mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	If memory tiering mode is on and a folio is not in the top tier memory, folio's cpupid field is repurposed to store page access time. Instead of an open coded check, use a function to encapsulate the check. Link: https://lkml.kernel.org/r/20240724130115.793641-3-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			995 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			995 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/lockdep.h>
 | 
						|
#include <linux/sysfs.h>
 | 
						|
#include <linux/kobject.h>
 | 
						|
#include <linux/memory.h>
 | 
						|
#include <linux/memory-tiers.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/sched/sysctl.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
struct memory_tier {
 | 
						|
	/* hierarchy of memory tiers */
 | 
						|
	struct list_head list;
 | 
						|
	/* list of all memory types part of this tier */
 | 
						|
	struct list_head memory_types;
 | 
						|
	/*
 | 
						|
	 * start value of abstract distance. memory tier maps
 | 
						|
	 * an abstract distance  range,
 | 
						|
	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
 | 
						|
	 */
 | 
						|
	int adistance_start;
 | 
						|
	struct device dev;
 | 
						|
	/* All the nodes that are part of all the lower memory tiers. */
 | 
						|
	nodemask_t lower_tier_mask;
 | 
						|
};
 | 
						|
 | 
						|
struct demotion_nodes {
 | 
						|
	nodemask_t preferred;
 | 
						|
};
 | 
						|
 | 
						|
struct node_memory_type_map {
 | 
						|
	struct memory_dev_type *memtype;
 | 
						|
	int map_count;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_MUTEX(memory_tier_lock);
 | 
						|
static LIST_HEAD(memory_tiers);
 | 
						|
/*
 | 
						|
 * The list is used to store all memory types that are not created
 | 
						|
 * by a device driver.
 | 
						|
 */
 | 
						|
static LIST_HEAD(default_memory_types);
 | 
						|
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
 | 
						|
struct memory_dev_type *default_dram_type;
 | 
						|
nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
 | 
						|
 | 
						|
static const struct bus_type memory_tier_subsys = {
 | 
						|
	.name = "memory_tiering",
 | 
						|
	.dev_name = "memory_tier",
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA_BALANCING
 | 
						|
/**
 | 
						|
 * folio_use_access_time - check if a folio reuses cpupid for page access time
 | 
						|
 * @folio: folio to check
 | 
						|
 *
 | 
						|
 * folio's _last_cpupid field is repurposed by memory tiering. In memory
 | 
						|
 * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
 | 
						|
 * record page access time.
 | 
						|
 *
 | 
						|
 * Return: the folio _last_cpupid is used to record page access time
 | 
						|
 */
 | 
						|
bool folio_use_access_time(struct folio *folio)
 | 
						|
{
 | 
						|
	return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 | 
						|
	       !node_is_toptier(folio_nid(folio));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
static int top_tier_adistance;
 | 
						|
/*
 | 
						|
 * node_demotion[] examples:
 | 
						|
 *
 | 
						|
 * Example 1:
 | 
						|
 *
 | 
						|
 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
 | 
						|
 *
 | 
						|
 * node distances:
 | 
						|
 * node   0    1    2    3
 | 
						|
 *    0  10   20   30   40
 | 
						|
 *    1  20   10   40   30
 | 
						|
 *    2  30   40   10   40
 | 
						|
 *    3  40   30   40   10
 | 
						|
 *
 | 
						|
 * memory_tiers0 = 0-1
 | 
						|
 * memory_tiers1 = 2-3
 | 
						|
 *
 | 
						|
 * node_demotion[0].preferred = 2
 | 
						|
 * node_demotion[1].preferred = 3
 | 
						|
 * node_demotion[2].preferred = <empty>
 | 
						|
 * node_demotion[3].preferred = <empty>
 | 
						|
 *
 | 
						|
 * Example 2:
 | 
						|
 *
 | 
						|
 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
 | 
						|
 *
 | 
						|
 * node distances:
 | 
						|
 * node   0    1    2
 | 
						|
 *    0  10   20   30
 | 
						|
 *    1  20   10   30
 | 
						|
 *    2  30   30   10
 | 
						|
 *
 | 
						|
 * memory_tiers0 = 0-2
 | 
						|
 *
 | 
						|
 * node_demotion[0].preferred = <empty>
 | 
						|
 * node_demotion[1].preferred = <empty>
 | 
						|
 * node_demotion[2].preferred = <empty>
 | 
						|
 *
 | 
						|
 * Example 3:
 | 
						|
 *
 | 
						|
 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
 | 
						|
 *
 | 
						|
 * node distances:
 | 
						|
 * node   0    1    2
 | 
						|
 *    0  10   20   30
 | 
						|
 *    1  20   10   40
 | 
						|
 *    2  30   40   10
 | 
						|
 *
 | 
						|
 * memory_tiers0 = 1
 | 
						|
 * memory_tiers1 = 0
 | 
						|
 * memory_tiers2 = 2
 | 
						|
 *
 | 
						|
 * node_demotion[0].preferred = 2
 | 
						|
 * node_demotion[1].preferred = 0
 | 
						|
 * node_demotion[2].preferred = <empty>
 | 
						|
 *
 | 
						|
 */
 | 
						|
static struct demotion_nodes *node_demotion __read_mostly;
 | 
						|
#endif /* CONFIG_MIGRATION */
 | 
						|
 | 
						|
static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
 | 
						|
 | 
						|
/* The lock is used to protect `default_dram_perf*` info and nid. */
 | 
						|
static DEFINE_MUTEX(default_dram_perf_lock);
 | 
						|
static bool default_dram_perf_error;
 | 
						|
static struct access_coordinate default_dram_perf;
 | 
						|
static int default_dram_perf_ref_nid = NUMA_NO_NODE;
 | 
						|
static const char *default_dram_perf_ref_source;
 | 
						|
 | 
						|
static inline struct memory_tier *to_memory_tier(struct device *device)
 | 
						|
{
 | 
						|
	return container_of(device, struct memory_tier, dev);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
 | 
						|
{
 | 
						|
	nodemask_t nodes = NODE_MASK_NONE;
 | 
						|
	struct memory_dev_type *memtype;
 | 
						|
 | 
						|
	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
 | 
						|
		nodes_or(nodes, nodes, memtype->nodes);
 | 
						|
 | 
						|
	return nodes;
 | 
						|
}
 | 
						|
 | 
						|
static void memory_tier_device_release(struct device *dev)
 | 
						|
{
 | 
						|
	struct memory_tier *tier = to_memory_tier(dev);
 | 
						|
	/*
 | 
						|
	 * synchronize_rcu in clear_node_memory_tier makes sure
 | 
						|
	 * we don't have rcu access to this memory tier.
 | 
						|
	 */
 | 
						|
	kfree(tier);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nodelist_show(struct device *dev,
 | 
						|
			     struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	nodemask_t nmask;
 | 
						|
 | 
						|
	mutex_lock(&memory_tier_lock);
 | 
						|
	nmask = get_memtier_nodemask(to_memory_tier(dev));
 | 
						|
	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
 | 
						|
	mutex_unlock(&memory_tier_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(nodelist);
 | 
						|
 | 
						|
static struct attribute *memtier_dev_attrs[] = {
 | 
						|
	&dev_attr_nodelist.attr,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group memtier_dev_group = {
 | 
						|
	.attrs = memtier_dev_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group *memtier_dev_groups[] = {
 | 
						|
	&memtier_dev_group,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	bool found_slot = false;
 | 
						|
	struct memory_tier *memtier, *new_memtier;
 | 
						|
	int adistance = memtype->adistance;
 | 
						|
	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&memory_tier_lock);
 | 
						|
 | 
						|
	adistance = round_down(adistance, memtier_adistance_chunk_size);
 | 
						|
	/*
 | 
						|
	 * If the memtype is already part of a memory tier,
 | 
						|
	 * just return that.
 | 
						|
	 */
 | 
						|
	if (!list_empty(&memtype->tier_sibling)) {
 | 
						|
		list_for_each_entry(memtier, &memory_tiers, list) {
 | 
						|
			if (adistance == memtier->adistance_start)
 | 
						|
				return memtier;
 | 
						|
		}
 | 
						|
		WARN_ON(1);
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry(memtier, &memory_tiers, list) {
 | 
						|
		if (adistance == memtier->adistance_start) {
 | 
						|
			goto link_memtype;
 | 
						|
		} else if (adistance < memtier->adistance_start) {
 | 
						|
			found_slot = true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
 | 
						|
	if (!new_memtier)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	new_memtier->adistance_start = adistance;
 | 
						|
	INIT_LIST_HEAD(&new_memtier->list);
 | 
						|
	INIT_LIST_HEAD(&new_memtier->memory_types);
 | 
						|
	if (found_slot)
 | 
						|
		list_add_tail(&new_memtier->list, &memtier->list);
 | 
						|
	else
 | 
						|
		list_add_tail(&new_memtier->list, &memory_tiers);
 | 
						|
 | 
						|
	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
 | 
						|
	new_memtier->dev.bus = &memory_tier_subsys;
 | 
						|
	new_memtier->dev.release = memory_tier_device_release;
 | 
						|
	new_memtier->dev.groups = memtier_dev_groups;
 | 
						|
 | 
						|
	ret = device_register(&new_memtier->dev);
 | 
						|
	if (ret) {
 | 
						|
		list_del(&new_memtier->list);
 | 
						|
		put_device(&new_memtier->dev);
 | 
						|
		return ERR_PTR(ret);
 | 
						|
	}
 | 
						|
	memtier = new_memtier;
 | 
						|
 | 
						|
link_memtype:
 | 
						|
	list_add(&memtype->tier_sibling, &memtier->memory_types);
 | 
						|
	return memtier;
 | 
						|
}
 | 
						|
 | 
						|
static struct memory_tier *__node_get_memory_tier(int node)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat;
 | 
						|
 | 
						|
	pgdat = NODE_DATA(node);
 | 
						|
	if (!pgdat)
 | 
						|
		return NULL;
 | 
						|
	/*
 | 
						|
	 * Since we hold memory_tier_lock, we can avoid
 | 
						|
	 * RCU read locks when accessing the details. No
 | 
						|
	 * parallel updates are possible here.
 | 
						|
	 */
 | 
						|
	return rcu_dereference_check(pgdat->memtier,
 | 
						|
				     lockdep_is_held(&memory_tier_lock));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
bool node_is_toptier(int node)
 | 
						|
{
 | 
						|
	bool toptier;
 | 
						|
	pg_data_t *pgdat;
 | 
						|
	struct memory_tier *memtier;
 | 
						|
 | 
						|
	pgdat = NODE_DATA(node);
 | 
						|
	if (!pgdat)
 | 
						|
		return false;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	memtier = rcu_dereference(pgdat->memtier);
 | 
						|
	if (!memtier) {
 | 
						|
		toptier = true;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (memtier->adistance_start <= top_tier_adistance)
 | 
						|
		toptier = true;
 | 
						|
	else
 | 
						|
		toptier = false;
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
	return toptier;
 | 
						|
}
 | 
						|
 | 
						|
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
 | 
						|
{
 | 
						|
	struct memory_tier *memtier;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * pg_data_t.memtier updates includes a synchronize_rcu()
 | 
						|
	 * which ensures that we either find NULL or a valid memtier
 | 
						|
	 * in NODE_DATA. protect the access via rcu_read_lock();
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	memtier = rcu_dereference(pgdat->memtier);
 | 
						|
	if (memtier)
 | 
						|
		*targets = memtier->lower_tier_mask;
 | 
						|
	else
 | 
						|
		*targets = NODE_MASK_NONE;
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * next_demotion_node() - Get the next node in the demotion path
 | 
						|
 * @node: The starting node to lookup the next node
 | 
						|
 *
 | 
						|
 * Return: node id for next memory node in the demotion path hierarchy
 | 
						|
 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 | 
						|
 * @node online or guarantee that it *continues* to be the next demotion
 | 
						|
 * target.
 | 
						|
 */
 | 
						|
int next_demotion_node(int node)
 | 
						|
{
 | 
						|
	struct demotion_nodes *nd;
 | 
						|
	int target;
 | 
						|
 | 
						|
	if (!node_demotion)
 | 
						|
		return NUMA_NO_NODE;
 | 
						|
 | 
						|
	nd = &node_demotion[node];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * node_demotion[] is updated without excluding this
 | 
						|
	 * function from running.
 | 
						|
	 *
 | 
						|
	 * Make sure to use RCU over entire code blocks if
 | 
						|
	 * node_demotion[] reads need to be consistent.
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	/*
 | 
						|
	 * If there are multiple target nodes, just select one
 | 
						|
	 * target node randomly.
 | 
						|
	 *
 | 
						|
	 * In addition, we can also use round-robin to select
 | 
						|
	 * target node, but we should introduce another variable
 | 
						|
	 * for node_demotion[] to record last selected target node,
 | 
						|
	 * that may cause cache ping-pong due to the changing of
 | 
						|
	 * last target node. Or introducing per-cpu data to avoid
 | 
						|
	 * caching issue, which seems more complicated. So selecting
 | 
						|
	 * target node randomly seems better until now.
 | 
						|
	 */
 | 
						|
	target = node_random(&nd->preferred);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return target;
 | 
						|
}
 | 
						|
 | 
						|
static void disable_all_demotion_targets(void)
 | 
						|
{
 | 
						|
	struct memory_tier *memtier;
 | 
						|
	int node;
 | 
						|
 | 
						|
	for_each_node_state(node, N_MEMORY) {
 | 
						|
		node_demotion[node].preferred = NODE_MASK_NONE;
 | 
						|
		/*
 | 
						|
		 * We are holding memory_tier_lock, it is safe
 | 
						|
		 * to access pgda->memtier.
 | 
						|
		 */
 | 
						|
		memtier = __node_get_memory_tier(node);
 | 
						|
		if (memtier)
 | 
						|
			memtier->lower_tier_mask = NODE_MASK_NONE;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Ensure that the "disable" is visible across the system.
 | 
						|
	 * Readers will see either a combination of before+disable
 | 
						|
	 * state or disable+after.  They will never see before and
 | 
						|
	 * after state together.
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
}
 | 
						|
 | 
						|
static void dump_demotion_targets(void)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	for_each_node_state(node, N_MEMORY) {
 | 
						|
		struct memory_tier *memtier = __node_get_memory_tier(node);
 | 
						|
		nodemask_t preferred = node_demotion[node].preferred;
 | 
						|
 | 
						|
		if (!memtier)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (nodes_empty(preferred))
 | 
						|
			pr_info("Demotion targets for Node %d: null\n", node);
 | 
						|
		else
 | 
						|
			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
 | 
						|
				node, nodemask_pr_args(&preferred),
 | 
						|
				nodemask_pr_args(&memtier->lower_tier_mask));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find an automatic demotion target for all memory
 | 
						|
 * nodes. Failing here is OK.  It might just indicate
 | 
						|
 * being at the end of a chain.
 | 
						|
 */
 | 
						|
static void establish_demotion_targets(void)
 | 
						|
{
 | 
						|
	struct memory_tier *memtier;
 | 
						|
	struct demotion_nodes *nd;
 | 
						|
	int target = NUMA_NO_NODE, node;
 | 
						|
	int distance, best_distance;
 | 
						|
	nodemask_t tier_nodes, lower_tier;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&memory_tier_lock);
 | 
						|
 | 
						|
	if (!node_demotion)
 | 
						|
		return;
 | 
						|
 | 
						|
	disable_all_demotion_targets();
 | 
						|
 | 
						|
	for_each_node_state(node, N_MEMORY) {
 | 
						|
		best_distance = -1;
 | 
						|
		nd = &node_demotion[node];
 | 
						|
 | 
						|
		memtier = __node_get_memory_tier(node);
 | 
						|
		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Get the lower memtier to find the  demotion node list.
 | 
						|
		 */
 | 
						|
		memtier = list_next_entry(memtier, list);
 | 
						|
		tier_nodes = get_memtier_nodemask(memtier);
 | 
						|
		/*
 | 
						|
		 * find_next_best_node, use 'used' nodemask as a skip list.
 | 
						|
		 * Add all memory nodes except the selected memory tier
 | 
						|
		 * nodelist to skip list so that we find the best node from the
 | 
						|
		 * memtier nodelist.
 | 
						|
		 */
 | 
						|
		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Find all the nodes in the memory tier node list of same best distance.
 | 
						|
		 * add them to the preferred mask. We randomly select between nodes
 | 
						|
		 * in the preferred mask when allocating pages during demotion.
 | 
						|
		 */
 | 
						|
		do {
 | 
						|
			target = find_next_best_node(node, &tier_nodes);
 | 
						|
			if (target == NUMA_NO_NODE)
 | 
						|
				break;
 | 
						|
 | 
						|
			distance = node_distance(node, target);
 | 
						|
			if (distance == best_distance || best_distance == -1) {
 | 
						|
				best_distance = distance;
 | 
						|
				node_set(target, nd->preferred);
 | 
						|
			} else {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} while (1);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Promotion is allowed from a memory tier to higher
 | 
						|
	 * memory tier only if the memory tier doesn't include
 | 
						|
	 * compute. We want to skip promotion from a memory tier,
 | 
						|
	 * if any node that is part of the memory tier have CPUs.
 | 
						|
	 * Once we detect such a memory tier, we consider that tier
 | 
						|
	 * as top tiper from which promotion is not allowed.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
 | 
						|
		tier_nodes = get_memtier_nodemask(memtier);
 | 
						|
		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
 | 
						|
		if (!nodes_empty(tier_nodes)) {
 | 
						|
			/*
 | 
						|
			 * abstract distance below the max value of this memtier
 | 
						|
			 * is considered toptier.
 | 
						|
			 */
 | 
						|
			top_tier_adistance = memtier->adistance_start +
 | 
						|
						MEMTIER_CHUNK_SIZE - 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Now build the lower_tier mask for each node collecting node mask from
 | 
						|
	 * all memory tier below it. This allows us to fallback demotion page
 | 
						|
	 * allocation to a set of nodes that is closer the above selected
 | 
						|
	 * preferred node.
 | 
						|
	 */
 | 
						|
	lower_tier = node_states[N_MEMORY];
 | 
						|
	list_for_each_entry(memtier, &memory_tiers, list) {
 | 
						|
		/*
 | 
						|
		 * Keep removing current tier from lower_tier nodes,
 | 
						|
		 * This will remove all nodes in current and above
 | 
						|
		 * memory tier from the lower_tier mask.
 | 
						|
		 */
 | 
						|
		tier_nodes = get_memtier_nodemask(memtier);
 | 
						|
		nodes_andnot(lower_tier, lower_tier, tier_nodes);
 | 
						|
		memtier->lower_tier_mask = lower_tier;
 | 
						|
	}
 | 
						|
 | 
						|
	dump_demotion_targets();
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void establish_demotion_targets(void) {}
 | 
						|
#endif /* CONFIG_MIGRATION */
 | 
						|
 | 
						|
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
 | 
						|
{
 | 
						|
	if (!node_memory_types[node].memtype)
 | 
						|
		node_memory_types[node].memtype = memtype;
 | 
						|
	/*
 | 
						|
	 * for each device getting added in the same NUMA node
 | 
						|
	 * with this specific memtype, bump the map count. We
 | 
						|
	 * Only take memtype device reference once, so that
 | 
						|
	 * changing a node memtype can be done by droping the
 | 
						|
	 * only reference count taken here.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (node_memory_types[node].memtype == memtype) {
 | 
						|
		if (!node_memory_types[node].map_count++)
 | 
						|
			kref_get(&memtype->kref);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct memory_tier *set_node_memory_tier(int node)
 | 
						|
{
 | 
						|
	struct memory_tier *memtier;
 | 
						|
	struct memory_dev_type *memtype = default_dram_type;
 | 
						|
	int adist = MEMTIER_ADISTANCE_DRAM;
 | 
						|
	pg_data_t *pgdat = NODE_DATA(node);
 | 
						|
 | 
						|
 | 
						|
	lockdep_assert_held_once(&memory_tier_lock);
 | 
						|
 | 
						|
	if (!node_state(node, N_MEMORY))
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	mt_calc_adistance(node, &adist);
 | 
						|
	if (!node_memory_types[node].memtype) {
 | 
						|
		memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
 | 
						|
		if (IS_ERR(memtype)) {
 | 
						|
			memtype = default_dram_type;
 | 
						|
			pr_info("Failed to allocate a memory type. Fall back.\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	__init_node_memory_type(node, memtype);
 | 
						|
 | 
						|
	memtype = node_memory_types[node].memtype;
 | 
						|
	node_set(node, memtype->nodes);
 | 
						|
	memtier = find_create_memory_tier(memtype);
 | 
						|
	if (!IS_ERR(memtier))
 | 
						|
		rcu_assign_pointer(pgdat->memtier, memtier);
 | 
						|
	return memtier;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_memory_tier(struct memory_tier *memtier)
 | 
						|
{
 | 
						|
	list_del(&memtier->list);
 | 
						|
	device_unregister(&memtier->dev);
 | 
						|
}
 | 
						|
 | 
						|
static bool clear_node_memory_tier(int node)
 | 
						|
{
 | 
						|
	bool cleared = false;
 | 
						|
	pg_data_t *pgdat;
 | 
						|
	struct memory_tier *memtier;
 | 
						|
 | 
						|
	pgdat = NODE_DATA(node);
 | 
						|
	if (!pgdat)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that anybody looking at NODE_DATA who finds
 | 
						|
	 * a valid memtier finds memory_dev_types with nodes still
 | 
						|
	 * linked to the memtier. We achieve this by waiting for
 | 
						|
	 * rcu read section to finish using synchronize_rcu.
 | 
						|
	 * This also enables us to free the destroyed memory tier
 | 
						|
	 * with kfree instead of kfree_rcu
 | 
						|
	 */
 | 
						|
	memtier = __node_get_memory_tier(node);
 | 
						|
	if (memtier) {
 | 
						|
		struct memory_dev_type *memtype;
 | 
						|
 | 
						|
		rcu_assign_pointer(pgdat->memtier, NULL);
 | 
						|
		synchronize_rcu();
 | 
						|
		memtype = node_memory_types[node].memtype;
 | 
						|
		node_clear(node, memtype->nodes);
 | 
						|
		if (nodes_empty(memtype->nodes)) {
 | 
						|
			list_del_init(&memtype->tier_sibling);
 | 
						|
			if (list_empty(&memtier->memory_types))
 | 
						|
				destroy_memory_tier(memtier);
 | 
						|
		}
 | 
						|
		cleared = true;
 | 
						|
	}
 | 
						|
	return cleared;
 | 
						|
}
 | 
						|
 | 
						|
static void release_memtype(struct kref *kref)
 | 
						|
{
 | 
						|
	struct memory_dev_type *memtype;
 | 
						|
 | 
						|
	memtype = container_of(kref, struct memory_dev_type, kref);
 | 
						|
	kfree(memtype);
 | 
						|
}
 | 
						|
 | 
						|
struct memory_dev_type *alloc_memory_type(int adistance)
 | 
						|
{
 | 
						|
	struct memory_dev_type *memtype;
 | 
						|
 | 
						|
	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
 | 
						|
	if (!memtype)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	memtype->adistance = adistance;
 | 
						|
	INIT_LIST_HEAD(&memtype->tier_sibling);
 | 
						|
	memtype->nodes  = NODE_MASK_NONE;
 | 
						|
	kref_init(&memtype->kref);
 | 
						|
	return memtype;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(alloc_memory_type);
 | 
						|
 | 
						|
void put_memory_type(struct memory_dev_type *memtype)
 | 
						|
{
 | 
						|
	kref_put(&memtype->kref, release_memtype);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(put_memory_type);
 | 
						|
 | 
						|
void init_node_memory_type(int node, struct memory_dev_type *memtype)
 | 
						|
{
 | 
						|
 | 
						|
	mutex_lock(&memory_tier_lock);
 | 
						|
	__init_node_memory_type(node, memtype);
 | 
						|
	mutex_unlock(&memory_tier_lock);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(init_node_memory_type);
 | 
						|
 | 
						|
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
 | 
						|
{
 | 
						|
	mutex_lock(&memory_tier_lock);
 | 
						|
	if (node_memory_types[node].memtype == memtype || !memtype)
 | 
						|
		node_memory_types[node].map_count--;
 | 
						|
	/*
 | 
						|
	 * If we umapped all the attached devices to this node,
 | 
						|
	 * clear the node memory type.
 | 
						|
	 */
 | 
						|
	if (!node_memory_types[node].map_count) {
 | 
						|
		memtype = node_memory_types[node].memtype;
 | 
						|
		node_memory_types[node].memtype = NULL;
 | 
						|
		put_memory_type(memtype);
 | 
						|
	}
 | 
						|
	mutex_unlock(&memory_tier_lock);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(clear_node_memory_type);
 | 
						|
 | 
						|
struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
 | 
						|
{
 | 
						|
	struct memory_dev_type *mtype;
 | 
						|
 | 
						|
	list_for_each_entry(mtype, memory_types, list)
 | 
						|
		if (mtype->adistance == adist)
 | 
						|
			return mtype;
 | 
						|
 | 
						|
	mtype = alloc_memory_type(adist);
 | 
						|
	if (IS_ERR(mtype))
 | 
						|
		return mtype;
 | 
						|
 | 
						|
	list_add(&mtype->list, memory_types);
 | 
						|
 | 
						|
	return mtype;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
 | 
						|
 | 
						|
void mt_put_memory_types(struct list_head *memory_types)
 | 
						|
{
 | 
						|
	struct memory_dev_type *mtype, *mtn;
 | 
						|
 | 
						|
	list_for_each_entry_safe(mtype, mtn, memory_types, list) {
 | 
						|
		list_del(&mtype->list);
 | 
						|
		put_memory_type(mtype);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mt_put_memory_types);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is invoked via `late_initcall()` to initialize memory tiers for
 | 
						|
 * memory nodes, both with and without CPUs. After the initialization of
 | 
						|
 * firmware and devices, adistance algorithms are expected to be provided.
 | 
						|
 */
 | 
						|
static int __init memory_tier_late_init(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	struct memory_tier *memtier;
 | 
						|
 | 
						|
	get_online_mems();
 | 
						|
	guard(mutex)(&memory_tier_lock);
 | 
						|
 | 
						|
	/* Assign each uninitialized N_MEMORY node to a memory tier. */
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		/*
 | 
						|
		 * Some device drivers may have initialized
 | 
						|
		 * memory tiers, potentially bringing memory nodes
 | 
						|
		 * online and configuring memory tiers.
 | 
						|
		 * Exclude them here.
 | 
						|
		 */
 | 
						|
		if (node_memory_types[nid].memtype)
 | 
						|
			continue;
 | 
						|
 | 
						|
		memtier = set_node_memory_tier(nid);
 | 
						|
		if (IS_ERR(memtier))
 | 
						|
			continue;
 | 
						|
	}
 | 
						|
 | 
						|
	establish_demotion_targets();
 | 
						|
	put_online_mems();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(memory_tier_late_init);
 | 
						|
 | 
						|
static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
 | 
						|
{
 | 
						|
	pr_info(
 | 
						|
"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
 | 
						|
		prefix, coord->read_latency, coord->write_latency,
 | 
						|
		coord->read_bandwidth, coord->write_bandwidth);
 | 
						|
}
 | 
						|
 | 
						|
int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
 | 
						|
			     const char *source)
 | 
						|
{
 | 
						|
	guard(mutex)(&default_dram_perf_lock);
 | 
						|
	if (default_dram_perf_error)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (perf->read_latency + perf->write_latency == 0 ||
 | 
						|
	    perf->read_bandwidth + perf->write_bandwidth == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
 | 
						|
		default_dram_perf = *perf;
 | 
						|
		default_dram_perf_ref_nid = nid;
 | 
						|
		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The performance of all default DRAM nodes is expected to be
 | 
						|
	 * same (that is, the variation is less than 10%).  And it
 | 
						|
	 * will be used as base to calculate the abstract distance of
 | 
						|
	 * other memory nodes.
 | 
						|
	 */
 | 
						|
	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
 | 
						|
	    default_dram_perf.read_latency ||
 | 
						|
	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
 | 
						|
	    default_dram_perf.write_latency ||
 | 
						|
	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
 | 
						|
	    default_dram_perf.read_bandwidth ||
 | 
						|
	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
 | 
						|
	    default_dram_perf.write_bandwidth) {
 | 
						|
		pr_info(
 | 
						|
"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
 | 
						|
"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
 | 
						|
		pr_info("  performance of reference DRAM node %d:\n",
 | 
						|
			default_dram_perf_ref_nid);
 | 
						|
		dump_hmem_attrs(&default_dram_perf, "    ");
 | 
						|
		pr_info("  performance of DRAM node %d:\n", nid);
 | 
						|
		dump_hmem_attrs(perf, "    ");
 | 
						|
		pr_info(
 | 
						|
"  disable default DRAM node performance based abstract distance algorithm.\n");
 | 
						|
		default_dram_perf_error = true;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
 | 
						|
{
 | 
						|
	guard(mutex)(&default_dram_perf_lock);
 | 
						|
	if (default_dram_perf_error)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (perf->read_latency + perf->write_latency == 0 ||
 | 
						|
	    perf->read_bandwidth + perf->write_bandwidth == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The abstract distance of a memory node is in direct proportion to
 | 
						|
	 * its memory latency (read + write) and inversely proportional to its
 | 
						|
	 * memory bandwidth (read + write).  The abstract distance, memory
 | 
						|
	 * latency, and memory bandwidth of the default DRAM nodes are used as
 | 
						|
	 * the base.
 | 
						|
	 */
 | 
						|
	*adist = MEMTIER_ADISTANCE_DRAM *
 | 
						|
		(perf->read_latency + perf->write_latency) /
 | 
						|
		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
 | 
						|
		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
 | 
						|
		(perf->read_bandwidth + perf->write_bandwidth);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
 | 
						|
 | 
						|
/**
 | 
						|
 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
 | 
						|
 * @nb: The notifier block which describe the algorithm
 | 
						|
 *
 | 
						|
 * Return: 0 on success, errno on error.
 | 
						|
 *
 | 
						|
 * Every memory tiering abstract distance algorithm provider needs to
 | 
						|
 * register the algorithm with register_mt_adistance_algorithm().  To
 | 
						|
 * calculate the abstract distance for a specified memory node, the
 | 
						|
 * notifier function will be called unless some high priority
 | 
						|
 * algorithm has provided result.  The prototype of the notifier
 | 
						|
 * function is as follows,
 | 
						|
 *
 | 
						|
 *   int (*algorithm_notifier)(struct notifier_block *nb,
 | 
						|
 *                             unsigned long nid, void *data);
 | 
						|
 *
 | 
						|
 * Where "nid" specifies the memory node, "data" is the pointer to the
 | 
						|
 * returned abstract distance (that is, "int *adist").  If the
 | 
						|
 * algorithm provides the result, NOTIFY_STOP should be returned.
 | 
						|
 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
 | 
						|
 * algorithm in the chain to provide the result.
 | 
						|
 */
 | 
						|
int register_mt_adistance_algorithm(struct notifier_block *nb)
 | 
						|
{
 | 
						|
	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
 | 
						|
 | 
						|
/**
 | 
						|
 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
 | 
						|
 * @nb: the notifier block which describe the algorithm
 | 
						|
 *
 | 
						|
 * Return: 0 on success, errno on error.
 | 
						|
 */
 | 
						|
int unregister_mt_adistance_algorithm(struct notifier_block *nb)
 | 
						|
{
 | 
						|
	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
 | 
						|
 | 
						|
/**
 | 
						|
 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
 | 
						|
 * @node: the node to calculate abstract distance for
 | 
						|
 * @adist: the returned abstract distance
 | 
						|
 *
 | 
						|
 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
 | 
						|
 * abstract distance algorithm provides the result, and return it via
 | 
						|
 * @adist.  Otherwise, no algorithm can provide the result and @adist
 | 
						|
 * will be kept as it is.
 | 
						|
 */
 | 
						|
int mt_calc_adistance(int node, int *adist)
 | 
						|
{
 | 
						|
	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mt_calc_adistance);
 | 
						|
 | 
						|
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
 | 
						|
					      unsigned long action, void *_arg)
 | 
						|
{
 | 
						|
	struct memory_tier *memtier;
 | 
						|
	struct memory_notify *arg = _arg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only update the node migration order when a node is
 | 
						|
	 * changing status, like online->offline.
 | 
						|
	 */
 | 
						|
	if (arg->status_change_nid < 0)
 | 
						|
		return notifier_from_errno(0);
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case MEM_OFFLINE:
 | 
						|
		mutex_lock(&memory_tier_lock);
 | 
						|
		if (clear_node_memory_tier(arg->status_change_nid))
 | 
						|
			establish_demotion_targets();
 | 
						|
		mutex_unlock(&memory_tier_lock);
 | 
						|
		break;
 | 
						|
	case MEM_ONLINE:
 | 
						|
		mutex_lock(&memory_tier_lock);
 | 
						|
		memtier = set_node_memory_tier(arg->status_change_nid);
 | 
						|
		if (!IS_ERR(memtier))
 | 
						|
			establish_demotion_targets();
 | 
						|
		mutex_unlock(&memory_tier_lock);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return notifier_from_errno(0);
 | 
						|
}
 | 
						|
 | 
						|
static int __init memory_tier_init(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
 | 
						|
	if (ret)
 | 
						|
		panic("%s() failed to register memory tier subsystem\n", __func__);
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
 | 
						|
				GFP_KERNEL);
 | 
						|
	WARN_ON(!node_demotion);
 | 
						|
#endif
 | 
						|
 | 
						|
	guard(mutex)(&memory_tier_lock);
 | 
						|
	/*
 | 
						|
	 * For now we can have 4 faster memory tiers with smaller adistance
 | 
						|
	 * than default DRAM tier.
 | 
						|
	 */
 | 
						|
	default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
 | 
						|
						      &default_memory_types);
 | 
						|
	if (IS_ERR(default_dram_type))
 | 
						|
		panic("%s() failed to allocate default DRAM tier\n", __func__);
 | 
						|
 | 
						|
	/* Record nodes with memory and CPU to set default DRAM performance. */
 | 
						|
	nodes_and(default_dram_nodes, node_states[N_MEMORY],
 | 
						|
		  node_states[N_CPU]);
 | 
						|
 | 
						|
	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(memory_tier_init);
 | 
						|
 | 
						|
bool numa_demotion_enabled = false;
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
#ifdef CONFIG_SYSFS
 | 
						|
static ssize_t demotion_enabled_show(struct kobject *kobj,
 | 
						|
				     struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return sysfs_emit(buf, "%s\n",
 | 
						|
			  numa_demotion_enabled ? "true" : "false");
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t demotion_enabled_store(struct kobject *kobj,
 | 
						|
				      struct kobj_attribute *attr,
 | 
						|
				      const char *buf, size_t count)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	ret = kstrtobool(buf, &numa_demotion_enabled);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static struct kobj_attribute numa_demotion_enabled_attr =
 | 
						|
	__ATTR_RW(demotion_enabled);
 | 
						|
 | 
						|
static struct attribute *numa_attrs[] = {
 | 
						|
	&numa_demotion_enabled_attr.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group numa_attr_group = {
 | 
						|
	.attrs = numa_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static int __init numa_init_sysfs(void)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct kobject *numa_kobj;
 | 
						|
 | 
						|
	numa_kobj = kobject_create_and_add("numa", mm_kobj);
 | 
						|
	if (!numa_kobj) {
 | 
						|
		pr_err("failed to create numa kobject\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	err = sysfs_create_group(numa_kobj, &numa_attr_group);
 | 
						|
	if (err) {
 | 
						|
		pr_err("failed to register numa group\n");
 | 
						|
		goto delete_obj;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
delete_obj:
 | 
						|
	kobject_put(numa_kobj);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
subsys_initcall(numa_init_sysfs);
 | 
						|
#endif /* CONFIG_SYSFS */
 | 
						|
#endif
 |