mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 fcf8239ad6
			
		
	
	
		fcf8239ad6
		
	
	
	
	
		
			
			Machines can be shipped without any microcode in the BIOS. Which means,
the microcode patch revision is 0.
Handle that gracefully.
Fixes: 94838d230a ("x86/microcode/AMD: Use the family,model,stepping encoded in the patch ID")
Reported-by: Vítek Vávra <vit.vavra.kh@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
		
	
			
		
			
				
	
	
		
			1225 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1225 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  AMD CPU Microcode Update Driver for Linux
 | |
|  *
 | |
|  *  This driver allows to upgrade microcode on F10h AMD
 | |
|  *  CPUs and later.
 | |
|  *
 | |
|  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
 | |
|  *	          2013-2018 Borislav Petkov <bp@alien8.de>
 | |
|  *
 | |
|  *  Author: Peter Oruba <peter.oruba@amd.com>
 | |
|  *
 | |
|  *  Based on work by:
 | |
|  *  Tigran Aivazian <aivazian.tigran@gmail.com>
 | |
|  *
 | |
|  *  early loader:
 | |
|  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  *  Author: Jacob Shin <jacob.shin@amd.com>
 | |
|  *  Fixes: Borislav Petkov <bp@suse.de>
 | |
|  */
 | |
| #define pr_fmt(fmt) "microcode: " fmt
 | |
| 
 | |
| #include <linux/earlycpio.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pci.h>
 | |
| 
 | |
| #include <crypto/sha2.h>
 | |
| 
 | |
| #include <asm/microcode.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/cmdline.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| struct ucode_patch {
 | |
| 	struct list_head plist;
 | |
| 	void *data;
 | |
| 	unsigned int size;
 | |
| 	u32 patch_id;
 | |
| 	u16 equiv_cpu;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(microcode_cache);
 | |
| 
 | |
| #define UCODE_MAGIC			0x00414d44
 | |
| #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
 | |
| #define UCODE_UCODE_TYPE		0x00000001
 | |
| 
 | |
| #define SECTION_HDR_SIZE		8
 | |
| #define CONTAINER_HDR_SZ		12
 | |
| 
 | |
| struct equiv_cpu_entry {
 | |
| 	u32	installed_cpu;
 | |
| 	u32	fixed_errata_mask;
 | |
| 	u32	fixed_errata_compare;
 | |
| 	u16	equiv_cpu;
 | |
| 	u16	res;
 | |
| } __packed;
 | |
| 
 | |
| struct microcode_header_amd {
 | |
| 	u32	data_code;
 | |
| 	u32	patch_id;
 | |
| 	u16	mc_patch_data_id;
 | |
| 	u8	mc_patch_data_len;
 | |
| 	u8	init_flag;
 | |
| 	u32	mc_patch_data_checksum;
 | |
| 	u32	nb_dev_id;
 | |
| 	u32	sb_dev_id;
 | |
| 	u16	processor_rev_id;
 | |
| 	u8	nb_rev_id;
 | |
| 	u8	sb_rev_id;
 | |
| 	u8	bios_api_rev;
 | |
| 	u8	reserved1[3];
 | |
| 	u32	match_reg[8];
 | |
| } __packed;
 | |
| 
 | |
| struct microcode_amd {
 | |
| 	struct microcode_header_amd	hdr;
 | |
| 	unsigned int			mpb[];
 | |
| };
 | |
| 
 | |
| static struct equiv_cpu_table {
 | |
| 	unsigned int num_entries;
 | |
| 	struct equiv_cpu_entry *entry;
 | |
| } equiv_table;
 | |
| 
 | |
| union zen_patch_rev {
 | |
| 	struct {
 | |
| 		__u32 rev	 : 8,
 | |
| 		      stepping	 : 4,
 | |
| 		      model	 : 4,
 | |
| 		      __reserved : 4,
 | |
| 		      ext_model	 : 4,
 | |
| 		      ext_fam	 : 8;
 | |
| 	};
 | |
| 	__u32 ucode_rev;
 | |
| };
 | |
| 
 | |
| union cpuid_1_eax {
 | |
| 	struct {
 | |
| 		__u32 stepping    : 4,
 | |
| 		      model	  : 4,
 | |
| 		      family	  : 4,
 | |
| 		      __reserved0 : 4,
 | |
| 		      ext_model   : 4,
 | |
| 		      ext_fam     : 8,
 | |
| 		      __reserved1 : 4;
 | |
| 	};
 | |
| 	__u32 full;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This points to the current valid container of microcode patches which we will
 | |
|  * save from the initrd/builtin before jettisoning its contents. @mc is the
 | |
|  * microcode patch we found to match.
 | |
|  */
 | |
| struct cont_desc {
 | |
| 	struct microcode_amd *mc;
 | |
| 	u32		     psize;
 | |
| 	u8		     *data;
 | |
| 	size_t		     size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Microcode patch container file is prepended to the initrd in cpio
 | |
|  * format. See Documentation/arch/x86/microcode.rst
 | |
|  */
 | |
| static const char
 | |
| ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
 | |
| 
 | |
| /*
 | |
|  * This is CPUID(1).EAX on the BSP. It is used in two ways:
 | |
|  *
 | |
|  * 1. To ignore the equivalence table on Zen1 and newer.
 | |
|  *
 | |
|  * 2. To match which patches to load because the patch revision ID
 | |
|  *    already contains the f/m/s for which the microcode is destined
 | |
|  *    for.
 | |
|  */
 | |
| static u32 bsp_cpuid_1_eax __ro_after_init;
 | |
| 
 | |
| static bool sha_check = true;
 | |
| 
 | |
| struct patch_digest {
 | |
| 	u32 patch_id;
 | |
| 	u8 sha256[SHA256_DIGEST_SIZE];
 | |
| };
 | |
| 
 | |
| #include "amd_shas.c"
 | |
| 
 | |
| static int cmp_id(const void *key, const void *elem)
 | |
| {
 | |
| 	struct patch_digest *pd = (struct patch_digest *)elem;
 | |
| 	u32 patch_id = *(u32 *)key;
 | |
| 
 | |
| 	if (patch_id == pd->patch_id)
 | |
| 		return 0;
 | |
| 	else if (patch_id < pd->patch_id)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| static u32 cpuid_to_ucode_rev(unsigned int val)
 | |
| {
 | |
| 	union zen_patch_rev p = {};
 | |
| 	union cpuid_1_eax c;
 | |
| 
 | |
| 	c.full = val;
 | |
| 
 | |
| 	p.stepping  = c.stepping;
 | |
| 	p.model     = c.model;
 | |
| 	p.ext_model = c.ext_model;
 | |
| 	p.ext_fam   = c.ext_fam;
 | |
| 
 | |
| 	return p.ucode_rev;
 | |
| }
 | |
| 
 | |
| static bool need_sha_check(u32 cur_rev)
 | |
| {
 | |
| 	if (!cur_rev) {
 | |
| 		cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
 | |
| 		pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
 | |
| 	}
 | |
| 
 | |
| 	switch (cur_rev >> 8) {
 | |
| 	case 0x80012: return cur_rev <= 0x800126f; break;
 | |
| 	case 0x80082: return cur_rev <= 0x800820f; break;
 | |
| 	case 0x83010: return cur_rev <= 0x830107c; break;
 | |
| 	case 0x86001: return cur_rev <= 0x860010e; break;
 | |
| 	case 0x86081: return cur_rev <= 0x8608108; break;
 | |
| 	case 0x87010: return cur_rev <= 0x8701034; break;
 | |
| 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
 | |
| 	case 0xa0010: return cur_rev <= 0xa00107a; break;
 | |
| 	case 0xa0011: return cur_rev <= 0xa0011da; break;
 | |
| 	case 0xa0012: return cur_rev <= 0xa001243; break;
 | |
| 	case 0xa0082: return cur_rev <= 0xa00820e; break;
 | |
| 	case 0xa1011: return cur_rev <= 0xa101153; break;
 | |
| 	case 0xa1012: return cur_rev <= 0xa10124e; break;
 | |
| 	case 0xa1081: return cur_rev <= 0xa108109; break;
 | |
| 	case 0xa2010: return cur_rev <= 0xa20102f; break;
 | |
| 	case 0xa2012: return cur_rev <= 0xa201212; break;
 | |
| 	case 0xa4041: return cur_rev <= 0xa404109; break;
 | |
| 	case 0xa5000: return cur_rev <= 0xa500013; break;
 | |
| 	case 0xa6012: return cur_rev <= 0xa60120a; break;
 | |
| 	case 0xa7041: return cur_rev <= 0xa704109; break;
 | |
| 	case 0xa7052: return cur_rev <= 0xa705208; break;
 | |
| 	case 0xa7080: return cur_rev <= 0xa708009; break;
 | |
| 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
 | |
| 	case 0xaa001: return cur_rev <= 0xaa00116; break;
 | |
| 	case 0xaa002: return cur_rev <= 0xaa00218; break;
 | |
| 	case 0xb0021: return cur_rev <= 0xb002146; break;
 | |
| 	case 0xb1010: return cur_rev <= 0xb101046; break;
 | |
| 	case 0xb2040: return cur_rev <= 0xb204031; break;
 | |
| 	case 0xb4040: return cur_rev <= 0xb404031; break;
 | |
| 	case 0xb6000: return cur_rev <= 0xb600031; break;
 | |
| 	case 0xb7000: return cur_rev <= 0xb700031; break;
 | |
| 	default: break;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
 | |
| 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
 | |
| {
 | |
| 	struct patch_digest *pd = NULL;
 | |
| 	u8 digest[SHA256_DIGEST_SIZE];
 | |
| 	int i;
 | |
| 
 | |
| 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
 | |
| 		return true;
 | |
| 
 | |
| 	if (!need_sha_check(cur_rev))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!sha_check)
 | |
| 		return true;
 | |
| 
 | |
| 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
 | |
| 	if (!pd) {
 | |
| 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	sha256(data, len, digest);
 | |
| 
 | |
| 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
 | |
| 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
 | |
| 
 | |
| 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
 | |
| 			pr_cont("0x%x ", digest[i]);
 | |
| 		pr_info("\n");
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static u32 get_patch_level(void)
 | |
| {
 | |
| 	u32 rev, dummy __always_unused;
 | |
| 
 | |
| 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
 | |
| 
 | |
| 	return rev;
 | |
| }
 | |
| 
 | |
| static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
 | |
| {
 | |
| 	union zen_patch_rev p;
 | |
| 	union cpuid_1_eax c;
 | |
| 
 | |
| 	p.ucode_rev = val;
 | |
| 	c.full = 0;
 | |
| 
 | |
| 	c.stepping  = p.stepping;
 | |
| 	c.model     = p.model;
 | |
| 	c.ext_model = p.ext_model;
 | |
| 	c.family    = 0xf;
 | |
| 	c.ext_fam   = p.ext_fam;
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Zen and newer do not need an equivalence table. */
 | |
| 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!et || !et->num_entries)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < et->num_entries; i++) {
 | |
| 		struct equiv_cpu_entry *e = &et->entry[i];
 | |
| 
 | |
| 		if (sig == e->installed_cpu)
 | |
| 			return e->equiv_cpu;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether there is a valid microcode container file at the beginning
 | |
|  * of @buf of size @buf_size.
 | |
|  */
 | |
| static bool verify_container(const u8 *buf, size_t buf_size)
 | |
| {
 | |
| 	u32 cont_magic;
 | |
| 
 | |
| 	if (buf_size <= CONTAINER_HDR_SZ) {
 | |
| 		pr_debug("Truncated microcode container header.\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	cont_magic = *(const u32 *)buf;
 | |
| 	if (cont_magic != UCODE_MAGIC) {
 | |
| 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether there is a valid, non-truncated CPU equivalence table at the
 | |
|  * beginning of @buf of size @buf_size.
 | |
|  */
 | |
| static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
 | |
| {
 | |
| 	const u32 *hdr = (const u32 *)buf;
 | |
| 	u32 cont_type, equiv_tbl_len;
 | |
| 
 | |
| 	if (!verify_container(buf, buf_size))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Zen and newer do not need an equivalence table. */
 | |
| 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 | |
| 		return true;
 | |
| 
 | |
| 	cont_type = hdr[1];
 | |
| 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
 | |
| 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
 | |
| 			 cont_type);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	buf_size -= CONTAINER_HDR_SZ;
 | |
| 
 | |
| 	equiv_tbl_len = hdr[2];
 | |
| 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
 | |
| 	    buf_size < equiv_tbl_len) {
 | |
| 		pr_debug("Truncated equivalence table.\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether there is a valid, non-truncated microcode patch section at the
 | |
|  * beginning of @buf of size @buf_size.
 | |
|  *
 | |
|  * On success, @sh_psize returns the patch size according to the section header,
 | |
|  * to the caller.
 | |
|  */
 | |
| static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
 | |
| {
 | |
| 	u32 p_type, p_size;
 | |
| 	const u32 *hdr;
 | |
| 
 | |
| 	if (buf_size < SECTION_HDR_SIZE) {
 | |
| 		pr_debug("Truncated patch section.\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	hdr = (const u32 *)buf;
 | |
| 	p_type = hdr[0];
 | |
| 	p_size = hdr[1];
 | |
| 
 | |
| 	if (p_type != UCODE_UCODE_TYPE) {
 | |
| 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
 | |
| 			 p_type);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (p_size < sizeof(struct microcode_header_amd)) {
 | |
| 		pr_debug("Patch of size %u too short.\n", p_size);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	*sh_psize = p_size;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the passed remaining file @buf_size is large enough to contain
 | |
|  * a patch of the indicated @sh_psize (and also whether this size does not
 | |
|  * exceed the per-family maximum). @sh_psize is the size read from the section
 | |
|  * header.
 | |
|  */
 | |
| static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
 | |
| {
 | |
| 	u8 family = x86_family(bsp_cpuid_1_eax);
 | |
| 	u32 max_size;
 | |
| 
 | |
| 	if (family >= 0x15)
 | |
| 		goto ret;
 | |
| 
 | |
| #define F1XH_MPB_MAX_SIZE 2048
 | |
| #define F14H_MPB_MAX_SIZE 1824
 | |
| 
 | |
| 	switch (family) {
 | |
| 	case 0x10 ... 0x12:
 | |
| 		max_size = F1XH_MPB_MAX_SIZE;
 | |
| 		break;
 | |
| 	case 0x14:
 | |
| 		max_size = F14H_MPB_MAX_SIZE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (sh_psize > max_size)
 | |
| 		return false;
 | |
| 
 | |
| ret:
 | |
| 	/* Working with the whole buffer so < is ok. */
 | |
| 	return sh_psize <= buf_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify the patch in @buf.
 | |
|  *
 | |
|  * Returns:
 | |
|  * negative: on error
 | |
|  * positive: patch is not for this family, skip it
 | |
|  * 0: success
 | |
|  */
 | |
| static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
 | |
| {
 | |
| 	u8 family = x86_family(bsp_cpuid_1_eax);
 | |
| 	struct microcode_header_amd *mc_hdr;
 | |
| 	u32 sh_psize;
 | |
| 	u16 proc_id;
 | |
| 	u8 patch_fam;
 | |
| 
 | |
| 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The section header length is not included in this indicated size
 | |
| 	 * but is present in the leftover file length so we need to subtract
 | |
| 	 * it before passing this value to the function below.
 | |
| 	 */
 | |
| 	buf_size -= SECTION_HDR_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the remaining buffer is big enough to contain a patch of
 | |
| 	 * size sh_psize, as the section claims.
 | |
| 	 */
 | |
| 	if (buf_size < sh_psize) {
 | |
| 		pr_debug("Patch of size %u truncated.\n", sh_psize);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (!__verify_patch_size(sh_psize, buf_size)) {
 | |
| 		pr_debug("Per-family patch size mismatch.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	*patch_size = sh_psize;
 | |
| 
 | |
| 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
 | |
| 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
 | |
| 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	proc_id	= mc_hdr->processor_rev_id;
 | |
| 	patch_fam = 0xf + (proc_id >> 12);
 | |
| 	if (patch_fam != family)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
 | |
| {
 | |
| 	/* Zen and newer do not need an equivalence table. */
 | |
| 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 | |
| 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
 | |
| 	else
 | |
| 		return eq_id == mc->hdr.processor_rev_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This scans the ucode blob for the proper container as we can have multiple
 | |
|  * containers glued together.
 | |
|  *
 | |
|  * Returns the amount of bytes consumed while scanning. @desc contains all the
 | |
|  * data we're going to use in later stages of the application.
 | |
|  */
 | |
| static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
 | |
| {
 | |
| 	struct equiv_cpu_table table;
 | |
| 	size_t orig_size = size;
 | |
| 	u32 *hdr = (u32 *)ucode;
 | |
| 	u16 eq_id;
 | |
| 	u8 *buf;
 | |
| 
 | |
| 	if (!verify_equivalence_table(ucode, size))
 | |
| 		return 0;
 | |
| 
 | |
| 	buf = ucode;
 | |
| 
 | |
| 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
 | |
| 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the equivalence ID of our CPU in this table. Even if this table
 | |
| 	 * doesn't contain a patch for the CPU, scan through the whole container
 | |
| 	 * so that it can be skipped in case there are other containers appended.
 | |
| 	 */
 | |
| 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
 | |
| 
 | |
| 	buf  += hdr[2] + CONTAINER_HDR_SZ;
 | |
| 	size -= hdr[2] + CONTAINER_HDR_SZ;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan through the rest of the container to find where it ends. We do
 | |
| 	 * some basic sanity-checking too.
 | |
| 	 */
 | |
| 	while (size > 0) {
 | |
| 		struct microcode_amd *mc;
 | |
| 		u32 patch_size;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = verify_patch(buf, size, &patch_size);
 | |
| 		if (ret < 0) {
 | |
| 			/*
 | |
| 			 * Patch verification failed, skip to the next container, if
 | |
| 			 * there is one. Before exit, check whether that container has
 | |
| 			 * found a patch already. If so, use it.
 | |
| 			 */
 | |
| 			goto out;
 | |
| 		} else if (ret > 0) {
 | |
| 			goto skip;
 | |
| 		}
 | |
| 
 | |
| 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
 | |
| 		if (mc_patch_matches(mc, eq_id)) {
 | |
| 			desc->psize = patch_size;
 | |
| 			desc->mc = mc;
 | |
| 		}
 | |
| 
 | |
| skip:
 | |
| 		/* Skip patch section header too: */
 | |
| 		buf  += patch_size + SECTION_HDR_SIZE;
 | |
| 		size -= patch_size + SECTION_HDR_SIZE;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * If we have found a patch (desc->mc), it means we're looking at the
 | |
| 	 * container which has a patch for this CPU so return 0 to mean, @ucode
 | |
| 	 * already points to the proper container. Otherwise, we return the size
 | |
| 	 * we scanned so that we can advance to the next container in the
 | |
| 	 * buffer.
 | |
| 	 */
 | |
| 	if (desc->mc) {
 | |
| 		desc->data = ucode;
 | |
| 		desc->size = orig_size - size;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return orig_size - size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the ucode blob for the proper container as we can have multiple
 | |
|  * containers glued together.
 | |
|  */
 | |
| static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
 | |
| {
 | |
| 	while (size) {
 | |
| 		size_t s = parse_container(ucode, size, desc);
 | |
| 		if (!s)
 | |
| 			return;
 | |
| 
 | |
| 		/* catch wraparound */
 | |
| 		if (size >= s) {
 | |
| 			ucode += s;
 | |
| 			size  -= s;
 | |
| 		} else {
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
 | |
| 				  unsigned int psize)
 | |
| {
 | |
| 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
 | |
| 
 | |
| 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
 | |
| 		return false;
 | |
| 
 | |
| 	native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
 | |
| 
 | |
| 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
 | |
| 		unsigned long p_addr_end = p_addr + psize - 1;
 | |
| 
 | |
| 		invlpg(p_addr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Flush next page too if patch image is crossing a page
 | |
| 		 * boundary.
 | |
| 		 */
 | |
| 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
 | |
| 			invlpg(p_addr_end);
 | |
| 	}
 | |
| 
 | |
| 	/* verify patch application was successful */
 | |
| 	*cur_rev = get_patch_level();
 | |
| 	if (*cur_rev != mc->hdr.patch_id)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool get_builtin_microcode(struct cpio_data *cp)
 | |
| {
 | |
| 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
 | |
| 	u8 family = x86_family(bsp_cpuid_1_eax);
 | |
| 	struct firmware fw;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_X86_32))
 | |
| 		return false;
 | |
| 
 | |
| 	if (family >= 0x15)
 | |
| 		snprintf(fw_name, sizeof(fw_name),
 | |
| 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
 | |
| 
 | |
| 	if (firmware_request_builtin(&fw, fw_name)) {
 | |
| 		cp->size = fw.size;
 | |
| 		cp->data = (void *)fw.data;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __init find_blobs_in_containers(struct cpio_data *ret)
 | |
| {
 | |
| 	struct cpio_data cp;
 | |
| 	bool found;
 | |
| 
 | |
| 	if (!get_builtin_microcode(&cp))
 | |
| 		cp = find_microcode_in_initrd(ucode_path);
 | |
| 
 | |
| 	found = cp.data && cp.size;
 | |
| 	if (found)
 | |
| 		*ret = cp;
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early load occurs before we can vmalloc(). So we look for the microcode
 | |
|  * patch container file in initrd, traverse equivalent cpu table, look for a
 | |
|  * matching microcode patch, and update, all in initrd memory in place.
 | |
|  * When vmalloc() is available for use later -- on 64-bit during first AP load,
 | |
|  * and on 32-bit during save_microcode_in_initrd() -- we can call
 | |
|  * load_microcode_amd() to save equivalent cpu table and microcode patches in
 | |
|  * kernel heap memory.
 | |
|  */
 | |
| void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
 | |
| {
 | |
| 	struct cont_desc desc = { };
 | |
| 	struct microcode_amd *mc;
 | |
| 	struct cpio_data cp = { };
 | |
| 	char buf[4];
 | |
| 	u32 rev;
 | |
| 
 | |
| 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
 | |
| 		if (!strncmp(buf, "off", 3)) {
 | |
| 			sha_check = false;
 | |
| 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
 | |
| 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bsp_cpuid_1_eax = cpuid_1_eax;
 | |
| 
 | |
| 	rev = get_patch_level();
 | |
| 	ed->old_rev = rev;
 | |
| 
 | |
| 	/* Needed in load_microcode_amd() */
 | |
| 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
 | |
| 
 | |
| 	if (!find_blobs_in_containers(&cp))
 | |
| 		return;
 | |
| 
 | |
| 	scan_containers(cp.data, cp.size, &desc);
 | |
| 
 | |
| 	mc = desc.mc;
 | |
| 	if (!mc)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow application of the same revision to pick up SMT-specific
 | |
| 	 * changes even if the revision of the other SMT thread is already
 | |
| 	 * up-to-date.
 | |
| 	 */
 | |
| 	if (ed->old_rev > mc->hdr.patch_id)
 | |
| 		return;
 | |
| 
 | |
| 	if (__apply_microcode_amd(mc, &rev, desc.psize))
 | |
| 		ed->new_rev = rev;
 | |
| }
 | |
| 
 | |
| static inline bool patch_cpus_equivalent(struct ucode_patch *p,
 | |
| 					 struct ucode_patch *n,
 | |
| 					 bool ignore_stepping)
 | |
| {
 | |
| 	/* Zen and newer hardcode the f/m/s in the patch ID */
 | |
|         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
 | |
| 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
 | |
| 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
 | |
| 
 | |
| 		if (ignore_stepping) {
 | |
| 			p_cid.stepping = 0;
 | |
| 			n_cid.stepping = 0;
 | |
| 		}
 | |
| 
 | |
| 		return p_cid.full == n_cid.full;
 | |
| 	} else {
 | |
| 		return p->equiv_cpu == n->equiv_cpu;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a small, trivial cache of per-family ucode patches
 | |
|  */
 | |
| static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
 | |
| {
 | |
| 	struct ucode_patch *p;
 | |
| 	struct ucode_patch n;
 | |
| 
 | |
| 	n.equiv_cpu = equiv_cpu;
 | |
| 	n.patch_id  = uci->cpu_sig.rev;
 | |
| 
 | |
| 	list_for_each_entry(p, µcode_cache, plist)
 | |
| 		if (patch_cpus_equivalent(p, &n, false))
 | |
| 			return p;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
 | |
| {
 | |
| 	/* Zen and newer hardcode the f/m/s in the patch ID */
 | |
|         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
 | |
| 		union zen_patch_rev zp, zn;
 | |
| 
 | |
| 		zp.ucode_rev = p->patch_id;
 | |
| 		zn.ucode_rev = n->patch_id;
 | |
| 
 | |
| 		if (zn.stepping != zp.stepping)
 | |
| 			return -1;
 | |
| 
 | |
| 		return zn.rev > zp.rev;
 | |
| 	} else {
 | |
| 		return n->patch_id > p->patch_id;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_cache(struct ucode_patch *new_patch)
 | |
| {
 | |
| 	struct ucode_patch *p;
 | |
| 	int ret;
 | |
| 
 | |
| 	list_for_each_entry(p, µcode_cache, plist) {
 | |
| 		if (patch_cpus_equivalent(p, new_patch, true)) {
 | |
| 			ret = patch_newer(p, new_patch);
 | |
| 			if (ret < 0)
 | |
| 				continue;
 | |
| 			else if (!ret) {
 | |
| 				/* we already have the latest patch */
 | |
| 				kfree(new_patch->data);
 | |
| 				kfree(new_patch);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			list_replace(&p->plist, &new_patch->plist);
 | |
| 			kfree(p->data);
 | |
| 			kfree(p);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	/* no patch found, add it */
 | |
| 	list_add_tail(&new_patch->plist, µcode_cache);
 | |
| }
 | |
| 
 | |
| static void free_cache(void)
 | |
| {
 | |
| 	struct ucode_patch *p, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
 | |
| 		__list_del(p->plist.prev, p->plist.next);
 | |
| 		kfree(p->data);
 | |
| 		kfree(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct ucode_patch *find_patch(unsigned int cpu)
 | |
| {
 | |
| 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 | |
| 	u16 equiv_id = 0;
 | |
| 
 | |
| 	uci->cpu_sig.rev = get_patch_level();
 | |
| 
 | |
| 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
 | |
| 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
 | |
| 		if (!equiv_id)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return cache_find_patch(uci, equiv_id);
 | |
| }
 | |
| 
 | |
| void reload_ucode_amd(unsigned int cpu)
 | |
| {
 | |
| 	u32 rev, dummy __always_unused;
 | |
| 	struct microcode_amd *mc;
 | |
| 	struct ucode_patch *p;
 | |
| 
 | |
| 	p = find_patch(cpu);
 | |
| 	if (!p)
 | |
| 		return;
 | |
| 
 | |
| 	mc = p->data;
 | |
| 
 | |
| 	rev = get_patch_level();
 | |
| 	if (rev < mc->hdr.patch_id) {
 | |
| 		if (__apply_microcode_amd(mc, &rev, p->size))
 | |
| 			pr_info_once("reload revision: 0x%08x\n", rev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
 | |
| {
 | |
| 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 | |
| 	struct ucode_patch *p;
 | |
| 
 | |
| 	csig->sig = cpuid_eax(0x00000001);
 | |
| 	csig->rev = get_patch_level();
 | |
| 
 | |
| 	/*
 | |
| 	 * a patch could have been loaded early, set uci->mc so that
 | |
| 	 * mc_bp_resume() can call apply_microcode()
 | |
| 	 */
 | |
| 	p = find_patch(cpu);
 | |
| 	if (p && (p->patch_id == csig->rev))
 | |
| 		uci->mc = p->data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static enum ucode_state apply_microcode_amd(int cpu)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = &cpu_data(cpu);
 | |
| 	struct microcode_amd *mc_amd;
 | |
| 	struct ucode_cpu_info *uci;
 | |
| 	struct ucode_patch *p;
 | |
| 	enum ucode_state ret;
 | |
| 	u32 rev;
 | |
| 
 | |
| 	BUG_ON(raw_smp_processor_id() != cpu);
 | |
| 
 | |
| 	uci = ucode_cpu_info + cpu;
 | |
| 
 | |
| 	p = find_patch(cpu);
 | |
| 	if (!p)
 | |
| 		return UCODE_NFOUND;
 | |
| 
 | |
| 	rev = uci->cpu_sig.rev;
 | |
| 
 | |
| 	mc_amd  = p->data;
 | |
| 	uci->mc = p->data;
 | |
| 
 | |
| 	/* need to apply patch? */
 | |
| 	if (rev > mc_amd->hdr.patch_id) {
 | |
| 		ret = UCODE_OK;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
 | |
| 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
 | |
| 			cpu, mc_amd->hdr.patch_id);
 | |
| 		return UCODE_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	rev = mc_amd->hdr.patch_id;
 | |
| 	ret = UCODE_UPDATED;
 | |
| 
 | |
| out:
 | |
| 	uci->cpu_sig.rev = rev;
 | |
| 	c->microcode	 = rev;
 | |
| 
 | |
| 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
 | |
| 	if (c->cpu_index == boot_cpu_data.cpu_index)
 | |
| 		boot_cpu_data.microcode = rev;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void load_ucode_amd_ap(unsigned int cpuid_1_eax)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
 | |
| 	apply_microcode_amd(cpu);
 | |
| }
 | |
| 
 | |
| static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
 | |
| {
 | |
| 	u32 equiv_tbl_len;
 | |
| 	const u32 *hdr;
 | |
| 
 | |
| 	if (!verify_equivalence_table(buf, buf_size))
 | |
| 		return 0;
 | |
| 
 | |
| 	hdr = (const u32 *)buf;
 | |
| 	equiv_tbl_len = hdr[2];
 | |
| 
 | |
| 	/* Zen and newer do not need an equivalence table. */
 | |
| 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 | |
| 		goto out;
 | |
| 
 | |
| 	equiv_table.entry = vmalloc(equiv_tbl_len);
 | |
| 	if (!equiv_table.entry) {
 | |
| 		pr_err("failed to allocate equivalent CPU table\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
 | |
| 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
 | |
| 
 | |
| out:
 | |
| 	/* add header length */
 | |
| 	return equiv_tbl_len + CONTAINER_HDR_SZ;
 | |
| }
 | |
| 
 | |
| static void free_equiv_cpu_table(void)
 | |
| {
 | |
| 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 | |
| 		return;
 | |
| 
 | |
| 	vfree(equiv_table.entry);
 | |
| 	memset(&equiv_table, 0, sizeof(equiv_table));
 | |
| }
 | |
| 
 | |
| static void cleanup(void)
 | |
| {
 | |
| 	free_equiv_cpu_table();
 | |
| 	free_cache();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a non-negative value even if some of the checks failed so that
 | |
|  * we can skip over the next patch. If we return a negative value, we
 | |
|  * signal a grave error like a memory allocation has failed and the
 | |
|  * driver cannot continue functioning normally. In such cases, we tear
 | |
|  * down everything we've used up so far and exit.
 | |
|  */
 | |
| static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
 | |
| 				unsigned int *patch_size)
 | |
| {
 | |
| 	struct microcode_header_amd *mc_hdr;
 | |
| 	struct ucode_patch *patch;
 | |
| 	u16 proc_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = verify_patch(fw, leftover, patch_size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
 | |
| 	if (!patch) {
 | |
| 		pr_err("Patch allocation failure.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
 | |
| 	if (!patch->data) {
 | |
| 		pr_err("Patch data allocation failure.\n");
 | |
| 		kfree(patch);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	patch->size = *patch_size;
 | |
| 
 | |
| 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
 | |
| 	proc_id     = mc_hdr->processor_rev_id;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&patch->plist);
 | |
| 	patch->patch_id  = mc_hdr->patch_id;
 | |
| 	patch->equiv_cpu = proc_id;
 | |
| 
 | |
| 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
 | |
| 		 __func__, patch->patch_id, proc_id);
 | |
| 
 | |
| 	/* ... and add to cache. */
 | |
| 	update_cache(patch);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Scan the blob in @data and add microcode patches to the cache. */
 | |
| static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
 | |
| {
 | |
| 	u8 *fw = (u8 *)data;
 | |
| 	size_t offset;
 | |
| 
 | |
| 	offset = install_equiv_cpu_table(data, size);
 | |
| 	if (!offset)
 | |
| 		return UCODE_ERROR;
 | |
| 
 | |
| 	fw   += offset;
 | |
| 	size -= offset;
 | |
| 
 | |
| 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
 | |
| 		pr_err("invalid type field in container file section header\n");
 | |
| 		free_equiv_cpu_table();
 | |
| 		return UCODE_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		unsigned int crnt_size = 0;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
 | |
| 		if (ret < 0)
 | |
| 			return UCODE_ERROR;
 | |
| 
 | |
| 		fw   +=  crnt_size + SECTION_HDR_SIZE;
 | |
| 		size -= (crnt_size + SECTION_HDR_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	return UCODE_OK;
 | |
| }
 | |
| 
 | |
| static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
 | |
| {
 | |
| 	enum ucode_state ret;
 | |
| 
 | |
| 	/* free old equiv table */
 | |
| 	free_equiv_cpu_table();
 | |
| 
 | |
| 	ret = __load_microcode_amd(family, data, size);
 | |
| 	if (ret != UCODE_OK)
 | |
| 		cleanup();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c;
 | |
| 	unsigned int nid, cpu;
 | |
| 	struct ucode_patch *p;
 | |
| 	enum ucode_state ret;
 | |
| 
 | |
| 	ret = _load_microcode_amd(family, data, size);
 | |
| 	if (ret != UCODE_OK)
 | |
| 		return ret;
 | |
| 
 | |
| 	for_each_node_with_cpus(nid) {
 | |
| 		cpu = cpumask_first(cpumask_of_node(nid));
 | |
| 		c = &cpu_data(cpu);
 | |
| 
 | |
| 		p = find_patch(cpu);
 | |
| 		if (!p)
 | |
| 			continue;
 | |
| 
 | |
| 		if (c->microcode >= p->patch_id)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = UCODE_NEW;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init save_microcode_in_initrd(void)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = &boot_cpu_data;
 | |
| 	struct cont_desc desc = { 0 };
 | |
| 	unsigned int cpuid_1_eax;
 | |
| 	enum ucode_state ret;
 | |
| 	struct cpio_data cp;
 | |
| 
 | |
| 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpuid_1_eax = native_cpuid_eax(1);
 | |
| 
 | |
| 	if (!find_blobs_in_containers(&cp))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scan_containers(cp.data, cp.size, &desc);
 | |
| 	if (!desc.mc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
 | |
| 	if (ret > UCODE_UPDATED)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(save_microcode_in_initrd);
 | |
| 
 | |
| /*
 | |
|  * AMD microcode firmware naming convention, up to family 15h they are in
 | |
|  * the legacy file:
 | |
|  *
 | |
|  *    amd-ucode/microcode_amd.bin
 | |
|  *
 | |
|  * This legacy file is always smaller than 2K in size.
 | |
|  *
 | |
|  * Beginning with family 15h, they are in family-specific firmware files:
 | |
|  *
 | |
|  *    amd-ucode/microcode_amd_fam15h.bin
 | |
|  *    amd-ucode/microcode_amd_fam16h.bin
 | |
|  *    ...
 | |
|  *
 | |
|  * These might be larger than 2K.
 | |
|  */
 | |
| static enum ucode_state request_microcode_amd(int cpu, struct device *device)
 | |
| {
 | |
| 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
 | |
| 	struct cpuinfo_x86 *c = &cpu_data(cpu);
 | |
| 	enum ucode_state ret = UCODE_NFOUND;
 | |
| 	const struct firmware *fw;
 | |
| 
 | |
| 	if (force_minrev)
 | |
| 		return UCODE_NFOUND;
 | |
| 
 | |
| 	if (c->x86 >= 0x15)
 | |
| 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
 | |
| 
 | |
| 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
 | |
| 		pr_debug("failed to load file %s\n", fw_name);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = UCODE_ERROR;
 | |
| 	if (!verify_container(fw->data, fw->size))
 | |
| 		goto fw_release;
 | |
| 
 | |
| 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
 | |
| 
 | |
|  fw_release:
 | |
| 	release_firmware(fw);
 | |
| 
 | |
|  out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void microcode_fini_cpu_amd(int cpu)
 | |
| {
 | |
| 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 | |
| 
 | |
| 	uci->mc = NULL;
 | |
| }
 | |
| 
 | |
| static void finalize_late_load_amd(int result)
 | |
| {
 | |
| 	if (result)
 | |
| 		cleanup();
 | |
| }
 | |
| 
 | |
| static struct microcode_ops microcode_amd_ops = {
 | |
| 	.request_microcode_fw	= request_microcode_amd,
 | |
| 	.collect_cpu_info	= collect_cpu_info_amd,
 | |
| 	.apply_microcode	= apply_microcode_amd,
 | |
| 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
 | |
| 	.finalize_late_load	= finalize_late_load_amd,
 | |
| 	.nmi_safe		= true,
 | |
| };
 | |
| 
 | |
| struct microcode_ops * __init init_amd_microcode(void)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = &boot_cpu_data;
 | |
| 
 | |
| 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
 | |
| 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return µcode_amd_ops;
 | |
| }
 | |
| 
 | |
| void __exit exit_amd_microcode(void)
 | |
| {
 | |
| 	cleanup();
 | |
| }
 |