mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 1fa516794f
			
		
	
	
		1fa516794f
		
	
	
	
	
		
			
			Allow writing `_: { /* any number of statements */ }` in initializers to
run arbitrary code during initialization.
    try_init!(MyStruct {
        _: {
            if check_something() {
                return Err(MyError);
            }
        },
        foo: Foo::new(val),
        _: {
            println!("successfully initialized `MyStruct`");
        },
    })
Tested-by: Alexandre Courbot <acourbot@nvidia.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Danilo Krummrich <dakr@kernel.org>
Reviewed-by: Danilo Krummrich <dakr@kernel.org>
Signed-off-by: Benno Lossin <lossin@kernel.org>
		
	
			
		
			
				
	
	
		
			1733 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1733 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // SPDX-License-Identifier: Apache-2.0 OR MIT
 | |
| 
 | |
| //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
 | |
| //!
 | |
| //! [Pinning][pinning] is Rust's way of ensuring data does not move.
 | |
| //!
 | |
| //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
 | |
| //! overflow.
 | |
| //!
 | |
| //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used
 | |
| //! standalone.
 | |
| //!
 | |
| //! There are cases when you want to in-place initialize a struct. For example when it is very big
 | |
| //! and moving it from the stack is not an option, because it is bigger than the stack itself.
 | |
| //! Another reason would be that you need the address of the object to initialize it. This stands
 | |
| //! in direct conflict with Rust's normal process of first initializing an object and then moving
 | |
| //! it into it's final memory location. For more information, see
 | |
| //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
 | |
| //!
 | |
| //! This library allows you to do in-place initialization safely.
 | |
| //!
 | |
| //! ## Nightly Needed for `alloc` feature
 | |
| //!
 | |
| //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
 | |
| //! enabled and thus this feature can only be used with a nightly compiler. When enabling the
 | |
| //! `alloc` feature, the user will be required to activate `allocator_api` as well.
 | |
| //!
 | |
| //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
 | |
| //!
 | |
| //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
 | |
| //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
 | |
| //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
 | |
| //! mode.
 | |
| //!
 | |
| //! ## Nightly needed for `unsafe-pinned` feature
 | |
| //!
 | |
| //! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type.
 | |
| //! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735)
 | |
| //! and therefore a nightly compiler. Note that this feature is not enabled by default.
 | |
| //!
 | |
| //! # Overview
 | |
| //!
 | |
| //! To initialize a `struct` with an in-place constructor you will need two things:
 | |
| //! - an in-place constructor,
 | |
| //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
 | |
| //!   [`Box<T>`] or any other smart pointer that supports this library).
 | |
| //!
 | |
| //! To get an in-place constructor there are generally three options:
 | |
| //! - directly creating an in-place constructor using the [`pin_init!`] macro,
 | |
| //! - a custom function/macro returning an in-place constructor provided by someone else,
 | |
| //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
 | |
| //!
 | |
| //! Aside from pinned initialization, this library also supports in-place construction without
 | |
| //! pinning, the macros/types/functions are generally named like the pinned variants without the
 | |
| //! `pin_` prefix.
 | |
| //!
 | |
| //! # Examples
 | |
| //!
 | |
| //! Throughout the examples we will often make use of the `CMutex` type which can be found in
 | |
| //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
 | |
| //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
 | |
| //! requires it to be pinned to be locked and thus is a prime candidate for using this library.
 | |
| //!
 | |
| //! ## Using the [`pin_init!`] macro
 | |
| //!
 | |
| //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
 | |
| //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
 | |
| //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
 | |
| //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
 | |
| //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
 | |
| //!
 | |
| //! ```rust
 | |
| //! # #![expect(clippy::disallowed_names)]
 | |
| //! # #![feature(allocator_api)]
 | |
| //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| //! # use core::pin::Pin;
 | |
| //! use pin_init::{pin_data, pin_init, InPlaceInit};
 | |
| //!
 | |
| //! #[pin_data]
 | |
| //! struct Foo {
 | |
| //!     #[pin]
 | |
| //!     a: CMutex<usize>,
 | |
| //!     b: u32,
 | |
| //! }
 | |
| //!
 | |
| //! let foo = pin_init!(Foo {
 | |
| //!     a <- CMutex::new(42),
 | |
| //!     b: 24,
 | |
| //! });
 | |
| //! # let _ = Box::pin_init(foo);
 | |
| //! ```
 | |
| //!
 | |
| //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
 | |
| //! (or just the stack) to actually initialize a `Foo`:
 | |
| //!
 | |
| //! ```rust
 | |
| //! # #![expect(clippy::disallowed_names)]
 | |
| //! # #![feature(allocator_api)]
 | |
| //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| //! # use core::{alloc::AllocError, pin::Pin};
 | |
| //! # use pin_init::*;
 | |
| //! #
 | |
| //! # #[pin_data]
 | |
| //! # struct Foo {
 | |
| //! #     #[pin]
 | |
| //! #     a: CMutex<usize>,
 | |
| //! #     b: u32,
 | |
| //! # }
 | |
| //! #
 | |
| //! # let foo = pin_init!(Foo {
 | |
| //! #     a <- CMutex::new(42),
 | |
| //! #     b: 24,
 | |
| //! # });
 | |
| //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
 | |
| //! ```
 | |
| //!
 | |
| //! For more information see the [`pin_init!`] macro.
 | |
| //!
 | |
| //! ## Using a custom function/macro that returns an initializer
 | |
| //!
 | |
| //! Many types that use this library supply a function/macro that returns an initializer, because
 | |
| //! the above method only works for types where you can access the fields.
 | |
| //!
 | |
| //! ```rust
 | |
| //! # #![feature(allocator_api)]
 | |
| //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| //! # use pin_init::*;
 | |
| //! # use std::sync::Arc;
 | |
| //! # use core::pin::Pin;
 | |
| //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
 | |
| //! ```
 | |
| //!
 | |
| //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
 | |
| //!
 | |
| //! ```rust
 | |
| //! # #![feature(allocator_api)]
 | |
| //! # use pin_init::*;
 | |
| //! # #[path = "../examples/error.rs"] mod error; use error::Error;
 | |
| //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| //! #[pin_data]
 | |
| //! struct DriverData {
 | |
| //!     #[pin]
 | |
| //!     status: CMutex<i32>,
 | |
| //!     buffer: Box<[u8; 1_000_000]>,
 | |
| //! }
 | |
| //!
 | |
| //! impl DriverData {
 | |
| //!     fn new() -> impl PinInit<Self, Error> {
 | |
| //!         try_pin_init!(Self {
 | |
| //!             status <- CMutex::new(0),
 | |
| //!             buffer: Box::init(pin_init::init_zeroed())?,
 | |
| //!         }? Error)
 | |
| //!     }
 | |
| //! }
 | |
| //! ```
 | |
| //!
 | |
| //! ## Manual creation of an initializer
 | |
| //!
 | |
| //! Often when working with primitives the previous approaches are not sufficient. That is where
 | |
| //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
 | |
| //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
 | |
| //! actually does the initialization in the correct way. Here are the things to look out for
 | |
| //! (we are calling the parameter to the closure `slot`):
 | |
| //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
 | |
| //!   `slot` now contains a valid bit pattern for the type `T`,
 | |
| //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
 | |
| //!   you need to take care to clean up anything if your initialization fails mid-way,
 | |
| //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
 | |
| //!   `slot` gets called.
 | |
| //!
 | |
| //! ```rust
 | |
| //! # #![feature(extern_types)]
 | |
| //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
 | |
| //! use core::{
 | |
| //!     ptr::addr_of_mut,
 | |
| //!     marker::PhantomPinned,
 | |
| //!     cell::UnsafeCell,
 | |
| //!     pin::Pin,
 | |
| //!     mem::MaybeUninit,
 | |
| //! };
 | |
| //! mod bindings {
 | |
| //!     #[repr(C)]
 | |
| //!     pub struct foo {
 | |
| //!         /* fields from C ... */
 | |
| //!     }
 | |
| //!     extern "C" {
 | |
| //!         pub fn init_foo(ptr: *mut foo);
 | |
| //!         pub fn destroy_foo(ptr: *mut foo);
 | |
| //!         #[must_use = "you must check the error return code"]
 | |
| //!         pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
 | |
| //!     }
 | |
| //! }
 | |
| //!
 | |
| //! /// # Invariants
 | |
| //! ///
 | |
| //! /// `foo` is always initialized
 | |
| //! #[pin_data(PinnedDrop)]
 | |
| //! pub struct RawFoo {
 | |
| //!     #[pin]
 | |
| //!     _p: PhantomPinned,
 | |
| //!     #[pin]
 | |
| //!     foo: UnsafeCell<MaybeUninit<bindings::foo>>,
 | |
| //! }
 | |
| //!
 | |
| //! impl RawFoo {
 | |
| //!     pub fn new(flags: u32) -> impl PinInit<Self, i32> {
 | |
| //!         // SAFETY:
 | |
| //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
 | |
| //!         //   enabled `foo`,
 | |
| //!         // - when it returns `Err(e)`, then it has cleaned up before
 | |
| //!         unsafe {
 | |
| //!             pin_init_from_closure(move |slot: *mut Self| {
 | |
| //!                 // `slot` contains uninit memory, avoid creating a reference.
 | |
| //!                 let foo = addr_of_mut!((*slot).foo);
 | |
| //!                 let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
 | |
| //!
 | |
| //!                 // Initialize the `foo`
 | |
| //!                 bindings::init_foo(foo);
 | |
| //!
 | |
| //!                 // Try to enable it.
 | |
| //!                 let err = bindings::enable_foo(foo, flags);
 | |
| //!                 if err != 0 {
 | |
| //!                     // Enabling has failed, first clean up the foo and then return the error.
 | |
| //!                     bindings::destroy_foo(foo);
 | |
| //!                     Err(err)
 | |
| //!                 } else {
 | |
| //!                     // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
 | |
| //!                     Ok(())
 | |
| //!                 }
 | |
| //!             })
 | |
| //!         }
 | |
| //!     }
 | |
| //! }
 | |
| //!
 | |
| //! #[pinned_drop]
 | |
| //! impl PinnedDrop for RawFoo {
 | |
| //!     fn drop(self: Pin<&mut Self>) {
 | |
| //!         // SAFETY: Since `foo` is initialized, destroying is safe.
 | |
| //!         unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
 | |
| //!     }
 | |
| //! }
 | |
| //! ```
 | |
| //!
 | |
| //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
 | |
| //! the `kernel` crate. The [`sync`] module is a good starting point.
 | |
| //!
 | |
| //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
 | |
| //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
 | |
| //! [structurally pinned fields]:
 | |
| //!     https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
 | |
| //! [stack]: crate::stack_pin_init
 | |
| #![cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
 | |
| )]
 | |
| #![cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
 | |
| )]
 | |
| #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
 | |
| #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
 | |
| //! [`impl PinInit<Foo>`]: crate::PinInit
 | |
| //! [`impl PinInit<T, E>`]: crate::PinInit
 | |
| //! [`impl Init<T, E>`]: crate::Init
 | |
| //! [Rust-for-Linux]: https://rust-for-linux.com/
 | |
| 
 | |
| #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))]
 | |
| #![cfg_attr(
 | |
|     all(
 | |
|         any(feature = "alloc", feature = "std"),
 | |
|         not(RUSTC_NEW_UNINIT_IS_STABLE)
 | |
|     ),
 | |
|     feature(new_uninit)
 | |
| )]
 | |
| #![forbid(missing_docs, unsafe_op_in_unsafe_fn)]
 | |
| #![cfg_attr(not(feature = "std"), no_std)]
 | |
| #![cfg_attr(feature = "alloc", feature(allocator_api))]
 | |
| #![cfg_attr(
 | |
|     all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED),
 | |
|     feature(unsafe_pinned)
 | |
| )]
 | |
| 
 | |
| use core::{
 | |
|     cell::UnsafeCell,
 | |
|     convert::Infallible,
 | |
|     marker::PhantomData,
 | |
|     mem::MaybeUninit,
 | |
|     num::*,
 | |
|     pin::Pin,
 | |
|     ptr::{self, NonNull},
 | |
| };
 | |
| 
 | |
| #[doc(hidden)]
 | |
| pub mod __internal;
 | |
| #[doc(hidden)]
 | |
| pub mod macros;
 | |
| 
 | |
| #[cfg(any(feature = "std", feature = "alloc"))]
 | |
| mod alloc;
 | |
| #[cfg(any(feature = "std", feature = "alloc"))]
 | |
| pub use alloc::InPlaceInit;
 | |
| 
 | |
| /// Used to specify the pinning information of the fields of a struct.
 | |
| ///
 | |
| /// This is somewhat similar in purpose as
 | |
| /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
 | |
| /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
 | |
| /// field you want to structurally pin.
 | |
| ///
 | |
| /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
 | |
| /// then `#[pin]` directs the type of initializer that is required.
 | |
| ///
 | |
| /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
 | |
| /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
 | |
| /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// use pin_init::pin_data;
 | |
| ///
 | |
| /// enum Command {
 | |
| ///     /* ... */
 | |
| /// }
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct DriverData {
 | |
| ///     #[pin]
 | |
| ///     queue: CMutex<Vec<Command>>,
 | |
| ///     buf: Box<[u8; 1024 * 1024]>,
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// ```
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
 | |
| /// use core::pin::Pin;
 | |
| /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
 | |
| ///
 | |
| /// enum Command {
 | |
| ///     /* ... */
 | |
| /// }
 | |
| ///
 | |
| /// #[pin_data(PinnedDrop)]
 | |
| /// struct DriverData {
 | |
| ///     #[pin]
 | |
| ///     queue: CMutex<Vec<Command>>,
 | |
| ///     buf: Box<[u8; 1024 * 1024]>,
 | |
| ///     raw_info: *mut bindings::info,
 | |
| /// }
 | |
| ///
 | |
| /// #[pinned_drop]
 | |
| /// impl PinnedDrop for DriverData {
 | |
| ///     fn drop(self: Pin<&mut Self>) {
 | |
| ///         unsafe { bindings::destroy_info(self.raw_info) };
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| pub use ::pin_init_internal::pin_data;
 | |
| 
 | |
| /// Used to implement `PinnedDrop` safely.
 | |
| ///
 | |
| /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
 | |
| /// use core::pin::Pin;
 | |
| /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
 | |
| ///
 | |
| /// enum Command {
 | |
| ///     /* ... */
 | |
| /// }
 | |
| ///
 | |
| /// #[pin_data(PinnedDrop)]
 | |
| /// struct DriverData {
 | |
| ///     #[pin]
 | |
| ///     queue: CMutex<Vec<Command>>,
 | |
| ///     buf: Box<[u8; 1024 * 1024]>,
 | |
| ///     raw_info: *mut bindings::info,
 | |
| /// }
 | |
| ///
 | |
| /// #[pinned_drop]
 | |
| /// impl PinnedDrop for DriverData {
 | |
| ///     fn drop(self: Pin<&mut Self>) {
 | |
| ///         unsafe { bindings::destroy_info(self.raw_info) };
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| pub use ::pin_init_internal::pinned_drop;
 | |
| 
 | |
| /// Derives the [`Zeroable`] trait for the given `struct` or `union`.
 | |
| ///
 | |
| /// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`]
 | |
| /// trait.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// use pin_init::Zeroable;
 | |
| ///
 | |
| /// #[derive(Zeroable)]
 | |
| /// pub struct DriverData {
 | |
| ///     pub(crate) id: i64,
 | |
| ///     buf_ptr: *mut u8,
 | |
| ///     len: usize,
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// ```
 | |
| /// use pin_init::Zeroable;
 | |
| ///
 | |
| /// #[derive(Zeroable)]
 | |
| /// pub union SignCast {
 | |
| ///     signed: i64,
 | |
| ///     unsigned: u64,
 | |
| /// }
 | |
| /// ```
 | |
| pub use ::pin_init_internal::Zeroable;
 | |
| 
 | |
| /// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement
 | |
| /// [`Zeroable`].
 | |
| ///
 | |
| /// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field
 | |
| /// doesn't implement [`Zeroable`].
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// use pin_init::MaybeZeroable;
 | |
| ///
 | |
| /// // implmements `Zeroable`
 | |
| /// #[derive(MaybeZeroable)]
 | |
| /// pub struct DriverData {
 | |
| ///     pub(crate) id: i64,
 | |
| ///     buf_ptr: *mut u8,
 | |
| ///     len: usize,
 | |
| /// }
 | |
| ///
 | |
| /// // does not implmement `Zeroable`
 | |
| /// #[derive(MaybeZeroable)]
 | |
| /// pub struct DriverData2 {
 | |
| ///     pub(crate) id: i64,
 | |
| ///     buf_ptr: *mut u8,
 | |
| ///     len: usize,
 | |
| ///     // this field doesn't implement `Zeroable`
 | |
| ///     other_data: &'static i32,
 | |
| /// }
 | |
| /// ```
 | |
| pub use ::pin_init_internal::MaybeZeroable;
 | |
| 
 | |
| /// Initialize and pin a type directly on the stack.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![expect(clippy::disallowed_names)]
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// #[pin_data]
 | |
| /// struct Foo {
 | |
| ///     #[pin]
 | |
| ///     a: CMutex<usize>,
 | |
| ///     b: Bar,
 | |
| /// }
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct Bar {
 | |
| ///     x: u32,
 | |
| /// }
 | |
| ///
 | |
| /// stack_pin_init!(let foo = pin_init!(Foo {
 | |
| ///     a <- CMutex::new(42),
 | |
| ///     b: Bar {
 | |
| ///         x: 64,
 | |
| ///     },
 | |
| /// }));
 | |
| /// let foo: Pin<&mut Foo> = foo;
 | |
| /// println!("a: {}", &*foo.a.lock());
 | |
| /// ```
 | |
| ///
 | |
| /// # Syntax
 | |
| ///
 | |
| /// A normal `let` binding with optional type annotation. The expression is expected to implement
 | |
| /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
 | |
| /// type, then use [`stack_try_pin_init!`].
 | |
| #[macro_export]
 | |
| macro_rules! stack_pin_init {
 | |
|     (let $var:ident $(: $t:ty)? = $val:expr) => {
 | |
|         let val = $val;
 | |
|         let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
 | |
|         let mut $var = match $crate::__internal::StackInit::init($var, val) {
 | |
|             Ok(res) => res,
 | |
|             Err(x) => {
 | |
|                 let x: ::core::convert::Infallible = x;
 | |
|                 match x {}
 | |
|             }
 | |
|         };
 | |
|     };
 | |
| }
 | |
| 
 | |
| /// Initialize and pin a type directly on the stack.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![expect(clippy::disallowed_names)]
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/error.rs"] mod error; use error::Error;
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::*;
 | |
| /// #[pin_data]
 | |
| /// struct Foo {
 | |
| ///     #[pin]
 | |
| ///     a: CMutex<usize>,
 | |
| ///     b: Box<Bar>,
 | |
| /// }
 | |
| ///
 | |
| /// struct Bar {
 | |
| ///     x: u32,
 | |
| /// }
 | |
| ///
 | |
| /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
 | |
| ///     a <- CMutex::new(42),
 | |
| ///     b: Box::try_new(Bar {
 | |
| ///         x: 64,
 | |
| ///     })?,
 | |
| /// }? Error));
 | |
| /// let foo = foo.unwrap();
 | |
| /// println!("a: {}", &*foo.a.lock());
 | |
| /// ```
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![expect(clippy::disallowed_names)]
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/error.rs"] mod error; use error::Error;
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::*;
 | |
| /// #[pin_data]
 | |
| /// struct Foo {
 | |
| ///     #[pin]
 | |
| ///     a: CMutex<usize>,
 | |
| ///     b: Box<Bar>,
 | |
| /// }
 | |
| ///
 | |
| /// struct Bar {
 | |
| ///     x: u32,
 | |
| /// }
 | |
| ///
 | |
| /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
 | |
| ///     a <- CMutex::new(42),
 | |
| ///     b: Box::try_new(Bar {
 | |
| ///         x: 64,
 | |
| ///     })?,
 | |
| /// }? Error));
 | |
| /// println!("a: {}", &*foo.a.lock());
 | |
| /// # Ok::<_, Error>(())
 | |
| /// ```
 | |
| ///
 | |
| /// # Syntax
 | |
| ///
 | |
| /// A normal `let` binding with optional type annotation. The expression is expected to implement
 | |
| /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
 | |
| /// `=` will propagate this error.
 | |
| #[macro_export]
 | |
| macro_rules! stack_try_pin_init {
 | |
|     (let $var:ident $(: $t:ty)? = $val:expr) => {
 | |
|         let val = $val;
 | |
|         let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
 | |
|         let mut $var = $crate::__internal::StackInit::init($var, val);
 | |
|     };
 | |
|     (let $var:ident $(: $t:ty)? =? $val:expr) => {
 | |
|         let val = $val;
 | |
|         let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
 | |
|         let mut $var = $crate::__internal::StackInit::init($var, val)?;
 | |
|     };
 | |
| }
 | |
| 
 | |
| /// Construct an in-place, pinned initializer for `struct`s.
 | |
| ///
 | |
| /// This macro defaults the error to [`Infallible`]. If you need a different error, then use
 | |
| /// [`try_pin_init!`].
 | |
| ///
 | |
| /// The syntax is almost identical to that of a normal `struct` initializer:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// #[pin_data]
 | |
| /// struct Foo {
 | |
| ///     a: usize,
 | |
| ///     b: Bar,
 | |
| /// }
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct Bar {
 | |
| ///     x: u32,
 | |
| /// }
 | |
| ///
 | |
| /// # fn demo() -> impl PinInit<Foo> {
 | |
| /// let a = 42;
 | |
| ///
 | |
| /// let initializer = pin_init!(Foo {
 | |
| ///     a,
 | |
| ///     b: Bar {
 | |
| ///         x: 64,
 | |
| ///     },
 | |
| /// });
 | |
| /// # initializer }
 | |
| /// # Box::pin_init(demo()).unwrap();
 | |
| /// ```
 | |
| ///
 | |
| /// Arbitrary Rust expressions can be used to set the value of a variable.
 | |
| ///
 | |
| /// The fields are initialized in the order that they appear in the initializer. So it is possible
 | |
| /// to read already initialized fields using raw pointers.
 | |
| ///
 | |
| /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
 | |
| /// initializer.
 | |
| ///
 | |
| /// # Init-functions
 | |
| ///
 | |
| /// When working with this library it is often desired to let others construct your types without
 | |
| /// giving access to all fields. This is where you would normally write a plain function `new` that
 | |
| /// would return a new instance of your type. With this library that is also possible. However,
 | |
| /// there are a few extra things to keep in mind.
 | |
| ///
 | |
| /// To create an initializer function, simply declare it like this:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// # #[pin_data]
 | |
| /// # struct Foo {
 | |
| /// #     a: usize,
 | |
| /// #     b: Bar,
 | |
| /// # }
 | |
| /// # #[pin_data]
 | |
| /// # struct Bar {
 | |
| /// #     x: u32,
 | |
| /// # }
 | |
| /// impl Foo {
 | |
| ///     fn new() -> impl PinInit<Self> {
 | |
| ///         pin_init!(Self {
 | |
| ///             a: 42,
 | |
| ///             b: Bar {
 | |
| ///                 x: 64,
 | |
| ///             },
 | |
| ///         })
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// Users of `Foo` can now create it like this:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![expect(clippy::disallowed_names)]
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// # #[pin_data]
 | |
| /// # struct Foo {
 | |
| /// #     a: usize,
 | |
| /// #     b: Bar,
 | |
| /// # }
 | |
| /// # #[pin_data]
 | |
| /// # struct Bar {
 | |
| /// #     x: u32,
 | |
| /// # }
 | |
| /// # impl Foo {
 | |
| /// #     fn new() -> impl PinInit<Self> {
 | |
| /// #         pin_init!(Self {
 | |
| /// #             a: 42,
 | |
| /// #             b: Bar {
 | |
| /// #                 x: 64,
 | |
| /// #             },
 | |
| /// #         })
 | |
| /// #     }
 | |
| /// # }
 | |
| /// let foo = Box::pin_init(Foo::new());
 | |
| /// ```
 | |
| ///
 | |
| /// They can also easily embed it into their own `struct`s:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// # #[pin_data]
 | |
| /// # struct Foo {
 | |
| /// #     a: usize,
 | |
| /// #     b: Bar,
 | |
| /// # }
 | |
| /// # #[pin_data]
 | |
| /// # struct Bar {
 | |
| /// #     x: u32,
 | |
| /// # }
 | |
| /// # impl Foo {
 | |
| /// #     fn new() -> impl PinInit<Self> {
 | |
| /// #         pin_init!(Self {
 | |
| /// #             a: 42,
 | |
| /// #             b: Bar {
 | |
| /// #                 x: 64,
 | |
| /// #             },
 | |
| /// #         })
 | |
| /// #     }
 | |
| /// # }
 | |
| /// #[pin_data]
 | |
| /// struct FooContainer {
 | |
| ///     #[pin]
 | |
| ///     foo1: Foo,
 | |
| ///     #[pin]
 | |
| ///     foo2: Foo,
 | |
| ///     other: u32,
 | |
| /// }
 | |
| ///
 | |
| /// impl FooContainer {
 | |
| ///     fn new(other: u32) -> impl PinInit<Self> {
 | |
| ///         pin_init!(Self {
 | |
| ///             foo1 <- Foo::new(),
 | |
| ///             foo2 <- Foo::new(),
 | |
| ///             other,
 | |
| ///         })
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
 | |
| /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
 | |
| /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
 | |
| ///
 | |
| /// # Syntax
 | |
| ///
 | |
| /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
 | |
| /// the following modifications is expected:
 | |
| /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
 | |
| /// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in
 | |
| ///   order to run arbitrary code.
 | |
| /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
 | |
| ///   pointer named `this` inside of the initializer.
 | |
| /// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the
 | |
| ///   struct, this initializes every field with 0 and then runs all initializers specified in the
 | |
| ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
 | |
| ///
 | |
| /// For instance:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # use pin_init::*;
 | |
| /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
 | |
| /// #[pin_data]
 | |
| /// #[derive(Zeroable)]
 | |
| /// struct Buf {
 | |
| ///     // `ptr` points into `buf`.
 | |
| ///     ptr: *mut u8,
 | |
| ///     buf: [u8; 64],
 | |
| ///     #[pin]
 | |
| ///     pin: PhantomPinned,
 | |
| /// }
 | |
| ///
 | |
| /// let init = pin_init!(&this in Buf {
 | |
| ///     buf: [0; 64],
 | |
| ///     // SAFETY: TODO.
 | |
| ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
 | |
| ///     pin: PhantomPinned,
 | |
| /// });
 | |
| /// let init = pin_init!(Buf {
 | |
| ///     buf: [1; 64],
 | |
| ///     ..Zeroable::init_zeroed()
 | |
| /// });
 | |
| /// ```
 | |
| ///
 | |
| /// [`NonNull<Self>`]: core::ptr::NonNull
 | |
| // For a detailed example of how this macro works, see the module documentation of the hidden
 | |
| // module `macros` inside of `macros.rs`.
 | |
| #[macro_export]
 | |
| macro_rules! pin_init {
 | |
|     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
 | |
|         $($fields:tt)*
 | |
|     }) => {
 | |
|         $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
 | |
|             $($fields)*
 | |
|         }? ::core::convert::Infallible)
 | |
|     };
 | |
| }
 | |
| 
 | |
| /// Construct an in-place, fallible pinned initializer for `struct`s.
 | |
| ///
 | |
| /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
 | |
| ///
 | |
| /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
 | |
| /// initialization and return the error.
 | |
| ///
 | |
| /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
 | |
| /// initialization fails, the memory can be safely deallocated without any further modifications.
 | |
| ///
 | |
| /// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type`
 | |
| /// after the `struct` initializer to specify the error type you want to use.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/error.rs"] mod error; use error::Error;
 | |
| /// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, init_zeroed};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct BigBuf {
 | |
| ///     big: Box<[u8; 1024 * 1024 * 1024]>,
 | |
| ///     small: [u8; 1024 * 1024],
 | |
| ///     ptr: *mut u8,
 | |
| /// }
 | |
| ///
 | |
| /// impl BigBuf {
 | |
| ///     fn new() -> impl PinInit<Self, Error> {
 | |
| ///         try_pin_init!(Self {
 | |
| ///             big: Box::init(init_zeroed())?,
 | |
| ///             small: [0; 1024 * 1024],
 | |
| ///             ptr: core::ptr::null_mut(),
 | |
| ///         }? Error)
 | |
| ///     }
 | |
| /// }
 | |
| /// # let _ = Box::pin_init(BigBuf::new());
 | |
| /// ```
 | |
| // For a detailed example of how this macro works, see the module documentation of the hidden
 | |
| // module `macros` inside of `macros.rs`.
 | |
| #[macro_export]
 | |
| macro_rules! try_pin_init {
 | |
|     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
 | |
|         $($fields:tt)*
 | |
|     }? $err:ty) => {
 | |
|         $crate::__init_internal!(
 | |
|             @this($($this)?),
 | |
|             @typ($t $(::<$($generics),*>)? ),
 | |
|             @fields($($fields)*),
 | |
|             @error($err),
 | |
|             @data(PinData, use_data),
 | |
|             @has_data(HasPinData, __pin_data),
 | |
|             @construct_closure(pin_init_from_closure),
 | |
|             @munch_fields($($fields)*),
 | |
|         )
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Construct an in-place initializer for `struct`s.
 | |
| ///
 | |
| /// This macro defaults the error to [`Infallible`]. If you need a different error, then use
 | |
| /// [`try_init!`].
 | |
| ///
 | |
| /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
 | |
| /// - `unsafe` code must guarantee either full initialization or return an error and allow
 | |
| ///   deallocation of the memory.
 | |
| /// - the fields are initialized in the order given in the initializer.
 | |
| /// - no references to fields are allowed to be created inside of the initializer.
 | |
| ///
 | |
| /// This initializer is for initializing data in-place that might later be moved. If you want to
 | |
| /// pin-initialize, use [`pin_init!`].
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/error.rs"] mod error; use error::Error;
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::InPlaceInit;
 | |
| /// use pin_init::{init, Init, init_zeroed};
 | |
| ///
 | |
| /// struct BigBuf {
 | |
| ///     small: [u8; 1024 * 1024],
 | |
| /// }
 | |
| ///
 | |
| /// impl BigBuf {
 | |
| ///     fn new() -> impl Init<Self> {
 | |
| ///         init!(Self {
 | |
| ///             small <- init_zeroed(),
 | |
| ///         })
 | |
| ///     }
 | |
| /// }
 | |
| /// # let _ = Box::init(BigBuf::new());
 | |
| /// ```
 | |
| // For a detailed example of how this macro works, see the module documentation of the hidden
 | |
| // module `macros` inside of `macros.rs`.
 | |
| #[macro_export]
 | |
| macro_rules! init {
 | |
|     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
 | |
|         $($fields:tt)*
 | |
|     }) => {
 | |
|         $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? {
 | |
|             $($fields)*
 | |
|         }? ::core::convert::Infallible)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Construct an in-place fallible initializer for `struct`s.
 | |
| ///
 | |
| /// If the initialization can complete without error (or [`Infallible`]), then use
 | |
| /// [`init!`].
 | |
| ///
 | |
| /// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error
 | |
| /// via `? $type` after the `struct` initializer.
 | |
| /// The safety caveats from [`try_pin_init!`] also apply:
 | |
| /// - `unsafe` code must guarantee either full initialization or return an error and allow
 | |
| ///   deallocation of the memory.
 | |
| /// - the fields are initialized in the order given in the initializer.
 | |
| /// - no references to fields are allowed to be created inside of the initializer.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # use core::alloc::AllocError;
 | |
| /// # use pin_init::InPlaceInit;
 | |
| /// use pin_init::{try_init, Init, init_zeroed};
 | |
| ///
 | |
| /// struct BigBuf {
 | |
| ///     big: Box<[u8; 1024 * 1024 * 1024]>,
 | |
| ///     small: [u8; 1024 * 1024],
 | |
| /// }
 | |
| ///
 | |
| /// impl BigBuf {
 | |
| ///     fn new() -> impl Init<Self, AllocError> {
 | |
| ///         try_init!(Self {
 | |
| ///             big: Box::init(init_zeroed())?,
 | |
| ///             small: [0; 1024 * 1024],
 | |
| ///         }? AllocError)
 | |
| ///     }
 | |
| /// }
 | |
| /// # let _ = Box::init(BigBuf::new());
 | |
| /// ```
 | |
| // For a detailed example of how this macro works, see the module documentation of the hidden
 | |
| // module `macros` inside of `macros.rs`.
 | |
| #[macro_export]
 | |
| macro_rules! try_init {
 | |
|     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
 | |
|         $($fields:tt)*
 | |
|     }? $err:ty) => {
 | |
|         $crate::__init_internal!(
 | |
|             @this($($this)?),
 | |
|             @typ($t $(::<$($generics),*>)?),
 | |
|             @fields($($fields)*),
 | |
|             @error($err),
 | |
|             @data(InitData, /*no use_data*/),
 | |
|             @has_data(HasInitData, __init_data),
 | |
|             @construct_closure(init_from_closure),
 | |
|             @munch_fields($($fields)*),
 | |
|         )
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
 | |
| /// structurally pinned.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// This will succeed:
 | |
| /// ```
 | |
| /// use pin_init::{pin_data, assert_pinned};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct MyStruct {
 | |
| ///     #[pin]
 | |
| ///     some_field: u64,
 | |
| /// }
 | |
| ///
 | |
| /// assert_pinned!(MyStruct, some_field, u64);
 | |
| /// ```
 | |
| ///
 | |
| /// This will fail:
 | |
| /// ```compile_fail
 | |
| /// use pin_init::{pin_data, assert_pinned};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct MyStruct {
 | |
| ///     some_field: u64,
 | |
| /// }
 | |
| ///
 | |
| /// assert_pinned!(MyStruct, some_field, u64);
 | |
| /// ```
 | |
| ///
 | |
| /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
 | |
| /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
 | |
| /// only be used when the macro is invoked from a function body.
 | |
| /// ```
 | |
| /// # use core::pin::Pin;
 | |
| /// use pin_init::{pin_data, assert_pinned};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct Foo<T> {
 | |
| ///     #[pin]
 | |
| ///     elem: T,
 | |
| /// }
 | |
| ///
 | |
| /// impl<T> Foo<T> {
 | |
| ///     fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> {
 | |
| ///         assert_pinned!(Foo<T>, elem, T, inline);
 | |
| ///
 | |
| ///         // SAFETY: The field is structurally pinned.
 | |
| ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| #[macro_export]
 | |
| macro_rules! assert_pinned {
 | |
|     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
 | |
|         let _ = move |ptr: *mut $field_ty| {
 | |
|             // SAFETY: This code is unreachable.
 | |
|             let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() };
 | |
|             let init = $crate::__internal::AlwaysFail::<$field_ty>::new();
 | |
|             // SAFETY: This code is unreachable.
 | |
|             unsafe { data.$field(ptr, init) }.ok();
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     ($ty:ty, $field:ident, $field_ty:ty) => {
 | |
|         const _: () = {
 | |
|             $crate::assert_pinned!($ty, $field, $field_ty, inline);
 | |
|         };
 | |
|     };
 | |
| }
 | |
| 
 | |
| /// A pin-initializer for the type `T`.
 | |
| ///
 | |
| /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
 | |
| /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
 | |
| ///
 | |
| /// Also see the [module description](self).
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// When implementing this trait you will need to take great care. Also there are probably very few
 | |
| /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
 | |
| ///
 | |
| /// The [`PinInit::__pinned_init`] function:
 | |
| /// - returns `Ok(())` if it initialized every field of `slot`,
 | |
| /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
 | |
| ///     - `slot` can be deallocated without UB occurring,
 | |
| ///     - `slot` does not need to be dropped,
 | |
| ///     - `slot` is not partially initialized.
 | |
| /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
 | |
| ///
 | |
| #[cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
 | |
| )]
 | |
| #[cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
 | |
| )]
 | |
| #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
 | |
| #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
 | |
| #[must_use = "An initializer must be used in order to create its value."]
 | |
| pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
 | |
|     /// Initializes `slot`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// - `slot` is a valid pointer to uninitialized memory.
 | |
|     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
 | |
|     ///   deallocate.
 | |
|     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
 | |
|     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
 | |
| 
 | |
|     /// First initializes the value using `self` then calls the function `f` with the initialized
 | |
|     /// value.
 | |
|     ///
 | |
|     /// If `f` returns an error the value is dropped and the initializer will forward the error.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// # #![feature(allocator_api)]
 | |
|     /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
|     /// # use pin_init::*;
 | |
|     /// let mtx_init = CMutex::new(42);
 | |
|     /// // Make the initializer print the value.
 | |
|     /// let mtx_init = mtx_init.pin_chain(|mtx| {
 | |
|     ///     println!("{:?}", mtx.get_data_mut());
 | |
|     ///     Ok(())
 | |
|     /// });
 | |
|     /// ```
 | |
|     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
 | |
|     where
 | |
|         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
 | |
|     {
 | |
|         ChainPinInit(self, f, PhantomData)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An initializer returned by [`PinInit::pin_chain`].
 | |
| pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
 | |
| 
 | |
| // SAFETY: The `__pinned_init` function is implemented such that it
 | |
| // - returns `Ok(())` on successful initialization,
 | |
| // - returns `Err(err)` on error and in this case `slot` will be dropped.
 | |
| // - considers `slot` pinned.
 | |
| unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
 | |
| where
 | |
|     I: PinInit<T, E>,
 | |
|     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
 | |
| {
 | |
|     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
 | |
|         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
 | |
|         unsafe { self.0.__pinned_init(slot)? };
 | |
|         // SAFETY: The above call initialized `slot` and we still have unique access.
 | |
|         let val = unsafe { &mut *slot };
 | |
|         // SAFETY: `slot` is considered pinned.
 | |
|         let val = unsafe { Pin::new_unchecked(val) };
 | |
|         // SAFETY: `slot` was initialized above.
 | |
|         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An initializer for `T`.
 | |
| ///
 | |
| /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
 | |
| /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
 | |
| /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
 | |
| ///
 | |
| /// Also see the [module description](self).
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// When implementing this trait you will need to take great care. Also there are probably very few
 | |
| /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
 | |
| ///
 | |
| /// The [`Init::__init`] function:
 | |
| /// - returns `Ok(())` if it initialized every field of `slot`,
 | |
| /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
 | |
| ///     - `slot` can be deallocated without UB occurring,
 | |
| ///     - `slot` does not need to be dropped,
 | |
| ///     - `slot` is not partially initialized.
 | |
| /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
 | |
| ///
 | |
| /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
 | |
| /// code as `__init`.
 | |
| ///
 | |
| /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
 | |
| /// move the pointee after initialization.
 | |
| ///
 | |
| #[cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
 | |
| )]
 | |
| #[cfg_attr(
 | |
|     kernel,
 | |
|     doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
 | |
| )]
 | |
| #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
 | |
| #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
 | |
| #[must_use = "An initializer must be used in order to create its value."]
 | |
| pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
 | |
|     /// Initializes `slot`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// - `slot` is a valid pointer to uninitialized memory.
 | |
|     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
 | |
|     ///   deallocate.
 | |
|     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
 | |
| 
 | |
|     /// First initializes the value using `self` then calls the function `f` with the initialized
 | |
|     /// value.
 | |
|     ///
 | |
|     /// If `f` returns an error the value is dropped and the initializer will forward the error.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// # #![expect(clippy::disallowed_names)]
 | |
|     /// use pin_init::{init, init_zeroed, Init};
 | |
|     ///
 | |
|     /// struct Foo {
 | |
|     ///     buf: [u8; 1_000_000],
 | |
|     /// }
 | |
|     ///
 | |
|     /// impl Foo {
 | |
|     ///     fn setup(&mut self) {
 | |
|     ///         println!("Setting up foo");
 | |
|     ///     }
 | |
|     /// }
 | |
|     ///
 | |
|     /// let foo = init!(Foo {
 | |
|     ///     buf <- init_zeroed()
 | |
|     /// }).chain(|foo| {
 | |
|     ///     foo.setup();
 | |
|     ///     Ok(())
 | |
|     /// });
 | |
|     /// ```
 | |
|     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
 | |
|     where
 | |
|         F: FnOnce(&mut T) -> Result<(), E>,
 | |
|     {
 | |
|         ChainInit(self, f, PhantomData)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An initializer returned by [`Init::chain`].
 | |
| pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
 | |
| 
 | |
| // SAFETY: The `__init` function is implemented such that it
 | |
| // - returns `Ok(())` on successful initialization,
 | |
| // - returns `Err(err)` on error and in this case `slot` will be dropped.
 | |
| unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
 | |
| where
 | |
|     I: Init<T, E>,
 | |
|     F: FnOnce(&mut T) -> Result<(), E>,
 | |
| {
 | |
|     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
 | |
|         // SAFETY: All requirements fulfilled since this function is `__init`.
 | |
|         unsafe { self.0.__pinned_init(slot)? };
 | |
|         // SAFETY: The above call initialized `slot` and we still have unique access.
 | |
|         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
 | |
|             // SAFETY: `slot` was initialized above.
 | |
|             unsafe { core::ptr::drop_in_place(slot) })
 | |
|     }
 | |
| }
 | |
| 
 | |
| // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
 | |
| unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
 | |
| where
 | |
|     I: Init<T, E>,
 | |
|     F: FnOnce(&mut T) -> Result<(), E>,
 | |
| {
 | |
|     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
 | |
|         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
 | |
|         unsafe { self.__init(slot) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Creates a new [`PinInit<T, E>`] from the given closure.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// The closure:
 | |
| /// - returns `Ok(())` if it initialized every field of `slot`,
 | |
| /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
 | |
| ///     - `slot` can be deallocated without UB occurring,
 | |
| ///     - `slot` does not need to be dropped,
 | |
| ///     - `slot` is not partially initialized.
 | |
| /// - may assume that the `slot` does not move if `T: !Unpin`,
 | |
| /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
 | |
| #[inline]
 | |
| pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
 | |
|     f: impl FnOnce(*mut T) -> Result<(), E>,
 | |
| ) -> impl PinInit<T, E> {
 | |
|     __internal::InitClosure(f, PhantomData)
 | |
| }
 | |
| 
 | |
| /// Creates a new [`Init<T, E>`] from the given closure.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// The closure:
 | |
| /// - returns `Ok(())` if it initialized every field of `slot`,
 | |
| /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
 | |
| ///     - `slot` can be deallocated without UB occurring,
 | |
| ///     - `slot` does not need to be dropped,
 | |
| ///     - `slot` is not partially initialized.
 | |
| /// - the `slot` may move after initialization.
 | |
| /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
 | |
| #[inline]
 | |
| pub const unsafe fn init_from_closure<T: ?Sized, E>(
 | |
|     f: impl FnOnce(*mut T) -> Result<(), E>,
 | |
| ) -> impl Init<T, E> {
 | |
|     __internal::InitClosure(f, PhantomData)
 | |
| }
 | |
| 
 | |
| /// Changes the to be initialized type.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
 | |
| ///   pointer must result in a valid `U`.
 | |
| #[expect(clippy::let_and_return)]
 | |
| pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> {
 | |
|     // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
 | |
|     // requirements.
 | |
|     let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) };
 | |
|     // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
 | |
|     // cycle when computing the type returned by this function)
 | |
|     res
 | |
| }
 | |
| 
 | |
| /// Changes the to be initialized type.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
 | |
| ///   pointer must result in a valid `U`.
 | |
| #[expect(clippy::let_and_return)]
 | |
| pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> {
 | |
|     // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
 | |
|     // requirements.
 | |
|     let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) };
 | |
|     // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
 | |
|     // cycle when computing the type returned by this function)
 | |
|     res
 | |
| }
 | |
| 
 | |
| /// An initializer that leaves the memory uninitialized.
 | |
| ///
 | |
| /// The initializer is a no-op. The `slot` memory is not changed.
 | |
| #[inline]
 | |
| pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
 | |
|     // SAFETY: The memory is allowed to be uninitialized.
 | |
|     unsafe { init_from_closure(|_| Ok(())) }
 | |
| }
 | |
| 
 | |
| /// Initializes an array by initializing each element via the provided initializer.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # use pin_init::*;
 | |
| /// use pin_init::init_array_from_fn;
 | |
| /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
 | |
| /// assert_eq!(array.len(), 1_000);
 | |
| /// ```
 | |
| pub fn init_array_from_fn<I, const N: usize, T, E>(
 | |
|     mut make_init: impl FnMut(usize) -> I,
 | |
| ) -> impl Init<[T; N], E>
 | |
| where
 | |
|     I: Init<T, E>,
 | |
| {
 | |
|     let init = move |slot: *mut [T; N]| {
 | |
|         let slot = slot.cast::<T>();
 | |
|         for i in 0..N {
 | |
|             let init = make_init(i);
 | |
|             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
 | |
|             let ptr = unsafe { slot.add(i) };
 | |
|             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
 | |
|             // requirements.
 | |
|             if let Err(e) = unsafe { init.__init(ptr) } {
 | |
|                 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
 | |
|                 // `Err` below, `slot` will be considered uninitialized memory.
 | |
|                 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
 | |
|                 return Err(e);
 | |
|             }
 | |
|         }
 | |
|         Ok(())
 | |
|     };
 | |
|     // SAFETY: The initializer above initializes every element of the array. On failure it drops
 | |
|     // any initialized elements and returns `Err`.
 | |
|     unsafe { init_from_closure(init) }
 | |
| }
 | |
| 
 | |
| /// Initializes an array by initializing each element via the provided initializer.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::*;
 | |
| /// # use core::pin::Pin;
 | |
| /// use pin_init::pin_init_array_from_fn;
 | |
| /// use std::sync::Arc;
 | |
| /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
 | |
| ///     Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
 | |
| /// assert_eq!(array.len(), 1_000);
 | |
| /// ```
 | |
| pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
 | |
|     mut make_init: impl FnMut(usize) -> I,
 | |
| ) -> impl PinInit<[T; N], E>
 | |
| where
 | |
|     I: PinInit<T, E>,
 | |
| {
 | |
|     let init = move |slot: *mut [T; N]| {
 | |
|         let slot = slot.cast::<T>();
 | |
|         for i in 0..N {
 | |
|             let init = make_init(i);
 | |
|             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
 | |
|             let ptr = unsafe { slot.add(i) };
 | |
|             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
 | |
|             // requirements.
 | |
|             if let Err(e) = unsafe { init.__pinned_init(ptr) } {
 | |
|                 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
 | |
|                 // `Err` below, `slot` will be considered uninitialized memory.
 | |
|                 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
 | |
|                 return Err(e);
 | |
|             }
 | |
|         }
 | |
|         Ok(())
 | |
|     };
 | |
|     // SAFETY: The initializer above initializes every element of the array. On failure it drops
 | |
|     // any initialized elements and returns `Err`.
 | |
|     unsafe { pin_init_from_closure(init) }
 | |
| }
 | |
| 
 | |
| // SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`.
 | |
| unsafe impl<T> Init<T> for T {
 | |
|     unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> {
 | |
|         // SAFETY: `slot` is valid for writes by the safety requirements of this function.
 | |
|         unsafe { slot.write(self) };
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| // SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of
 | |
| // `slot`. Additionally, all pinning invariants of `T` are upheld.
 | |
| unsafe impl<T> PinInit<T> for T {
 | |
|     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> {
 | |
|         // SAFETY: `slot` is valid for writes by the safety requirements of this function.
 | |
|         unsafe { slot.write(self) };
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| // SAFETY: when the `__init` function returns with
 | |
| // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
 | |
| // - `Err(err)`, slot was not written to.
 | |
| unsafe impl<T, E> Init<T, E> for Result<T, E> {
 | |
|     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
 | |
|         // SAFETY: `slot` is valid for writes by the safety requirements of this function.
 | |
|         unsafe { slot.write(self?) };
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| // SAFETY: when the `__pinned_init` function returns with
 | |
| // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
 | |
| // - `Err(err)`, slot was not written to.
 | |
| unsafe impl<T, E> PinInit<T, E> for Result<T, E> {
 | |
|     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
 | |
|         // SAFETY: `slot` is valid for writes by the safety requirements of this function.
 | |
|         unsafe { slot.write(self?) };
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Smart pointer containing uninitialized memory and that can write a value.
 | |
| pub trait InPlaceWrite<T> {
 | |
|     /// The type `Self` turns into when the contents are initialized.
 | |
|     type Initialized;
 | |
| 
 | |
|     /// Use the given initializer to write a value into `self`.
 | |
|     ///
 | |
|     /// Does not drop the current value and considers it as uninitialized memory.
 | |
|     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
 | |
| 
 | |
|     /// Use the given pin-initializer to write a value into `self`.
 | |
|     ///
 | |
|     /// Does not drop the current value and considers it as uninitialized memory.
 | |
|     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
 | |
| }
 | |
| 
 | |
| /// Trait facilitating pinned destruction.
 | |
| ///
 | |
| /// Use [`pinned_drop`] to implement this trait safely:
 | |
| ///
 | |
| /// ```rust
 | |
| /// # #![feature(allocator_api)]
 | |
| /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
 | |
| /// # use pin_init::*;
 | |
| /// use core::pin::Pin;
 | |
| /// #[pin_data(PinnedDrop)]
 | |
| /// struct Foo {
 | |
| ///     #[pin]
 | |
| ///     mtx: CMutex<usize>,
 | |
| /// }
 | |
| ///
 | |
| /// #[pinned_drop]
 | |
| /// impl PinnedDrop for Foo {
 | |
| ///     fn drop(self: Pin<&mut Self>) {
 | |
| ///         println!("Foo is being dropped!");
 | |
| ///     }
 | |
| /// }
 | |
| /// ```
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
 | |
| pub unsafe trait PinnedDrop: __internal::HasPinData {
 | |
|     /// Executes the pinned destructor of this type.
 | |
|     ///
 | |
|     /// While this function is marked safe, it is actually unsafe to call it manually. For this
 | |
|     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
 | |
|     /// and thus prevents this function from being called where it should not.
 | |
|     ///
 | |
|     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
 | |
|     /// automatically.
 | |
|     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
 | |
| }
 | |
| 
 | |
| /// Marker trait for types that can be initialized by writing just zeroes.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
 | |
| /// this is not UB:
 | |
| ///
 | |
| /// ```rust,ignore
 | |
| /// let val: Self = unsafe { core::mem::zeroed() };
 | |
| /// ```
 | |
| pub unsafe trait Zeroable {
 | |
|     /// Create a new zeroed `Self`.
 | |
|     ///
 | |
|     /// The returned initializer will write `0x00` to every byte of the given `slot`.
 | |
|     #[inline]
 | |
|     fn init_zeroed() -> impl Init<Self>
 | |
|     where
 | |
|         Self: Sized,
 | |
|     {
 | |
|         init_zeroed()
 | |
|     }
 | |
| 
 | |
|     /// Create a `Self` consisting of all zeroes.
 | |
|     ///
 | |
|     /// Whenever a type implements [`Zeroable`], this function should be preferred over
 | |
|     /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// use pin_init::{Zeroable, zeroed};
 | |
|     ///
 | |
|     /// #[derive(Zeroable)]
 | |
|     /// struct Point {
 | |
|     ///     x: u32,
 | |
|     ///     y: u32,
 | |
|     /// }
 | |
|     ///
 | |
|     /// let point: Point = zeroed();
 | |
|     /// assert_eq!(point.x, 0);
 | |
|     /// assert_eq!(point.y, 0);
 | |
|     /// ```
 | |
|     fn zeroed() -> Self
 | |
|     where
 | |
|         Self: Sized,
 | |
|     {
 | |
|         zeroed()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
 | |
| /// `None` to that location.
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
 | |
| pub unsafe trait ZeroableOption {}
 | |
| 
 | |
| // SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
 | |
| unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
 | |
| 
 | |
| // SAFETY: `Option<&T>` is part of the option layout optimization guarantee:
 | |
| // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
 | |
| unsafe impl<T> ZeroableOption for &T {}
 | |
| // SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee:
 | |
| // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
 | |
| unsafe impl<T> ZeroableOption for &mut T {}
 | |
| // SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee:
 | |
| // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
 | |
| unsafe impl<T> ZeroableOption for NonNull<T> {}
 | |
| 
 | |
| /// Create an initializer for a zeroed `T`.
 | |
| ///
 | |
| /// The returned initializer will write `0x00` to every byte of the given `slot`.
 | |
| #[inline]
 | |
| pub fn init_zeroed<T: Zeroable>() -> impl Init<T> {
 | |
|     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
 | |
|     // and because we write all zeroes, the memory is initialized.
 | |
|     unsafe {
 | |
|         init_from_closure(|slot: *mut T| {
 | |
|             slot.write_bytes(0, 1);
 | |
|             Ok(())
 | |
|         })
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Create a `T` consisting of all zeroes.
 | |
| ///
 | |
| /// Whenever a type implements [`Zeroable`], this function should be preferred over
 | |
| /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// use pin_init::{Zeroable, zeroed};
 | |
| ///
 | |
| /// #[derive(Zeroable)]
 | |
| /// struct Point {
 | |
| ///     x: u32,
 | |
| ///     y: u32,
 | |
| /// }
 | |
| ///
 | |
| /// let point: Point = zeroed();
 | |
| /// assert_eq!(point.x, 0);
 | |
| /// assert_eq!(point.y, 0);
 | |
| /// ```
 | |
| pub const fn zeroed<T: Zeroable>() -> T {
 | |
|     // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`.
 | |
|     unsafe { core::mem::zeroed() }
 | |
| }
 | |
| 
 | |
| macro_rules! impl_zeroable {
 | |
|     ($($({$($generics:tt)*})? $t:ty, )*) => {
 | |
|         // SAFETY: Safety comments written in the macro invocation.
 | |
|         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
 | |
|     };
 | |
| }
 | |
| 
 | |
| impl_zeroable! {
 | |
|     // SAFETY: All primitives that are allowed to be zero.
 | |
|     bool,
 | |
|     char,
 | |
|     u8, u16, u32, u64, u128, usize,
 | |
|     i8, i16, i32, i64, i128, isize,
 | |
|     f32, f64,
 | |
| 
 | |
|     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
 | |
|     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
 | |
|     // uninhabited/empty types, consult The Rustonomicon:
 | |
|     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
 | |
|     // also has information on undefined behavior:
 | |
|     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
 | |
|     //
 | |
|     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
 | |
|     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
 | |
| 
 | |
|     // SAFETY: Type is allowed to take any value, including all zeros.
 | |
|     {<T>} MaybeUninit<T>,
 | |
| 
 | |
|     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
 | |
|     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
 | |
| 
 | |
|     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
 | |
|     // <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
 | |
|     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
 | |
|     Option<NonZeroU128>, Option<NonZeroUsize>,
 | |
|     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
 | |
|     Option<NonZeroI128>, Option<NonZeroIsize>,
 | |
| 
 | |
|     // SAFETY: `null` pointer is valid.
 | |
|     //
 | |
|     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
 | |
|     // null.
 | |
|     //
 | |
|     // When `Pointee` gets stabilized, we could use
 | |
|     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
 | |
|     {<T>} *mut T, {<T>} *const T,
 | |
| 
 | |
|     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
 | |
|     // zero.
 | |
|     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
 | |
| 
 | |
|     // SAFETY: `T` is `Zeroable`.
 | |
|     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
 | |
| }
 | |
| 
 | |
| macro_rules! impl_tuple_zeroable {
 | |
|     ($(,)?) => {};
 | |
|     ($first:ident, $($t:ident),* $(,)?) => {
 | |
|         // SAFETY: All elements are zeroable and padding can be zero.
 | |
|         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
 | |
|         impl_tuple_zeroable!($($t),* ,);
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
 | |
| 
 | |
| macro_rules! impl_fn_zeroable_option {
 | |
|     ([$($abi:literal),* $(,)?] $args:tt) => {
 | |
|         $(impl_fn_zeroable_option!({extern $abi} $args);)*
 | |
|         $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)*
 | |
|     };
 | |
|     ({$($prefix:tt)*} {$(,)?}) => {};
 | |
|     ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => {
 | |
|         // SAFETY: function pointers are part of the option layout optimization:
 | |
|         // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
 | |
|         unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {}
 | |
|         impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,});
 | |
|     };
 | |
| }
 | |
| 
 | |
| impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U });
 | |
| 
 | |
| /// This trait allows creating an instance of `Self` which contains exactly one
 | |
| /// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning).
 | |
| ///
 | |
| /// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// # use core::cell::UnsafeCell;
 | |
| /// # use pin_init::{pin_data, pin_init, Wrapper};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct Foo {}
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct Bar {
 | |
| ///     #[pin]
 | |
| ///     content: UnsafeCell<Foo>
 | |
| /// };
 | |
| ///
 | |
| /// let foo_initializer = pin_init!(Foo{});
 | |
| /// let initializer = pin_init!(Bar {
 | |
| ///     content <- UnsafeCell::pin_init(foo_initializer)
 | |
| /// });
 | |
| /// ```
 | |
| pub trait Wrapper<T> {
 | |
|     /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer.
 | |
|     fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>;
 | |
| }
 | |
| 
 | |
| impl<T> Wrapper<T> for UnsafeCell<T> {
 | |
|     fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
 | |
|         // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`.
 | |
|         unsafe { cast_pin_init(value_init) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T> Wrapper<T> for MaybeUninit<T> {
 | |
|     fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
 | |
|         // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`.
 | |
|         unsafe { cast_pin_init(value_init) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))]
 | |
| impl<T> Wrapper<T> for core::pin::UnsafePinned<T> {
 | |
|     fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
 | |
|         // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`.
 | |
|         unsafe { cast_pin_init(init) }
 | |
|     }
 | |
| }
 |