mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7a3ae2f8c8
			
		
	
	
		7a3ae2f8c8
		
	
	
	
	
		
			
			In commit 4692cf58 we introduced new backref walking code for btrfs. This
assumes we're searching live roots, which requires a transaction context.
While scrubbing, however, we must not join a transaction because this could
deadlock with the commit path. Additionally, what scrub really wants to do
is resolving a logical address in the commit root it's currently checking.
This patch adds support for logical to path resolving on commit roots and
makes scrub use that.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
		
	
			
		
			
				
	
	
		
			1424 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1424 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011 STRATO.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "backref.h"
 | |
| #include "ulist.h"
 | |
| #include "transaction.h"
 | |
| #include "delayed-ref.h"
 | |
| 
 | |
| /*
 | |
|  * this structure records all encountered refs on the way up to the root
 | |
|  */
 | |
| struct __prelim_ref {
 | |
| 	struct list_head list;
 | |
| 	u64 root_id;
 | |
| 	struct btrfs_key key;
 | |
| 	int level;
 | |
| 	int count;
 | |
| 	u64 parent;
 | |
| 	u64 wanted_disk_byte;
 | |
| };
 | |
| 
 | |
| static int __add_prelim_ref(struct list_head *head, u64 root_id,
 | |
| 			    struct btrfs_key *key, int level, u64 parent,
 | |
| 			    u64 wanted_disk_byte, int count)
 | |
| {
 | |
| 	struct __prelim_ref *ref;
 | |
| 
 | |
| 	/* in case we're adding delayed refs, we're holding the refs spinlock */
 | |
| 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 | |
| 	if (!ref)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ref->root_id = root_id;
 | |
| 	if (key)
 | |
| 		ref->key = *key;
 | |
| 	else
 | |
| 		memset(&ref->key, 0, sizeof(ref->key));
 | |
| 
 | |
| 	ref->level = level;
 | |
| 	ref->count = count;
 | |
| 	ref->parent = parent;
 | |
| 	ref->wanted_disk_byte = wanted_disk_byte;
 | |
| 	list_add_tail(&ref->list, head);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 | |
| 				struct ulist *parents,
 | |
| 				struct extent_buffer *eb, int level,
 | |
| 				u64 wanted_objectid, u64 wanted_disk_byte)
 | |
| {
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 disk_byte;
 | |
| 
 | |
| add_parent:
 | |
| 	ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (level != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * if the current leaf is full with EXTENT_DATA items, we must
 | |
| 	 * check the next one if that holds a reference as well.
 | |
| 	 * ref->count cannot be used to skip this check.
 | |
| 	 * repeat this until we don't find any additional EXTENT_DATA items.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 
 | |
| 		eb = path->nodes[0];
 | |
| 		for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
 | |
| 			btrfs_item_key_to_cpu(eb, &key, slot);
 | |
| 			if (key.objectid != wanted_objectid ||
 | |
| 			    key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 				return 0;
 | |
| 			fi = btrfs_item_ptr(eb, slot,
 | |
| 						struct btrfs_file_extent_item);
 | |
| 			disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 | |
| 			if (disk_byte == wanted_disk_byte)
 | |
| 				goto add_parent;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * resolve an indirect backref in the form (root_id, key, level)
 | |
|  * to a logical address
 | |
|  */
 | |
| static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 | |
| 					int search_commit_root,
 | |
| 					struct __prelim_ref *ref,
 | |
| 					struct ulist *parents)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key root_key;
 | |
| 	struct btrfs_key key = {0};
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret = 0;
 | |
| 	int root_level;
 | |
| 	int level = ref->level;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->search_commit_root = !!search_commit_root;
 | |
| 
 | |
| 	root_key.objectid = ref->root_id;
 | |
| 	root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root_key.offset = (u64)-1;
 | |
| 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 | |
| 	if (IS_ERR(root)) {
 | |
| 		ret = PTR_ERR(root);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	root_level = btrfs_header_level(root->node);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (root_level + 1 == level)
 | |
| 		goto out;
 | |
| 
 | |
| 	path->lowest_level = level;
 | |
| 	ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
 | |
| 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 | |
| 		 "%d for key (%llu %u %llu)\n",
 | |
| 		 (unsigned long long)ref->root_id, level, ref->count, ret,
 | |
| 		 (unsigned long long)ref->key.objectid, ref->key.type,
 | |
| 		 (unsigned long long)ref->key.offset);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	eb = path->nodes[level];
 | |
| 	if (!eb) {
 | |
| 		WARN_ON(1);
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (level == 0) {
 | |
| 		if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			eb = path->nodes[0];
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
 | |
| 	}
 | |
| 
 | |
| 	/* the last two parameters will only be used for level == 0 */
 | |
| 	ret = add_all_parents(root, path, parents, eb, level, key.objectid,
 | |
| 				ref->wanted_disk_byte);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * resolve all indirect backrefs from the list
 | |
|  */
 | |
| static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 | |
| 				   int search_commit_root,
 | |
| 				   struct list_head *head)
 | |
| {
 | |
| 	int err;
 | |
| 	int ret = 0;
 | |
| 	struct __prelim_ref *ref;
 | |
| 	struct __prelim_ref *ref_safe;
 | |
| 	struct __prelim_ref *new_ref;
 | |
| 	struct ulist *parents;
 | |
| 	struct ulist_node *node;
 | |
| 
 | |
| 	parents = ulist_alloc(GFP_NOFS);
 | |
| 	if (!parents)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * _safe allows us to insert directly after the current item without
 | |
| 	 * iterating over the newly inserted items.
 | |
| 	 * we're also allowed to re-assign ref during iteration.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(ref, ref_safe, head, list) {
 | |
| 		if (ref->parent)	/* already direct */
 | |
| 			continue;
 | |
| 		if (ref->count == 0)
 | |
| 			continue;
 | |
| 		err = __resolve_indirect_ref(fs_info, search_commit_root,
 | |
| 					     ref, parents);
 | |
| 		if (err) {
 | |
| 			if (ret == 0)
 | |
| 				ret = err;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* we put the first parent into the ref at hand */
 | |
| 		node = ulist_next(parents, NULL);
 | |
| 		ref->parent = node ? node->val : 0;
 | |
| 
 | |
| 		/* additional parents require new refs being added here */
 | |
| 		while ((node = ulist_next(parents, node))) {
 | |
| 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 | |
| 			if (!new_ref) {
 | |
| 				ret = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 			memcpy(new_ref, ref, sizeof(*ref));
 | |
| 			new_ref->parent = node->val;
 | |
| 			list_add(&new_ref->list, &ref->list);
 | |
| 		}
 | |
| 		ulist_reinit(parents);
 | |
| 	}
 | |
| 
 | |
| 	ulist_free(parents);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * merge two lists of backrefs and adjust counts accordingly
 | |
|  *
 | |
|  * mode = 1: merge identical keys, if key is set
 | |
|  * mode = 2: merge identical parents
 | |
|  */
 | |
| static int __merge_refs(struct list_head *head, int mode)
 | |
| {
 | |
| 	struct list_head *pos1;
 | |
| 
 | |
| 	list_for_each(pos1, head) {
 | |
| 		struct list_head *n2;
 | |
| 		struct list_head *pos2;
 | |
| 		struct __prelim_ref *ref1;
 | |
| 
 | |
| 		ref1 = list_entry(pos1, struct __prelim_ref, list);
 | |
| 
 | |
| 		if (mode == 1 && ref1->key.type == 0)
 | |
| 			continue;
 | |
| 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 | |
| 		     pos2 = n2, n2 = pos2->next) {
 | |
| 			struct __prelim_ref *ref2;
 | |
| 
 | |
| 			ref2 = list_entry(pos2, struct __prelim_ref, list);
 | |
| 
 | |
| 			if (mode == 1) {
 | |
| 				if (memcmp(&ref1->key, &ref2->key,
 | |
| 					   sizeof(ref1->key)) ||
 | |
| 				    ref1->level != ref2->level ||
 | |
| 				    ref1->root_id != ref2->root_id)
 | |
| 					continue;
 | |
| 				ref1->count += ref2->count;
 | |
| 			} else {
 | |
| 				if (ref1->parent != ref2->parent)
 | |
| 					continue;
 | |
| 				ref1->count += ref2->count;
 | |
| 			}
 | |
| 			list_del(&ref2->list);
 | |
| 			kfree(ref2);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add all currently queued delayed refs from this head whose seq nr is
 | |
|  * smaller or equal that seq to the list
 | |
|  */
 | |
| static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 | |
| 			      struct btrfs_key *info_key,
 | |
| 			      struct list_head *prefs)
 | |
| {
 | |
| 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 | |
| 	struct rb_node *n = &head->node.rb_node;
 | |
| 	int sgn;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (extent_op && extent_op->update_key)
 | |
| 		btrfs_disk_key_to_cpu(info_key, &extent_op->key);
 | |
| 
 | |
| 	while ((n = rb_prev(n))) {
 | |
| 		struct btrfs_delayed_ref_node *node;
 | |
| 		node = rb_entry(n, struct btrfs_delayed_ref_node,
 | |
| 				rb_node);
 | |
| 		if (node->bytenr != head->node.bytenr)
 | |
| 			break;
 | |
| 		WARN_ON(node->is_head);
 | |
| 
 | |
| 		if (node->seq > seq)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (node->action) {
 | |
| 		case BTRFS_ADD_DELAYED_EXTENT:
 | |
| 		case BTRFS_UPDATE_DELAYED_HEAD:
 | |
| 			WARN_ON(1);
 | |
| 			continue;
 | |
| 		case BTRFS_ADD_DELAYED_REF:
 | |
| 			sgn = 1;
 | |
| 			break;
 | |
| 		case BTRFS_DROP_DELAYED_REF:
 | |
| 			sgn = -1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG_ON(1);
 | |
| 		}
 | |
| 		switch (node->type) {
 | |
| 		case BTRFS_TREE_BLOCK_REF_KEY: {
 | |
| 			struct btrfs_delayed_tree_ref *ref;
 | |
| 
 | |
| 			ref = btrfs_delayed_node_to_tree_ref(node);
 | |
| 			ret = __add_prelim_ref(prefs, ref->root, info_key,
 | |
| 					       ref->level + 1, 0, node->bytenr,
 | |
| 					       node->ref_mod * sgn);
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTRFS_SHARED_BLOCK_REF_KEY: {
 | |
| 			struct btrfs_delayed_tree_ref *ref;
 | |
| 
 | |
| 			ref = btrfs_delayed_node_to_tree_ref(node);
 | |
| 			ret = __add_prelim_ref(prefs, ref->root, info_key,
 | |
| 					       ref->level + 1, ref->parent,
 | |
| 					       node->bytenr,
 | |
| 					       node->ref_mod * sgn);
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTRFS_EXTENT_DATA_REF_KEY: {
 | |
| 			struct btrfs_delayed_data_ref *ref;
 | |
| 			struct btrfs_key key;
 | |
| 
 | |
| 			ref = btrfs_delayed_node_to_data_ref(node);
 | |
| 
 | |
| 			key.objectid = ref->objectid;
 | |
| 			key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 			key.offset = ref->offset;
 | |
| 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 | |
| 					       node->bytenr,
 | |
| 					       node->ref_mod * sgn);
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTRFS_SHARED_DATA_REF_KEY: {
 | |
| 			struct btrfs_delayed_data_ref *ref;
 | |
| 			struct btrfs_key key;
 | |
| 
 | |
| 			ref = btrfs_delayed_node_to_data_ref(node);
 | |
| 
 | |
| 			key.objectid = ref->objectid;
 | |
| 			key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 			key.offset = ref->offset;
 | |
| 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 | |
| 					       ref->parent, node->bytenr,
 | |
| 					       node->ref_mod * sgn);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add all inline backrefs for bytenr to the list
 | |
|  */
 | |
| static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_path *path, u64 bytenr,
 | |
| 			     struct btrfs_key *info_key, int *info_level,
 | |
| 			     struct list_head *prefs)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	u64 flags;
 | |
| 	u64 item_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * enumerate all inline refs
 | |
| 	 */
 | |
| 	leaf = path->nodes[0];
 | |
| 	slot = path->slots[0] - 1;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(leaf, slot);
 | |
| 	BUG_ON(item_size < sizeof(*ei));
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 | |
| 	flags = btrfs_extent_flags(leaf, ei);
 | |
| 
 | |
| 	ptr = (unsigned long)(ei + 1);
 | |
| 	end = (unsigned long)ei + item_size;
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		struct btrfs_tree_block_info *info;
 | |
| 		struct btrfs_disk_key disk_key;
 | |
| 
 | |
| 		info = (struct btrfs_tree_block_info *)ptr;
 | |
| 		*info_level = btrfs_tree_block_level(leaf, info);
 | |
| 		btrfs_tree_block_key(leaf, info, &disk_key);
 | |
| 		btrfs_disk_key_to_cpu(info_key, &disk_key);
 | |
| 		ptr += sizeof(struct btrfs_tree_block_info);
 | |
| 		BUG_ON(ptr > end);
 | |
| 	} else {
 | |
| 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 | |
| 	}
 | |
| 
 | |
| 	while (ptr < end) {
 | |
| 		struct btrfs_extent_inline_ref *iref;
 | |
| 		u64 offset;
 | |
| 		int type;
 | |
| 
 | |
| 		iref = (struct btrfs_extent_inline_ref *)ptr;
 | |
| 		type = btrfs_extent_inline_ref_type(leaf, iref);
 | |
| 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case BTRFS_SHARED_BLOCK_REF_KEY:
 | |
| 			ret = __add_prelim_ref(prefs, 0, info_key,
 | |
| 						*info_level + 1, offset,
 | |
| 						bytenr, 1);
 | |
| 			break;
 | |
| 		case BTRFS_SHARED_DATA_REF_KEY: {
 | |
| 			struct btrfs_shared_data_ref *sdref;
 | |
| 			int count;
 | |
| 
 | |
| 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 			count = btrfs_shared_data_ref_count(leaf, sdref);
 | |
| 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 | |
| 					       bytenr, count);
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTRFS_TREE_BLOCK_REF_KEY:
 | |
| 			ret = __add_prelim_ref(prefs, offset, info_key,
 | |
| 					       *info_level + 1, 0, bytenr, 1);
 | |
| 			break;
 | |
| 		case BTRFS_EXTENT_DATA_REF_KEY: {
 | |
| 			struct btrfs_extent_data_ref *dref;
 | |
| 			int count;
 | |
| 			u64 root;
 | |
| 
 | |
| 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 			count = btrfs_extent_data_ref_count(leaf, dref);
 | |
| 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 | |
| 								      dref);
 | |
| 			key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 | |
| 			root = btrfs_extent_data_ref_root(leaf, dref);
 | |
| 			ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
 | |
| 						count);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 		BUG_ON(ret);
 | |
| 		ptr += btrfs_extent_inline_ref_size(type);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add all non-inline backrefs for bytenr to the list
 | |
|  */
 | |
| static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_path *path, u64 bytenr,
 | |
| 			    struct btrfs_key *info_key, int info_level,
 | |
| 			    struct list_head *prefs)
 | |
| {
 | |
| 	struct btrfs_root *extent_root = fs_info->extent_root;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_next_item(extent_root, path);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		slot = path->slots[0];
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 
 | |
| 		if (key.objectid != bytenr)
 | |
| 			break;
 | |
| 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 | |
| 			continue;
 | |
| 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		switch (key.type) {
 | |
| 		case BTRFS_SHARED_BLOCK_REF_KEY:
 | |
| 			ret = __add_prelim_ref(prefs, 0, info_key,
 | |
| 						info_level + 1, key.offset,
 | |
| 						bytenr, 1);
 | |
| 			break;
 | |
| 		case BTRFS_SHARED_DATA_REF_KEY: {
 | |
| 			struct btrfs_shared_data_ref *sdref;
 | |
| 			int count;
 | |
| 
 | |
| 			sdref = btrfs_item_ptr(leaf, slot,
 | |
| 					      struct btrfs_shared_data_ref);
 | |
| 			count = btrfs_shared_data_ref_count(leaf, sdref);
 | |
| 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 | |
| 						bytenr, count);
 | |
| 			break;
 | |
| 		}
 | |
| 		case BTRFS_TREE_BLOCK_REF_KEY:
 | |
| 			ret = __add_prelim_ref(prefs, key.offset, info_key,
 | |
| 						info_level + 1, 0, bytenr, 1);
 | |
| 			break;
 | |
| 		case BTRFS_EXTENT_DATA_REF_KEY: {
 | |
| 			struct btrfs_extent_data_ref *dref;
 | |
| 			int count;
 | |
| 			u64 root;
 | |
| 
 | |
| 			dref = btrfs_item_ptr(leaf, slot,
 | |
| 					      struct btrfs_extent_data_ref);
 | |
| 			count = btrfs_extent_data_ref_count(leaf, dref);
 | |
| 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 | |
| 								      dref);
 | |
| 			key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 | |
| 			root = btrfs_extent_data_ref_root(leaf, dref);
 | |
| 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 | |
| 						bytenr, count);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this adds all existing backrefs (inline backrefs, backrefs and delayed
 | |
|  * refs) for the given bytenr to the refs list, merges duplicates and resolves
 | |
|  * indirect refs to their parent bytenr.
 | |
|  * When roots are found, they're added to the roots list
 | |
|  *
 | |
|  * FIXME some caching might speed things up
 | |
|  */
 | |
| static int find_parent_nodes(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			     u64 seq, struct ulist *refs, struct ulist *roots)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key info_key = { 0 };
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	int info_level = 0;
 | |
| 	int ret;
 | |
| 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 | |
| 	struct list_head prefs_delayed;
 | |
| 	struct list_head prefs;
 | |
| 	struct __prelim_ref *ref;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&prefs);
 | |
| 	INIT_LIST_HEAD(&prefs_delayed);
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->search_commit_root = !!search_commit_root;
 | |
| 
 | |
| 	/*
 | |
| 	 * grab both a lock on the path and a lock on the delayed ref head.
 | |
| 	 * We need both to get a consistent picture of how the refs look
 | |
| 	 * at a specified point in time
 | |
| 	 */
 | |
| again:
 | |
| 	head = NULL;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	BUG_ON(ret == 0);
 | |
| 
 | |
| 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 | |
| 		/*
 | |
| 		 * look if there are updates for this ref queued and lock the
 | |
| 		 * head
 | |
| 		 */
 | |
| 		delayed_refs = &trans->transaction->delayed_refs;
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		head = btrfs_find_delayed_ref_head(trans, bytenr);
 | |
| 		if (head) {
 | |
| 			if (!mutex_trylock(&head->mutex)) {
 | |
| 				atomic_inc(&head->node.refs);
 | |
| 				spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 				btrfs_release_path(path);
 | |
| 
 | |
| 				/*
 | |
| 				 * Mutex was contended, block until it's
 | |
| 				 * released and try again
 | |
| 				 */
 | |
| 				mutex_lock(&head->mutex);
 | |
| 				mutex_unlock(&head->mutex);
 | |
| 				btrfs_put_delayed_ref(&head->node);
 | |
| 				goto again;
 | |
| 			}
 | |
| 			ret = __add_delayed_refs(head, seq, &info_key,
 | |
| 						 &prefs_delayed);
 | |
| 			if (ret) {
 | |
| 				spin_unlock(&delayed_refs->lock);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (path->slots[0]) {
 | |
| 		struct extent_buffer *leaf;
 | |
| 		int slot;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0] - 1;
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		if (key.objectid == bytenr &&
 | |
| 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
 | |
| 			ret = __add_inline_refs(fs_info, path, bytenr,
 | |
| 						&info_key, &info_level, &prefs);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
 | |
| 					       info_level, &prefs);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/*
 | |
| 	 * when adding the delayed refs above, the info_key might not have
 | |
| 	 * been known yet. Go over the list and replace the missing keys
 | |
| 	 */
 | |
| 	list_for_each_entry(ref, &prefs_delayed, list) {
 | |
| 		if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
 | |
| 			memcpy(&ref->key, &info_key, sizeof(ref->key));
 | |
| 	}
 | |
| 	list_splice_init(&prefs_delayed, &prefs);
 | |
| 
 | |
| 	ret = __merge_refs(&prefs, 1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = __merge_refs(&prefs, 2);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (!list_empty(&prefs)) {
 | |
| 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 | |
| 		list_del(&ref->list);
 | |
| 		if (ref->count < 0)
 | |
| 			WARN_ON(1);
 | |
| 		if (ref->count && ref->root_id && ref->parent == 0) {
 | |
| 			/* no parent == root of tree */
 | |
| 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 | |
| 			BUG_ON(ret < 0);
 | |
| 		}
 | |
| 		if (ref->count && ref->parent) {
 | |
| 			ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
 | |
| 			BUG_ON(ret < 0);
 | |
| 		}
 | |
| 		kfree(ref);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (head)
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 	btrfs_free_path(path);
 | |
| 	while (!list_empty(&prefs)) {
 | |
| 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 | |
| 		list_del(&ref->list);
 | |
| 		kfree(ref);
 | |
| 	}
 | |
| 	while (!list_empty(&prefs_delayed)) {
 | |
| 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 | |
| 				       list);
 | |
| 		list_del(&ref->list);
 | |
| 		kfree(ref);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finds all leafs with a reference to the specified combination of bytenr and
 | |
|  * offset. key_list_head will point to a list of corresponding keys (caller must
 | |
|  * free each list element). The leafs will be stored in the leafs ulist, which
 | |
|  * must be freed with ulist_free.
 | |
|  *
 | |
|  * returns 0 on success, <0 on error
 | |
|  */
 | |
| static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 				u64 num_bytes, u64 seq, struct ulist **leafs)
 | |
| {
 | |
| 	struct ulist *tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	tmp = ulist_alloc(GFP_NOFS);
 | |
| 	if (!tmp)
 | |
| 		return -ENOMEM;
 | |
| 	*leafs = ulist_alloc(GFP_NOFS);
 | |
| 	if (!*leafs) {
 | |
| 		ulist_free(tmp);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
 | |
| 	ulist_free(tmp);
 | |
| 
 | |
| 	if (ret < 0 && ret != -ENOENT) {
 | |
| 		ulist_free(*leafs);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * walk all backrefs for a given extent to find all roots that reference this
 | |
|  * extent. Walking a backref means finding all extents that reference this
 | |
|  * extent and in turn walk the backrefs of those, too. Naturally this is a
 | |
|  * recursive process, but here it is implemented in an iterative fashion: We
 | |
|  * find all referencing extents for the extent in question and put them on a
 | |
|  * list. In turn, we find all referencing extents for those, further appending
 | |
|  * to the list. The way we iterate the list allows adding more elements after
 | |
|  * the current while iterating. The process stops when we reach the end of the
 | |
|  * list. Found roots are added to the roots list.
 | |
|  *
 | |
|  * returns 0 on success, < 0 on error.
 | |
|  */
 | |
| int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 				u64 num_bytes, u64 seq, struct ulist **roots)
 | |
| {
 | |
| 	struct ulist *tmp;
 | |
| 	struct ulist_node *node = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	tmp = ulist_alloc(GFP_NOFS);
 | |
| 	if (!tmp)
 | |
| 		return -ENOMEM;
 | |
| 	*roots = ulist_alloc(GFP_NOFS);
 | |
| 	if (!*roots) {
 | |
| 		ulist_free(tmp);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = find_parent_nodes(trans, fs_info, bytenr, seq,
 | |
| 					tmp, *roots);
 | |
| 		if (ret < 0 && ret != -ENOENT) {
 | |
| 			ulist_free(tmp);
 | |
| 			ulist_free(*roots);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		node = ulist_next(tmp, node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 		bytenr = node->val;
 | |
| 	}
 | |
| 
 | |
| 	ulist_free(tmp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __inode_info(u64 inum, u64 ioff, u8 key_type,
 | |
| 			struct btrfs_root *fs_root, struct btrfs_path *path,
 | |
| 			struct btrfs_key *found_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	key.type = key_type;
 | |
| 	key.objectid = inum;
 | |
| 	key.offset = ioff;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
 | |
| 		ret = btrfs_next_leaf(fs_root, path);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		eb = path->nodes[0];
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
 | |
| 	if (found_key->type != key.type || found_key->objectid != key.objectid)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this makes the path point to (inum INODE_ITEM ioff)
 | |
|  */
 | |
| int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
 | |
| 			struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
 | |
| 				&key);
 | |
| }
 | |
| 
 | |
| static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
 | |
| 				struct btrfs_path *path,
 | |
| 				struct btrfs_key *found_key)
 | |
| {
 | |
| 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
 | |
| 				found_key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
 | |
|  * of the path are separated by '/' and the path is guaranteed to be
 | |
|  * 0-terminated. the path is only given within the current file system.
 | |
|  * Therefore, it never starts with a '/'. the caller is responsible to provide
 | |
|  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 | |
|  * the start point of the resulting string is returned. this pointer is within
 | |
|  * dest, normally.
 | |
|  * in case the path buffer would overflow, the pointer is decremented further
 | |
|  * as if output was written to the buffer, though no more output is actually
 | |
|  * generated. that way, the caller can determine how much space would be
 | |
|  * required for the path to fit into the buffer. in that case, the returned
 | |
|  * value will be smaller than dest. callers must check this!
 | |
|  */
 | |
| static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
 | |
| 				struct btrfs_inode_ref *iref,
 | |
| 				struct extent_buffer *eb_in, u64 parent,
 | |
| 				char *dest, u32 size)
 | |
| {
 | |
| 	u32 len;
 | |
| 	int slot;
 | |
| 	u64 next_inum;
 | |
| 	int ret;
 | |
| 	s64 bytes_left = size - 1;
 | |
| 	struct extent_buffer *eb = eb_in;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	if (bytes_left >= 0)
 | |
| 		dest[bytes_left] = '\0';
 | |
| 
 | |
| 	while (1) {
 | |
| 		len = btrfs_inode_ref_name_len(eb, iref);
 | |
| 		bytes_left -= len;
 | |
| 		if (bytes_left >= 0)
 | |
| 			read_extent_buffer(eb, dest + bytes_left,
 | |
| 						(unsigned long)(iref + 1), len);
 | |
| 		if (eb != eb_in)
 | |
| 			free_extent_buffer(eb);
 | |
| 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		next_inum = found_key.offset;
 | |
| 
 | |
| 		/* regular exit ahead */
 | |
| 		if (parent == next_inum)
 | |
| 			break;
 | |
| 
 | |
| 		slot = path->slots[0];
 | |
| 		eb = path->nodes[0];
 | |
| 		/* make sure we can use eb after releasing the path */
 | |
| 		if (eb != eb_in)
 | |
| 			atomic_inc(&eb->refs);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
 | |
| 		parent = next_inum;
 | |
| 		--bytes_left;
 | |
| 		if (bytes_left >= 0)
 | |
| 			dest[bytes_left] = '/';
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	return dest + bytes_left;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this makes the path point to (logical EXTENT_ITEM *)
 | |
|  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 | |
|  * tree blocks and <0 on error.
 | |
|  */
 | |
| int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
 | |
| 			struct btrfs_path *path, struct btrfs_key *found_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 flags;
 | |
| 	u32 item_size;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.objectid = logical;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ret = btrfs_previous_item(fs_info->extent_root, path,
 | |
| 					0, BTRFS_EXTENT_ITEM_KEY);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
 | |
| 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
 | |
| 	    found_key->objectid > logical ||
 | |
| 	    found_key->objectid + found_key->offset <= logical) {
 | |
| 		pr_debug("logical %llu is not within any extent\n",
 | |
| 			 (unsigned long long)logical);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 | |
| 	BUG_ON(item_size < sizeof(*ei));
 | |
| 
 | |
| 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 | |
| 	flags = btrfs_extent_flags(eb, ei);
 | |
| 
 | |
| 	pr_debug("logical %llu is at position %llu within the extent (%llu "
 | |
| 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
 | |
| 		 (unsigned long long)logical,
 | |
| 		 (unsigned long long)(logical - found_key->objectid),
 | |
| 		 (unsigned long long)found_key->objectid,
 | |
| 		 (unsigned long long)found_key->offset,
 | |
| 		 (unsigned long long)flags, item_size);
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		return BTRFS_EXTENT_FLAG_DATA;
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to iterate extent inline refs. ptr must point to a 0 value
 | |
|  * for the first call and may be modified. it is used to track state.
 | |
|  * if more refs exist, 0 is returned and the next call to
 | |
|  * __get_extent_inline_ref must pass the modified ptr parameter to get the
 | |
|  * next ref. after the last ref was processed, 1 is returned.
 | |
|  * returns <0 on error
 | |
|  */
 | |
| static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
 | |
| 				struct btrfs_extent_item *ei, u32 item_size,
 | |
| 				struct btrfs_extent_inline_ref **out_eiref,
 | |
| 				int *out_type)
 | |
| {
 | |
| 	unsigned long end;
 | |
| 	u64 flags;
 | |
| 	struct btrfs_tree_block_info *info;
 | |
| 
 | |
| 	if (!*ptr) {
 | |
| 		/* first call */
 | |
| 		flags = btrfs_extent_flags(eb, ei);
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 			info = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 			*out_eiref =
 | |
| 				(struct btrfs_extent_inline_ref *)(info + 1);
 | |
| 		} else {
 | |
| 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
 | |
| 		}
 | |
| 		*ptr = (unsigned long)*out_eiref;
 | |
| 		if ((void *)*ptr >= (void *)ei + item_size)
 | |
| 			return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	end = (unsigned long)ei + item_size;
 | |
| 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
 | |
| 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 | |
| 
 | |
| 	*ptr += btrfs_extent_inline_ref_size(*out_type);
 | |
| 	WARN_ON(*ptr > end);
 | |
| 	if (*ptr == end)
 | |
| 		return 1; /* last */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reads the tree block backref for an extent. tree level and root are returned
 | |
|  * through out_level and out_root. ptr must point to a 0 value for the first
 | |
|  * call and may be modified (see __get_extent_inline_ref comment).
 | |
|  * returns 0 if data was provided, 1 if there was no more data to provide or
 | |
|  * <0 on error.
 | |
|  */
 | |
| int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
 | |
| 				struct btrfs_extent_item *ei, u32 item_size,
 | |
| 				u64 *out_root, u8 *out_level)
 | |
| {
 | |
| 	int ret;
 | |
| 	int type;
 | |
| 	struct btrfs_tree_block_info *info;
 | |
| 	struct btrfs_extent_inline_ref *eiref;
 | |
| 
 | |
| 	if (*ptr == (unsigned long)-1)
 | |
| 		return 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
 | |
| 						&eiref, &type);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 | |
| 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == 1)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* we can treat both ref types equally here */
 | |
| 	info = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
 | |
| 	*out_level = btrfs_tree_block_level(eb, info);
 | |
| 
 | |
| 	if (ret == 1)
 | |
| 		*ptr = (unsigned long)-1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
 | |
| 				u64 orig_extent_item_objectid,
 | |
| 				u64 extent_item_pos, u64 root,
 | |
| 				iterate_extent_inodes_t *iterate, void *ctx)
 | |
| {
 | |
| 	u64 disk_byte;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 	int nritems;
 | |
| 	int ret = 0;
 | |
| 	int extent_type;
 | |
| 	u64 data_offset;
 | |
| 	u64 data_len;
 | |
| 
 | |
| 	eb = read_tree_block(fs_info->tree_root, logical,
 | |
| 				fs_info->tree_root->leafsize, 0);
 | |
| 	if (!eb)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * from the shared data ref, we only have the leaf but we need
 | |
| 	 * the key. thus, we must look into all items and see that we
 | |
| 	 * find one (some) with a reference to our extent item.
 | |
| 	 */
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	for (slot = 0; slot < nritems; ++slot) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, slot);
 | |
| 		if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			continue;
 | |
| 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 | |
| 		extent_type = btrfs_file_extent_type(eb, fi);
 | |
| 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 | |
| 			continue;
 | |
| 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 | |
| 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 | |
| 		if (disk_byte != orig_extent_item_objectid)
 | |
| 			continue;
 | |
| 
 | |
| 		data_offset = btrfs_file_extent_offset(eb, fi);
 | |
| 		data_len = btrfs_file_extent_num_bytes(eb, fi);
 | |
| 
 | |
| 		if (extent_item_pos < data_offset ||
 | |
| 		    extent_item_pos >= data_offset + data_len)
 | |
| 			continue;
 | |
| 
 | |
| 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
 | |
| 				"root %llu\n", orig_extent_item_objectid,
 | |
| 				key.objectid, key.offset, root);
 | |
| 		ret = iterate(key.objectid,
 | |
| 				key.offset + (extent_item_pos - data_offset),
 | |
| 				root, ctx);
 | |
| 		if (ret) {
 | |
| 			pr_debug("stopping iteration because ret=%d\n", ret);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_extent_buffer(eb);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calls iterate() for every inode that references the extent identified by
 | |
|  * the given parameters.
 | |
|  * when the iterator function returns a non-zero value, iteration stops.
 | |
|  */
 | |
| int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
 | |
| 				u64 extent_item_objectid, u64 extent_item_pos,
 | |
| 				int search_commit_root,
 | |
| 				iterate_extent_inodes_t *iterate, void *ctx)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
 | |
| 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct ulist *refs = NULL;
 | |
| 	struct ulist *roots = NULL;
 | |
| 	struct ulist_node *ref_node = NULL;
 | |
| 	struct ulist_node *root_node = NULL;
 | |
| 	struct seq_list seq_elem;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 | |
| 
 | |
| 	pr_debug("resolving all inodes for extent %llu\n",
 | |
| 			extent_item_objectid);
 | |
| 
 | |
| 	if (search_commit_root) {
 | |
| 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
 | |
| 	} else {
 | |
| 		trans = btrfs_join_transaction(fs_info->extent_root);
 | |
| 		if (IS_ERR(trans))
 | |
| 			return PTR_ERR(trans);
 | |
| 
 | |
| 		delayed_refs = &trans->transaction->delayed_refs;
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
 | |
| 				   extent_item_pos, seq_elem.seq,
 | |
| 				   &refs);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (!ret && (ref_node = ulist_next(refs, ref_node))) {
 | |
| 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
 | |
| 						seq_elem.seq, &roots);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		while (!ret && (root_node = ulist_next(roots, root_node))) {
 | |
| 			pr_debug("root %llu references leaf %llu\n",
 | |
| 					root_node->val, ref_node->val);
 | |
| 			ret = iterate_leaf_refs(fs_info, ref_node->val,
 | |
| 						extent_item_objectid,
 | |
| 						extent_item_pos, root_node->val,
 | |
| 						iterate, ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ulist_free(refs);
 | |
| 	ulist_free(roots);
 | |
| out:
 | |
| 	if (!search_commit_root) {
 | |
| 		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
 | |
| 		btrfs_end_transaction(trans, fs_info->extent_root);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
 | |
| 				struct btrfs_path *path,
 | |
| 				iterate_extent_inodes_t *iterate, void *ctx)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 extent_item_pos;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int search_commit_root = path->search_commit_root;
 | |
| 
 | |
| 	ret = extent_from_logical(fs_info, logical, path,
 | |
| 					&found_key);
 | |
| 	btrfs_release_path(path);
 | |
| 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 		ret = -EINVAL;
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	extent_item_pos = logical - found_key.objectid;
 | |
| 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
 | |
| 					extent_item_pos, search_commit_root,
 | |
| 					iterate, ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
 | |
| 				struct btrfs_path *path,
 | |
| 				iterate_irefs_t *iterate, void *ctx)
 | |
| {
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	u32 cur;
 | |
| 	u32 len;
 | |
| 	u32 name_len;
 | |
| 	u64 parent = 0;
 | |
| 	int found = 0;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_item *item;
 | |
| 	struct btrfs_inode_ref *iref;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
 | |
| 					&found_key);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret) {
 | |
| 			ret = found ? 0 : -ENOENT;
 | |
| 			break;
 | |
| 		}
 | |
| 		++found;
 | |
| 
 | |
| 		parent = found_key.offset;
 | |
| 		slot = path->slots[0];
 | |
| 		eb = path->nodes[0];
 | |
| 		/* make sure we can use eb after releasing the path */
 | |
| 		atomic_inc(&eb->refs);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		item = btrfs_item_nr(eb, slot);
 | |
| 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
 | |
| 
 | |
| 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
 | |
| 			name_len = btrfs_inode_ref_name_len(eb, iref);
 | |
| 			/* path must be released before calling iterate()! */
 | |
| 			pr_debug("following ref at offset %u for inode %llu in "
 | |
| 				 "tree %llu\n", cur,
 | |
| 				 (unsigned long long)found_key.objectid,
 | |
| 				 (unsigned long long)fs_root->objectid);
 | |
| 			ret = iterate(parent, iref, eb, ctx);
 | |
| 			if (ret) {
 | |
| 				free_extent_buffer(eb);
 | |
| 				break;
 | |
| 			}
 | |
| 			len = sizeof(*iref) + name_len;
 | |
| 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
 | |
| 		}
 | |
| 		free_extent_buffer(eb);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 0 if the path could be dumped (probably truncated)
 | |
|  * returns <0 in case of an error
 | |
|  */
 | |
| static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
 | |
| 				struct extent_buffer *eb, void *ctx)
 | |
| {
 | |
| 	struct inode_fs_paths *ipath = ctx;
 | |
| 	char *fspath;
 | |
| 	char *fspath_min;
 | |
| 	int i = ipath->fspath->elem_cnt;
 | |
| 	const int s_ptr = sizeof(char *);
 | |
| 	u32 bytes_left;
 | |
| 
 | |
| 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
 | |
| 					ipath->fspath->bytes_left - s_ptr : 0;
 | |
| 
 | |
| 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
 | |
| 	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
 | |
| 				inum, fspath_min, bytes_left);
 | |
| 	if (IS_ERR(fspath))
 | |
| 		return PTR_ERR(fspath);
 | |
| 
 | |
| 	if (fspath > fspath_min) {
 | |
| 		pr_debug("path resolved: %s\n", fspath);
 | |
| 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
 | |
| 		++ipath->fspath->elem_cnt;
 | |
| 		ipath->fspath->bytes_left = fspath - fspath_min;
 | |
| 	} else {
 | |
| 		pr_debug("missed path, not enough space. missing bytes: %lu, "
 | |
| 			 "constructed so far: %s\n",
 | |
| 			 (unsigned long)(fspath_min - fspath), fspath_min);
 | |
| 		++ipath->fspath->elem_missed;
 | |
| 		ipath->fspath->bytes_missing += fspath_min - fspath;
 | |
| 		ipath->fspath->bytes_left = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this dumps all file system paths to the inode into the ipath struct, provided
 | |
|  * is has been created large enough. each path is zero-terminated and accessed
 | |
|  * from ipath->fspath->val[i].
 | |
|  * when it returns, there are ipath->fspath->elem_cnt number of paths available
 | |
|  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
 | |
|  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 | |
|  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 | |
|  * have been needed to return all paths.
 | |
|  */
 | |
| int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
 | |
| {
 | |
| 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
 | |
| 				inode_to_path, ipath);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocates space to return multiple file system paths for an inode.
 | |
|  * total_bytes to allocate are passed, note that space usable for actual path
 | |
|  * information will be total_bytes - sizeof(struct inode_fs_paths).
 | |
|  * the returned pointer must be freed with free_ipath() in the end.
 | |
|  */
 | |
| struct btrfs_data_container *init_data_container(u32 total_bytes)
 | |
| {
 | |
| 	struct btrfs_data_container *data;
 | |
| 	size_t alloc_bytes;
 | |
| 
 | |
| 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
 | |
| 	data = kmalloc(alloc_bytes, GFP_NOFS);
 | |
| 	if (!data)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (total_bytes >= sizeof(*data)) {
 | |
| 		data->bytes_left = total_bytes - sizeof(*data);
 | |
| 		data->bytes_missing = 0;
 | |
| 	} else {
 | |
| 		data->bytes_missing = sizeof(*data) - total_bytes;
 | |
| 		data->bytes_left = 0;
 | |
| 	}
 | |
| 
 | |
| 	data->elem_cnt = 0;
 | |
| 	data->elem_missed = 0;
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocates space to return multiple file system paths for an inode.
 | |
|  * total_bytes to allocate are passed, note that space usable for actual path
 | |
|  * information will be total_bytes - sizeof(struct inode_fs_paths).
 | |
|  * the returned pointer must be freed with free_ipath() in the end.
 | |
|  */
 | |
| struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
 | |
| 					struct btrfs_path *path)
 | |
| {
 | |
| 	struct inode_fs_paths *ifp;
 | |
| 	struct btrfs_data_container *fspath;
 | |
| 
 | |
| 	fspath = init_data_container(total_bytes);
 | |
| 	if (IS_ERR(fspath))
 | |
| 		return (void *)fspath;
 | |
| 
 | |
| 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
 | |
| 	if (!ifp) {
 | |
| 		kfree(fspath);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	ifp->btrfs_path = path;
 | |
| 	ifp->fspath = fspath;
 | |
| 	ifp->fs_root = fs_root;
 | |
| 
 | |
| 	return ifp;
 | |
| }
 | |
| 
 | |
| void free_ipath(struct inode_fs_paths *ipath)
 | |
| {
 | |
| 	kfree(ipath);
 | |
| }
 |