mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 6de3595473
			
		
	
	
		6de3595473
		
	
	
	
	
		
			
			For all the supported compression algorithms, the compression path would always need to grab the page cache, then do the compression. Normally we would get a page reference without any problem, since the write path should have already locked the pages in the write range. For the sake of error handling, we should handle the page cache miss case. Adds a common wrapper, btrfs_compress_find_get_page(), which calls find_get_page(), and do the error handling along with an error message. Callers inside compression path would only need to call btrfs_compress_find_get_page(), and error out if it returned any error. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			678 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			678 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2016-present, Facebook, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/bio.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/zstd.h>
 | |
| #include "misc.h"
 | |
| #include "fs.h"
 | |
| #include "compression.h"
 | |
| #include "super.h"
 | |
| 
 | |
| #define ZSTD_BTRFS_MAX_WINDOWLOG 17
 | |
| #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
 | |
| #define ZSTD_BTRFS_DEFAULT_LEVEL 3
 | |
| #define ZSTD_BTRFS_MAX_LEVEL 15
 | |
| /* 307s to avoid pathologically clashing with transaction commit */
 | |
| #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
 | |
| 
 | |
| static zstd_parameters zstd_get_btrfs_parameters(unsigned int level,
 | |
| 						 size_t src_len)
 | |
| {
 | |
| 	zstd_parameters params = zstd_get_params(level, src_len);
 | |
| 
 | |
| 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
 | |
| 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
 | |
| 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
 | |
| 	return params;
 | |
| }
 | |
| 
 | |
| struct workspace {
 | |
| 	void *mem;
 | |
| 	size_t size;
 | |
| 	char *buf;
 | |
| 	unsigned int level;
 | |
| 	unsigned int req_level;
 | |
| 	unsigned long last_used; /* jiffies */
 | |
| 	struct list_head list;
 | |
| 	struct list_head lru_list;
 | |
| 	zstd_in_buffer in_buf;
 | |
| 	zstd_out_buffer out_buf;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Zstd Workspace Management
 | |
|  *
 | |
|  * Zstd workspaces have different memory requirements depending on the level.
 | |
|  * The zstd workspaces are managed by having individual lists for each level
 | |
|  * and a global lru.  Forward progress is maintained by protecting a max level
 | |
|  * workspace.
 | |
|  *
 | |
|  * Getting a workspace is done by using the bitmap to identify the levels that
 | |
|  * have available workspaces and scans up.  This lets us recycle higher level
 | |
|  * workspaces because of the monotonic memory guarantee.  A workspace's
 | |
|  * last_used is only updated if it is being used by the corresponding memory
 | |
|  * level.  Putting a workspace involves adding it back to the appropriate places
 | |
|  * and adding it back to the lru if necessary.
 | |
|  *
 | |
|  * A timer is used to reclaim workspaces if they have not been used for
 | |
|  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
 | |
|  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
 | |
|  */
 | |
| 
 | |
| struct zstd_workspace_manager {
 | |
| 	const struct btrfs_compress_op *ops;
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head lru_list;
 | |
| 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
 | |
| 	unsigned long active_map;
 | |
| 	wait_queue_head_t wait;
 | |
| 	struct timer_list timer;
 | |
| };
 | |
| 
 | |
| static struct zstd_workspace_manager wsm;
 | |
| 
 | |
| static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
 | |
| 
 | |
| static inline struct workspace *list_to_workspace(struct list_head *list)
 | |
| {
 | |
| 	return container_of(list, struct workspace, list);
 | |
| }
 | |
| 
 | |
| void zstd_free_workspace(struct list_head *ws);
 | |
| struct list_head *zstd_alloc_workspace(unsigned int level);
 | |
| 
 | |
| /*
 | |
|  * Timer callback to free unused workspaces.
 | |
|  *
 | |
|  * @t: timer
 | |
|  *
 | |
|  * This scans the lru_list and attempts to reclaim any workspace that hasn't
 | |
|  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
 | |
|  *
 | |
|  * The context is softirq and does not need the _bh locking primitives.
 | |
|  */
 | |
| static void zstd_reclaim_timer_fn(struct timer_list *timer)
 | |
| {
 | |
| 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
 | |
| 	struct list_head *pos, *next;
 | |
| 
 | |
| 	spin_lock(&wsm.lock);
 | |
| 
 | |
| 	if (list_empty(&wsm.lru_list)) {
 | |
| 		spin_unlock(&wsm.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
 | |
| 		struct workspace *victim = container_of(pos, struct workspace,
 | |
| 							lru_list);
 | |
| 		unsigned int level;
 | |
| 
 | |
| 		if (time_after(victim->last_used, reclaim_threshold))
 | |
| 			break;
 | |
| 
 | |
| 		/* workspace is in use */
 | |
| 		if (victim->req_level)
 | |
| 			continue;
 | |
| 
 | |
| 		level = victim->level;
 | |
| 		list_del(&victim->lru_list);
 | |
| 		list_del(&victim->list);
 | |
| 		zstd_free_workspace(&victim->list);
 | |
| 
 | |
| 		if (list_empty(&wsm.idle_ws[level - 1]))
 | |
| 			clear_bit(level - 1, &wsm.active_map);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&wsm.lru_list))
 | |
| 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
 | |
| 
 | |
| 	spin_unlock(&wsm.lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate monotonic memory bounds.
 | |
|  *
 | |
|  * It is possible based on the level configurations that a higher level
 | |
|  * workspace uses less memory than a lower level workspace.  In order to reuse
 | |
|  * workspaces, this must be made a monotonic relationship.  This precomputes
 | |
|  * the required memory for each level and enforces the monotonicity between
 | |
|  * level and memory required.
 | |
|  */
 | |
| static void zstd_calc_ws_mem_sizes(void)
 | |
| {
 | |
| 	size_t max_size = 0;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
 | |
| 		zstd_parameters params =
 | |
| 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
 | |
| 		size_t level_size =
 | |
| 			max_t(size_t,
 | |
| 			      zstd_cstream_workspace_bound(¶ms.cParams),
 | |
| 			      zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT));
 | |
| 
 | |
| 		max_size = max_t(size_t, max_size, level_size);
 | |
| 		zstd_ws_mem_sizes[level - 1] = max_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void zstd_init_workspace_manager(void)
 | |
| {
 | |
| 	struct list_head *ws;
 | |
| 	int i;
 | |
| 
 | |
| 	zstd_calc_ws_mem_sizes();
 | |
| 
 | |
| 	wsm.ops = &btrfs_zstd_compress;
 | |
| 	spin_lock_init(&wsm.lock);
 | |
| 	init_waitqueue_head(&wsm.wait);
 | |
| 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&wsm.lru_list);
 | |
| 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
 | |
| 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
 | |
| 
 | |
| 	ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
 | |
| 	if (IS_ERR(ws)) {
 | |
| 		pr_warn(
 | |
| 		"BTRFS: cannot preallocate zstd compression workspace\n");
 | |
| 	} else {
 | |
| 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
 | |
| 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void zstd_cleanup_workspace_manager(void)
 | |
| {
 | |
| 	struct workspace *workspace;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_bh(&wsm.lock);
 | |
| 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
 | |
| 		while (!list_empty(&wsm.idle_ws[i])) {
 | |
| 			workspace = container_of(wsm.idle_ws[i].next,
 | |
| 						 struct workspace, list);
 | |
| 			list_del(&workspace->list);
 | |
| 			list_del(&workspace->lru_list);
 | |
| 			zstd_free_workspace(&workspace->list);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&wsm.lock);
 | |
| 
 | |
| 	del_timer_sync(&wsm.timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find workspace for given level.
 | |
|  *
 | |
|  * @level: compression level
 | |
|  *
 | |
|  * This iterates over the set bits in the active_map beginning at the requested
 | |
|  * compression level.  This lets us utilize already allocated workspaces before
 | |
|  * allocating a new one.  If the workspace is of a larger size, it is used, but
 | |
|  * the place in the lru_list and last_used times are not updated.  This is to
 | |
|  * offer the opportunity to reclaim the workspace in favor of allocating an
 | |
|  * appropriately sized one in the future.
 | |
|  */
 | |
| static struct list_head *zstd_find_workspace(unsigned int level)
 | |
| {
 | |
| 	struct list_head *ws;
 | |
| 	struct workspace *workspace;
 | |
| 	int i = level - 1;
 | |
| 
 | |
| 	spin_lock_bh(&wsm.lock);
 | |
| 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
 | |
| 		if (!list_empty(&wsm.idle_ws[i])) {
 | |
| 			ws = wsm.idle_ws[i].next;
 | |
| 			workspace = list_to_workspace(ws);
 | |
| 			list_del_init(ws);
 | |
| 			/* keep its place if it's a lower level using this */
 | |
| 			workspace->req_level = level;
 | |
| 			if (level == workspace->level)
 | |
| 				list_del(&workspace->lru_list);
 | |
| 			if (list_empty(&wsm.idle_ws[i]))
 | |
| 				clear_bit(i, &wsm.active_map);
 | |
| 			spin_unlock_bh(&wsm.lock);
 | |
| 			return ws;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&wsm.lock);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Zstd get_workspace for level.
 | |
|  *
 | |
|  * @level: compression level
 | |
|  *
 | |
|  * If @level is 0, then any compression level can be used.  Therefore, we begin
 | |
|  * scanning from 1.  We first scan through possible workspaces and then after
 | |
|  * attempt to allocate a new workspace.  If we fail to allocate one due to
 | |
|  * memory pressure, go to sleep waiting for the max level workspace to free up.
 | |
|  */
 | |
| struct list_head *zstd_get_workspace(unsigned int level)
 | |
| {
 | |
| 	struct list_head *ws;
 | |
| 	unsigned int nofs_flag;
 | |
| 
 | |
| 	/* level == 0 means we can use any workspace */
 | |
| 	if (!level)
 | |
| 		level = 1;
 | |
| 
 | |
| again:
 | |
| 	ws = zstd_find_workspace(level);
 | |
| 	if (ws)
 | |
| 		return ws;
 | |
| 
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ws = zstd_alloc_workspace(level);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	if (IS_ERR(ws)) {
 | |
| 		DEFINE_WAIT(wait);
 | |
| 
 | |
| 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 		finish_wait(&wsm.wait, &wait);
 | |
| 
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return ws;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Zstd put_workspace.
 | |
|  *
 | |
|  * @ws: list_head for the workspace
 | |
|  *
 | |
|  * When putting back a workspace, we only need to update the LRU if we are of
 | |
|  * the requested compression level.  Here is where we continue to protect the
 | |
|  * max level workspace or update last_used accordingly.  If the reclaim timer
 | |
|  * isn't set, it is also set here.  Only the max level workspace tries and wakes
 | |
|  * up waiting workspaces.
 | |
|  */
 | |
| void zstd_put_workspace(struct list_head *ws)
 | |
| {
 | |
| 	struct workspace *workspace = list_to_workspace(ws);
 | |
| 
 | |
| 	spin_lock_bh(&wsm.lock);
 | |
| 
 | |
| 	/* A node is only taken off the lru if we are the corresponding level */
 | |
| 	if (workspace->req_level == workspace->level) {
 | |
| 		/* Hide a max level workspace from reclaim */
 | |
| 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
 | |
| 			INIT_LIST_HEAD(&workspace->lru_list);
 | |
| 		} else {
 | |
| 			workspace->last_used = jiffies;
 | |
| 			list_add(&workspace->lru_list, &wsm.lru_list);
 | |
| 			if (!timer_pending(&wsm.timer))
 | |
| 				mod_timer(&wsm.timer,
 | |
| 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_bit(workspace->level - 1, &wsm.active_map);
 | |
| 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
 | |
| 	workspace->req_level = 0;
 | |
| 
 | |
| 	spin_unlock_bh(&wsm.lock);
 | |
| 
 | |
| 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
 | |
| 		cond_wake_up(&wsm.wait);
 | |
| }
 | |
| 
 | |
| void zstd_free_workspace(struct list_head *ws)
 | |
| {
 | |
| 	struct workspace *workspace = list_entry(ws, struct workspace, list);
 | |
| 
 | |
| 	kvfree(workspace->mem);
 | |
| 	kfree(workspace->buf);
 | |
| 	kfree(workspace);
 | |
| }
 | |
| 
 | |
| struct list_head *zstd_alloc_workspace(unsigned int level)
 | |
| {
 | |
| 	struct workspace *workspace;
 | |
| 
 | |
| 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
 | |
| 	if (!workspace)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	workspace->size = zstd_ws_mem_sizes[level - 1];
 | |
| 	workspace->level = level;
 | |
| 	workspace->req_level = level;
 | |
| 	workspace->last_used = jiffies;
 | |
| 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!workspace->mem || !workspace->buf)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&workspace->list);
 | |
| 	INIT_LIST_HEAD(&workspace->lru_list);
 | |
| 
 | |
| 	return &workspace->list;
 | |
| fail:
 | |
| 	zstd_free_workspace(&workspace->list);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
 | |
| 		u64 start, struct page **pages, unsigned long *out_pages,
 | |
| 		unsigned long *total_in, unsigned long *total_out)
 | |
| {
 | |
| 	struct workspace *workspace = list_entry(ws, struct workspace, list);
 | |
| 	zstd_cstream *stream;
 | |
| 	int ret = 0;
 | |
| 	int nr_pages = 0;
 | |
| 	struct page *in_page = NULL;  /* The current page to read */
 | |
| 	struct page *out_page = NULL; /* The current page to write to */
 | |
| 	unsigned long tot_in = 0;
 | |
| 	unsigned long tot_out = 0;
 | |
| 	unsigned long len = *total_out;
 | |
| 	const unsigned long nr_dest_pages = *out_pages;
 | |
| 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
 | |
| 	zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
 | |
| 							   len);
 | |
| 
 | |
| 	*out_pages = 0;
 | |
| 	*total_out = 0;
 | |
| 	*total_in = 0;
 | |
| 
 | |
| 	/* Initialize the stream */
 | |
| 	stream = zstd_init_cstream(¶ms, len, workspace->mem,
 | |
| 			workspace->size);
 | |
| 	if (!stream) {
 | |
| 		pr_warn("BTRFS: zstd_init_cstream failed\n");
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* map in the first page of input data */
 | |
| 	ret = btrfs_compress_find_get_page(mapping, start, &in_page);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	workspace->in_buf.src = kmap_local_page(in_page);
 | |
| 	workspace->in_buf.pos = 0;
 | |
| 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
 | |
| 
 | |
| 	/* Allocate and map in the output buffer */
 | |
| 	out_page = btrfs_alloc_compr_page();
 | |
| 	if (out_page == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	pages[nr_pages++] = out_page;
 | |
| 	workspace->out_buf.dst = page_address(out_page);
 | |
| 	workspace->out_buf.pos = 0;
 | |
| 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
 | |
| 
 | |
| 	while (1) {
 | |
| 		size_t ret2;
 | |
| 
 | |
| 		ret2 = zstd_compress_stream(stream, &workspace->out_buf,
 | |
| 				&workspace->in_buf);
 | |
| 		if (zstd_is_error(ret2)) {
 | |
| 			pr_debug("BTRFS: zstd_compress_stream returned %d\n",
 | |
| 					zstd_get_error_code(ret2));
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Check to see if we are making it bigger */
 | |
| 		if (tot_in + workspace->in_buf.pos > 8192 &&
 | |
| 				tot_in + workspace->in_buf.pos <
 | |
| 				tot_out + workspace->out_buf.pos) {
 | |
| 			ret = -E2BIG;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* We've reached the end of our output range */
 | |
| 		if (workspace->out_buf.pos >= max_out) {
 | |
| 			tot_out += workspace->out_buf.pos;
 | |
| 			ret = -E2BIG;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if we need more output space */
 | |
| 		if (workspace->out_buf.pos == workspace->out_buf.size) {
 | |
| 			tot_out += PAGE_SIZE;
 | |
| 			max_out -= PAGE_SIZE;
 | |
| 			if (nr_pages == nr_dest_pages) {
 | |
| 				ret = -E2BIG;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			out_page = btrfs_alloc_compr_page();
 | |
| 			if (out_page == NULL) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			pages[nr_pages++] = out_page;
 | |
| 			workspace->out_buf.dst = page_address(out_page);
 | |
| 			workspace->out_buf.pos = 0;
 | |
| 			workspace->out_buf.size = min_t(size_t, max_out,
 | |
| 							PAGE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		/* We've reached the end of the input */
 | |
| 		if (workspace->in_buf.pos >= len) {
 | |
| 			tot_in += workspace->in_buf.pos;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if we need more input */
 | |
| 		if (workspace->in_buf.pos == workspace->in_buf.size) {
 | |
| 			tot_in += PAGE_SIZE;
 | |
| 			kunmap_local(workspace->in_buf.src);
 | |
| 			workspace->in_buf.src = NULL;
 | |
| 			put_page(in_page);
 | |
| 			start += PAGE_SIZE;
 | |
| 			len -= PAGE_SIZE;
 | |
| 			ret = btrfs_compress_find_get_page(mapping, start, &in_page);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			workspace->in_buf.src = kmap_local_page(in_page);
 | |
| 			workspace->in_buf.pos = 0;
 | |
| 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		size_t ret2;
 | |
| 
 | |
| 		ret2 = zstd_end_stream(stream, &workspace->out_buf);
 | |
| 		if (zstd_is_error(ret2)) {
 | |
| 			pr_debug("BTRFS: zstd_end_stream returned %d\n",
 | |
| 					zstd_get_error_code(ret2));
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (ret2 == 0) {
 | |
| 			tot_out += workspace->out_buf.pos;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (workspace->out_buf.pos >= max_out) {
 | |
| 			tot_out += workspace->out_buf.pos;
 | |
| 			ret = -E2BIG;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		tot_out += PAGE_SIZE;
 | |
| 		max_out -= PAGE_SIZE;
 | |
| 		if (nr_pages == nr_dest_pages) {
 | |
| 			ret = -E2BIG;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		out_page = btrfs_alloc_compr_page();
 | |
| 		if (out_page == NULL) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		pages[nr_pages++] = out_page;
 | |
| 		workspace->out_buf.dst = page_address(out_page);
 | |
| 		workspace->out_buf.pos = 0;
 | |
| 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	if (tot_out >= tot_in) {
 | |
| 		ret = -E2BIG;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 	*total_in = tot_in;
 | |
| 	*total_out = tot_out;
 | |
| out:
 | |
| 	*out_pages = nr_pages;
 | |
| 	if (workspace->in_buf.src) {
 | |
| 		kunmap_local(workspace->in_buf.src);
 | |
| 		put_page(in_page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
 | |
| {
 | |
| 	struct workspace *workspace = list_entry(ws, struct workspace, list);
 | |
| 	struct page **pages_in = cb->compressed_pages;
 | |
| 	size_t srclen = cb->compressed_len;
 | |
| 	zstd_dstream *stream;
 | |
| 	int ret = 0;
 | |
| 	unsigned long page_in_index = 0;
 | |
| 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
 | |
| 	unsigned long buf_start;
 | |
| 	unsigned long total_out = 0;
 | |
| 
 | |
| 	stream = zstd_init_dstream(
 | |
| 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
 | |
| 	if (!stream) {
 | |
| 		pr_debug("BTRFS: zstd_init_dstream failed\n");
 | |
| 		ret = -EIO;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
 | |
| 	workspace->in_buf.pos = 0;
 | |
| 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
 | |
| 
 | |
| 	workspace->out_buf.dst = workspace->buf;
 | |
| 	workspace->out_buf.pos = 0;
 | |
| 	workspace->out_buf.size = PAGE_SIZE;
 | |
| 
 | |
| 	while (1) {
 | |
| 		size_t ret2;
 | |
| 
 | |
| 		ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
 | |
| 				&workspace->in_buf);
 | |
| 		if (zstd_is_error(ret2)) {
 | |
| 			pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
 | |
| 					zstd_get_error_code(ret2));
 | |
| 			ret = -EIO;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		buf_start = total_out;
 | |
| 		total_out += workspace->out_buf.pos;
 | |
| 		workspace->out_buf.pos = 0;
 | |
| 
 | |
| 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
 | |
| 				total_out - buf_start, cb, buf_start);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (workspace->in_buf.pos >= srclen)
 | |
| 			break;
 | |
| 
 | |
| 		/* Check if we've hit the end of a frame */
 | |
| 		if (ret2 == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (workspace->in_buf.pos == workspace->in_buf.size) {
 | |
| 			kunmap_local(workspace->in_buf.src);
 | |
| 			page_in_index++;
 | |
| 			if (page_in_index >= total_pages_in) {
 | |
| 				workspace->in_buf.src = NULL;
 | |
| 				ret = -EIO;
 | |
| 				goto done;
 | |
| 			}
 | |
| 			srclen -= PAGE_SIZE;
 | |
| 			workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
 | |
| 			workspace->in_buf.pos = 0;
 | |
| 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| done:
 | |
| 	if (workspace->in_buf.src)
 | |
| 		kunmap_local(workspace->in_buf.src);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int zstd_decompress(struct list_head *ws, const u8 *data_in,
 | |
| 		struct page *dest_page, unsigned long dest_pgoff, size_t srclen,
 | |
| 		size_t destlen)
 | |
| {
 | |
| 	struct workspace *workspace = list_entry(ws, struct workspace, list);
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	zstd_dstream *stream;
 | |
| 	int ret = 0;
 | |
| 	unsigned long to_copy = 0;
 | |
| 
 | |
| 	stream = zstd_init_dstream(
 | |
| 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
 | |
| 	if (!stream) {
 | |
| 		pr_warn("BTRFS: zstd_init_dstream failed\n");
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	workspace->in_buf.src = data_in;
 | |
| 	workspace->in_buf.pos = 0;
 | |
| 	workspace->in_buf.size = srclen;
 | |
| 
 | |
| 	workspace->out_buf.dst = workspace->buf;
 | |
| 	workspace->out_buf.pos = 0;
 | |
| 	workspace->out_buf.size = sectorsize;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since both input and output buffers should not exceed one sector,
 | |
| 	 * one call should end the decompression.
 | |
| 	 */
 | |
| 	ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf);
 | |
| 	if (zstd_is_error(ret)) {
 | |
| 		pr_warn_ratelimited("BTRFS: zstd_decompress_stream return %d\n",
 | |
| 				    zstd_get_error_code(ret));
 | |
| 		goto finish;
 | |
| 	}
 | |
| 	to_copy = workspace->out_buf.pos;
 | |
| 	memcpy_to_page(dest_page, dest_pgoff, workspace->out_buf.dst, to_copy);
 | |
| finish:
 | |
| 	/* Error or early end. */
 | |
| 	if (unlikely(to_copy < destlen)) {
 | |
| 		ret = -EIO;
 | |
| 		memzero_page(dest_page, dest_pgoff + to_copy, destlen - to_copy);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct btrfs_compress_op btrfs_zstd_compress = {
 | |
| 	/* ZSTD uses own workspace manager */
 | |
| 	.workspace_manager = NULL,
 | |
| 	.max_level	= ZSTD_BTRFS_MAX_LEVEL,
 | |
| 	.default_level	= ZSTD_BTRFS_DEFAULT_LEVEL,
 | |
| };
 |