mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Updates the kernel's zstd library to v1.5.2, the latest zstd release. The upstream tag it is updated to is `v1.5.2-kernel`, which contains several cherry-picked commits on top of the v1.5.2 release which are required for the kernel update. I will create this tag once the PR is ready to merge, until then reference the temporary upstream branch `v1.5.2-kernel-cherrypicks`. I plan to submit this patch as part of the v6.2 merge window. I've done basic build testing & testing on x86-64, i386, and aarch64. I'm merging these patches into my `zstd-next` branch, which is pulled into `linux-next` for further testing. I've benchmarked BtrFS with zstd compression on a x86-64 machine, and saw these results. Decompression speed is a small win across the board. The lower compression levels 1-4 see both compression speed and compression ratio wins. The higher compression levels see a small compression speed loss and about neutral ratio. I expect the lower compression levels to be used much more heavily than the high compression levels, so this should be a net win. Level CTime DTime Ratio 1 -2.95% -1.1% -0.7% 3 -3.5% -1.2% -0.5% 5 +3.7% -1.0% +0.0% 7 +3.2% -0.9% +0.0% 9 -4.3% -0.8% +0.1% Signed-off-by: Nick Terrell <terrelln@fb.com>
		
			
				
	
	
		
			1335 lines
		
	
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1335 lines
		
	
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* ******************************************************************
 | 
						|
 * Huffman encoder, part of New Generation Entropy library
 | 
						|
 * Copyright (c) Yann Collet, Facebook, Inc.
 | 
						|
 *
 | 
						|
 *  You can contact the author at :
 | 
						|
 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 | 
						|
 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 | 
						|
 *
 | 
						|
 * This source code is licensed under both the BSD-style license (found in the
 | 
						|
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | 
						|
 * in the COPYING file in the root directory of this source tree).
 | 
						|
 * You may select, at your option, one of the above-listed licenses.
 | 
						|
****************************************************************** */
 | 
						|
 | 
						|
/* **************************************************************
 | 
						|
*  Compiler specifics
 | 
						|
****************************************************************/
 | 
						|
 | 
						|
 | 
						|
/* **************************************************************
 | 
						|
*  Includes
 | 
						|
****************************************************************/
 | 
						|
#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
 | 
						|
#include "../common/compiler.h"
 | 
						|
#include "../common/bitstream.h"
 | 
						|
#include "hist.h"
 | 
						|
#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
 | 
						|
#include "../common/fse.h"        /* header compression */
 | 
						|
#define HUF_STATIC_LINKING_ONLY
 | 
						|
#include "../common/huf.h"
 | 
						|
#include "../common/error_private.h"
 | 
						|
 | 
						|
 | 
						|
/* **************************************************************
 | 
						|
*  Error Management
 | 
						|
****************************************************************/
 | 
						|
#define HUF_isError ERR_isError
 | 
						|
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
 | 
						|
 | 
						|
 | 
						|
/* **************************************************************
 | 
						|
*  Utils
 | 
						|
****************************************************************/
 | 
						|
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
 | 
						|
{
 | 
						|
    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* *******************************************************
 | 
						|
*  HUF : Huffman block compression
 | 
						|
*********************************************************/
 | 
						|
#define HUF_WORKSPACE_MAX_ALIGNMENT 8
 | 
						|
 | 
						|
static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
 | 
						|
{
 | 
						|
    size_t const mask = align - 1;
 | 
						|
    size_t const rem = (size_t)workspace & mask;
 | 
						|
    size_t const add = (align - rem) & mask;
 | 
						|
    BYTE* const aligned = (BYTE*)workspace + add;
 | 
						|
    assert((align & (align - 1)) == 0); /* pow 2 */
 | 
						|
    assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
 | 
						|
    if (*workspaceSizePtr >= add) {
 | 
						|
        assert(add < align);
 | 
						|
        assert(((size_t)aligned & mask) == 0);
 | 
						|
        *workspaceSizePtr -= add;
 | 
						|
        return aligned;
 | 
						|
    } else {
 | 
						|
        *workspaceSizePtr = 0;
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* HUF_compressWeights() :
 | 
						|
 * Same as FSE_compress(), but dedicated to huff0's weights compression.
 | 
						|
 * The use case needs much less stack memory.
 | 
						|
 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
 | 
						|
 */
 | 
						|
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
 | 
						|
    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
 | 
						|
    unsigned count[HUF_TABLELOG_MAX+1];
 | 
						|
    S16 norm[HUF_TABLELOG_MAX+1];
 | 
						|
} HUF_CompressWeightsWksp;
 | 
						|
 | 
						|
static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
 | 
						|
{
 | 
						|
    BYTE* const ostart = (BYTE*) dst;
 | 
						|
    BYTE* op = ostart;
 | 
						|
    BYTE* const oend = ostart + dstSize;
 | 
						|
 | 
						|
    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
 | 
						|
    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
 | 
						|
    HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
 | 
						|
 | 
						|
    if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
 | 
						|
 | 
						|
    /* init conditions */
 | 
						|
    if (wtSize <= 1) return 0;  /* Not compressible */
 | 
						|
 | 
						|
    /* Scan input and build symbol stats */
 | 
						|
    {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
 | 
						|
        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
 | 
						|
        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
 | 
						|
    }
 | 
						|
 | 
						|
    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
 | 
						|
    CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
 | 
						|
 | 
						|
    /* Write table description header */
 | 
						|
    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
 | 
						|
        op += hSize;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compress */
 | 
						|
    CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
 | 
						|
    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
 | 
						|
        if (cSize == 0) return 0;   /* not enough space for compressed data */
 | 
						|
        op += cSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return (size_t)(op-ostart);
 | 
						|
}
 | 
						|
 | 
						|
static size_t HUF_getNbBits(HUF_CElt elt)
 | 
						|
{
 | 
						|
    return elt & 0xFF;
 | 
						|
}
 | 
						|
 | 
						|
static size_t HUF_getNbBitsFast(HUF_CElt elt)
 | 
						|
{
 | 
						|
    return elt;
 | 
						|
}
 | 
						|
 | 
						|
static size_t HUF_getValue(HUF_CElt elt)
 | 
						|
{
 | 
						|
    return elt & ~0xFF;
 | 
						|
}
 | 
						|
 | 
						|
static size_t HUF_getValueFast(HUF_CElt elt)
 | 
						|
{
 | 
						|
    return elt;
 | 
						|
}
 | 
						|
 | 
						|
static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
 | 
						|
{
 | 
						|
    assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
 | 
						|
    *elt = nbBits;
 | 
						|
}
 | 
						|
 | 
						|
static void HUF_setValue(HUF_CElt* elt, size_t value)
 | 
						|
{
 | 
						|
    size_t const nbBits = HUF_getNbBits(*elt);
 | 
						|
    if (nbBits > 0) {
 | 
						|
        assert((value >> nbBits) == 0);
 | 
						|
        *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    HUF_CompressWeightsWksp wksp;
 | 
						|
    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
 | 
						|
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
 | 
						|
} HUF_WriteCTableWksp;
 | 
						|
 | 
						|
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
 | 
						|
                            const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                            void* workspace, size_t workspaceSize)
 | 
						|
{
 | 
						|
    HUF_CElt const* const ct = CTable + 1;
 | 
						|
    BYTE* op = (BYTE*)dst;
 | 
						|
    U32 n;
 | 
						|
    HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
 | 
						|
 | 
						|
    /* check conditions */
 | 
						|
    if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
 | 
						|
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
 | 
						|
 | 
						|
    /* convert to weight */
 | 
						|
    wksp->bitsToWeight[0] = 0;
 | 
						|
    for (n=1; n<huffLog+1; n++)
 | 
						|
        wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
 | 
						|
    for (n=0; n<maxSymbolValue; n++)
 | 
						|
        wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
 | 
						|
 | 
						|
    /* attempt weights compression by FSE */
 | 
						|
    if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
 | 
						|
    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
 | 
						|
        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
 | 
						|
            op[0] = (BYTE)hSize;
 | 
						|
            return hSize+1;
 | 
						|
    }   }
 | 
						|
 | 
						|
    /* write raw values as 4-bits (max : 15) */
 | 
						|
    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
 | 
						|
    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
 | 
						|
    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
 | 
						|
    wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
 | 
						|
    for (n=0; n<maxSymbolValue; n+=2)
 | 
						|
        op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
 | 
						|
    return ((maxSymbolValue+1)/2) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_writeCTable() :
 | 
						|
    `CTable` : Huffman tree to save, using huf representation.
 | 
						|
    @return : size of saved CTable */
 | 
						|
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
 | 
						|
                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
 | 
						|
{
 | 
						|
    HUF_WriteCTableWksp wksp;
 | 
						|
    return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
 | 
						|
{
 | 
						|
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
 | 
						|
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
 | 
						|
    U32 tableLog = 0;
 | 
						|
    U32 nbSymbols = 0;
 | 
						|
    HUF_CElt* const ct = CTable + 1;
 | 
						|
 | 
						|
    /* get symbol weights */
 | 
						|
    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
 | 
						|
    *hasZeroWeights = (rankVal[0] > 0);
 | 
						|
 | 
						|
    /* check result */
 | 
						|
    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 | 
						|
    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
 | 
						|
 | 
						|
    CTable[0] = tableLog;
 | 
						|
 | 
						|
    /* Prepare base value per rank */
 | 
						|
    {   U32 n, nextRankStart = 0;
 | 
						|
        for (n=1; n<=tableLog; n++) {
 | 
						|
            U32 curr = nextRankStart;
 | 
						|
            nextRankStart += (rankVal[n] << (n-1));
 | 
						|
            rankVal[n] = curr;
 | 
						|
    }   }
 | 
						|
 | 
						|
    /* fill nbBits */
 | 
						|
    {   U32 n; for (n=0; n<nbSymbols; n++) {
 | 
						|
            const U32 w = huffWeight[n];
 | 
						|
            HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
 | 
						|
    }   }
 | 
						|
 | 
						|
    /* fill val */
 | 
						|
    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
 | 
						|
        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
 | 
						|
        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
 | 
						|
        /* determine stating value per rank */
 | 
						|
        valPerRank[tableLog+1] = 0;   /* for w==0 */
 | 
						|
        {   U16 min = 0;
 | 
						|
            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
 | 
						|
                valPerRank[n] = min;     /* get starting value within each rank */
 | 
						|
                min += nbPerRank[n];
 | 
						|
                min >>= 1;
 | 
						|
        }   }
 | 
						|
        /* assign value within rank, symbol order */
 | 
						|
        { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
 | 
						|
    }
 | 
						|
 | 
						|
    *maxSymbolValuePtr = nbSymbols - 1;
 | 
						|
    return readSize;
 | 
						|
}
 | 
						|
 | 
						|
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
 | 
						|
{
 | 
						|
    const HUF_CElt* ct = CTable + 1;
 | 
						|
    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
 | 
						|
    return (U32)HUF_getNbBits(ct[symbolValue]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
typedef struct nodeElt_s {
 | 
						|
    U32 count;
 | 
						|
    U16 parent;
 | 
						|
    BYTE byte;
 | 
						|
    BYTE nbBits;
 | 
						|
} nodeElt;
 | 
						|
 | 
						|
/*
 | 
						|
 * HUF_setMaxHeight():
 | 
						|
 * Enforces maxNbBits on the Huffman tree described in huffNode.
 | 
						|
 *
 | 
						|
 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
 | 
						|
 * the tree to so that it is a valid canonical Huffman tree.
 | 
						|
 *
 | 
						|
 * @pre               The sum of the ranks of each symbol == 2^largestBits,
 | 
						|
 *                    where largestBits == huffNode[lastNonNull].nbBits.
 | 
						|
 * @post              The sum of the ranks of each symbol == 2^largestBits,
 | 
						|
 *                    where largestBits is the return value <= maxNbBits.
 | 
						|
 *
 | 
						|
 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
 | 
						|
 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
 | 
						|
 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
 | 
						|
 *                    may not respect. After this function the Huffman tree will
 | 
						|
 *                    respect maxNbBits.
 | 
						|
 * @return            The maximum number of bits of the Huffman tree after adjustment,
 | 
						|
 *                    necessarily no more than maxNbBits.
 | 
						|
 */
 | 
						|
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
 | 
						|
{
 | 
						|
    const U32 largestBits = huffNode[lastNonNull].nbBits;
 | 
						|
    /* early exit : no elt > maxNbBits, so the tree is already valid. */
 | 
						|
    if (largestBits <= maxNbBits) return largestBits;
 | 
						|
 | 
						|
    /* there are several too large elements (at least >= 2) */
 | 
						|
    {   int totalCost = 0;
 | 
						|
        const U32 baseCost = 1 << (largestBits - maxNbBits);
 | 
						|
        int n = (int)lastNonNull;
 | 
						|
 | 
						|
        /* Adjust any ranks > maxNbBits to maxNbBits.
 | 
						|
         * Compute totalCost, which is how far the sum of the ranks is
 | 
						|
         * we are over 2^largestBits after adjust the offending ranks.
 | 
						|
         */
 | 
						|
        while (huffNode[n].nbBits > maxNbBits) {
 | 
						|
            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
 | 
						|
            huffNode[n].nbBits = (BYTE)maxNbBits;
 | 
						|
            n--;
 | 
						|
        }
 | 
						|
        /* n stops at huffNode[n].nbBits <= maxNbBits */
 | 
						|
        assert(huffNode[n].nbBits <= maxNbBits);
 | 
						|
        /* n end at index of smallest symbol using < maxNbBits */
 | 
						|
        while (huffNode[n].nbBits == maxNbBits) --n;
 | 
						|
 | 
						|
        /* renorm totalCost from 2^largestBits to 2^maxNbBits
 | 
						|
         * note : totalCost is necessarily a multiple of baseCost */
 | 
						|
        assert((totalCost & (baseCost - 1)) == 0);
 | 
						|
        totalCost >>= (largestBits - maxNbBits);
 | 
						|
        assert(totalCost > 0);
 | 
						|
 | 
						|
        /* repay normalized cost */
 | 
						|
        {   U32 const noSymbol = 0xF0F0F0F0;
 | 
						|
            U32 rankLast[HUF_TABLELOG_MAX+2];
 | 
						|
 | 
						|
            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
 | 
						|
            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
 | 
						|
            {   U32 currentNbBits = maxNbBits;
 | 
						|
                int pos;
 | 
						|
                for (pos=n ; pos >= 0; pos--) {
 | 
						|
                    if (huffNode[pos].nbBits >= currentNbBits) continue;
 | 
						|
                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
 | 
						|
                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
 | 
						|
            }   }
 | 
						|
 | 
						|
            while (totalCost > 0) {
 | 
						|
                /* Try to reduce the next power of 2 above totalCost because we
 | 
						|
                 * gain back half the rank.
 | 
						|
                 */
 | 
						|
                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
 | 
						|
                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
 | 
						|
                    U32 const highPos = rankLast[nBitsToDecrease];
 | 
						|
                    U32 const lowPos = rankLast[nBitsToDecrease-1];
 | 
						|
                    if (highPos == noSymbol) continue;
 | 
						|
                    /* Decrease highPos if no symbols of lowPos or if it is
 | 
						|
                     * not cheaper to remove 2 lowPos than highPos.
 | 
						|
                     */
 | 
						|
                    if (lowPos == noSymbol) break;
 | 
						|
                    {   U32 const highTotal = huffNode[highPos].count;
 | 
						|
                        U32 const lowTotal = 2 * huffNode[lowPos].count;
 | 
						|
                        if (highTotal <= lowTotal) break;
 | 
						|
                }   }
 | 
						|
                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
 | 
						|
                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
 | 
						|
                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
 | 
						|
                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
 | 
						|
                    nBitsToDecrease++;
 | 
						|
                assert(rankLast[nBitsToDecrease] != noSymbol);
 | 
						|
                /* Increase the number of bits to gain back half the rank cost. */
 | 
						|
                totalCost -= 1 << (nBitsToDecrease-1);
 | 
						|
                huffNode[rankLast[nBitsToDecrease]].nbBits++;
 | 
						|
 | 
						|
                /* Fix up the new rank.
 | 
						|
                 * If the new rank was empty, this symbol is now its smallest.
 | 
						|
                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
 | 
						|
                 */
 | 
						|
                if (rankLast[nBitsToDecrease-1] == noSymbol)
 | 
						|
                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
 | 
						|
                /* Fix up the old rank.
 | 
						|
                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
 | 
						|
                 * it must be the only symbol in its rank, so the old rank now has no symbols.
 | 
						|
                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
 | 
						|
                 * the smallest node in the rank. If the previous position belongs to a different rank,
 | 
						|
                 * then the rank is now empty.
 | 
						|
                 */
 | 
						|
                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
 | 
						|
                    rankLast[nBitsToDecrease] = noSymbol;
 | 
						|
                else {
 | 
						|
                    rankLast[nBitsToDecrease]--;
 | 
						|
                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
 | 
						|
                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
 | 
						|
                }
 | 
						|
            }   /* while (totalCost > 0) */
 | 
						|
 | 
						|
            /* If we've removed too much weight, then we have to add it back.
 | 
						|
             * To avoid overshooting again, we only adjust the smallest rank.
 | 
						|
             * We take the largest nodes from the lowest rank 0 and move them
 | 
						|
             * to rank 1. There's guaranteed to be enough rank 0 symbols because
 | 
						|
             * TODO.
 | 
						|
             */
 | 
						|
            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
 | 
						|
                /* special case : no rank 1 symbol (using maxNbBits-1);
 | 
						|
                 * let's create one from largest rank 0 (using maxNbBits).
 | 
						|
                 */
 | 
						|
                if (rankLast[1] == noSymbol) {
 | 
						|
                    while (huffNode[n].nbBits == maxNbBits) n--;
 | 
						|
                    huffNode[n+1].nbBits--;
 | 
						|
                    assert(n >= 0);
 | 
						|
                    rankLast[1] = (U32)(n+1);
 | 
						|
                    totalCost++;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                huffNode[ rankLast[1] + 1 ].nbBits--;
 | 
						|
                rankLast[1]++;
 | 
						|
                totalCost ++;
 | 
						|
            }
 | 
						|
        }   /* repay normalized cost */
 | 
						|
    }   /* there are several too large elements (at least >= 2) */
 | 
						|
 | 
						|
    return maxNbBits;
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    U16 base;
 | 
						|
    U16 curr;
 | 
						|
} rankPos;
 | 
						|
 | 
						|
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
 | 
						|
 | 
						|
/* Number of buckets available for HUF_sort() */
 | 
						|
#define RANK_POSITION_TABLE_SIZE 192
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  huffNodeTable huffNodeTbl;
 | 
						|
  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
 | 
						|
} HUF_buildCTable_wksp_tables;
 | 
						|
 | 
						|
/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
 | 
						|
 * Strategy is to use as many buckets as possible for representing distinct
 | 
						|
 * counts while using the remainder to represent all "large" counts.
 | 
						|
 *
 | 
						|
 * To satisfy this requirement for 192 buckets, we can do the following:
 | 
						|
 * Let buckets 0-166 represent distinct counts of [0, 166]
 | 
						|
 * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
 | 
						|
 */
 | 
						|
#define RANK_POSITION_MAX_COUNT_LOG 32
 | 
						|
#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
 | 
						|
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
 | 
						|
 | 
						|
/* Return the appropriate bucket index for a given count. See definition of
 | 
						|
 * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
 | 
						|
 */
 | 
						|
static U32 HUF_getIndex(U32 const count) {
 | 
						|
    return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
 | 
						|
        ? count
 | 
						|
        : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
 | 
						|
}
 | 
						|
 | 
						|
/* Helper swap function for HUF_quickSortPartition() */
 | 
						|
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
 | 
						|
	nodeElt tmp = *a;
 | 
						|
	*a = *b;
 | 
						|
	*b = tmp;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns 0 if the huffNode array is not sorted by descending count */
 | 
						|
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
 | 
						|
    U32 i;
 | 
						|
    for (i = 1; i < maxSymbolValue1; ++i) {
 | 
						|
        if (huffNode[i].count > huffNode[i-1].count) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Insertion sort by descending order */
 | 
						|
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
 | 
						|
    int i;
 | 
						|
    int const size = high-low+1;
 | 
						|
    huffNode += low;
 | 
						|
    for (i = 1; i < size; ++i) {
 | 
						|
        nodeElt const key = huffNode[i];
 | 
						|
        int j = i - 1;
 | 
						|
        while (j >= 0 && huffNode[j].count < key.count) {
 | 
						|
            huffNode[j + 1] = huffNode[j];
 | 
						|
            j--;
 | 
						|
        }
 | 
						|
        huffNode[j + 1] = key;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Pivot helper function for quicksort. */
 | 
						|
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
 | 
						|
    /* Simply select rightmost element as pivot. "Better" selectors like
 | 
						|
     * median-of-three don't experimentally appear to have any benefit.
 | 
						|
     */
 | 
						|
    U32 const pivot = arr[high].count;
 | 
						|
    int i = low - 1;
 | 
						|
    int j = low;
 | 
						|
    for ( ; j < high; j++) {
 | 
						|
        if (arr[j].count > pivot) {
 | 
						|
            i++;
 | 
						|
            HUF_swapNodes(&arr[i], &arr[j]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    HUF_swapNodes(&arr[i + 1], &arr[high]);
 | 
						|
    return i + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Classic quicksort by descending with partially iterative calls
 | 
						|
 * to reduce worst case callstack size.
 | 
						|
 */
 | 
						|
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
 | 
						|
    int const kInsertionSortThreshold = 8;
 | 
						|
    if (high - low < kInsertionSortThreshold) {
 | 
						|
        HUF_insertionSort(arr, low, high);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    while (low < high) {
 | 
						|
        int const idx = HUF_quickSortPartition(arr, low, high);
 | 
						|
        if (idx - low < high - idx) {
 | 
						|
            HUF_simpleQuickSort(arr, low, idx - 1);
 | 
						|
            low = idx + 1;
 | 
						|
        } else {
 | 
						|
            HUF_simpleQuickSort(arr, idx + 1, high);
 | 
						|
            high = idx - 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * HUF_sort():
 | 
						|
 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
 | 
						|
 * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
 | 
						|
 *
 | 
						|
 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
 | 
						|
 *                            Must have (maxSymbolValue + 1) entries.
 | 
						|
 * @param[in]  count          Histogram of the symbols.
 | 
						|
 * @param[in]  maxSymbolValue Maximum symbol value.
 | 
						|
 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
 | 
						|
 */
 | 
						|
static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
 | 
						|
    U32 n;
 | 
						|
    U32 const maxSymbolValue1 = maxSymbolValue+1;
 | 
						|
 | 
						|
    /* Compute base and set curr to base.
 | 
						|
     * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
 | 
						|
     * See HUF_getIndex to see bucketing strategy.
 | 
						|
     * We attribute each symbol to lowerRank's base value, because we want to know where
 | 
						|
     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
 | 
						|
     */
 | 
						|
    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
 | 
						|
    for (n = 0; n < maxSymbolValue1; ++n) {
 | 
						|
        U32 lowerRank = HUF_getIndex(count[n]);
 | 
						|
        assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
 | 
						|
        rankPosition[lowerRank].base++;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
 | 
						|
    /* Set up the rankPosition table */
 | 
						|
    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
 | 
						|
        rankPosition[n-1].base += rankPosition[n].base;
 | 
						|
        rankPosition[n-1].curr = rankPosition[n-1].base;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
 | 
						|
    for (n = 0; n < maxSymbolValue1; ++n) {
 | 
						|
        U32 const c = count[n];
 | 
						|
        U32 const r = HUF_getIndex(c) + 1;
 | 
						|
        U32 const pos = rankPosition[r].curr++;
 | 
						|
        assert(pos < maxSymbolValue1);
 | 
						|
        huffNode[pos].count = c;
 | 
						|
        huffNode[pos].byte  = (BYTE)n;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Sort each bucket. */
 | 
						|
    for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
 | 
						|
        U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
 | 
						|
        U32 const bucketStartIdx = rankPosition[n].base;
 | 
						|
        if (bucketSize > 1) {
 | 
						|
            assert(bucketStartIdx < maxSymbolValue1);
 | 
						|
            HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(HUF_isSorted(huffNode, maxSymbolValue1));
 | 
						|
}
 | 
						|
 | 
						|
/* HUF_buildCTable_wksp() :
 | 
						|
 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 | 
						|
 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
 | 
						|
 */
 | 
						|
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
 | 
						|
 | 
						|
/* HUF_buildTree():
 | 
						|
 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
 | 
						|
 *
 | 
						|
 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
 | 
						|
 * @param maxSymbolValue  The maximum symbol value.
 | 
						|
 * @return                The smallest node in the Huffman tree (by count).
 | 
						|
 */
 | 
						|
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
 | 
						|
{
 | 
						|
    nodeElt* const huffNode0 = huffNode - 1;
 | 
						|
    int nonNullRank;
 | 
						|
    int lowS, lowN;
 | 
						|
    int nodeNb = STARTNODE;
 | 
						|
    int n, nodeRoot;
 | 
						|
    /* init for parents */
 | 
						|
    nonNullRank = (int)maxSymbolValue;
 | 
						|
    while(huffNode[nonNullRank].count == 0) nonNullRank--;
 | 
						|
    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
 | 
						|
    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
 | 
						|
    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
 | 
						|
    nodeNb++; lowS-=2;
 | 
						|
    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
 | 
						|
    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
 | 
						|
 | 
						|
    /* create parents */
 | 
						|
    while (nodeNb <= nodeRoot) {
 | 
						|
        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 | 
						|
        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 | 
						|
        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
 | 
						|
        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
 | 
						|
        nodeNb++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* distribute weights (unlimited tree height) */
 | 
						|
    huffNode[nodeRoot].nbBits = 0;
 | 
						|
    for (n=nodeRoot-1; n>=STARTNODE; n--)
 | 
						|
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 | 
						|
    for (n=0; n<=nonNullRank; n++)
 | 
						|
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 | 
						|
 | 
						|
    return nonNullRank;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * HUF_buildCTableFromTree():
 | 
						|
 * Build the CTable given the Huffman tree in huffNode.
 | 
						|
 *
 | 
						|
 * @param[out] CTable         The output Huffman CTable.
 | 
						|
 * @param      huffNode       The Huffman tree.
 | 
						|
 * @param      nonNullRank    The last and smallest node in the Huffman tree.
 | 
						|
 * @param      maxSymbolValue The maximum symbol value.
 | 
						|
 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
 | 
						|
 */
 | 
						|
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
 | 
						|
{
 | 
						|
    HUF_CElt* const ct = CTable + 1;
 | 
						|
    /* fill result into ctable (val, nbBits) */
 | 
						|
    int n;
 | 
						|
    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
 | 
						|
    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
 | 
						|
    int const alphabetSize = (int)(maxSymbolValue + 1);
 | 
						|
    for (n=0; n<=nonNullRank; n++)
 | 
						|
        nbPerRank[huffNode[n].nbBits]++;
 | 
						|
    /* determine starting value per rank */
 | 
						|
    {   U16 min = 0;
 | 
						|
        for (n=(int)maxNbBits; n>0; n--) {
 | 
						|
            valPerRank[n] = min;      /* get starting value within each rank */
 | 
						|
            min += nbPerRank[n];
 | 
						|
            min >>= 1;
 | 
						|
    }   }
 | 
						|
    for (n=0; n<alphabetSize; n++)
 | 
						|
        HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */
 | 
						|
    for (n=0; n<alphabetSize; n++)
 | 
						|
        HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */
 | 
						|
    CTable[0] = maxNbBits;
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
 | 
						|
{
 | 
						|
    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
 | 
						|
    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
 | 
						|
    nodeElt* const huffNode = huffNode0+1;
 | 
						|
    int nonNullRank;
 | 
						|
 | 
						|
    /* safety checks */
 | 
						|
    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
 | 
						|
      return ERROR(workSpace_tooSmall);
 | 
						|
    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
 | 
						|
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
 | 
						|
      return ERROR(maxSymbolValue_tooLarge);
 | 
						|
    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
 | 
						|
 | 
						|
    /* sort, decreasing order */
 | 
						|
    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
 | 
						|
 | 
						|
    /* build tree */
 | 
						|
    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
 | 
						|
 | 
						|
    /* enforce maxTableLog */
 | 
						|
    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
 | 
						|
    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
 | 
						|
 | 
						|
    HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
 | 
						|
 | 
						|
    return maxNbBits;
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
 | 
						|
{
 | 
						|
    HUF_CElt const* ct = CTable + 1;
 | 
						|
    size_t nbBits = 0;
 | 
						|
    int s;
 | 
						|
    for (s = 0; s <= (int)maxSymbolValue; ++s) {
 | 
						|
        nbBits += HUF_getNbBits(ct[s]) * count[s];
 | 
						|
    }
 | 
						|
    return nbBits >> 3;
 | 
						|
}
 | 
						|
 | 
						|
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
 | 
						|
  HUF_CElt const* ct = CTable + 1;
 | 
						|
  int bad = 0;
 | 
						|
  int s;
 | 
						|
  for (s = 0; s <= (int)maxSymbolValue; ++s) {
 | 
						|
    bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
 | 
						|
  }
 | 
						|
  return !bad;
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
 | 
						|
 | 
						|
/* HUF_CStream_t:
 | 
						|
 * Huffman uses its own BIT_CStream_t implementation.
 | 
						|
 * There are three major differences from BIT_CStream_t:
 | 
						|
 *   1. HUF_addBits() takes a HUF_CElt (size_t) which is
 | 
						|
 *      the pair (nbBits, value) in the format:
 | 
						|
 *      format:
 | 
						|
 *        - Bits [0, 4)            = nbBits
 | 
						|
 *        - Bits [4, 64 - nbBits)  = 0
 | 
						|
 *        - Bits [64 - nbBits, 64) = value
 | 
						|
 *   2. The bitContainer is built from the upper bits and
 | 
						|
 *      right shifted. E.g. to add a new value of N bits
 | 
						|
 *      you right shift the bitContainer by N, then or in
 | 
						|
 *      the new value into the N upper bits.
 | 
						|
 *   3. The bitstream has two bit containers. You can add
 | 
						|
 *      bits to the second container and merge them into
 | 
						|
 *      the first container.
 | 
						|
 */
 | 
						|
 | 
						|
#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    size_t bitContainer[2];
 | 
						|
    size_t bitPos[2];
 | 
						|
 | 
						|
    BYTE* startPtr;
 | 
						|
    BYTE* ptr;
 | 
						|
    BYTE* endPtr;
 | 
						|
} HUF_CStream_t;
 | 
						|
 | 
						|
/*! HUF_initCStream():
 | 
						|
 * Initializes the bitstream.
 | 
						|
 * @returns 0 or an error code.
 | 
						|
 */
 | 
						|
static size_t HUF_initCStream(HUF_CStream_t* bitC,
 | 
						|
                                  void* startPtr, size_t dstCapacity)
 | 
						|
{
 | 
						|
    ZSTD_memset(bitC, 0, sizeof(*bitC));
 | 
						|
    bitC->startPtr = (BYTE*)startPtr;
 | 
						|
    bitC->ptr = bitC->startPtr;
 | 
						|
    bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
 | 
						|
    if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_addBits():
 | 
						|
 * Adds the symbol stored in HUF_CElt elt to the bitstream.
 | 
						|
 *
 | 
						|
 * @param elt   The element we're adding. This is a (nbBits, value) pair.
 | 
						|
 *              See the HUF_CStream_t docs for the format.
 | 
						|
 * @param idx   Insert into the bitstream at this idx.
 | 
						|
 * @param kFast This is a template parameter. If the bitstream is guaranteed
 | 
						|
 *              to have at least 4 unused bits after this call it may be 1,
 | 
						|
 *              otherwise it must be 0. HUF_addBits() is faster when fast is set.
 | 
						|
 */
 | 
						|
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
 | 
						|
{
 | 
						|
    assert(idx <= 1);
 | 
						|
    assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
 | 
						|
    /* This is efficient on x86-64 with BMI2 because shrx
 | 
						|
     * only reads the low 6 bits of the register. The compiler
 | 
						|
     * knows this and elides the mask. When fast is set,
 | 
						|
     * every operation can use the same value loaded from elt.
 | 
						|
     */
 | 
						|
    bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
 | 
						|
    bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
 | 
						|
    /* We only read the low 8 bits of bitC->bitPos[idx] so it
 | 
						|
     * doesn't matter that the high bits have noise from the value.
 | 
						|
     */
 | 
						|
    bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
 | 
						|
    assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 | 
						|
    /* The last 4-bits of elt are dirty if fast is set,
 | 
						|
     * so we must not be overwriting bits that have already been
 | 
						|
     * inserted into the bit container.
 | 
						|
     */
 | 
						|
#if DEBUGLEVEL >= 1
 | 
						|
    {
 | 
						|
        size_t const nbBits = HUF_getNbBits(elt);
 | 
						|
        size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
 | 
						|
        (void)dirtyBits;
 | 
						|
        /* Middle bits are 0. */
 | 
						|
        assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
 | 
						|
        /* We didn't overwrite any bits in the bit container. */
 | 
						|
        assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 | 
						|
        (void)dirtyBits;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
 | 
						|
{
 | 
						|
    bitC->bitContainer[1] = 0;
 | 
						|
    bitC->bitPos[1] = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_mergeIndex1() :
 | 
						|
 * Merges the bit container @ index 1 into the bit container @ index 0
 | 
						|
 * and zeros the bit container @ index 1.
 | 
						|
 */
 | 
						|
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
 | 
						|
{
 | 
						|
    assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
 | 
						|
    bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
 | 
						|
    bitC->bitContainer[0] |= bitC->bitContainer[1];
 | 
						|
    bitC->bitPos[0] += bitC->bitPos[1];
 | 
						|
    assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_flushBits() :
 | 
						|
* Flushes the bits in the bit container @ index 0.
 | 
						|
*
 | 
						|
* @post bitPos will be < 8.
 | 
						|
* @param kFast If kFast is set then we must know a-priori that
 | 
						|
*              the bit container will not overflow.
 | 
						|
*/
 | 
						|
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
 | 
						|
{
 | 
						|
    /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
 | 
						|
    size_t const nbBits = bitC->bitPos[0] & 0xFF;
 | 
						|
    size_t const nbBytes = nbBits >> 3;
 | 
						|
    /* The top nbBits bits of bitContainer are the ones we need. */
 | 
						|
    size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
 | 
						|
    /* Mask bitPos to account for the bytes we consumed. */
 | 
						|
    bitC->bitPos[0] &= 7;
 | 
						|
    assert(nbBits > 0);
 | 
						|
    assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
 | 
						|
    assert(bitC->ptr <= bitC->endPtr);
 | 
						|
    MEM_writeLEST(bitC->ptr, bitContainer);
 | 
						|
    bitC->ptr += nbBytes;
 | 
						|
    assert(!kFast || bitC->ptr <= bitC->endPtr);
 | 
						|
    if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
 | 
						|
    /* bitContainer doesn't need to be modified because the leftover
 | 
						|
     * bits are already the top bitPos bits. And we don't care about
 | 
						|
     * noise in the lower values.
 | 
						|
     */
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_endMark()
 | 
						|
 * @returns The Huffman stream end mark: A 1-bit value = 1.
 | 
						|
 */
 | 
						|
static HUF_CElt HUF_endMark(void)
 | 
						|
{
 | 
						|
    HUF_CElt endMark;
 | 
						|
    HUF_setNbBits(&endMark, 1);
 | 
						|
    HUF_setValue(&endMark, 1);
 | 
						|
    return endMark;
 | 
						|
}
 | 
						|
 | 
						|
/*! HUF_closeCStream() :
 | 
						|
 *  @return Size of CStream, in bytes,
 | 
						|
 *          or 0 if it could not fit into dstBuffer */
 | 
						|
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
 | 
						|
{
 | 
						|
    HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
 | 
						|
    HUF_flushBits(bitC, /* kFast */ 0);
 | 
						|
    {
 | 
						|
        size_t const nbBits = bitC->bitPos[0] & 0xFF;
 | 
						|
        if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
 | 
						|
        return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE_TEMPLATE void
 | 
						|
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
 | 
						|
{
 | 
						|
    HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE_TEMPLATE void
 | 
						|
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
 | 
						|
                                   const BYTE* ip, size_t srcSize,
 | 
						|
                                   const HUF_CElt* ct,
 | 
						|
                                   int kUnroll, int kFastFlush, int kLastFast)
 | 
						|
{
 | 
						|
    /* Join to kUnroll */
 | 
						|
    int n = (int)srcSize;
 | 
						|
    int rem = n % kUnroll;
 | 
						|
    if (rem > 0) {
 | 
						|
        for (; rem > 0; --rem) {
 | 
						|
            HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
 | 
						|
        }
 | 
						|
        HUF_flushBits(bitC, kFastFlush);
 | 
						|
    }
 | 
						|
    assert(n % kUnroll == 0);
 | 
						|
 | 
						|
    /* Join to 2 * kUnroll */
 | 
						|
    if (n % (2 * kUnroll)) {
 | 
						|
        int u;
 | 
						|
        for (u = 1; u < kUnroll; ++u) {
 | 
						|
            HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
 | 
						|
        }
 | 
						|
        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
 | 
						|
        HUF_flushBits(bitC, kFastFlush);
 | 
						|
        n -= kUnroll;
 | 
						|
    }
 | 
						|
    assert(n % (2 * kUnroll) == 0);
 | 
						|
 | 
						|
    for (; n>0; n-= 2 * kUnroll) {
 | 
						|
        /* Encode kUnroll symbols into the bitstream @ index 0. */
 | 
						|
        int u;
 | 
						|
        for (u = 1; u < kUnroll; ++u) {
 | 
						|
            HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
 | 
						|
        }
 | 
						|
        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
 | 
						|
        HUF_flushBits(bitC, kFastFlush);
 | 
						|
        /* Encode kUnroll symbols into the bitstream @ index 1.
 | 
						|
         * This allows us to start filling the bit container
 | 
						|
         * without any data dependencies.
 | 
						|
         */
 | 
						|
        HUF_zeroIndex1(bitC);
 | 
						|
        for (u = 1; u < kUnroll; ++u) {
 | 
						|
            HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
 | 
						|
        }
 | 
						|
        HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
 | 
						|
        /* Merge bitstream @ index 1 into the bitstream @ index 0 */
 | 
						|
        HUF_mergeIndex1(bitC);
 | 
						|
        HUF_flushBits(bitC, kFastFlush);
 | 
						|
    }
 | 
						|
    assert(n == 0);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns a tight upper bound on the output space needed by Huffman
 | 
						|
 * with 8 bytes buffer to handle over-writes. If the output is at least
 | 
						|
 * this large we don't need to do bounds checks during Huffman encoding.
 | 
						|
 */
 | 
						|
static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
 | 
						|
{
 | 
						|
    return ((srcSize * tableLog) >> 3) + 8;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
FORCE_INLINE_TEMPLATE size_t
 | 
						|
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
 | 
						|
                                   const void* src, size_t srcSize,
 | 
						|
                                   const HUF_CElt* CTable)
 | 
						|
{
 | 
						|
    U32 const tableLog = (U32)CTable[0];
 | 
						|
    HUF_CElt const* ct = CTable + 1;
 | 
						|
    const BYTE* ip = (const BYTE*) src;
 | 
						|
    BYTE* const ostart = (BYTE*)dst;
 | 
						|
    BYTE* const oend = ostart + dstSize;
 | 
						|
    BYTE* op = ostart;
 | 
						|
    HUF_CStream_t bitC;
 | 
						|
 | 
						|
    /* init */
 | 
						|
    if (dstSize < 8) return 0;   /* not enough space to compress */
 | 
						|
    { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
 | 
						|
      if (HUF_isError(initErr)) return 0; }
 | 
						|
 | 
						|
    if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
 | 
						|
        HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
 | 
						|
    else {
 | 
						|
        if (MEM_32bits()) {
 | 
						|
            switch (tableLog) {
 | 
						|
            case 11:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
 | 
						|
                break;
 | 
						|
            case 10: ZSTD_FALLTHROUGH;
 | 
						|
            case 9: ZSTD_FALLTHROUGH;
 | 
						|
            case 8:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
 | 
						|
                break;
 | 
						|
            case 7: ZSTD_FALLTHROUGH;
 | 
						|
            default:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            switch (tableLog) {
 | 
						|
            case 11:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
 | 
						|
                break;
 | 
						|
            case 10:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
 | 
						|
                break;
 | 
						|
            case 9:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
 | 
						|
                break;
 | 
						|
            case 8:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
 | 
						|
                break;
 | 
						|
            case 7:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
 | 
						|
                break;
 | 
						|
            case 6: ZSTD_FALLTHROUGH;
 | 
						|
            default:
 | 
						|
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    assert(bitC.ptr <= bitC.endPtr);
 | 
						|
 | 
						|
    return HUF_closeCStream(&bitC);
 | 
						|
}
 | 
						|
 | 
						|
#if DYNAMIC_BMI2
 | 
						|
 | 
						|
static BMI2_TARGET_ATTRIBUTE size_t
 | 
						|
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
 | 
						|
                                   const void* src, size_t srcSize,
 | 
						|
                                   const HUF_CElt* CTable)
 | 
						|
{
 | 
						|
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
 | 
						|
                                      const void* src, size_t srcSize,
 | 
						|
                                      const HUF_CElt* CTable)
 | 
						|
{
 | 
						|
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
 | 
						|
                              const void* src, size_t srcSize,
 | 
						|
                              const HUF_CElt* CTable, const int bmi2)
 | 
						|
{
 | 
						|
    if (bmi2) {
 | 
						|
        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
 | 
						|
    }
 | 
						|
    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static size_t
 | 
						|
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
 | 
						|
                              const void* src, size_t srcSize,
 | 
						|
                              const HUF_CElt* CTable, const int bmi2)
 | 
						|
{
 | 
						|
    (void)bmi2;
 | 
						|
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 | 
						|
{
 | 
						|
    return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
 | 
						|
{
 | 
						|
    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
 | 
						|
                              const void* src, size_t srcSize,
 | 
						|
                              const HUF_CElt* CTable, int bmi2)
 | 
						|
{
 | 
						|
    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
 | 
						|
    const BYTE* ip = (const BYTE*) src;
 | 
						|
    const BYTE* const iend = ip + srcSize;
 | 
						|
    BYTE* const ostart = (BYTE*) dst;
 | 
						|
    BYTE* const oend = ostart + dstSize;
 | 
						|
    BYTE* op = ostart;
 | 
						|
 | 
						|
    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
 | 
						|
    if (srcSize < 12) return 0;   /* no saving possible : too small input */
 | 
						|
    op += 6;   /* jumpTable */
 | 
						|
 | 
						|
    assert(op <= oend);
 | 
						|
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 | 
						|
        if (cSize == 0 || cSize > 65535) return 0;
 | 
						|
        MEM_writeLE16(ostart, (U16)cSize);
 | 
						|
        op += cSize;
 | 
						|
    }
 | 
						|
 | 
						|
    ip += segmentSize;
 | 
						|
    assert(op <= oend);
 | 
						|
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 | 
						|
        if (cSize == 0 || cSize > 65535) return 0;
 | 
						|
        MEM_writeLE16(ostart+2, (U16)cSize);
 | 
						|
        op += cSize;
 | 
						|
    }
 | 
						|
 | 
						|
    ip += segmentSize;
 | 
						|
    assert(op <= oend);
 | 
						|
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 | 
						|
        if (cSize == 0 || cSize > 65535) return 0;
 | 
						|
        MEM_writeLE16(ostart+4, (U16)cSize);
 | 
						|
        op += cSize;
 | 
						|
    }
 | 
						|
 | 
						|
    ip += segmentSize;
 | 
						|
    assert(op <= oend);
 | 
						|
    assert(ip <= iend);
 | 
						|
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
 | 
						|
        if (cSize == 0 || cSize > 65535) return 0;
 | 
						|
        op += cSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return (size_t)(op-ostart);
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 | 
						|
{
 | 
						|
    return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
 | 
						|
{
 | 
						|
    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
 | 
						|
}
 | 
						|
 | 
						|
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
 | 
						|
 | 
						|
static size_t HUF_compressCTable_internal(
 | 
						|
                BYTE* const ostart, BYTE* op, BYTE* const oend,
 | 
						|
                const void* src, size_t srcSize,
 | 
						|
                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
 | 
						|
{
 | 
						|
    size_t const cSize = (nbStreams==HUF_singleStream) ?
 | 
						|
                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
 | 
						|
                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
 | 
						|
    if (HUF_isError(cSize)) { return cSize; }
 | 
						|
    if (cSize==0) { return 0; }   /* uncompressible */
 | 
						|
    op += cSize;
 | 
						|
    /* check compressibility */
 | 
						|
    assert(op >= ostart);
 | 
						|
    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
 | 
						|
    return (size_t)(op-ostart);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
 | 
						|
    HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
 | 
						|
    union {
 | 
						|
        HUF_buildCTable_wksp_tables buildCTable_wksp;
 | 
						|
        HUF_WriteCTableWksp writeCTable_wksp;
 | 
						|
        U32 hist_wksp[HIST_WKSP_SIZE_U32];
 | 
						|
    } wksps;
 | 
						|
} HUF_compress_tables_t;
 | 
						|
 | 
						|
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
 | 
						|
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */
 | 
						|
 | 
						|
/* HUF_compress_internal() :
 | 
						|
 * `workSpace_align4` must be aligned on 4-bytes boundaries,
 | 
						|
 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
 | 
						|
static size_t
 | 
						|
HUF_compress_internal (void* dst, size_t dstSize,
 | 
						|
                 const void* src, size_t srcSize,
 | 
						|
                       unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                       HUF_nbStreams_e nbStreams,
 | 
						|
                       void* workSpace, size_t wkspSize,
 | 
						|
                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
 | 
						|
                 const int bmi2, unsigned suspectUncompressible)
 | 
						|
{
 | 
						|
    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
 | 
						|
    BYTE* const ostart = (BYTE*)dst;
 | 
						|
    BYTE* const oend = ostart + dstSize;
 | 
						|
    BYTE* op = ostart;
 | 
						|
 | 
						|
    HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
 | 
						|
 | 
						|
    /* checks & inits */
 | 
						|
    if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
 | 
						|
    if (!srcSize) return 0;  /* Uncompressed */
 | 
						|
    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
 | 
						|
    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
 | 
						|
    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 | 
						|
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
 | 
						|
    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
 | 
						|
    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
 | 
						|
 | 
						|
    /* Heuristic : If old table is valid, use it for small inputs */
 | 
						|
    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
 | 
						|
        return HUF_compressCTable_internal(ostart, op, oend,
 | 
						|
                                           src, srcSize,
 | 
						|
                                           nbStreams, oldHufTable, bmi2);
 | 
						|
    }
 | 
						|
 | 
						|
    /* If uncompressible data is suspected, do a smaller sampling first */
 | 
						|
    DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
 | 
						|
    if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
 | 
						|
        size_t largestTotal = 0;
 | 
						|
        {   unsigned maxSymbolValueBegin = maxSymbolValue;
 | 
						|
            CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
 | 
						|
            largestTotal += largestBegin;
 | 
						|
        }
 | 
						|
        {   unsigned maxSymbolValueEnd = maxSymbolValue;
 | 
						|
            CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
 | 
						|
            largestTotal += largestEnd;
 | 
						|
        }
 | 
						|
        if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Scan input and build symbol stats */
 | 
						|
    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
 | 
						|
        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
 | 
						|
        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check validity of previous table */
 | 
						|
    if ( repeat
 | 
						|
      && *repeat == HUF_repeat_check
 | 
						|
      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
 | 
						|
        *repeat = HUF_repeat_none;
 | 
						|
    }
 | 
						|
    /* Heuristic : use existing table for small inputs */
 | 
						|
    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
 | 
						|
        return HUF_compressCTable_internal(ostart, op, oend,
 | 
						|
                                           src, srcSize,
 | 
						|
                                           nbStreams, oldHufTable, bmi2);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Build Huffman Tree */
 | 
						|
    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
 | 
						|
    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
 | 
						|
                                            maxSymbolValue, huffLog,
 | 
						|
                                            &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
 | 
						|
        CHECK_F(maxBits);
 | 
						|
        huffLog = (U32)maxBits;
 | 
						|
    }
 | 
						|
    /* Zero unused symbols in CTable, so we can check it for validity */
 | 
						|
    {
 | 
						|
        size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
 | 
						|
        size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
 | 
						|
        ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Write table description header */
 | 
						|
    {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
 | 
						|
                                              &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
 | 
						|
        /* Check if using previous huffman table is beneficial */
 | 
						|
        if (repeat && *repeat != HUF_repeat_none) {
 | 
						|
            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
 | 
						|
            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
 | 
						|
            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
 | 
						|
                return HUF_compressCTable_internal(ostart, op, oend,
 | 
						|
                                                   src, srcSize,
 | 
						|
                                                   nbStreams, oldHufTable, bmi2);
 | 
						|
        }   }
 | 
						|
 | 
						|
        /* Use the new huffman table */
 | 
						|
        if (hSize + 12ul >= srcSize) { return 0; }
 | 
						|
        op += hSize;
 | 
						|
        if (repeat) { *repeat = HUF_repeat_none; }
 | 
						|
        if (oldHufTable)
 | 
						|
            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
 | 
						|
    }
 | 
						|
    return HUF_compressCTable_internal(ostart, op, oend,
 | 
						|
                                       src, srcSize,
 | 
						|
                                       nbStreams, table->CTable, bmi2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
 | 
						|
                      const void* src, size_t srcSize,
 | 
						|
                      unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                      void* workSpace, size_t wkspSize)
 | 
						|
{
 | 
						|
    return HUF_compress_internal(dst, dstSize, src, srcSize,
 | 
						|
                                 maxSymbolValue, huffLog, HUF_singleStream,
 | 
						|
                                 workSpace, wkspSize,
 | 
						|
                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
 | 
						|
}
 | 
						|
 | 
						|
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
 | 
						|
                      const void* src, size_t srcSize,
 | 
						|
                      unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                      void* workSpace, size_t wkspSize,
 | 
						|
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
 | 
						|
                      int bmi2, unsigned suspectUncompressible)
 | 
						|
{
 | 
						|
    return HUF_compress_internal(dst, dstSize, src, srcSize,
 | 
						|
                                 maxSymbolValue, huffLog, HUF_singleStream,
 | 
						|
                                 workSpace, wkspSize, hufTable,
 | 
						|
                                 repeat, preferRepeat, bmi2, suspectUncompressible);
 | 
						|
}
 | 
						|
 | 
						|
/* HUF_compress4X_repeat():
 | 
						|
 * compress input using 4 streams.
 | 
						|
 * provide workspace to generate compression tables */
 | 
						|
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
 | 
						|
                      const void* src, size_t srcSize,
 | 
						|
                      unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                      void* workSpace, size_t wkspSize)
 | 
						|
{
 | 
						|
    return HUF_compress_internal(dst, dstSize, src, srcSize,
 | 
						|
                                 maxSymbolValue, huffLog, HUF_fourStreams,
 | 
						|
                                 workSpace, wkspSize,
 | 
						|
                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* HUF_compress4X_repeat():
 | 
						|
 * compress input using 4 streams.
 | 
						|
 * consider skipping quickly
 | 
						|
 * re-use an existing huffman compression table */
 | 
						|
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
 | 
						|
                      const void* src, size_t srcSize,
 | 
						|
                      unsigned maxSymbolValue, unsigned huffLog,
 | 
						|
                      void* workSpace, size_t wkspSize,
 | 
						|
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
 | 
						|
{
 | 
						|
    return HUF_compress_internal(dst, dstSize, src, srcSize,
 | 
						|
                                 maxSymbolValue, huffLog, HUF_fourStreams,
 | 
						|
                                 workSpace, wkspSize,
 | 
						|
                                 hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
 | 
						|
}
 | 
						|
 |