYPE_WORLD:
 | 
						|
	case RESET_TYPE_DISABLE:
 | 
						|
		method = type;
 | 
						|
		break;
 | 
						|
	case RESET_TYPE_RX_RECOVERY:
 | 
						|
	case RESET_TYPE_RX_DESC_FETCH:
 | 
						|
	case RESET_TYPE_TX_DESC_FETCH:
 | 
						|
	case RESET_TYPE_TX_SKIP:
 | 
						|
		method = RESET_TYPE_INVISIBLE;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		method = RESET_TYPE_ALL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (method != type)
 | 
						|
		EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
 | 
						|
	else
 | 
						|
		EFX_LOG(efx, "scheduling reset (%d)\n", method);
 | 
						|
 | 
						|
	efx->reset_pending = method;
 | 
						|
 | 
						|
	queue_work(reset_workqueue, &efx->reset_work);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * List of NICs we support
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* PCI device ID table */
 | 
						|
static struct pci_device_id efx_pci_table[] __devinitdata = {
 | 
						|
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
 | 
						|
	 .driver_data = (unsigned long) &falcon_a_nic_type},
 | 
						|
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
 | 
						|
	 .driver_data = (unsigned long) &falcon_b_nic_type},
 | 
						|
	{0}			/* end of list */
 | 
						|
};
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Dummy PHY/MAC/Board operations
 | 
						|
 *
 | 
						|
 * Can be used for some unimplemented operations
 | 
						|
 * Needed so all function pointers are valid and do not have to be tested
 | 
						|
 * before use
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
int efx_port_dummy_op_int(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
void efx_port_dummy_op_void(struct efx_nic *efx) {}
 | 
						|
void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
 | 
						|
 | 
						|
static struct efx_mac_operations efx_dummy_mac_operations = {
 | 
						|
	.reconfigure	= efx_port_dummy_op_void,
 | 
						|
	.poll		= efx_port_dummy_op_void,
 | 
						|
	.irq		= efx_port_dummy_op_void,
 | 
						|
};
 | 
						|
 | 
						|
static struct efx_phy_operations efx_dummy_phy_operations = {
 | 
						|
	.init		 = efx_port_dummy_op_int,
 | 
						|
	.reconfigure	 = efx_port_dummy_op_void,
 | 
						|
	.poll		 = efx_port_dummy_op_void,
 | 
						|
	.fini		 = efx_port_dummy_op_void,
 | 
						|
	.clear_interrupt = efx_port_dummy_op_void,
 | 
						|
};
 | 
						|
 | 
						|
static struct efx_board efx_dummy_board_info = {
 | 
						|
	.init		= efx_port_dummy_op_int,
 | 
						|
	.init_leds	= efx_port_dummy_op_void,
 | 
						|
	.set_id_led	= efx_port_dummy_op_blink,
 | 
						|
	.monitor	= efx_port_dummy_op_int,
 | 
						|
	.blink		= efx_port_dummy_op_blink,
 | 
						|
	.fini		= efx_port_dummy_op_void,
 | 
						|
};
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Data housekeeping
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* This zeroes out and then fills in the invariants in a struct
 | 
						|
 * efx_nic (including all sub-structures).
 | 
						|
 */
 | 
						|
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
 | 
						|
			   struct pci_dev *pci_dev, struct net_device *net_dev)
 | 
						|
{
 | 
						|
	struct efx_channel *channel;
 | 
						|
	struct efx_tx_queue *tx_queue;
 | 
						|
	struct efx_rx_queue *rx_queue;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Initialise common structures */
 | 
						|
	memset(efx, 0, sizeof(*efx));
 | 
						|
	spin_lock_init(&efx->biu_lock);
 | 
						|
	spin_lock_init(&efx->phy_lock);
 | 
						|
	mutex_init(&efx->spi_lock);
 | 
						|
	INIT_WORK(&efx->reset_work, efx_reset_work);
 | 
						|
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
 | 
						|
	efx->pci_dev = pci_dev;
 | 
						|
	efx->state = STATE_INIT;
 | 
						|
	efx->reset_pending = RESET_TYPE_NONE;
 | 
						|
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
 | 
						|
	efx->board_info = efx_dummy_board_info;
 | 
						|
 | 
						|
	efx->net_dev = net_dev;
 | 
						|
	efx->rx_checksum_enabled = true;
 | 
						|
	spin_lock_init(&efx->netif_stop_lock);
 | 
						|
	spin_lock_init(&efx->stats_lock);
 | 
						|
	efx->stats_disable_count = 1;
 | 
						|
	mutex_init(&efx->mac_lock);
 | 
						|
	efx->mac_op = &efx_dummy_mac_operations;
 | 
						|
	efx->phy_op = &efx_dummy_phy_operations;
 | 
						|
	efx->mdio.dev = net_dev;
 | 
						|
	INIT_WORK(&efx->phy_work, efx_phy_work);
 | 
						|
	INIT_WORK(&efx->mac_work, efx_mac_work);
 | 
						|
	atomic_set(&efx->netif_stop_count, 1);
 | 
						|
 | 
						|
	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
 | 
						|
		channel = &efx->channel[i];
 | 
						|
		channel->efx = efx;
 | 
						|
		channel->channel = i;
 | 
						|
		channel->work_pending = false;
 | 
						|
	}
 | 
						|
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
 | 
						|
		tx_queue = &efx->tx_queue[i];
 | 
						|
		tx_queue->efx = efx;
 | 
						|
		tx_queue->queue = i;
 | 
						|
		tx_queue->buffer = NULL;
 | 
						|
		tx_queue->channel = &efx->channel[0]; /* for safety */
 | 
						|
		tx_queue->tso_headers_free = NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
 | 
						|
		rx_queue = &efx->rx_queue[i];
 | 
						|
		rx_queue->efx = efx;
 | 
						|
		rx_queue->queue = i;
 | 
						|
		rx_queue->channel = &efx->channel[0]; /* for safety */
 | 
						|
		rx_queue->buffer = NULL;
 | 
						|
		spin_lock_init(&rx_queue->add_lock);
 | 
						|
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
 | 
						|
	}
 | 
						|
 | 
						|
	efx->type = type;
 | 
						|
 | 
						|
	/* Sanity-check NIC type */
 | 
						|
	EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
 | 
						|
			    (efx->type->txd_ring_mask + 1));
 | 
						|
	EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
 | 
						|
			    (efx->type->rxd_ring_mask + 1));
 | 
						|
	EFX_BUG_ON_PARANOID(efx->type->evq_size &
 | 
						|
			    (efx->type->evq_size - 1));
 | 
						|
	/* As close as we can get to guaranteeing that we don't overflow */
 | 
						|
	EFX_BUG_ON_PARANOID(efx->type->evq_size <
 | 
						|
			    (efx->type->txd_ring_mask + 1 +
 | 
						|
			     efx->type->rxd_ring_mask + 1));
 | 
						|
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
 | 
						|
 | 
						|
	/* Higher numbered interrupt modes are less capable! */
 | 
						|
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
 | 
						|
				  interrupt_mode);
 | 
						|
 | 
						|
	/* Would be good to use the net_dev name, but we're too early */
 | 
						|
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
 | 
						|
		 pci_name(pci_dev));
 | 
						|
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
 | 
						|
	if (!efx->workqueue)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void efx_fini_struct(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	if (efx->workqueue) {
 | 
						|
		destroy_workqueue(efx->workqueue);
 | 
						|
		efx->workqueue = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * PCI interface
 | 
						|
 *
 | 
						|
 **************************************************************************/
 | 
						|
 | 
						|
/* Main body of final NIC shutdown code
 | 
						|
 * This is called only at module unload (or hotplug removal).
 | 
						|
 */
 | 
						|
static void efx_pci_remove_main(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	EFX_ASSERT_RESET_SERIALISED(efx);
 | 
						|
 | 
						|
	/* Skip everything if we never obtained a valid membase */
 | 
						|
	if (!efx->membase)
 | 
						|
		return;
 | 
						|
 | 
						|
	efx_fini_channels(efx);
 | 
						|
	efx_fini_port(efx);
 | 
						|
 | 
						|
	/* Shutdown the board, then the NIC and board state */
 | 
						|
	efx->board_info.fini(efx);
 | 
						|
	falcon_fini_interrupt(efx);
 | 
						|
 | 
						|
	efx_fini_napi(efx);
 | 
						|
	efx_remove_all(efx);
 | 
						|
}
 | 
						|
 | 
						|
/* Final NIC shutdown
 | 
						|
 * This is called only at module unload (or hotplug removal).
 | 
						|
 */
 | 
						|
static void efx_pci_remove(struct pci_dev *pci_dev)
 | 
						|
{
 | 
						|
	struct efx_nic *efx;
 | 
						|
 | 
						|
	efx = pci_get_drvdata(pci_dev);
 | 
						|
	if (!efx)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Mark the NIC as fini, then stop the interface */
 | 
						|
	rtnl_lock();
 | 
						|
	efx->state = STATE_FINI;
 | 
						|
	dev_close(efx->net_dev);
 | 
						|
 | 
						|
	/* Allow any queued efx_resets() to complete */
 | 
						|
	rtnl_unlock();
 | 
						|
 | 
						|
	if (efx->membase == NULL)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	efx_unregister_netdev(efx);
 | 
						|
 | 
						|
	efx_mtd_remove(efx);
 | 
						|
 | 
						|
	/* Wait for any scheduled resets to complete. No more will be
 | 
						|
	 * scheduled from this point because efx_stop_all() has been
 | 
						|
	 * called, we are no longer registered with driverlink, and
 | 
						|
	 * the net_device's have been removed. */
 | 
						|
	cancel_work_sync(&efx->reset_work);
 | 
						|
 | 
						|
	efx_pci_remove_main(efx);
 | 
						|
 | 
						|
out:
 | 
						|
	efx_fini_io(efx);
 | 
						|
	EFX_LOG(efx, "shutdown successful\n");
 | 
						|
 | 
						|
	pci_set_drvdata(pci_dev, NULL);
 | 
						|
	efx_fini_struct(efx);
 | 
						|
	free_netdev(efx->net_dev);
 | 
						|
};
 | 
						|
 | 
						|
/* Main body of NIC initialisation
 | 
						|
 * This is called at module load (or hotplug insertion, theoretically).
 | 
						|
 */
 | 
						|
static int efx_pci_probe_main(struct efx_nic *efx)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	/* Do start-of-day initialisation */
 | 
						|
	rc = efx_probe_all(efx);
 | 
						|
	if (rc)
 | 
						|
		goto fail1;
 | 
						|
 | 
						|
	rc = efx_init_napi(efx);
 | 
						|
	if (rc)
 | 
						|
		goto fail2;
 | 
						|
 | 
						|
	/* Initialise the board */
 | 
						|
	rc = efx->board_info.init(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to initialise board\n");
 | 
						|
		goto fail3;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = falcon_init_nic(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to initialise NIC\n");
 | 
						|
		goto fail4;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = efx_init_port(efx);
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "failed to initialise port\n");
 | 
						|
		goto fail5;
 | 
						|
	}
 | 
						|
 | 
						|
	efx_init_channels(efx);
 | 
						|
 | 
						|
	rc = falcon_init_interrupt(efx);
 | 
						|
	if (rc)
 | 
						|
		goto fail6;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail6:
 | 
						|
	efx_fini_channels(efx);
 | 
						|
	efx_fini_port(efx);
 | 
						|
 fail5:
 | 
						|
 fail4:
 | 
						|
	efx->board_info.fini(efx);
 | 
						|
 fail3:
 | 
						|
	efx_fini_napi(efx);
 | 
						|
 fail2:
 | 
						|
	efx_remove_all(efx);
 | 
						|
 fail1:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* NIC initialisation
 | 
						|
 *
 | 
						|
 * This is called at module load (or hotplug insertion,
 | 
						|
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 | 
						|
 * sets up and registers the network devices with the kernel and hooks
 | 
						|
 * the interrupt service routine.  It does not prepare the device for
 | 
						|
 * transmission; this is left to the first time one of the network
 | 
						|
 * interfaces is brought up (i.e. efx_net_open).
 | 
						|
 */
 | 
						|
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
 | 
						|
				   const struct pci_device_id *entry)
 | 
						|
{
 | 
						|
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
 | 
						|
	struct net_device *net_dev;
 | 
						|
	struct efx_nic *efx;
 | 
						|
	int i, rc;
 | 
						|
 | 
						|
	/* Allocate and initialise a struct net_device and struct efx_nic */
 | 
						|
	net_dev = alloc_etherdev(sizeof(*efx));
 | 
						|
	if (!net_dev)
 | 
						|
		return -ENOMEM;
 | 
						|
	net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
 | 
						|
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
 | 
						|
			      NETIF_F_GRO);
 | 
						|
	/* Mask for features that also apply to VLAN devices */
 | 
						|
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
 | 
						|
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
 | 
						|
	efx = netdev_priv(net_dev);
 | 
						|
	pci_set_drvdata(pci_dev, efx);
 | 
						|
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
 | 
						|
	if (rc)
 | 
						|
		goto fail1;
 | 
						|
 | 
						|
	EFX_INFO(efx, "Solarflare Communications NIC detected\n");
 | 
						|
 | 
						|
	/* Set up basic I/O (BAR mappings etc) */
 | 
						|
	rc = efx_init_io(efx);
 | 
						|
	if (rc)
 | 
						|
		goto fail2;
 | 
						|
 | 
						|
	/* No serialisation is required with the reset path because
 | 
						|
	 * we're in STATE_INIT. */
 | 
						|
	for (i = 0; i < 5; i++) {
 | 
						|
		rc = efx_pci_probe_main(efx);
 | 
						|
 | 
						|
		/* Serialise against efx_reset(). No more resets will be
 | 
						|
		 * scheduled since efx_stop_all() has been called, and we
 | 
						|
		 * have not and never have been registered with either
 | 
						|
		 * the rtnetlink or driverlink layers. */
 | 
						|
		cancel_work_sync(&efx->reset_work);
 | 
						|
 | 
						|
		if (rc == 0) {
 | 
						|
			if (efx->reset_pending != RESET_TYPE_NONE) {
 | 
						|
				/* If there was a scheduled reset during
 | 
						|
				 * probe, the NIC is probably hosed anyway */
 | 
						|
				efx_pci_remove_main(efx);
 | 
						|
				rc = -EIO;
 | 
						|
			} else {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Retry if a recoverably reset event has been scheduled */
 | 
						|
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
 | 
						|
		    (efx->reset_pending != RESET_TYPE_ALL))
 | 
						|
			goto fail3;
 | 
						|
 | 
						|
		efx->reset_pending = RESET_TYPE_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rc) {
 | 
						|
		EFX_ERR(efx, "Could not reset NIC\n");
 | 
						|
		goto fail4;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Switch to the running state before we expose the device to
 | 
						|
	 * the OS.  This is to ensure that the initial gathering of
 | 
						|
	 * MAC stats succeeds. */
 | 
						|
	efx->state = STATE_RUNNING;
 | 
						|
 | 
						|
	efx_mtd_probe(efx); /* allowed to fail */
 | 
						|
 | 
						|
	rc = efx_register_netdev(efx);
 | 
						|
	if (rc)
 | 
						|
		goto fail5;
 | 
						|
 | 
						|
	EFX_LOG(efx, "initialisation successful\n");
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail5:
 | 
						|
	efx_pci_remove_main(efx);
 | 
						|
 fail4:
 | 
						|
 fail3:
 | 
						|
	efx_fini_io(efx);
 | 
						|
 fail2:
 | 
						|
	efx_fini_struct(efx);
 | 
						|
 fail1:
 | 
						|
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
 | 
						|
	free_netdev(net_dev);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static struct pci_driver efx_pci_driver = {
 | 
						|
	.name		= EFX_DRIVER_NAME,
 | 
						|
	.id_table	= efx_pci_table,
 | 
						|
	.probe		= efx_pci_probe,
 | 
						|
	.remove		= efx_pci_remove,
 | 
						|
};
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *
 | 
						|
 * Kernel module interface
 | 
						|
 *
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
module_param(interrupt_mode, uint, 0444);
 | 
						|
MODULE_PARM_DESC(interrupt_mode,
 | 
						|
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
 | 
						|
 | 
						|
static int __init efx_init_module(void)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
 | 
						|
 | 
						|
	rc = register_netdevice_notifier(&efx_netdev_notifier);
 | 
						|
	if (rc)
 | 
						|
		goto err_notifier;
 | 
						|
 | 
						|
	refill_workqueue = create_workqueue("sfc_refill");
 | 
						|
	if (!refill_workqueue) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto err_refill;
 | 
						|
	}
 | 
						|
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
 | 
						|
	if (!reset_workqueue) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto err_reset;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = pci_register_driver(&efx_pci_driver);
 | 
						|
	if (rc < 0)
 | 
						|
		goto err_pci;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 err_pci:
 | 
						|
	destroy_workqueue(reset_workqueue);
 | 
						|
 err_reset:
 | 
						|
	destroy_workqueue(refill_workqueue);
 | 
						|
 err_refill:
 | 
						|
	unregister_netdevice_notifier(&efx_netdev_notifier);
 | 
						|
 err_notifier:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit efx_exit_module(void)
 | 
						|
{
 | 
						|
	printk(KERN_INFO "Solarflare NET driver unloading\n");
 | 
						|
 | 
						|
	pci_unregister_driver(&efx_pci_driver);
 | 
						|
	destroy_workqueue(reset_workqueue);
 | 
						|
	destroy_workqueue(refill_workqueue);
 | 
						|
	unregister_netdevice_notifier(&efx_netdev_notifier);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
module_init(efx_init_module);
 | 
						|
module_exit(efx_exit_module);
 | 
						|
 | 
						|
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
 | 
						|
	      "Solarflare Communications");
 | 
						|
MODULE_DESCRIPTION("Solarflare Communications network driver");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DEVICE_TABLE(pci, efx_pci_table);
 |