mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2537 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2537 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2007 Oracle.  All rights reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public
 | 
						|
 * License v2 as published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public
 | 
						|
 * License along with this program; if not, write to the
 | 
						|
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | 
						|
 * Boston, MA 021110-1307, USA.
 | 
						|
 */
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/buffer_head.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <asm/div64.h>
 | 
						|
#include "ctree.h"
 | 
						|
#include "extent_map.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "transaction.h"
 | 
						|
#include "print-tree.h"
 | 
						|
#include "volumes.h"
 | 
						|
#include "async-thread.h"
 | 
						|
 | 
						|
struct map_lookup {
 | 
						|
	u64 type;
 | 
						|
	int io_align;
 | 
						|
	int io_width;
 | 
						|
	int stripe_len;
 | 
						|
	int sector_size;
 | 
						|
	int num_stripes;
 | 
						|
	int sub_stripes;
 | 
						|
	struct btrfs_bio_stripe stripes[];
 | 
						|
};
 | 
						|
 | 
						|
#define map_lookup_size(n) (sizeof(struct map_lookup) + \
 | 
						|
			    (sizeof(struct btrfs_bio_stripe) * (n)))
 | 
						|
 | 
						|
static DEFINE_MUTEX(uuid_mutex);
 | 
						|
static LIST_HEAD(fs_uuids);
 | 
						|
 | 
						|
void btrfs_lock_volumes(void)
 | 
						|
{
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_unlock_volumes(void)
 | 
						|
{
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void lock_chunks(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	mutex_lock(&root->fs_info->alloc_mutex);
 | 
						|
	mutex_lock(&root->fs_info->chunk_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void unlock_chunks(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	mutex_unlock(&root->fs_info->alloc_mutex);
 | 
						|
	mutex_unlock(&root->fs_info->chunk_mutex);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_cleanup_fs_uuids(void)
 | 
						|
{
 | 
						|
	struct btrfs_fs_devices *fs_devices;
 | 
						|
	struct list_head *uuid_cur;
 | 
						|
	struct list_head *devices_cur;
 | 
						|
	struct btrfs_device *dev;
 | 
						|
 | 
						|
	list_for_each(uuid_cur, &fs_uuids) {
 | 
						|
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
 | 
						|
					list);
 | 
						|
		while(!list_empty(&fs_devices->devices)) {
 | 
						|
			devices_cur = fs_devices->devices.next;
 | 
						|
			dev = list_entry(devices_cur, struct btrfs_device,
 | 
						|
					 dev_list);
 | 
						|
			if (dev->bdev) {
 | 
						|
				close_bdev_excl(dev->bdev);
 | 
						|
				fs_devices->open_devices--;
 | 
						|
			}
 | 
						|
			list_del(&dev->dev_list);
 | 
						|
			kfree(dev->name);
 | 
						|
			kfree(dev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
 | 
						|
					  u8 *uuid)
 | 
						|
{
 | 
						|
	struct btrfs_device *dev;
 | 
						|
	struct list_head *cur;
 | 
						|
 | 
						|
	list_for_each(cur, head) {
 | 
						|
		dev = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		if (dev->devid == devid &&
 | 
						|
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 | 
						|
			return dev;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_fs_devices *find_fsid(u8 *fsid)
 | 
						|
{
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_fs_devices *fs_devices;
 | 
						|
 | 
						|
	list_for_each(cur, &fs_uuids) {
 | 
						|
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
 | 
						|
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 | 
						|
			return fs_devices;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * we try to collect pending bios for a device so we don't get a large
 | 
						|
 * number of procs sending bios down to the same device.  This greatly
 | 
						|
 * improves the schedulers ability to collect and merge the bios.
 | 
						|
 *
 | 
						|
 * But, it also turns into a long list of bios to process and that is sure
 | 
						|
 * to eventually make the worker thread block.  The solution here is to
 | 
						|
 * make some progress and then put this work struct back at the end of
 | 
						|
 * the list if the block device is congested.  This way, multiple devices
 | 
						|
 * can make progress from a single worker thread.
 | 
						|
 */
 | 
						|
int run_scheduled_bios(struct btrfs_device *device)
 | 
						|
{
 | 
						|
	struct bio *pending;
 | 
						|
	struct backing_dev_info *bdi;
 | 
						|
	struct bio *tail;
 | 
						|
	struct bio *cur;
 | 
						|
	int again = 0;
 | 
						|
	unsigned long num_run = 0;
 | 
						|
 | 
						|
	bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
 | 
						|
loop:
 | 
						|
	spin_lock(&device->io_lock);
 | 
						|
 | 
						|
	/* take all the bios off the list at once and process them
 | 
						|
	 * later on (without the lock held).  But, remember the
 | 
						|
	 * tail and other pointers so the bios can be properly reinserted
 | 
						|
	 * into the list if we hit congestion
 | 
						|
	 */
 | 
						|
	pending = device->pending_bios;
 | 
						|
	tail = device->pending_bio_tail;
 | 
						|
	WARN_ON(pending && !tail);
 | 
						|
	device->pending_bios = NULL;
 | 
						|
	device->pending_bio_tail = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if pending was null this time around, no bios need processing
 | 
						|
	 * at all and we can stop.  Otherwise it'll loop back up again
 | 
						|
	 * and do an additional check so no bios are missed.
 | 
						|
	 *
 | 
						|
	 * device->running_pending is used to synchronize with the
 | 
						|
	 * schedule_bio code.
 | 
						|
	 */
 | 
						|
	if (pending) {
 | 
						|
		again = 1;
 | 
						|
		device->running_pending = 1;
 | 
						|
	} else {
 | 
						|
		again = 0;
 | 
						|
		device->running_pending = 0;
 | 
						|
	}
 | 
						|
	spin_unlock(&device->io_lock);
 | 
						|
 | 
						|
	while(pending) {
 | 
						|
		cur = pending;
 | 
						|
		pending = pending->bi_next;
 | 
						|
		cur->bi_next = NULL;
 | 
						|
		atomic_dec(&device->dev_root->fs_info->nr_async_submits);
 | 
						|
 | 
						|
		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 | 
						|
		bio_get(cur);
 | 
						|
		submit_bio(cur->bi_rw, cur);
 | 
						|
		bio_put(cur);
 | 
						|
		num_run++;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we made progress, there is more work to do and the bdi
 | 
						|
		 * is now congested.  Back off and let other work structs
 | 
						|
		 * run instead
 | 
						|
		 */
 | 
						|
		if (pending && bdi_write_congested(bdi)) {
 | 
						|
			struct bio *old_head;
 | 
						|
 | 
						|
			spin_lock(&device->io_lock);
 | 
						|
 | 
						|
			old_head = device->pending_bios;
 | 
						|
			device->pending_bios = pending;
 | 
						|
			if (device->pending_bio_tail)
 | 
						|
				tail->bi_next = old_head;
 | 
						|
			else
 | 
						|
				device->pending_bio_tail = tail;
 | 
						|
 | 
						|
			spin_unlock(&device->io_lock);
 | 
						|
			btrfs_requeue_work(&device->work);
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (again)
 | 
						|
		goto loop;
 | 
						|
done:
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void pending_bios_fn(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct btrfs_device *device;
 | 
						|
 | 
						|
	device = container_of(work, struct btrfs_device, work);
 | 
						|
	run_scheduled_bios(device);
 | 
						|
}
 | 
						|
 | 
						|
static int device_list_add(const char *path,
 | 
						|
			   struct btrfs_super_block *disk_super,
 | 
						|
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 | 
						|
{
 | 
						|
	struct btrfs_device *device;
 | 
						|
	struct btrfs_fs_devices *fs_devices;
 | 
						|
	u64 found_transid = btrfs_super_generation(disk_super);
 | 
						|
 | 
						|
	fs_devices = find_fsid(disk_super->fsid);
 | 
						|
	if (!fs_devices) {
 | 
						|
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 | 
						|
		if (!fs_devices)
 | 
						|
			return -ENOMEM;
 | 
						|
		INIT_LIST_HEAD(&fs_devices->devices);
 | 
						|
		INIT_LIST_HEAD(&fs_devices->alloc_list);
 | 
						|
		list_add(&fs_devices->list, &fs_uuids);
 | 
						|
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 | 
						|
		fs_devices->latest_devid = devid;
 | 
						|
		fs_devices->latest_trans = found_transid;
 | 
						|
		device = NULL;
 | 
						|
	} else {
 | 
						|
		device = __find_device(&fs_devices->devices, devid,
 | 
						|
				       disk_super->dev_item.uuid);
 | 
						|
	}
 | 
						|
	if (!device) {
 | 
						|
		device = kzalloc(sizeof(*device), GFP_NOFS);
 | 
						|
		if (!device) {
 | 
						|
			/* we can safely leave the fs_devices entry around */
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		device->devid = devid;
 | 
						|
		device->work.func = pending_bios_fn;
 | 
						|
		memcpy(device->uuid, disk_super->dev_item.uuid,
 | 
						|
		       BTRFS_UUID_SIZE);
 | 
						|
		device->barriers = 1;
 | 
						|
		spin_lock_init(&device->io_lock);
 | 
						|
		device->name = kstrdup(path, GFP_NOFS);
 | 
						|
		if (!device->name) {
 | 
						|
			kfree(device);
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		list_add(&device->dev_list, &fs_devices->devices);
 | 
						|
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
 | 
						|
		fs_devices->num_devices++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (found_transid > fs_devices->latest_trans) {
 | 
						|
		fs_devices->latest_devid = devid;
 | 
						|
		fs_devices->latest_trans = found_transid;
 | 
						|
	}
 | 
						|
	*fs_devices_ret = fs_devices;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
 | 
						|
{
 | 
						|
	struct list_head *head = &fs_devices->devices;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_device *device;
 | 
						|
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
again:
 | 
						|
	list_for_each(cur, head) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		if (!device->in_fs_metadata) {
 | 
						|
			struct block_device *bdev;
 | 
						|
			list_del(&device->dev_list);
 | 
						|
			list_del(&device->dev_alloc_list);
 | 
						|
			fs_devices->num_devices--;
 | 
						|
			if (device->bdev) {
 | 
						|
				bdev = device->bdev;
 | 
						|
				fs_devices->open_devices--;
 | 
						|
				mutex_unlock(&uuid_mutex);
 | 
						|
				close_bdev_excl(bdev);
 | 
						|
				mutex_lock(&uuid_mutex);
 | 
						|
			}
 | 
						|
			kfree(device->name);
 | 
						|
			kfree(device);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 | 
						|
{
 | 
						|
	struct list_head *head = &fs_devices->devices;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_device *device;
 | 
						|
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
	list_for_each(cur, head) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		if (device->bdev) {
 | 
						|
			close_bdev_excl(device->bdev);
 | 
						|
			fs_devices->open_devices--;
 | 
						|
		}
 | 
						|
		device->bdev = NULL;
 | 
						|
		device->in_fs_metadata = 0;
 | 
						|
	}
 | 
						|
	fs_devices->mounted = 0;
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 | 
						|
		       int flags, void *holder)
 | 
						|
{
 | 
						|
	struct block_device *bdev;
 | 
						|
	struct list_head *head = &fs_devices->devices;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_device *device;
 | 
						|
	struct block_device *latest_bdev = NULL;
 | 
						|
	struct buffer_head *bh;
 | 
						|
	struct btrfs_super_block *disk_super;
 | 
						|
	u64 latest_devid = 0;
 | 
						|
	u64 latest_transid = 0;
 | 
						|
	u64 transid;
 | 
						|
	u64 devid;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
	if (fs_devices->mounted)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	list_for_each(cur, head) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		if (device->bdev)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!device->name)
 | 
						|
			continue;
 | 
						|
 | 
						|
		bdev = open_bdev_excl(device->name, flags, holder);
 | 
						|
 | 
						|
		if (IS_ERR(bdev)) {
 | 
						|
			printk("open %s failed\n", device->name);
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		set_blocksize(bdev, 4096);
 | 
						|
 | 
						|
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
 | 
						|
		if (!bh)
 | 
						|
			goto error_close;
 | 
						|
 | 
						|
		disk_super = (struct btrfs_super_block *)bh->b_data;
 | 
						|
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
 | 
						|
		    sizeof(disk_super->magic)))
 | 
						|
			goto error_brelse;
 | 
						|
 | 
						|
		devid = le64_to_cpu(disk_super->dev_item.devid);
 | 
						|
		if (devid != device->devid)
 | 
						|
			goto error_brelse;
 | 
						|
 | 
						|
		transid = btrfs_super_generation(disk_super);
 | 
						|
		if (!latest_transid || transid > latest_transid) {
 | 
						|
			latest_devid = devid;
 | 
						|
			latest_transid = transid;
 | 
						|
			latest_bdev = bdev;
 | 
						|
		}
 | 
						|
 | 
						|
		device->bdev = bdev;
 | 
						|
		device->in_fs_metadata = 0;
 | 
						|
		fs_devices->open_devices++;
 | 
						|
		continue;
 | 
						|
 | 
						|
error_brelse:
 | 
						|
		brelse(bh);
 | 
						|
error_close:
 | 
						|
		close_bdev_excl(bdev);
 | 
						|
error:
 | 
						|
		continue;
 | 
						|
	}
 | 
						|
	if (fs_devices->open_devices == 0) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	fs_devices->mounted = 1;
 | 
						|
	fs_devices->latest_bdev = latest_bdev;
 | 
						|
	fs_devices->latest_devid = latest_devid;
 | 
						|
	fs_devices->latest_trans = latest_transid;
 | 
						|
out:
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_scan_one_device(const char *path, int flags, void *holder,
 | 
						|
			  struct btrfs_fs_devices **fs_devices_ret)
 | 
						|
{
 | 
						|
	struct btrfs_super_block *disk_super;
 | 
						|
	struct block_device *bdev;
 | 
						|
	struct buffer_head *bh;
 | 
						|
	int ret;
 | 
						|
	u64 devid;
 | 
						|
	u64 transid;
 | 
						|
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
 | 
						|
	bdev = open_bdev_excl(path, flags, holder);
 | 
						|
 | 
						|
	if (IS_ERR(bdev)) {
 | 
						|
		ret = PTR_ERR(bdev);
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = set_blocksize(bdev, 4096);
 | 
						|
	if (ret)
 | 
						|
		goto error_close;
 | 
						|
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
 | 
						|
	if (!bh) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto error_close;
 | 
						|
	}
 | 
						|
	disk_super = (struct btrfs_super_block *)bh->b_data;
 | 
						|
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
 | 
						|
	    sizeof(disk_super->magic))) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto error_brelse;
 | 
						|
	}
 | 
						|
	devid = le64_to_cpu(disk_super->dev_item.devid);
 | 
						|
	transid = btrfs_super_generation(disk_super);
 | 
						|
	if (disk_super->label[0])
 | 
						|
		printk("device label %s ", disk_super->label);
 | 
						|
	else {
 | 
						|
		/* FIXME, make a readl uuid parser */
 | 
						|
		printk("device fsid %llx-%llx ",
 | 
						|
		       *(unsigned long long *)disk_super->fsid,
 | 
						|
		       *(unsigned long long *)(disk_super->fsid + 8));
 | 
						|
	}
 | 
						|
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
 | 
						|
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 | 
						|
 | 
						|
error_brelse:
 | 
						|
	brelse(bh);
 | 
						|
error_close:
 | 
						|
	close_bdev_excl(bdev);
 | 
						|
error:
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this uses a pretty simple search, the expectation is that it is
 | 
						|
 * called very infrequently and that a given device has a small number
 | 
						|
 * of extents
 | 
						|
 */
 | 
						|
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_device *device,
 | 
						|
				struct btrfs_path *path,
 | 
						|
				u64 num_bytes, u64 *start)
 | 
						|
{
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_root *root = device->dev_root;
 | 
						|
	struct btrfs_dev_extent *dev_extent = NULL;
 | 
						|
	u64 hole_size = 0;
 | 
						|
	u64 last_byte = 0;
 | 
						|
	u64 search_start = 0;
 | 
						|
	u64 search_end = device->total_bytes;
 | 
						|
	int ret;
 | 
						|
	int slot = 0;
 | 
						|
	int start_found;
 | 
						|
	struct extent_buffer *l;
 | 
						|
 | 
						|
	start_found = 0;
 | 
						|
	path->reada = 2;
 | 
						|
 | 
						|
	/* FIXME use last free of some kind */
 | 
						|
 | 
						|
	/* we don't want to overwrite the superblock on the drive,
 | 
						|
	 * so we make sure to start at an offset of at least 1MB
 | 
						|
	 */
 | 
						|
	search_start = max((u64)1024 * 1024, search_start);
 | 
						|
 | 
						|
	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
 | 
						|
		search_start = max(root->fs_info->alloc_start, search_start);
 | 
						|
 | 
						|
	key.objectid = device->devid;
 | 
						|
	key.offset = search_start;
 | 
						|
	key.type = BTRFS_DEV_EXTENT_KEY;
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto error;
 | 
						|
	ret = btrfs_previous_item(root, path, 0, key.type);
 | 
						|
	if (ret < 0)
 | 
						|
		goto error;
 | 
						|
	l = path->nodes[0];
 | 
						|
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
 | 
						|
	while (1) {
 | 
						|
		l = path->nodes[0];
 | 
						|
		slot = path->slots[0];
 | 
						|
		if (slot >= btrfs_header_nritems(l)) {
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret == 0)
 | 
						|
				continue;
 | 
						|
			if (ret < 0)
 | 
						|
				goto error;
 | 
						|
no_more_items:
 | 
						|
			if (!start_found) {
 | 
						|
				if (search_start >= search_end) {
 | 
						|
					ret = -ENOSPC;
 | 
						|
					goto error;
 | 
						|
				}
 | 
						|
				*start = search_start;
 | 
						|
				start_found = 1;
 | 
						|
				goto check_pending;
 | 
						|
			}
 | 
						|
			*start = last_byte > search_start ?
 | 
						|
				last_byte : search_start;
 | 
						|
			if (search_end <= *start) {
 | 
						|
				ret = -ENOSPC;
 | 
						|
				goto error;
 | 
						|
			}
 | 
						|
			goto check_pending;
 | 
						|
		}
 | 
						|
		btrfs_item_key_to_cpu(l, &key, slot);
 | 
						|
 | 
						|
		if (key.objectid < device->devid)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		if (key.objectid > device->devid)
 | 
						|
			goto no_more_items;
 | 
						|
 | 
						|
		if (key.offset >= search_start && key.offset > last_byte &&
 | 
						|
		    start_found) {
 | 
						|
			if (last_byte < search_start)
 | 
						|
				last_byte = search_start;
 | 
						|
			hole_size = key.offset - last_byte;
 | 
						|
			if (key.offset > last_byte &&
 | 
						|
			    hole_size >= num_bytes) {
 | 
						|
				*start = last_byte;
 | 
						|
				goto check_pending;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		start_found = 1;
 | 
						|
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | 
						|
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
 | 
						|
next:
 | 
						|
		path->slots[0]++;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
check_pending:
 | 
						|
	/* we have to make sure we didn't find an extent that has already
 | 
						|
	 * been allocated by the map tree or the original allocation
 | 
						|
	 */
 | 
						|
	btrfs_release_path(root, path);
 | 
						|
	BUG_ON(*start < search_start);
 | 
						|
 | 
						|
	if (*start + num_bytes > search_end) {
 | 
						|
		ret = -ENOSPC;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	/* check for pending inserts here */
 | 
						|
	return 0;
 | 
						|
 | 
						|
error:
 | 
						|
	btrfs_release_path(root, path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_device *device,
 | 
						|
			  u64 start)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *root = device->dev_root;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct extent_buffer *leaf = NULL;
 | 
						|
	struct btrfs_dev_extent *extent = NULL;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	key.objectid = device->devid;
 | 
						|
	key.offset = start;
 | 
						|
	key.type = BTRFS_DEV_EXTENT_KEY;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | 
						|
	if (ret > 0) {
 | 
						|
		ret = btrfs_previous_item(root, path, key.objectid,
 | 
						|
					  BTRFS_DEV_EXTENT_KEY);
 | 
						|
		BUG_ON(ret);
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
		extent = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					struct btrfs_dev_extent);
 | 
						|
		BUG_ON(found_key.offset > start || found_key.offset +
 | 
						|
		       btrfs_dev_extent_length(leaf, extent) < start);
 | 
						|
		ret = 0;
 | 
						|
	} else if (ret == 0) {
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		extent = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					struct btrfs_dev_extent);
 | 
						|
	}
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	if (device->bytes_used > 0)
 | 
						|
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
 | 
						|
	ret = btrfs_del_item(trans, root, path);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_device *device,
 | 
						|
			   u64 chunk_tree, u64 chunk_objectid,
 | 
						|
			   u64 chunk_offset,
 | 
						|
			   u64 num_bytes, u64 *start)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *root = device->dev_root;
 | 
						|
	struct btrfs_dev_extent *extent;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	WARN_ON(!device->in_fs_metadata);
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
 | 
						|
	if (ret) {
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	key.objectid = device->devid;
 | 
						|
	key.offset = *start;
 | 
						|
	key.type = BTRFS_DEV_EXTENT_KEY;
 | 
						|
	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | 
						|
				      sizeof(*extent));
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	extent = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				struct btrfs_dev_extent);
 | 
						|
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
 | 
						|
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
 | 
						|
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
 | 
						|
 | 
						|
	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 | 
						|
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
 | 
						|
		    BTRFS_UUID_SIZE);
 | 
						|
 | 
						|
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
err:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_chunk *chunk;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	BUG_ON(!path);
 | 
						|
 | 
						|
	key.objectid = objectid;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
	key.type = BTRFS_CHUNK_ITEM_KEY;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	BUG_ON(ret == 0);
 | 
						|
 | 
						|
	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
 | 
						|
	if (ret) {
 | 
						|
		*offset = 0;
 | 
						|
	} else {
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
				      path->slots[0]);
 | 
						|
		if (found_key.objectid != objectid)
 | 
						|
			*offset = 0;
 | 
						|
		else {
 | 
						|
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
					       struct btrfs_chunk);
 | 
						|
			*offset = found_key.offset +
 | 
						|
				btrfs_chunk_length(path->nodes[0], chunk);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
error:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
 | 
						|
			   u64 *objectid)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
 | 
						|
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | 
						|
	key.type = BTRFS_DEV_ITEM_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	BUG_ON(ret == 0);
 | 
						|
 | 
						|
	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
 | 
						|
				  BTRFS_DEV_ITEM_KEY);
 | 
						|
	if (ret) {
 | 
						|
		*objectid = 1;
 | 
						|
	} else {
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
				      path->slots[0]);
 | 
						|
		*objectid = found_key.offset + 1;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
error:
 | 
						|
	btrfs_release_path(root, path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * the device information is stored in the chunk root
 | 
						|
 * the btrfs_device struct should be fully filled in
 | 
						|
 */
 | 
						|
int btrfs_add_device(struct btrfs_trans_handle *trans,
 | 
						|
		     struct btrfs_root *root,
 | 
						|
		     struct btrfs_device *device)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_dev_item *dev_item;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
	unsigned long ptr;
 | 
						|
	u64 free_devid = 0;
 | 
						|
 | 
						|
	root = root->fs_info->chunk_root;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = find_next_devid(root, path, &free_devid);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | 
						|
	key.type = BTRFS_DEV_ITEM_KEY;
 | 
						|
	key.offset = free_devid;
 | 
						|
 | 
						|
	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | 
						|
				      sizeof(*dev_item));
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | 
						|
 | 
						|
	device->devid = free_devid;
 | 
						|
	btrfs_set_device_id(leaf, dev_item, device->devid);
 | 
						|
	btrfs_set_device_type(leaf, dev_item, device->type);
 | 
						|
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | 
						|
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | 
						|
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | 
						|
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
 | 
						|
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 | 
						|
	btrfs_set_device_group(leaf, dev_item, 0);
 | 
						|
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
 | 
						|
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
 | 
						|
 | 
						|
	ptr = (unsigned long)btrfs_device_uuid(dev_item);
 | 
						|
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_rm_dev_item(struct btrfs_root *root,
 | 
						|
			     struct btrfs_device *device)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct block_device *bdev = device->bdev;
 | 
						|
	struct btrfs_device *next_dev;
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 total_bytes;
 | 
						|
	struct btrfs_fs_devices *fs_devices;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
 | 
						|
	root = root->fs_info->chunk_root;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 1);
 | 
						|
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | 
						|
	key.type = BTRFS_DEV_ITEM_KEY;
 | 
						|
	key.offset = device->devid;
 | 
						|
	lock_chunks(root);
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_del_item(trans, root, path);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * at this point, the device is zero sized.  We want to
 | 
						|
	 * remove it from the devices list and zero out the old super
 | 
						|
	 */
 | 
						|
	list_del_init(&device->dev_list);
 | 
						|
	list_del_init(&device->dev_alloc_list);
 | 
						|
	fs_devices = root->fs_info->fs_devices;
 | 
						|
 | 
						|
	next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
 | 
						|
			      dev_list);
 | 
						|
	if (bdev == root->fs_info->sb->s_bdev)
 | 
						|
		root->fs_info->sb->s_bdev = next_dev->bdev;
 | 
						|
	if (bdev == fs_devices->latest_bdev)
 | 
						|
		fs_devices->latest_bdev = next_dev->bdev;
 | 
						|
 | 
						|
	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
 | 
						|
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
 | 
						|
				    total_bytes - 1);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	unlock_chunks(root);
 | 
						|
	btrfs_commit_transaction(trans, root);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_rm_device(struct btrfs_root *root, char *device_path)
 | 
						|
{
 | 
						|
	struct btrfs_device *device;
 | 
						|
	struct block_device *bdev;
 | 
						|
	struct buffer_head *bh = NULL;
 | 
						|
	struct btrfs_super_block *disk_super;
 | 
						|
	u64 all_avail;
 | 
						|
	u64 devid;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&uuid_mutex);
 | 
						|
	mutex_lock(&root->fs_info->volume_mutex);
 | 
						|
 | 
						|
	all_avail = root->fs_info->avail_data_alloc_bits |
 | 
						|
		root->fs_info->avail_system_alloc_bits |
 | 
						|
		root->fs_info->avail_metadata_alloc_bits;
 | 
						|
 | 
						|
	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
 | 
						|
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
 | 
						|
		printk("btrfs: unable to go below four devices on raid10\n");
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
 | 
						|
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
 | 
						|
		printk("btrfs: unable to go below two devices on raid1\n");
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (strcmp(device_path, "missing") == 0) {
 | 
						|
		struct list_head *cur;
 | 
						|
		struct list_head *devices;
 | 
						|
		struct btrfs_device *tmp;
 | 
						|
 | 
						|
		device = NULL;
 | 
						|
		devices = &root->fs_info->fs_devices->devices;
 | 
						|
		list_for_each(cur, devices) {
 | 
						|
			tmp = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
			if (tmp->in_fs_metadata && !tmp->bdev) {
 | 
						|
				device = tmp;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bdev = NULL;
 | 
						|
		bh = NULL;
 | 
						|
		disk_super = NULL;
 | 
						|
		if (!device) {
 | 
						|
			printk("btrfs: no missing devices found to remove\n");
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
	} else {
 | 
						|
		bdev = open_bdev_excl(device_path, 0,
 | 
						|
				      root->fs_info->bdev_holder);
 | 
						|
		if (IS_ERR(bdev)) {
 | 
						|
			ret = PTR_ERR(bdev);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
 | 
						|
		if (!bh) {
 | 
						|
			ret = -EIO;
 | 
						|
			goto error_close;
 | 
						|
		}
 | 
						|
		disk_super = (struct btrfs_super_block *)bh->b_data;
 | 
						|
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
 | 
						|
		    sizeof(disk_super->magic))) {
 | 
						|
			ret = -ENOENT;
 | 
						|
			goto error_brelse;
 | 
						|
		}
 | 
						|
		if (memcmp(disk_super->fsid, root->fs_info->fsid,
 | 
						|
			   BTRFS_FSID_SIZE)) {
 | 
						|
			ret = -ENOENT;
 | 
						|
			goto error_brelse;
 | 
						|
		}
 | 
						|
		devid = le64_to_cpu(disk_super->dev_item.devid);
 | 
						|
		device = btrfs_find_device(root, devid, NULL);
 | 
						|
		if (!device) {
 | 
						|
			ret = -ENOENT;
 | 
						|
			goto error_brelse;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	root->fs_info->fs_devices->num_devices--;
 | 
						|
	root->fs_info->fs_devices->open_devices--;
 | 
						|
 | 
						|
	ret = btrfs_shrink_device(device, 0);
 | 
						|
	if (ret)
 | 
						|
		goto error_brelse;
 | 
						|
 | 
						|
 | 
						|
	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
 | 
						|
	if (ret)
 | 
						|
		goto error_brelse;
 | 
						|
 | 
						|
	if (bh) {
 | 
						|
		/* make sure this device isn't detected as part of
 | 
						|
		 * the FS anymore
 | 
						|
		 */
 | 
						|
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
 | 
						|
		set_buffer_dirty(bh);
 | 
						|
		sync_dirty_buffer(bh);
 | 
						|
 | 
						|
		brelse(bh);
 | 
						|
	}
 | 
						|
 | 
						|
	if (device->bdev) {
 | 
						|
		/* one close for the device struct or super_block */
 | 
						|
		close_bdev_excl(device->bdev);
 | 
						|
	}
 | 
						|
	if (bdev) {
 | 
						|
		/* one close for us */
 | 
						|
		close_bdev_excl(bdev);
 | 
						|
	}
 | 
						|
	kfree(device->name);
 | 
						|
	kfree(device);
 | 
						|
	ret = 0;
 | 
						|
	goto out;
 | 
						|
 | 
						|
error_brelse:
 | 
						|
	brelse(bh);
 | 
						|
error_close:
 | 
						|
	if (bdev)
 | 
						|
		close_bdev_excl(bdev);
 | 
						|
out:
 | 
						|
	mutex_unlock(&root->fs_info->volume_mutex);
 | 
						|
	mutex_unlock(&uuid_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
 | 
						|
{
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_device *device;
 | 
						|
	struct block_device *bdev;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct list_head *devices;
 | 
						|
	u64 total_bytes;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
 | 
						|
	bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
 | 
						|
	if (!bdev) {
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(&root->fs_info->volume_mutex);
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 1);
 | 
						|
	lock_chunks(root);
 | 
						|
	devices = &root->fs_info->fs_devices->devices;
 | 
						|
	list_for_each(cur, devices) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		if (device->bdev == bdev) {
 | 
						|
			ret = -EEXIST;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	device = kzalloc(sizeof(*device), GFP_NOFS);
 | 
						|
	if (!device) {
 | 
						|
		/* we can safely leave the fs_devices entry around */
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out_close_bdev;
 | 
						|
	}
 | 
						|
 | 
						|
	device->barriers = 1;
 | 
						|
	device->work.func = pending_bios_fn;
 | 
						|
	generate_random_uuid(device->uuid);
 | 
						|
	spin_lock_init(&device->io_lock);
 | 
						|
	device->name = kstrdup(device_path, GFP_NOFS);
 | 
						|
	if (!device->name) {
 | 
						|
		kfree(device);
 | 
						|
		goto out_close_bdev;
 | 
						|
	}
 | 
						|
	device->io_width = root->sectorsize;
 | 
						|
	device->io_align = root->sectorsize;
 | 
						|
	device->sector_size = root->sectorsize;
 | 
						|
	device->total_bytes = i_size_read(bdev->bd_inode);
 | 
						|
	device->dev_root = root->fs_info->dev_root;
 | 
						|
	device->bdev = bdev;
 | 
						|
	device->in_fs_metadata = 1;
 | 
						|
 | 
						|
	ret = btrfs_add_device(trans, root, device);
 | 
						|
	if (ret)
 | 
						|
		goto out_close_bdev;
 | 
						|
 | 
						|
	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
 | 
						|
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
 | 
						|
				    total_bytes + device->total_bytes);
 | 
						|
 | 
						|
	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
 | 
						|
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
 | 
						|
				    total_bytes + 1);
 | 
						|
 | 
						|
	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
 | 
						|
	list_add(&device->dev_alloc_list,
 | 
						|
		 &root->fs_info->fs_devices->alloc_list);
 | 
						|
	root->fs_info->fs_devices->num_devices++;
 | 
						|
	root->fs_info->fs_devices->open_devices++;
 | 
						|
out:
 | 
						|
	unlock_chunks(root);
 | 
						|
	btrfs_end_transaction(trans, root);
 | 
						|
	mutex_unlock(&root->fs_info->volume_mutex);
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
out_close_bdev:
 | 
						|
	close_bdev_excl(bdev);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_update_device(struct btrfs_trans_handle *trans,
 | 
						|
			struct btrfs_device *device)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *root;
 | 
						|
	struct btrfs_dev_item *dev_item;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	root = device->dev_root->fs_info->chunk_root;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | 
						|
	key.type = BTRFS_DEV_ITEM_KEY;
 | 
						|
	key.offset = device->devid;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | 
						|
 | 
						|
	btrfs_set_device_id(leaf, dev_item, device->devid);
 | 
						|
	btrfs_set_device_type(leaf, dev_item, device->type);
 | 
						|
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | 
						|
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | 
						|
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | 
						|
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
 | 
						|
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
 | 
						|
		      struct btrfs_device *device, u64 new_size)
 | 
						|
{
 | 
						|
	struct btrfs_super_block *super_copy =
 | 
						|
		&device->dev_root->fs_info->super_copy;
 | 
						|
	u64 old_total = btrfs_super_total_bytes(super_copy);
 | 
						|
	u64 diff = new_size - device->total_bytes;
 | 
						|
 | 
						|
	btrfs_set_super_total_bytes(super_copy, old_total + diff);
 | 
						|
	return btrfs_update_device(trans, device);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_grow_device(struct btrfs_trans_handle *trans,
 | 
						|
		      struct btrfs_device *device, u64 new_size)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	lock_chunks(device->dev_root);
 | 
						|
	ret = __btrfs_grow_device(trans, device, new_size);
 | 
						|
	unlock_chunks(device->dev_root);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
 | 
						|
			    struct btrfs_root *root,
 | 
						|
			    u64 chunk_tree, u64 chunk_objectid,
 | 
						|
			    u64 chunk_offset)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	root = root->fs_info->chunk_root;
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	key.objectid = chunk_objectid;
 | 
						|
	key.offset = chunk_offset;
 | 
						|
	key.type = BTRFS_CHUNK_ITEM_KEY;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	ret = btrfs_del_item(trans, root, path);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
 | 
						|
			chunk_offset)
 | 
						|
{
 | 
						|
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
 | 
						|
	struct btrfs_disk_key *disk_key;
 | 
						|
	struct btrfs_chunk *chunk;
 | 
						|
	u8 *ptr;
 | 
						|
	int ret = 0;
 | 
						|
	u32 num_stripes;
 | 
						|
	u32 array_size;
 | 
						|
	u32 len = 0;
 | 
						|
	u32 cur;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	array_size = btrfs_super_sys_array_size(super_copy);
 | 
						|
 | 
						|
	ptr = super_copy->sys_chunk_array;
 | 
						|
	cur = 0;
 | 
						|
 | 
						|
	while (cur < array_size) {
 | 
						|
		disk_key = (struct btrfs_disk_key *)ptr;
 | 
						|
		btrfs_disk_key_to_cpu(&key, disk_key);
 | 
						|
 | 
						|
		len = sizeof(*disk_key);
 | 
						|
 | 
						|
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | 
						|
			chunk = (struct btrfs_chunk *)(ptr + len);
 | 
						|
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
 | 
						|
			len += btrfs_chunk_item_size(num_stripes);
 | 
						|
		} else {
 | 
						|
			ret = -EIO;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (key.objectid == chunk_objectid &&
 | 
						|
		    key.offset == chunk_offset) {
 | 
						|
			memmove(ptr, ptr + len, array_size - (cur + len));
 | 
						|
			array_size -= len;
 | 
						|
			btrfs_set_super_sys_array_size(super_copy, array_size);
 | 
						|
		} else {
 | 
						|
			ptr += len;
 | 
						|
			cur += len;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int btrfs_relocate_chunk(struct btrfs_root *root,
 | 
						|
			 u64 chunk_tree, u64 chunk_objectid,
 | 
						|
			 u64 chunk_offset)
 | 
						|
{
 | 
						|
	struct extent_map_tree *em_tree;
 | 
						|
	struct btrfs_root *extent_root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct map_lookup *map;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	printk("btrfs relocating chunk %llu\n",
 | 
						|
	       (unsigned long long)chunk_offset);
 | 
						|
	root = root->fs_info->chunk_root;
 | 
						|
	extent_root = root->fs_info->extent_root;
 | 
						|
	em_tree = &root->fs_info->mapping_tree.map_tree;
 | 
						|
 | 
						|
	/* step one, relocate all the extents inside this chunk */
 | 
						|
	ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 1);
 | 
						|
	BUG_ON(!trans);
 | 
						|
 | 
						|
	lock_chunks(root);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * step two, delete the device extents and the
 | 
						|
	 * chunk tree entries
 | 
						|
	 */
 | 
						|
	spin_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
 | 
						|
	spin_unlock(&em_tree->lock);
 | 
						|
 | 
						|
	BUG_ON(em->start > chunk_offset ||
 | 
						|
	       em->start + em->len < chunk_offset);
 | 
						|
	map = (struct map_lookup *)em->bdev;
 | 
						|
 | 
						|
	for (i = 0; i < map->num_stripes; i++) {
 | 
						|
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
 | 
						|
					    map->stripes[i].physical);
 | 
						|
		BUG_ON(ret);
 | 
						|
 | 
						|
		if (map->stripes[i].dev) {
 | 
						|
			ret = btrfs_update_device(trans, map->stripes[i].dev);
 | 
						|
			BUG_ON(ret);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
 | 
						|
			       chunk_offset);
 | 
						|
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | 
						|
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
 | 
						|
		BUG_ON(ret);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&em_tree->lock);
 | 
						|
	remove_extent_mapping(em_tree, em);
 | 
						|
	kfree(map);
 | 
						|
	em->bdev = NULL;
 | 
						|
 | 
						|
	/* once for the tree */
 | 
						|
	free_extent_map(em);
 | 
						|
	spin_unlock(&em_tree->lock);
 | 
						|
 | 
						|
	/* once for us */
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	unlock_chunks(root);
 | 
						|
	btrfs_end_transaction(trans, root);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 div_factor(u64 num, int factor)
 | 
						|
{
 | 
						|
	if (factor == 10)
 | 
						|
		return num;
 | 
						|
	num *= factor;
 | 
						|
	do_div(num, 10);
 | 
						|
	return num;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int btrfs_balance(struct btrfs_root *dev_root)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
 | 
						|
	struct btrfs_device *device;
 | 
						|
	u64 old_size;
 | 
						|
	u64 size_to_free;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_chunk *chunk;
 | 
						|
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
 | 
						|
 | 
						|
	mutex_lock(&dev_root->fs_info->volume_mutex);
 | 
						|
	dev_root = dev_root->fs_info->dev_root;
 | 
						|
 | 
						|
	/* step one make some room on all the devices */
 | 
						|
	list_for_each(cur, devices) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_list);
 | 
						|
		old_size = device->total_bytes;
 | 
						|
		size_to_free = div_factor(old_size, 1);
 | 
						|
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
 | 
						|
		if (device->total_bytes - device->bytes_used > size_to_free)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ret = btrfs_shrink_device(device, old_size - size_to_free);
 | 
						|
		BUG_ON(ret);
 | 
						|
 | 
						|
		trans = btrfs_start_transaction(dev_root, 1);
 | 
						|
		BUG_ON(!trans);
 | 
						|
 | 
						|
		ret = btrfs_grow_device(trans, device, old_size);
 | 
						|
		BUG_ON(ret);
 | 
						|
 | 
						|
		btrfs_end_transaction(trans, dev_root);
 | 
						|
	}
 | 
						|
 | 
						|
	/* step two, relocate all the chunks */
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	BUG_ON(!path);
 | 
						|
 | 
						|
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
	key.type = BTRFS_CHUNK_ITEM_KEY;
 | 
						|
 | 
						|
	while(1) {
 | 
						|
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * this shouldn't happen, it means the last relocate
 | 
						|
		 * failed
 | 
						|
		 */
 | 
						|
		if (ret == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		ret = btrfs_previous_item(chunk_root, path, 0,
 | 
						|
					  BTRFS_CHUNK_ITEM_KEY);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
				      path->slots[0]);
 | 
						|
		if (found_key.objectid != key.objectid)
 | 
						|
			break;
 | 
						|
 | 
						|
		chunk = btrfs_item_ptr(path->nodes[0],
 | 
						|
				       path->slots[0],
 | 
						|
				       struct btrfs_chunk);
 | 
						|
		key.offset = found_key.offset;
 | 
						|
		/* chunk zero is special */
 | 
						|
		if (key.offset == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		btrfs_release_path(chunk_root, path);
 | 
						|
		ret = btrfs_relocate_chunk(chunk_root,
 | 
						|
					   chunk_root->root_key.objectid,
 | 
						|
					   found_key.objectid,
 | 
						|
					   found_key.offset);
 | 
						|
		BUG_ON(ret);
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
error:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	mutex_unlock(&dev_root->fs_info->volume_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * shrinking a device means finding all of the device extents past
 | 
						|
 * the new size, and then following the back refs to the chunks.
 | 
						|
 * The chunk relocation code actually frees the device extent
 | 
						|
 */
 | 
						|
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
 | 
						|
{
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_root *root = device->dev_root;
 | 
						|
	struct btrfs_dev_extent *dev_extent = NULL;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	u64 length;
 | 
						|
	u64 chunk_tree;
 | 
						|
	u64 chunk_objectid;
 | 
						|
	u64 chunk_offset;
 | 
						|
	int ret;
 | 
						|
	int slot;
 | 
						|
	struct extent_buffer *l;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
 | 
						|
	u64 old_total = btrfs_super_total_bytes(super_copy);
 | 
						|
	u64 diff = device->total_bytes - new_size;
 | 
						|
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 1);
 | 
						|
	if (!trans) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	path->reada = 2;
 | 
						|
 | 
						|
	lock_chunks(root);
 | 
						|
 | 
						|
	device->total_bytes = new_size;
 | 
						|
	ret = btrfs_update_device(trans, device);
 | 
						|
	if (ret) {
 | 
						|
		unlock_chunks(root);
 | 
						|
		btrfs_end_transaction(trans, root);
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	WARN_ON(diff > old_total);
 | 
						|
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
 | 
						|
	unlock_chunks(root);
 | 
						|
	btrfs_end_transaction(trans, root);
 | 
						|
 | 
						|
	key.objectid = device->devid;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
	key.type = BTRFS_DEV_EXTENT_KEY;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		ret = btrfs_previous_item(root, path, 0, key.type);
 | 
						|
		if (ret < 0)
 | 
						|
			goto done;
 | 
						|
		if (ret) {
 | 
						|
			ret = 0;
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
 | 
						|
		l = path->nodes[0];
 | 
						|
		slot = path->slots[0];
 | 
						|
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
 | 
						|
 | 
						|
		if (key.objectid != device->devid)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | 
						|
		length = btrfs_dev_extent_length(l, dev_extent);
 | 
						|
 | 
						|
		if (key.offset + length <= new_size)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
 | 
						|
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
 | 
						|
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | 
						|
		btrfs_release_path(root, path);
 | 
						|
 | 
						|
		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
 | 
						|
					   chunk_offset);
 | 
						|
		if (ret)
 | 
						|
			goto done;
 | 
						|
	}
 | 
						|
 | 
						|
done:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_root *root,
 | 
						|
			   struct btrfs_key *key,
 | 
						|
			   struct btrfs_chunk *chunk, int item_size)
 | 
						|
{
 | 
						|
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
 | 
						|
	struct btrfs_disk_key disk_key;
 | 
						|
	u32 array_size;
 | 
						|
	u8 *ptr;
 | 
						|
 | 
						|
	array_size = btrfs_super_sys_array_size(super_copy);
 | 
						|
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 | 
						|
		return -EFBIG;
 | 
						|
 | 
						|
	ptr = super_copy->sys_chunk_array + array_size;
 | 
						|
	btrfs_cpu_key_to_disk(&disk_key, key);
 | 
						|
	memcpy(ptr, &disk_key, sizeof(disk_key));
 | 
						|
	ptr += sizeof(disk_key);
 | 
						|
	memcpy(ptr, chunk, item_size);
 | 
						|
	item_size += sizeof(disk_key);
 | 
						|
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
 | 
						|
			       int sub_stripes)
 | 
						|
{
 | 
						|
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
 | 
						|
		return calc_size;
 | 
						|
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 | 
						|
		return calc_size * (num_stripes / sub_stripes);
 | 
						|
	else
 | 
						|
		return calc_size * num_stripes;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
 | 
						|
		      struct btrfs_root *extent_root, u64 *start,
 | 
						|
		      u64 *num_bytes, u64 type)
 | 
						|
{
 | 
						|
	u64 dev_offset;
 | 
						|
	struct btrfs_fs_info *info = extent_root->fs_info;
 | 
						|
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_stripe *stripes;
 | 
						|
	struct btrfs_device *device = NULL;
 | 
						|
	struct btrfs_chunk *chunk;
 | 
						|
	struct list_head private_devs;
 | 
						|
	struct list_head *dev_list;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct extent_map_tree *em_tree;
 | 
						|
	struct map_lookup *map;
 | 
						|
	struct extent_map *em;
 | 
						|
	int min_stripe_size = 1 * 1024 * 1024;
 | 
						|
	u64 physical;
 | 
						|
	u64 calc_size = 1024 * 1024 * 1024;
 | 
						|
	u64 max_chunk_size = calc_size;
 | 
						|
	u64 min_free;
 | 
						|
	u64 avail;
 | 
						|
	u64 max_avail = 0;
 | 
						|
	u64 percent_max;
 | 
						|
	int num_stripes = 1;
 | 
						|
	int min_stripes = 1;
 | 
						|
	int sub_stripes = 0;
 | 
						|
	int looped = 0;
 | 
						|
	int ret;
 | 
						|
	int index;
 | 
						|
	int stripe_len = 64 * 1024;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
 | 
						|
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
 | 
						|
		WARN_ON(1);
 | 
						|
		type &= ~BTRFS_BLOCK_GROUP_DUP;
 | 
						|
	}
 | 
						|
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
 | 
						|
	if (list_empty(dev_list))
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
 | 
						|
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
 | 
						|
		min_stripes = 2;
 | 
						|
	}
 | 
						|
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
 | 
						|
		num_stripes = 2;
 | 
						|
		min_stripes = 2;
 | 
						|
	}
 | 
						|
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
 | 
						|
		num_stripes = min_t(u64, 2,
 | 
						|
			    extent_root->fs_info->fs_devices->open_devices);
 | 
						|
		if (num_stripes < 2)
 | 
						|
			return -ENOSPC;
 | 
						|
		min_stripes = 2;
 | 
						|
	}
 | 
						|
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
 | 
						|
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
 | 
						|
		if (num_stripes < 4)
 | 
						|
			return -ENOSPC;
 | 
						|
		num_stripes &= ~(u32)1;
 | 
						|
		sub_stripes = 2;
 | 
						|
		min_stripes = 4;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type & BTRFS_BLOCK_GROUP_DATA) {
 | 
						|
		max_chunk_size = 10 * calc_size;
 | 
						|
		min_stripe_size = 64 * 1024 * 1024;
 | 
						|
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
 | 
						|
		max_chunk_size = 4 * calc_size;
 | 
						|
		min_stripe_size = 32 * 1024 * 1024;
 | 
						|
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | 
						|
		calc_size = 8 * 1024 * 1024;
 | 
						|
		max_chunk_size = calc_size * 2;
 | 
						|
		min_stripe_size = 1 * 1024 * 1024;
 | 
						|
	}
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* we don't want a chunk larger than 10% of the FS */
 | 
						|
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
 | 
						|
	max_chunk_size = min(percent_max, max_chunk_size);
 | 
						|
 | 
						|
again:
 | 
						|
	if (calc_size * num_stripes > max_chunk_size) {
 | 
						|
		calc_size = max_chunk_size;
 | 
						|
		do_div(calc_size, num_stripes);
 | 
						|
		do_div(calc_size, stripe_len);
 | 
						|
		calc_size *= stripe_len;
 | 
						|
	}
 | 
						|
	/* we don't want tiny stripes */
 | 
						|
	calc_size = max_t(u64, min_stripe_size, calc_size);
 | 
						|
 | 
						|
	do_div(calc_size, stripe_len);
 | 
						|
	calc_size *= stripe_len;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&private_devs);
 | 
						|
	cur = dev_list->next;
 | 
						|
	index = 0;
 | 
						|
 | 
						|
	if (type & BTRFS_BLOCK_GROUP_DUP)
 | 
						|
		min_free = calc_size * 2;
 | 
						|
	else
 | 
						|
		min_free = calc_size;
 | 
						|
 | 
						|
	/* we add 1MB because we never use the first 1MB of the device */
 | 
						|
	min_free += 1024 * 1024;
 | 
						|
 | 
						|
	/* build a private list of devices we will allocate from */
 | 
						|
	while(index < num_stripes) {
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
 | 
						|
 | 
						|
		if (device->total_bytes > device->bytes_used)
 | 
						|
			avail = device->total_bytes - device->bytes_used;
 | 
						|
		else
 | 
						|
			avail = 0;
 | 
						|
		cur = cur->next;
 | 
						|
 | 
						|
		if (device->in_fs_metadata && avail >= min_free) {
 | 
						|
			u64 ignored_start = 0;
 | 
						|
			ret = find_free_dev_extent(trans, device, path,
 | 
						|
						   min_free,
 | 
						|
						   &ignored_start);
 | 
						|
			if (ret == 0) {
 | 
						|
				list_move_tail(&device->dev_alloc_list,
 | 
						|
					       &private_devs);
 | 
						|
				index++;
 | 
						|
				if (type & BTRFS_BLOCK_GROUP_DUP)
 | 
						|
					index++;
 | 
						|
			}
 | 
						|
		} else if (device->in_fs_metadata && avail > max_avail)
 | 
						|
			max_avail = avail;
 | 
						|
		if (cur == dev_list)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (index < num_stripes) {
 | 
						|
		list_splice(&private_devs, dev_list);
 | 
						|
		if (index >= min_stripes) {
 | 
						|
			num_stripes = index;
 | 
						|
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
 | 
						|
				num_stripes /= sub_stripes;
 | 
						|
				num_stripes *= sub_stripes;
 | 
						|
			}
 | 
						|
			looped = 1;
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		if (!looped && max_avail > 0) {
 | 
						|
			looped = 1;
 | 
						|
			calc_size = max_avail;
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return -ENOSPC;
 | 
						|
	}
 | 
						|
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | 
						|
	key.type = BTRFS_CHUNK_ITEM_KEY;
 | 
						|
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
 | 
						|
			      &key.offset);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
 | 
						|
	if (!chunk) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
 | 
						|
	if (!map) {
 | 
						|
		kfree(chunk);
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	btrfs_free_path(path);
 | 
						|
	path = NULL;
 | 
						|
 | 
						|
	stripes = &chunk->stripe;
 | 
						|
	*num_bytes = chunk_bytes_by_type(type, calc_size,
 | 
						|
					 num_stripes, sub_stripes);
 | 
						|
 | 
						|
	index = 0;
 | 
						|
	while(index < num_stripes) {
 | 
						|
		struct btrfs_stripe *stripe;
 | 
						|
		BUG_ON(list_empty(&private_devs));
 | 
						|
		cur = private_devs.next;
 | 
						|
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
 | 
						|
 | 
						|
		/* loop over this device again if we're doing a dup group */
 | 
						|
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
 | 
						|
		    (index == num_stripes - 1))
 | 
						|
			list_move_tail(&device->dev_alloc_list, dev_list);
 | 
						|
 | 
						|
		ret = btrfs_alloc_dev_extent(trans, device,
 | 
						|
			     info->chunk_root->root_key.objectid,
 | 
						|
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
 | 
						|
			     calc_size, &dev_offset);
 | 
						|
		BUG_ON(ret);
 | 
						|
		device->bytes_used += calc_size;
 | 
						|
		ret = btrfs_update_device(trans, device);
 | 
						|
		BUG_ON(ret);
 | 
						|
 | 
						|
		map->stripes[index].dev = device;
 | 
						|
		map->stripes[index].physical = dev_offset;
 | 
						|
		stripe = stripes + index;
 | 
						|
		btrfs_set_stack_stripe_devid(stripe, device->devid);
 | 
						|
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
 | 
						|
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
 | 
						|
		physical = dev_offset;
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
	BUG_ON(!list_empty(&private_devs));
 | 
						|
 | 
						|
	/* key was set above */
 | 
						|
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
 | 
						|
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
 | 
						|
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
 | 
						|
	btrfs_set_stack_chunk_type(chunk, type);
 | 
						|
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
 | 
						|
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
 | 
						|
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
 | 
						|
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
 | 
						|
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
 | 
						|
	map->sector_size = extent_root->sectorsize;
 | 
						|
	map->stripe_len = stripe_len;
 | 
						|
	map->io_align = stripe_len;
 | 
						|
	map->io_width = stripe_len;
 | 
						|
	map->type = type;
 | 
						|
	map->num_stripes = num_stripes;
 | 
						|
	map->sub_stripes = sub_stripes;
 | 
						|
 | 
						|
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
 | 
						|
				btrfs_chunk_item_size(num_stripes));
 | 
						|
	BUG_ON(ret);
 | 
						|
	*start = key.offset;;
 | 
						|
 | 
						|
	em = alloc_extent_map(GFP_NOFS);
 | 
						|
	if (!em)
 | 
						|
		return -ENOMEM;
 | 
						|
	em->bdev = (struct block_device *)map;
 | 
						|
	em->start = key.offset;
 | 
						|
	em->len = *num_bytes;
 | 
						|
	em->block_start = 0;
 | 
						|
 | 
						|
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | 
						|
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
 | 
						|
				    chunk, btrfs_chunk_item_size(num_stripes));
 | 
						|
		BUG_ON(ret);
 | 
						|
	}
 | 
						|
	kfree(chunk);
 | 
						|
 | 
						|
	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
 | 
						|
	spin_lock(&em_tree->lock);
 | 
						|
	ret = add_extent_mapping(em_tree, em);
 | 
						|
	spin_unlock(&em_tree->lock);
 | 
						|
	BUG_ON(ret);
 | 
						|
	free_extent_map(em);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
 | 
						|
{
 | 
						|
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
 | 
						|
	while(1) {
 | 
						|
		spin_lock(&tree->map_tree.lock);
 | 
						|
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
 | 
						|
		if (em)
 | 
						|
			remove_extent_mapping(&tree->map_tree, em);
 | 
						|
		spin_unlock(&tree->map_tree.lock);
 | 
						|
		if (!em)
 | 
						|
			break;
 | 
						|
		kfree(em->bdev);
 | 
						|
		/* once for us */
 | 
						|
		free_extent_map(em);
 | 
						|
		/* once for the tree */
 | 
						|
		free_extent_map(em);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
	struct map_lookup *map;
 | 
						|
	struct extent_map_tree *em_tree = &map_tree->map_tree;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, logical, len);
 | 
						|
	spin_unlock(&em_tree->lock);
 | 
						|
	BUG_ON(!em);
 | 
						|
 | 
						|
	BUG_ON(em->start > logical || em->start + em->len < logical);
 | 
						|
	map = (struct map_lookup *)em->bdev;
 | 
						|
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
 | 
						|
		ret = map->num_stripes;
 | 
						|
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | 
						|
		ret = map->sub_stripes;
 | 
						|
	else
 | 
						|
		ret = 1;
 | 
						|
	free_extent_map(em);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int find_live_mirror(struct map_lookup *map, int first, int num,
 | 
						|
			    int optimal)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	if (map->stripes[optimal].dev->bdev)
 | 
						|
		return optimal;
 | 
						|
	for (i = first; i < first + num; i++) {
 | 
						|
		if (map->stripes[i].dev->bdev)
 | 
						|
			return i;
 | 
						|
	}
 | 
						|
	/* we couldn't find one that doesn't fail.  Just return something
 | 
						|
	 * and the io error handling code will clean up eventually
 | 
						|
	 */
 | 
						|
	return optimal;
 | 
						|
}
 | 
						|
 | 
						|
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
 | 
						|
			     u64 logical, u64 *length,
 | 
						|
			     struct btrfs_multi_bio **multi_ret,
 | 
						|
			     int mirror_num, struct page *unplug_page)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
	struct map_lookup *map;
 | 
						|
	struct extent_map_tree *em_tree = &map_tree->map_tree;
 | 
						|
	u64 offset;
 | 
						|
	u64 stripe_offset;
 | 
						|
	u64 stripe_nr;
 | 
						|
	int stripes_allocated = 8;
 | 
						|
	int stripes_required = 1;
 | 
						|
	int stripe_index;
 | 
						|
	int i;
 | 
						|
	int num_stripes;
 | 
						|
	int max_errors = 0;
 | 
						|
	struct btrfs_multi_bio *multi = NULL;
 | 
						|
 | 
						|
	if (multi_ret && !(rw & (1 << BIO_RW))) {
 | 
						|
		stripes_allocated = 1;
 | 
						|
	}
 | 
						|
again:
 | 
						|
	if (multi_ret) {
 | 
						|
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
 | 
						|
				GFP_NOFS);
 | 
						|
		if (!multi)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		atomic_set(&multi->error, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, logical, *length);
 | 
						|
	spin_unlock(&em_tree->lock);
 | 
						|
 | 
						|
	if (!em && unplug_page)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!em) {
 | 
						|
		printk("unable to find logical %Lu len %Lu\n", logical, *length);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(em->start > logical || em->start + em->len < logical);
 | 
						|
	map = (struct map_lookup *)em->bdev;
 | 
						|
	offset = logical - em->start;
 | 
						|
 | 
						|
	if (mirror_num > map->num_stripes)
 | 
						|
		mirror_num = 0;
 | 
						|
 | 
						|
	/* if our multi bio struct is too small, back off and try again */
 | 
						|
	if (rw & (1 << BIO_RW)) {
 | 
						|
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
 | 
						|
				 BTRFS_BLOCK_GROUP_DUP)) {
 | 
						|
			stripes_required = map->num_stripes;
 | 
						|
			max_errors = 1;
 | 
						|
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | 
						|
			stripes_required = map->sub_stripes;
 | 
						|
			max_errors = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (multi_ret && rw == WRITE &&
 | 
						|
	    stripes_allocated < stripes_required) {
 | 
						|
		stripes_allocated = map->num_stripes;
 | 
						|
		free_extent_map(em);
 | 
						|
		kfree(multi);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	stripe_nr = offset;
 | 
						|
	/*
 | 
						|
	 * stripe_nr counts the total number of stripes we have to stride
 | 
						|
	 * to get to this block
 | 
						|
	 */
 | 
						|
	do_div(stripe_nr, map->stripe_len);
 | 
						|
 | 
						|
	stripe_offset = stripe_nr * map->stripe_len;
 | 
						|
	BUG_ON(offset < stripe_offset);
 | 
						|
 | 
						|
	/* stripe_offset is the offset of this block in its stripe*/
 | 
						|
	stripe_offset = offset - stripe_offset;
 | 
						|
 | 
						|
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
 | 
						|
			 BTRFS_BLOCK_GROUP_RAID10 |
 | 
						|
			 BTRFS_BLOCK_GROUP_DUP)) {
 | 
						|
		/* we limit the length of each bio to what fits in a stripe */
 | 
						|
		*length = min_t(u64, em->len - offset,
 | 
						|
			      map->stripe_len - stripe_offset);
 | 
						|
	} else {
 | 
						|
		*length = em->len - offset;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!multi_ret && !unplug_page)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	num_stripes = 1;
 | 
						|
	stripe_index = 0;
 | 
						|
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 | 
						|
		if (unplug_page || (rw & (1 << BIO_RW)))
 | 
						|
			num_stripes = map->num_stripes;
 | 
						|
		else if (mirror_num)
 | 
						|
			stripe_index = mirror_num - 1;
 | 
						|
		else {
 | 
						|
			stripe_index = find_live_mirror(map, 0,
 | 
						|
					    map->num_stripes,
 | 
						|
					    current->pid % map->num_stripes);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 | 
						|
		if (rw & (1 << BIO_RW))
 | 
						|
			num_stripes = map->num_stripes;
 | 
						|
		else if (mirror_num)
 | 
						|
			stripe_index = mirror_num - 1;
 | 
						|
 | 
						|
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | 
						|
		int factor = map->num_stripes / map->sub_stripes;
 | 
						|
 | 
						|
		stripe_index = do_div(stripe_nr, factor);
 | 
						|
		stripe_index *= map->sub_stripes;
 | 
						|
 | 
						|
		if (unplug_page || (rw & (1 << BIO_RW)))
 | 
						|
			num_stripes = map->sub_stripes;
 | 
						|
		else if (mirror_num)
 | 
						|
			stripe_index += mirror_num - 1;
 | 
						|
		else {
 | 
						|
			stripe_index = find_live_mirror(map, stripe_index,
 | 
						|
					      map->sub_stripes, stripe_index +
 | 
						|
					      current->pid % map->sub_stripes);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * after this do_div call, stripe_nr is the number of stripes
 | 
						|
		 * on this device we have to walk to find the data, and
 | 
						|
		 * stripe_index is the number of our device in the stripe array
 | 
						|
		 */
 | 
						|
		stripe_index = do_div(stripe_nr, map->num_stripes);
 | 
						|
	}
 | 
						|
	BUG_ON(stripe_index >= map->num_stripes);
 | 
						|
 | 
						|
	for (i = 0; i < num_stripes; i++) {
 | 
						|
		if (unplug_page) {
 | 
						|
			struct btrfs_device *device;
 | 
						|
			struct backing_dev_info *bdi;
 | 
						|
 | 
						|
			device = map->stripes[stripe_index].dev;
 | 
						|
			if (device->bdev) {
 | 
						|
				bdi = blk_get_backing_dev_info(device->bdev);
 | 
						|
				if (bdi->unplug_io_fn) {
 | 
						|
					bdi->unplug_io_fn(bdi, unplug_page);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			multi->stripes[i].physical =
 | 
						|
				map->stripes[stripe_index].physical +
 | 
						|
				stripe_offset + stripe_nr * map->stripe_len;
 | 
						|
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
 | 
						|
		}
 | 
						|
		stripe_index++;
 | 
						|
	}
 | 
						|
	if (multi_ret) {
 | 
						|
		*multi_ret = multi;
 | 
						|
		multi->num_stripes = num_stripes;
 | 
						|
		multi->max_errors = max_errors;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	free_extent_map(em);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
 | 
						|
		      u64 logical, u64 *length,
 | 
						|
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
 | 
						|
{
 | 
						|
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
 | 
						|
				 mirror_num, NULL);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
 | 
						|
		      u64 logical, struct page *page)
 | 
						|
{
 | 
						|
	u64 length = PAGE_CACHE_SIZE;
 | 
						|
	return __btrfs_map_block(map_tree, READ, logical, &length,
 | 
						|
				 NULL, 0, page);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
 | 
						|
static void end_bio_multi_stripe(struct bio *bio, int err)
 | 
						|
#else
 | 
						|
static int end_bio_multi_stripe(struct bio *bio,
 | 
						|
				   unsigned int bytes_done, int err)
 | 
						|
#endif
 | 
						|
{
 | 
						|
	struct btrfs_multi_bio *multi = bio->bi_private;
 | 
						|
 | 
						|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
 | 
						|
	if (bio->bi_size)
 | 
						|
		return 1;
 | 
						|
#endif
 | 
						|
	if (err)
 | 
						|
		atomic_inc(&multi->error);
 | 
						|
 | 
						|
	if (atomic_dec_and_test(&multi->stripes_pending)) {
 | 
						|
		bio->bi_private = multi->private;
 | 
						|
		bio->bi_end_io = multi->end_io;
 | 
						|
		/* only send an error to the higher layers if it is
 | 
						|
		 * beyond the tolerance of the multi-bio
 | 
						|
		 */
 | 
						|
		if (atomic_read(&multi->error) > multi->max_errors) {
 | 
						|
			err = -EIO;
 | 
						|
		} else if (err) {
 | 
						|
			/*
 | 
						|
			 * this bio is actually up to date, we didn't
 | 
						|
			 * go over the max number of errors
 | 
						|
			 */
 | 
						|
			set_bit(BIO_UPTODATE, &bio->bi_flags);
 | 
						|
			err = 0;
 | 
						|
		}
 | 
						|
		kfree(multi);
 | 
						|
 | 
						|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
 | 
						|
		bio_endio(bio, bio->bi_size, err);
 | 
						|
#else
 | 
						|
		bio_endio(bio, err);
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		bio_put(bio);
 | 
						|
	}
 | 
						|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
 | 
						|
	return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
struct async_sched {
 | 
						|
	struct bio *bio;
 | 
						|
	int rw;
 | 
						|
	struct btrfs_fs_info *info;
 | 
						|
	struct btrfs_work work;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * see run_scheduled_bios for a description of why bios are collected for
 | 
						|
 * async submit.
 | 
						|
 *
 | 
						|
 * This will add one bio to the pending list for a device and make sure
 | 
						|
 * the work struct is scheduled.
 | 
						|
 */
 | 
						|
int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
 | 
						|
		 int rw, struct bio *bio)
 | 
						|
{
 | 
						|
	int should_queue = 1;
 | 
						|
 | 
						|
	/* don't bother with additional async steps for reads, right now */
 | 
						|
	if (!(rw & (1 << BIO_RW))) {
 | 
						|
		bio_get(bio);
 | 
						|
		submit_bio(rw, bio);
 | 
						|
		bio_put(bio);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nr_async_sumbits allows us to reliably return congestion to the
 | 
						|
	 * higher layers.  Otherwise, the async bio makes it appear we have
 | 
						|
	 * made progress against dirty pages when we've really just put it
 | 
						|
	 * on a queue for later
 | 
						|
	 */
 | 
						|
	atomic_inc(&root->fs_info->nr_async_submits);
 | 
						|
	WARN_ON(bio->bi_next);
 | 
						|
	bio->bi_next = NULL;
 | 
						|
	bio->bi_rw |= rw;
 | 
						|
 | 
						|
	spin_lock(&device->io_lock);
 | 
						|
 | 
						|
	if (device->pending_bio_tail)
 | 
						|
		device->pending_bio_tail->bi_next = bio;
 | 
						|
 | 
						|
	device->pending_bio_tail = bio;
 | 
						|
	if (!device->pending_bios)
 | 
						|
		device->pending_bios = bio;
 | 
						|
	if (device->running_pending)
 | 
						|
		should_queue = 0;
 | 
						|
 | 
						|
	spin_unlock(&device->io_lock);
 | 
						|
 | 
						|
	if (should_queue)
 | 
						|
		btrfs_queue_worker(&root->fs_info->submit_workers,
 | 
						|
				   &device->work);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
 | 
						|
		  int mirror_num, int async_submit)
 | 
						|
{
 | 
						|
	struct btrfs_mapping_tree *map_tree;
 | 
						|
	struct btrfs_device *dev;
 | 
						|
	struct bio *first_bio = bio;
 | 
						|
	u64 logical = bio->bi_sector << 9;
 | 
						|
	u64 length = 0;
 | 
						|
	u64 map_length;
 | 
						|
	struct btrfs_multi_bio *multi = NULL;
 | 
						|
	int ret;
 | 
						|
	int dev_nr = 0;
 | 
						|
	int total_devs = 1;
 | 
						|
 | 
						|
	length = bio->bi_size;
 | 
						|
	map_tree = &root->fs_info->mapping_tree;
 | 
						|
	map_length = length;
 | 
						|
 | 
						|
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
 | 
						|
			      mirror_num);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	total_devs = multi->num_stripes;
 | 
						|
	if (map_length < length) {
 | 
						|
		printk("mapping failed logical %Lu bio len %Lu "
 | 
						|
		       "len %Lu\n", logical, length, map_length);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
	multi->end_io = first_bio->bi_end_io;
 | 
						|
	multi->private = first_bio->bi_private;
 | 
						|
	atomic_set(&multi->stripes_pending, multi->num_stripes);
 | 
						|
 | 
						|
	while(dev_nr < total_devs) {
 | 
						|
		if (total_devs > 1) {
 | 
						|
			if (dev_nr < total_devs - 1) {
 | 
						|
				bio = bio_clone(first_bio, GFP_NOFS);
 | 
						|
				BUG_ON(!bio);
 | 
						|
			} else {
 | 
						|
				bio = first_bio;
 | 
						|
			}
 | 
						|
			bio->bi_private = multi;
 | 
						|
			bio->bi_end_io = end_bio_multi_stripe;
 | 
						|
		}
 | 
						|
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
 | 
						|
		dev = multi->stripes[dev_nr].dev;
 | 
						|
		if (dev && dev->bdev) {
 | 
						|
			bio->bi_bdev = dev->bdev;
 | 
						|
			if (async_submit)
 | 
						|
				schedule_bio(root, dev, rw, bio);
 | 
						|
			else
 | 
						|
				submit_bio(rw, bio);
 | 
						|
		} else {
 | 
						|
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
 | 
						|
			bio->bi_sector = logical >> 9;
 | 
						|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
 | 
						|
			bio_endio(bio, bio->bi_size, -EIO);
 | 
						|
#else
 | 
						|
			bio_endio(bio, -EIO);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
		dev_nr++;
 | 
						|
	}
 | 
						|
	if (total_devs == 1)
 | 
						|
		kfree(multi);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
 | 
						|
				       u8 *uuid)
 | 
						|
{
 | 
						|
	struct list_head *head = &root->fs_info->fs_devices->devices;
 | 
						|
 | 
						|
	return __find_device(head, devid, uuid);
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
 | 
						|
					    u64 devid, u8 *dev_uuid)
 | 
						|
{
 | 
						|
	struct btrfs_device *device;
 | 
						|
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 | 
						|
 | 
						|
	device = kzalloc(sizeof(*device), GFP_NOFS);
 | 
						|
	list_add(&device->dev_list,
 | 
						|
		 &fs_devices->devices);
 | 
						|
	list_add(&device->dev_alloc_list,
 | 
						|
		 &fs_devices->alloc_list);
 | 
						|
	device->barriers = 1;
 | 
						|
	device->dev_root = root->fs_info->dev_root;
 | 
						|
	device->devid = devid;
 | 
						|
	device->work.func = pending_bios_fn;
 | 
						|
	fs_devices->num_devices++;
 | 
						|
	spin_lock_init(&device->io_lock);
 | 
						|
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
 | 
						|
	return device;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
 | 
						|
			  struct extent_buffer *leaf,
 | 
						|
			  struct btrfs_chunk *chunk)
 | 
						|
{
 | 
						|
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
 | 
						|
	struct map_lookup *map;
 | 
						|
	struct extent_map *em;
 | 
						|
	u64 logical;
 | 
						|
	u64 length;
 | 
						|
	u64 devid;
 | 
						|
	u8 uuid[BTRFS_UUID_SIZE];
 | 
						|
	int num_stripes;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	logical = key->offset;
 | 
						|
	length = btrfs_chunk_length(leaf, chunk);
 | 
						|
 | 
						|
	spin_lock(&map_tree->map_tree.lock);
 | 
						|
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
 | 
						|
	spin_unlock(&map_tree->map_tree.lock);
 | 
						|
 | 
						|
	/* already mapped? */
 | 
						|
	if (em && em->start <= logical && em->start + em->len > logical) {
 | 
						|
		free_extent_map(em);
 | 
						|
		return 0;
 | 
						|
	} else if (em) {
 | 
						|
		free_extent_map(em);
 | 
						|
	}
 | 
						|
 | 
						|
	map = kzalloc(sizeof(*map), GFP_NOFS);
 | 
						|
	if (!map)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	em = alloc_extent_map(GFP_NOFS);
 | 
						|
	if (!em)
 | 
						|
		return -ENOMEM;
 | 
						|
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | 
						|
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
 | 
						|
	if (!map) {
 | 
						|
		free_extent_map(em);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	em->bdev = (struct block_device *)map;
 | 
						|
	em->start = logical;
 | 
						|
	em->len = length;
 | 
						|
	em->block_start = 0;
 | 
						|
 | 
						|
	map->num_stripes = num_stripes;
 | 
						|
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
 | 
						|
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 | 
						|
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
 | 
						|
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 | 
						|
	map->type = btrfs_chunk_type(leaf, chunk);
 | 
						|
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 | 
						|
	for (i = 0; i < num_stripes; i++) {
 | 
						|
		map->stripes[i].physical =
 | 
						|
			btrfs_stripe_offset_nr(leaf, chunk, i);
 | 
						|
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 | 
						|
		read_extent_buffer(leaf, uuid, (unsigned long)
 | 
						|
				   btrfs_stripe_dev_uuid_nr(chunk, i),
 | 
						|
				   BTRFS_UUID_SIZE);
 | 
						|
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
 | 
						|
 | 
						|
		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
 | 
						|
			kfree(map);
 | 
						|
			free_extent_map(em);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
		if (!map->stripes[i].dev) {
 | 
						|
			map->stripes[i].dev =
 | 
						|
				add_missing_dev(root, devid, uuid);
 | 
						|
			if (!map->stripes[i].dev) {
 | 
						|
				kfree(map);
 | 
						|
				free_extent_map(em);
 | 
						|
				return -EIO;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		map->stripes[i].dev->in_fs_metadata = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&map_tree->map_tree.lock);
 | 
						|
	ret = add_extent_mapping(&map_tree->map_tree, em);
 | 
						|
	spin_unlock(&map_tree->map_tree.lock);
 | 
						|
	BUG_ON(ret);
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int fill_device_from_item(struct extent_buffer *leaf,
 | 
						|
				 struct btrfs_dev_item *dev_item,
 | 
						|
				 struct btrfs_device *device)
 | 
						|
{
 | 
						|
	unsigned long ptr;
 | 
						|
 | 
						|
	device->devid = btrfs_device_id(leaf, dev_item);
 | 
						|
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
 | 
						|
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 | 
						|
	device->type = btrfs_device_type(leaf, dev_item);
 | 
						|
	device->io_align = btrfs_device_io_align(leaf, dev_item);
 | 
						|
	device->io_width = btrfs_device_io_width(leaf, dev_item);
 | 
						|
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 | 
						|
 | 
						|
	ptr = (unsigned long)btrfs_device_uuid(dev_item);
 | 
						|
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int read_one_dev(struct btrfs_root *root,
 | 
						|
			struct extent_buffer *leaf,
 | 
						|
			struct btrfs_dev_item *dev_item)
 | 
						|
{
 | 
						|
	struct btrfs_device *device;
 | 
						|
	u64 devid;
 | 
						|
	int ret;
 | 
						|
	u8 dev_uuid[BTRFS_UUID_SIZE];
 | 
						|
 | 
						|
	devid = btrfs_device_id(leaf, dev_item);
 | 
						|
	read_extent_buffer(leaf, dev_uuid,
 | 
						|
			   (unsigned long)btrfs_device_uuid(dev_item),
 | 
						|
			   BTRFS_UUID_SIZE);
 | 
						|
	device = btrfs_find_device(root, devid, dev_uuid);
 | 
						|
	if (!device) {
 | 
						|
		printk("warning devid %Lu missing\n", devid);
 | 
						|
		device = add_missing_dev(root, devid, dev_uuid);
 | 
						|
		if (!device)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	fill_device_from_item(leaf, dev_item, device);
 | 
						|
	device->dev_root = root->fs_info->dev_root;
 | 
						|
	device->in_fs_metadata = 1;
 | 
						|
	ret = 0;
 | 
						|
#if 0
 | 
						|
	ret = btrfs_open_device(device);
 | 
						|
	if (ret) {
 | 
						|
		kfree(device);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
 | 
						|
{
 | 
						|
	struct btrfs_dev_item *dev_item;
 | 
						|
 | 
						|
	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
 | 
						|
						     dev_item);
 | 
						|
	return read_one_dev(root, buf, dev_item);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_read_sys_array(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
 | 
						|
	struct extent_buffer *sb;
 | 
						|
	struct btrfs_disk_key *disk_key;
 | 
						|
	struct btrfs_chunk *chunk;
 | 
						|
	u8 *ptr;
 | 
						|
	unsigned long sb_ptr;
 | 
						|
	int ret = 0;
 | 
						|
	u32 num_stripes;
 | 
						|
	u32 array_size;
 | 
						|
	u32 len = 0;
 | 
						|
	u32 cur;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
 | 
						|
					  BTRFS_SUPER_INFO_SIZE);
 | 
						|
	if (!sb)
 | 
						|
		return -ENOMEM;
 | 
						|
	btrfs_set_buffer_uptodate(sb);
 | 
						|
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
 | 
						|
	array_size = btrfs_super_sys_array_size(super_copy);
 | 
						|
 | 
						|
	ptr = super_copy->sys_chunk_array;
 | 
						|
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
 | 
						|
	cur = 0;
 | 
						|
 | 
						|
	while (cur < array_size) {
 | 
						|
		disk_key = (struct btrfs_disk_key *)ptr;
 | 
						|
		btrfs_disk_key_to_cpu(&key, disk_key);
 | 
						|
 | 
						|
		len = sizeof(*disk_key); ptr += len;
 | 
						|
		sb_ptr += len;
 | 
						|
		cur += len;
 | 
						|
 | 
						|
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | 
						|
			chunk = (struct btrfs_chunk *)sb_ptr;
 | 
						|
			ret = read_one_chunk(root, &key, sb, chunk);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
 | 
						|
			len = btrfs_chunk_item_size(num_stripes);
 | 
						|
		} else {
 | 
						|
			ret = -EIO;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		ptr += len;
 | 
						|
		sb_ptr += len;
 | 
						|
		cur += len;
 | 
						|
	}
 | 
						|
	free_extent_buffer(sb);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_read_chunk_tree(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	int ret;
 | 
						|
	int slot;
 | 
						|
 | 
						|
	root = root->fs_info->chunk_root;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* first we search for all of the device items, and then we
 | 
						|
	 * read in all of the chunk items.  This way we can create chunk
 | 
						|
	 * mappings that reference all of the devices that are afound
 | 
						|
	 */
 | 
						|
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | 
						|
	key.offset = 0;
 | 
						|
	key.type = 0;
 | 
						|
again:
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	while(1) {
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		slot = path->slots[0];
 | 
						|
		if (slot >= btrfs_header_nritems(leaf)) {
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret == 0)
 | 
						|
				continue;
 | 
						|
			if (ret < 0)
 | 
						|
				goto error;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | 
						|
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
 | 
						|
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
 | 
						|
				break;
 | 
						|
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
 | 
						|
				struct btrfs_dev_item *dev_item;
 | 
						|
				dev_item = btrfs_item_ptr(leaf, slot,
 | 
						|
						  struct btrfs_dev_item);
 | 
						|
				ret = read_one_dev(root, leaf, dev_item);
 | 
						|
				BUG_ON(ret);
 | 
						|
			}
 | 
						|
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
 | 
						|
			struct btrfs_chunk *chunk;
 | 
						|
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 | 
						|
			ret = read_one_chunk(root, &found_key, leaf, chunk);
 | 
						|
		}
 | 
						|
		path->slots[0]++;
 | 
						|
	}
 | 
						|
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
 | 
						|
		key.objectid = 0;
 | 
						|
		btrfs_release_path(root, path);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
	ret = 0;
 | 
						|
error:
 | 
						|
	return ret;
 | 
						|
}
 |