mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
		
			
				
	
	
		
			1745 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1745 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2008 Oracle.  All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/psi.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/log2.h>
 | 
						|
#include <crypto/hash.h>
 | 
						|
#include "misc.h"
 | 
						|
#include "ctree.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "transaction.h"
 | 
						|
#include "btrfs_inode.h"
 | 
						|
#include "volumes.h"
 | 
						|
#include "ordered-data.h"
 | 
						|
#include "compression.h"
 | 
						|
#include "extent_io.h"
 | 
						|
#include "extent_map.h"
 | 
						|
#include "subpage.h"
 | 
						|
#include "zoned.h"
 | 
						|
 | 
						|
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 | 
						|
 | 
						|
const char* btrfs_compress_type2str(enum btrfs_compression_type type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_ZLIB:
 | 
						|
	case BTRFS_COMPRESS_LZO:
 | 
						|
	case BTRFS_COMPRESS_ZSTD:
 | 
						|
	case BTRFS_COMPRESS_NONE:
 | 
						|
		return btrfs_compress_types[type];
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
bool btrfs_compress_is_valid_type(const char *str, size_t len)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
 | 
						|
		size_t comp_len = strlen(btrfs_compress_types[i]);
 | 
						|
 | 
						|
		if (len < comp_len)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!strncmp(btrfs_compress_types[i], str, comp_len))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int compression_compress_pages(int type, struct list_head *ws,
 | 
						|
               struct address_space *mapping, u64 start, struct page **pages,
 | 
						|
               unsigned long *out_pages, unsigned long *total_in,
 | 
						|
               unsigned long *total_out)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_ZLIB:
 | 
						|
		return zlib_compress_pages(ws, mapping, start, pages,
 | 
						|
				out_pages, total_in, total_out);
 | 
						|
	case BTRFS_COMPRESS_LZO:
 | 
						|
		return lzo_compress_pages(ws, mapping, start, pages,
 | 
						|
				out_pages, total_in, total_out);
 | 
						|
	case BTRFS_COMPRESS_ZSTD:
 | 
						|
		return zstd_compress_pages(ws, mapping, start, pages,
 | 
						|
				out_pages, total_in, total_out);
 | 
						|
	case BTRFS_COMPRESS_NONE:
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can happen when compression races with remount setting
 | 
						|
		 * it to 'no compress', while caller doesn't call
 | 
						|
		 * inode_need_compress() to check if we really need to
 | 
						|
		 * compress.
 | 
						|
		 *
 | 
						|
		 * Not a big deal, just need to inform caller that we
 | 
						|
		 * haven't allocated any pages yet.
 | 
						|
		 */
 | 
						|
		*out_pages = 0;
 | 
						|
		return -E2BIG;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int compression_decompress_bio(struct list_head *ws,
 | 
						|
				      struct compressed_bio *cb)
 | 
						|
{
 | 
						|
	switch (cb->compress_type) {
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 | 
						|
	case BTRFS_COMPRESS_NONE:
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int compression_decompress(int type, struct list_head *ws,
 | 
						|
               unsigned char *data_in, struct page *dest_page,
 | 
						|
               unsigned long start_byte, size_t srclen, size_t destlen)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 | 
						|
						start_byte, srclen, destlen);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 | 
						|
						start_byte, srclen, destlen);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 | 
						|
						start_byte, srclen, destlen);
 | 
						|
	case BTRFS_COMPRESS_NONE:
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_decompress_bio(struct compressed_bio *cb);
 | 
						|
 | 
						|
static void finish_compressed_bio_read(struct compressed_bio *cb)
 | 
						|
{
 | 
						|
	unsigned int index;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (cb->status == BLK_STS_OK)
 | 
						|
		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
 | 
						|
 | 
						|
	/* Release the compressed pages */
 | 
						|
	for (index = 0; index < cb->nr_pages; index++) {
 | 
						|
		page = cb->compressed_pages[index];
 | 
						|
		page->mapping = NULL;
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Do io completion on the original bio */
 | 
						|
	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
 | 
						|
 | 
						|
	/* Finally free the cb struct */
 | 
						|
	kfree(cb->compressed_pages);
 | 
						|
	kfree(cb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify the checksums and kick off repair if needed on the uncompressed data
 | 
						|
 * before decompressing it into the original bio and freeing the uncompressed
 | 
						|
 * pages.
 | 
						|
 */
 | 
						|
static void end_compressed_bio_read(struct btrfs_bio *bbio)
 | 
						|
{
 | 
						|
	struct compressed_bio *cb = bbio->private;
 | 
						|
	struct inode *inode = cb->inode;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_inode *bi = BTRFS_I(inode);
 | 
						|
	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
 | 
						|
		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
 | 
						|
	blk_status_t status = bbio->bio.bi_status;
 | 
						|
	struct bvec_iter iter;
 | 
						|
	struct bio_vec bv;
 | 
						|
	u32 offset;
 | 
						|
 | 
						|
	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
 | 
						|
		u64 start = bbio->file_offset + offset;
 | 
						|
 | 
						|
		if (!status &&
 | 
						|
		    (!csum || !btrfs_check_data_csum(inode, bbio, offset,
 | 
						|
						     bv.bv_page, bv.bv_offset))) {
 | 
						|
			btrfs_clean_io_failure(bi, start, bv.bv_page,
 | 
						|
					       bv.bv_offset);
 | 
						|
		} else {
 | 
						|
			int ret;
 | 
						|
 | 
						|
			refcount_inc(&cb->pending_ios);
 | 
						|
			ret = btrfs_repair_one_sector(inode, bbio, offset,
 | 
						|
						      bv.bv_page, bv.bv_offset,
 | 
						|
						      btrfs_submit_data_read_bio);
 | 
						|
			if (ret) {
 | 
						|
				refcount_dec(&cb->pending_ios);
 | 
						|
				status = errno_to_blk_status(ret);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (status)
 | 
						|
		cb->status = status;
 | 
						|
 | 
						|
	if (refcount_dec_and_test(&cb->pending_ios))
 | 
						|
		finish_compressed_bio_read(cb);
 | 
						|
	btrfs_bio_free_csum(bbio);
 | 
						|
	bio_put(&bbio->bio);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear the writeback bits on all of the file
 | 
						|
 * pages for a compressed write
 | 
						|
 */
 | 
						|
static noinline void end_compressed_writeback(struct inode *inode,
 | 
						|
					      const struct compressed_bio *cb)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	unsigned long index = cb->start >> PAGE_SHIFT;
 | 
						|
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 | 
						|
	struct folio_batch fbatch;
 | 
						|
	const int errno = blk_status_to_errno(cb->status);
 | 
						|
	int i;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (errno)
 | 
						|
		mapping_set_error(inode->i_mapping, errno);
 | 
						|
 | 
						|
	folio_batch_init(&fbatch);
 | 
						|
	while (index <= end_index) {
 | 
						|
		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
 | 
						|
				&fbatch);
 | 
						|
 | 
						|
		if (ret == 0)
 | 
						|
			return;
 | 
						|
 | 
						|
		for (i = 0; i < ret; i++) {
 | 
						|
			struct folio *folio = fbatch.folios[i];
 | 
						|
 | 
						|
			if (errno)
 | 
						|
				folio_set_error(folio);
 | 
						|
			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
 | 
						|
							 cb->start, cb->len);
 | 
						|
		}
 | 
						|
		folio_batch_release(&fbatch);
 | 
						|
	}
 | 
						|
	/* the inode may be gone now */
 | 
						|
}
 | 
						|
 | 
						|
static void finish_compressed_bio_write(struct compressed_bio *cb)
 | 
						|
{
 | 
						|
	struct inode *inode = cb->inode;
 | 
						|
	unsigned int index;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok, we're the last bio for this extent, step one is to call back
 | 
						|
	 * into the FS and do all the end_io operations.
 | 
						|
	 */
 | 
						|
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
 | 
						|
			cb->start, cb->start + cb->len - 1,
 | 
						|
			cb->status == BLK_STS_OK);
 | 
						|
 | 
						|
	if (cb->writeback)
 | 
						|
		end_compressed_writeback(inode, cb);
 | 
						|
	/* Note, our inode could be gone now */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Release the compressed pages, these came from alloc_page and
 | 
						|
	 * are not attached to the inode at all
 | 
						|
	 */
 | 
						|
	for (index = 0; index < cb->nr_pages; index++) {
 | 
						|
		struct page *page = cb->compressed_pages[index];
 | 
						|
 | 
						|
		page->mapping = NULL;
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Finally free the cb struct */
 | 
						|
	kfree(cb->compressed_pages);
 | 
						|
	kfree(cb);
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_finish_compressed_write_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct compressed_bio *cb =
 | 
						|
		container_of(work, struct compressed_bio, write_end_work);
 | 
						|
 | 
						|
	finish_compressed_bio_write(cb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 | 
						|
 * writeback on the file pages and free the compressed pages.
 | 
						|
 *
 | 
						|
 * This also calls the writeback end hooks for the file pages so that metadata
 | 
						|
 * and checksums can be updated in the file.
 | 
						|
 */
 | 
						|
static void end_compressed_bio_write(struct btrfs_bio *bbio)
 | 
						|
{
 | 
						|
	struct compressed_bio *cb = bbio->private;
 | 
						|
 | 
						|
	if (bbio->bio.bi_status)
 | 
						|
		cb->status = bbio->bio.bi_status;
 | 
						|
 | 
						|
	if (refcount_dec_and_test(&cb->pending_ios)) {
 | 
						|
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 | 
						|
 | 
						|
		btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
 | 
						|
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
 | 
						|
	}
 | 
						|
	bio_put(&bbio->bio);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a compressed_bio, which will be used to read/write on-disk
 | 
						|
 * (aka, compressed) * data.
 | 
						|
 *
 | 
						|
 * @cb:                 The compressed_bio structure, which records all the needed
 | 
						|
 *                      information to bind the compressed data to the uncompressed
 | 
						|
 *                      page cache.
 | 
						|
 * @disk_byten:         The logical bytenr where the compressed data will be read
 | 
						|
 *                      from or written to.
 | 
						|
 * @endio_func:         The endio function to call after the IO for compressed data
 | 
						|
 *                      is finished.
 | 
						|
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 | 
						|
 *                      Let the caller know to only fill the bio up to the stripe
 | 
						|
 *                      boundary.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
 | 
						|
					blk_opf_t opf,
 | 
						|
					btrfs_bio_end_io_t endio_func,
 | 
						|
					u64 *next_stripe_start)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 | 
						|
	struct btrfs_io_geometry geom;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct bio *bio;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
 | 
						|
	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 | 
						|
 | 
						|
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		bio_put(bio);
 | 
						|
		return ERR_CAST(em);
 | 
						|
	}
 | 
						|
 | 
						|
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
 | 
						|
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
 | 
						|
 | 
						|
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
 | 
						|
	free_extent_map(em);
 | 
						|
	if (ret < 0) {
 | 
						|
		bio_put(bio);
 | 
						|
		return ERR_PTR(ret);
 | 
						|
	}
 | 
						|
	*next_stripe_start = disk_bytenr + geom.len;
 | 
						|
	refcount_inc(&cb->pending_ios);
 | 
						|
	return bio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * worker function to build and submit bios for previously compressed pages.
 | 
						|
 * The corresponding pages in the inode should be marked for writeback
 | 
						|
 * and the compressed pages should have a reference on them for dropping
 | 
						|
 * when the IO is complete.
 | 
						|
 *
 | 
						|
 * This also checksums the file bytes and gets things ready for
 | 
						|
 * the end io hooks.
 | 
						|
 */
 | 
						|
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 | 
						|
				 unsigned int len, u64 disk_start,
 | 
						|
				 unsigned int compressed_len,
 | 
						|
				 struct page **compressed_pages,
 | 
						|
				 unsigned int nr_pages,
 | 
						|
				 blk_opf_t write_flags,
 | 
						|
				 struct cgroup_subsys_state *blkcg_css,
 | 
						|
				 bool writeback)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct bio *bio = NULL;
 | 
						|
	struct compressed_bio *cb;
 | 
						|
	u64 cur_disk_bytenr = disk_start;
 | 
						|
	u64 next_stripe_start;
 | 
						|
	blk_status_t ret = BLK_STS_OK;
 | 
						|
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 | 
						|
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
 | 
						|
	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
 | 
						|
 | 
						|
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 | 
						|
	       IS_ALIGNED(len, fs_info->sectorsize));
 | 
						|
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
 | 
						|
	if (!cb)
 | 
						|
		return BLK_STS_RESOURCE;
 | 
						|
	refcount_set(&cb->pending_ios, 1);
 | 
						|
	cb->status = BLK_STS_OK;
 | 
						|
	cb->inode = &inode->vfs_inode;
 | 
						|
	cb->start = start;
 | 
						|
	cb->len = len;
 | 
						|
	cb->compressed_pages = compressed_pages;
 | 
						|
	cb->compressed_len = compressed_len;
 | 
						|
	cb->writeback = writeback;
 | 
						|
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
 | 
						|
	cb->nr_pages = nr_pages;
 | 
						|
 | 
						|
	if (blkcg_css)
 | 
						|
		kthread_associate_blkcg(blkcg_css);
 | 
						|
 | 
						|
	while (cur_disk_bytenr < disk_start + compressed_len) {
 | 
						|
		u64 offset = cur_disk_bytenr - disk_start;
 | 
						|
		unsigned int index = offset >> PAGE_SHIFT;
 | 
						|
		unsigned int real_size;
 | 
						|
		unsigned int added;
 | 
						|
		struct page *page = compressed_pages[index];
 | 
						|
		bool submit = false;
 | 
						|
 | 
						|
		/* Allocate new bio if submitted or not yet allocated */
 | 
						|
		if (!bio) {
 | 
						|
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
 | 
						|
				bio_op | write_flags, end_compressed_bio_write,
 | 
						|
				&next_stripe_start);
 | 
						|
			if (IS_ERR(bio)) {
 | 
						|
				ret = errno_to_blk_status(PTR_ERR(bio));
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (blkcg_css)
 | 
						|
				bio->bi_opf |= REQ_CGROUP_PUNT;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We should never reach next_stripe_start start as we will
 | 
						|
		 * submit comp_bio when reach the boundary immediately.
 | 
						|
		 */
 | 
						|
		ASSERT(cur_disk_bytenr != next_stripe_start);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have various limits on the real read size:
 | 
						|
		 * - stripe boundary
 | 
						|
		 * - page boundary
 | 
						|
		 * - compressed length boundary
 | 
						|
		 */
 | 
						|
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
 | 
						|
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 | 
						|
		real_size = min_t(u64, real_size, compressed_len - offset);
 | 
						|
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 | 
						|
 | 
						|
		if (use_append)
 | 
						|
			added = bio_add_zone_append_page(bio, page, real_size,
 | 
						|
					offset_in_page(offset));
 | 
						|
		else
 | 
						|
			added = bio_add_page(bio, page, real_size,
 | 
						|
					offset_in_page(offset));
 | 
						|
		/* Reached zoned boundary */
 | 
						|
		if (added == 0)
 | 
						|
			submit = true;
 | 
						|
 | 
						|
		cur_disk_bytenr += added;
 | 
						|
		/* Reached stripe boundary */
 | 
						|
		if (cur_disk_bytenr == next_stripe_start)
 | 
						|
			submit = true;
 | 
						|
 | 
						|
		/* Finished the range */
 | 
						|
		if (cur_disk_bytenr == disk_start + compressed_len)
 | 
						|
			submit = true;
 | 
						|
 | 
						|
		if (submit) {
 | 
						|
			if (!skip_sum) {
 | 
						|
				ret = btrfs_csum_one_bio(inode, bio, start, true);
 | 
						|
				if (ret) {
 | 
						|
					btrfs_bio_end_io(btrfs_bio(bio), ret);
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			ASSERT(bio->bi_iter.bi_size);
 | 
						|
			btrfs_submit_bio(fs_info, bio, 0);
 | 
						|
			bio = NULL;
 | 
						|
		}
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	if (blkcg_css)
 | 
						|
		kthread_associate_blkcg(NULL);
 | 
						|
 | 
						|
	if (refcount_dec_and_test(&cb->pending_ios))
 | 
						|
		finish_compressed_bio_write(cb);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static u64 bio_end_offset(struct bio *bio)
 | 
						|
{
 | 
						|
	struct bio_vec *last = bio_last_bvec_all(bio);
 | 
						|
 | 
						|
	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add extra pages in the same compressed file extent so that we don't need to
 | 
						|
 * re-read the same extent again and again.
 | 
						|
 *
 | 
						|
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 | 
						|
 * full page then submit bio for each compressed/regular extents.
 | 
						|
 *
 | 
						|
 * This means, if we have several sectors in the same page points to the same
 | 
						|
 * on-disk compressed data, we will re-read the same extent many times and
 | 
						|
 * this function can only help for the next page.
 | 
						|
 */
 | 
						|
static noinline int add_ra_bio_pages(struct inode *inode,
 | 
						|
				     u64 compressed_end,
 | 
						|
				     struct compressed_bio *cb,
 | 
						|
				     unsigned long *pflags)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	unsigned long end_index;
 | 
						|
	u64 cur = bio_end_offset(cb->orig_bio);
 | 
						|
	u64 isize = i_size_read(inode);
 | 
						|
	int ret;
 | 
						|
	struct page *page;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	struct extent_map_tree *em_tree;
 | 
						|
	struct extent_io_tree *tree;
 | 
						|
	int sectors_missed = 0;
 | 
						|
 | 
						|
	em_tree = &BTRFS_I(inode)->extent_tree;
 | 
						|
	tree = &BTRFS_I(inode)->io_tree;
 | 
						|
 | 
						|
	if (isize == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For current subpage support, we only support 64K page size,
 | 
						|
	 * which means maximum compressed extent size (128K) is just 2x page
 | 
						|
	 * size.
 | 
						|
	 * This makes readahead less effective, so here disable readahead for
 | 
						|
	 * subpage for now, until full compressed write is supported.
 | 
						|
	 */
 | 
						|
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	while (cur < compressed_end) {
 | 
						|
		u64 page_end;
 | 
						|
		u64 pg_index = cur >> PAGE_SHIFT;
 | 
						|
		u32 add_size;
 | 
						|
 | 
						|
		if (pg_index > end_index)
 | 
						|
			break;
 | 
						|
 | 
						|
		page = xa_load(&mapping->i_pages, pg_index);
 | 
						|
		if (page && !xa_is_value(page)) {
 | 
						|
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
 | 
						|
					  fs_info->sectorsize_bits;
 | 
						|
 | 
						|
			/* Beyond threshold, no need to continue */
 | 
						|
			if (sectors_missed > 4)
 | 
						|
				break;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Jump to next page start as we already have page for
 | 
						|
			 * current offset.
 | 
						|
			 */
 | 
						|
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 | 
						|
								 ~__GFP_FS));
 | 
						|
		if (!page)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 | 
						|
			put_page(page);
 | 
						|
			/* There is already a page, skip to page end */
 | 
						|
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (PageWorkingset(page))
 | 
						|
			psi_memstall_enter(pflags);
 | 
						|
 | 
						|
		ret = set_page_extent_mapped(page);
 | 
						|
		if (ret < 0) {
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
 | 
						|
		lock_extent(tree, cur, page_end, NULL);
 | 
						|
		read_lock(&em_tree->lock);
 | 
						|
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 | 
						|
		read_unlock(&em_tree->lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * At this point, we have a locked page in the page cache for
 | 
						|
		 * these bytes in the file.  But, we have to make sure they map
 | 
						|
		 * to this compressed extent on disk.
 | 
						|
		 */
 | 
						|
		if (!em || cur < em->start ||
 | 
						|
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
 | 
						|
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 | 
						|
			free_extent_map(em);
 | 
						|
			unlock_extent(tree, cur, page_end, NULL);
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		free_extent_map(em);
 | 
						|
 | 
						|
		if (page->index == end_index) {
 | 
						|
			size_t zero_offset = offset_in_page(isize);
 | 
						|
 | 
						|
			if (zero_offset) {
 | 
						|
				int zeros;
 | 
						|
				zeros = PAGE_SIZE - zero_offset;
 | 
						|
				memzero_page(page, zero_offset, zeros);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		add_size = min(em->start + em->len, page_end + 1) - cur;
 | 
						|
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
 | 
						|
		if (ret != add_size) {
 | 
						|
			unlock_extent(tree, cur, page_end, NULL);
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * If it's subpage, we also need to increase its
 | 
						|
		 * subpage::readers number, as at endio we will decrease
 | 
						|
		 * subpage::readers and to unlock the page.
 | 
						|
		 */
 | 
						|
		if (fs_info->sectorsize < PAGE_SIZE)
 | 
						|
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
 | 
						|
		put_page(page);
 | 
						|
		cur += add_size;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * for a compressed read, the bio we get passed has all the inode pages
 | 
						|
 * in it.  We don't actually do IO on those pages but allocate new ones
 | 
						|
 * to hold the compressed pages on disk.
 | 
						|
 *
 | 
						|
 * bio->bi_iter.bi_sector points to the compressed extent on disk
 | 
						|
 * bio->bi_io_vec points to all of the inode pages
 | 
						|
 *
 | 
						|
 * After the compressed pages are read, we copy the bytes into the
 | 
						|
 * bio we were passed and then call the bio end_io calls
 | 
						|
 */
 | 
						|
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 | 
						|
				  int mirror_num)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map_tree *em_tree;
 | 
						|
	struct compressed_bio *cb;
 | 
						|
	unsigned int compressed_len;
 | 
						|
	struct bio *comp_bio = NULL;
 | 
						|
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | 
						|
	u64 cur_disk_byte = disk_bytenr;
 | 
						|
	u64 next_stripe_start;
 | 
						|
	u64 file_offset;
 | 
						|
	u64 em_len;
 | 
						|
	u64 em_start;
 | 
						|
	struct extent_map *em;
 | 
						|
	/* Initialize to 1 to make skip psi_memstall_leave unless needed */
 | 
						|
	unsigned long pflags = 1;
 | 
						|
	blk_status_t ret;
 | 
						|
	int ret2;
 | 
						|
	int i;
 | 
						|
 | 
						|
	em_tree = &BTRFS_I(inode)->extent_tree;
 | 
						|
 | 
						|
	file_offset = bio_first_bvec_all(bio)->bv_offset +
 | 
						|
		      page_offset(bio_first_page_all(bio));
 | 
						|
 | 
						|
	/* we need the actual starting offset of this extent in the file */
 | 
						|
	read_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 | 
						|
	read_unlock(&em_tree->lock);
 | 
						|
	if (!em) {
 | 
						|
		ret = BLK_STS_IOERR;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
 | 
						|
	compressed_len = em->block_len;
 | 
						|
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
 | 
						|
	if (!cb) {
 | 
						|
		ret = BLK_STS_RESOURCE;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	refcount_set(&cb->pending_ios, 1);
 | 
						|
	cb->status = BLK_STS_OK;
 | 
						|
	cb->inode = inode;
 | 
						|
 | 
						|
	cb->start = em->orig_start;
 | 
						|
	em_len = em->len;
 | 
						|
	em_start = em->start;
 | 
						|
 | 
						|
	cb->len = bio->bi_iter.bi_size;
 | 
						|
	cb->compressed_len = compressed_len;
 | 
						|
	cb->compress_type = em->compress_type;
 | 
						|
	cb->orig_bio = bio;
 | 
						|
 | 
						|
	free_extent_map(em);
 | 
						|
	em = NULL;
 | 
						|
 | 
						|
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 | 
						|
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
 | 
						|
	if (!cb->compressed_pages) {
 | 
						|
		ret = BLK_STS_RESOURCE;
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
 | 
						|
	if (ret2) {
 | 
						|
		ret = BLK_STS_RESOURCE;
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	add_ra_bio_pages(inode, em_start + em_len, cb, &pflags);
 | 
						|
 | 
						|
	/* include any pages we added in add_ra-bio_pages */
 | 
						|
	cb->len = bio->bi_iter.bi_size;
 | 
						|
 | 
						|
	while (cur_disk_byte < disk_bytenr + compressed_len) {
 | 
						|
		u64 offset = cur_disk_byte - disk_bytenr;
 | 
						|
		unsigned int index = offset >> PAGE_SHIFT;
 | 
						|
		unsigned int real_size;
 | 
						|
		unsigned int added;
 | 
						|
		struct page *page = cb->compressed_pages[index];
 | 
						|
		bool submit = false;
 | 
						|
 | 
						|
		/* Allocate new bio if submitted or not yet allocated */
 | 
						|
		if (!comp_bio) {
 | 
						|
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
 | 
						|
					REQ_OP_READ, end_compressed_bio_read,
 | 
						|
					&next_stripe_start);
 | 
						|
			if (IS_ERR(comp_bio)) {
 | 
						|
				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We should never reach next_stripe_start start as we will
 | 
						|
		 * submit comp_bio when reach the boundary immediately.
 | 
						|
		 */
 | 
						|
		ASSERT(cur_disk_byte != next_stripe_start);
 | 
						|
		/*
 | 
						|
		 * We have various limit on the real read size:
 | 
						|
		 * - stripe boundary
 | 
						|
		 * - page boundary
 | 
						|
		 * - compressed length boundary
 | 
						|
		 */
 | 
						|
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
 | 
						|
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 | 
						|
		real_size = min_t(u64, real_size, compressed_len - offset);
 | 
						|
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 | 
						|
 | 
						|
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
 | 
						|
		/*
 | 
						|
		 * Maximum compressed extent is smaller than bio size limit,
 | 
						|
		 * thus bio_add_page() should always success.
 | 
						|
		 */
 | 
						|
		ASSERT(added == real_size);
 | 
						|
		cur_disk_byte += added;
 | 
						|
 | 
						|
		/* Reached stripe boundary, need to submit */
 | 
						|
		if (cur_disk_byte == next_stripe_start)
 | 
						|
			submit = true;
 | 
						|
 | 
						|
		/* Has finished the range, need to submit */
 | 
						|
		if (cur_disk_byte == disk_bytenr + compressed_len)
 | 
						|
			submit = true;
 | 
						|
 | 
						|
		if (submit) {
 | 
						|
			/* Save the original iter for read repair */
 | 
						|
			if (bio_op(comp_bio) == REQ_OP_READ)
 | 
						|
				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Save the initial offset of this chunk, as there
 | 
						|
			 * is no direct correlation between compressed pages and
 | 
						|
			 * the original file offset.  The field is only used for
 | 
						|
			 * priting error messages.
 | 
						|
			 */
 | 
						|
			btrfs_bio(comp_bio)->file_offset = file_offset;
 | 
						|
 | 
						|
			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
 | 
						|
			if (ret) {
 | 
						|
				btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			ASSERT(comp_bio->bi_iter.bi_size);
 | 
						|
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
 | 
						|
			comp_bio = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pflags)
 | 
						|
		psi_memstall_leave(&pflags);
 | 
						|
 | 
						|
	if (refcount_dec_and_test(&cb->pending_ios))
 | 
						|
		finish_compressed_bio_read(cb);
 | 
						|
	return;
 | 
						|
 | 
						|
fail:
 | 
						|
	if (cb->compressed_pages) {
 | 
						|
		for (i = 0; i < cb->nr_pages; i++) {
 | 
						|
			if (cb->compressed_pages[i])
 | 
						|
				__free_page(cb->compressed_pages[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(cb->compressed_pages);
 | 
						|
	kfree(cb);
 | 
						|
out:
 | 
						|
	free_extent_map(em);
 | 
						|
	btrfs_bio_end_io(btrfs_bio(bio), ret);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Heuristic uses systematic sampling to collect data from the input data
 | 
						|
 * range, the logic can be tuned by the following constants:
 | 
						|
 *
 | 
						|
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 | 
						|
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 | 
						|
 */
 | 
						|
#define SAMPLING_READ_SIZE	(16)
 | 
						|
#define SAMPLING_INTERVAL	(256)
 | 
						|
 | 
						|
/*
 | 
						|
 * For statistical analysis of the input data we consider bytes that form a
 | 
						|
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 | 
						|
 * many times the object appeared in the sample.
 | 
						|
 */
 | 
						|
#define BUCKET_SIZE		(256)
 | 
						|
 | 
						|
/*
 | 
						|
 * The size of the sample is based on a statistical sampling rule of thumb.
 | 
						|
 * The common way is to perform sampling tests as long as the number of
 | 
						|
 * elements in each cell is at least 5.
 | 
						|
 *
 | 
						|
 * Instead of 5, we choose 32 to obtain more accurate results.
 | 
						|
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 | 
						|
 * sample size bound by 8192.
 | 
						|
 *
 | 
						|
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 | 
						|
 * from up to 512 locations.
 | 
						|
 */
 | 
						|
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 | 
						|
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 | 
						|
 | 
						|
struct bucket_item {
 | 
						|
	u32 count;
 | 
						|
};
 | 
						|
 | 
						|
struct heuristic_ws {
 | 
						|
	/* Partial copy of input data */
 | 
						|
	u8 *sample;
 | 
						|
	u32 sample_size;
 | 
						|
	/* Buckets store counters for each byte value */
 | 
						|
	struct bucket_item *bucket;
 | 
						|
	/* Sorting buffer */
 | 
						|
	struct bucket_item *bucket_b;
 | 
						|
	struct list_head list;
 | 
						|
};
 | 
						|
 | 
						|
static struct workspace_manager heuristic_wsm;
 | 
						|
 | 
						|
static void free_heuristic_ws(struct list_head *ws)
 | 
						|
{
 | 
						|
	struct heuristic_ws *workspace;
 | 
						|
 | 
						|
	workspace = list_entry(ws, struct heuristic_ws, list);
 | 
						|
 | 
						|
	kvfree(workspace->sample);
 | 
						|
	kfree(workspace->bucket);
 | 
						|
	kfree(workspace->bucket_b);
 | 
						|
	kfree(workspace);
 | 
						|
}
 | 
						|
 | 
						|
static struct list_head *alloc_heuristic_ws(unsigned int level)
 | 
						|
{
 | 
						|
	struct heuristic_ws *ws;
 | 
						|
 | 
						|
	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 | 
						|
	if (!ws)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 | 
						|
	if (!ws->sample)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 | 
						|
	if (!ws->bucket)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 | 
						|
	if (!ws->bucket_b)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&ws->list);
 | 
						|
	return &ws->list;
 | 
						|
fail:
 | 
						|
	free_heuristic_ws(&ws->list);
 | 
						|
	return ERR_PTR(-ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
const struct btrfs_compress_op btrfs_heuristic_compress = {
 | 
						|
	.workspace_manager = &heuristic_wsm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 | 
						|
	/* The heuristic is represented as compression type 0 */
 | 
						|
	&btrfs_heuristic_compress,
 | 
						|
	&btrfs_zlib_compress,
 | 
						|
	&btrfs_lzo_compress,
 | 
						|
	&btrfs_zstd_compress,
 | 
						|
};
 | 
						|
 | 
						|
static struct list_head *alloc_workspace(int type, unsigned int level)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void free_workspace(int type, struct list_head *ws)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_init_workspace_manager(int type)
 | 
						|
{
 | 
						|
	struct workspace_manager *wsm;
 | 
						|
	struct list_head *workspace;
 | 
						|
 | 
						|
	wsm = btrfs_compress_op[type]->workspace_manager;
 | 
						|
	INIT_LIST_HEAD(&wsm->idle_ws);
 | 
						|
	spin_lock_init(&wsm->ws_lock);
 | 
						|
	atomic_set(&wsm->total_ws, 0);
 | 
						|
	init_waitqueue_head(&wsm->ws_wait);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Preallocate one workspace for each compression type so we can
 | 
						|
	 * guarantee forward progress in the worst case
 | 
						|
	 */
 | 
						|
	workspace = alloc_workspace(type, 0);
 | 
						|
	if (IS_ERR(workspace)) {
 | 
						|
		pr_warn(
 | 
						|
	"BTRFS: cannot preallocate compression workspace, will try later\n");
 | 
						|
	} else {
 | 
						|
		atomic_set(&wsm->total_ws, 1);
 | 
						|
		wsm->free_ws = 1;
 | 
						|
		list_add(workspace, &wsm->idle_ws);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_cleanup_workspace_manager(int type)
 | 
						|
{
 | 
						|
	struct workspace_manager *wsman;
 | 
						|
	struct list_head *ws;
 | 
						|
 | 
						|
	wsman = btrfs_compress_op[type]->workspace_manager;
 | 
						|
	while (!list_empty(&wsman->idle_ws)) {
 | 
						|
		ws = wsman->idle_ws.next;
 | 
						|
		list_del(ws);
 | 
						|
		free_workspace(type, ws);
 | 
						|
		atomic_dec(&wsman->total_ws);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This finds an available workspace or allocates a new one.
 | 
						|
 * If it's not possible to allocate a new one, waits until there's one.
 | 
						|
 * Preallocation makes a forward progress guarantees and we do not return
 | 
						|
 * errors.
 | 
						|
 */
 | 
						|
struct list_head *btrfs_get_workspace(int type, unsigned int level)
 | 
						|
{
 | 
						|
	struct workspace_manager *wsm;
 | 
						|
	struct list_head *workspace;
 | 
						|
	int cpus = num_online_cpus();
 | 
						|
	unsigned nofs_flag;
 | 
						|
	struct list_head *idle_ws;
 | 
						|
	spinlock_t *ws_lock;
 | 
						|
	atomic_t *total_ws;
 | 
						|
	wait_queue_head_t *ws_wait;
 | 
						|
	int *free_ws;
 | 
						|
 | 
						|
	wsm = btrfs_compress_op[type]->workspace_manager;
 | 
						|
	idle_ws	 = &wsm->idle_ws;
 | 
						|
	ws_lock	 = &wsm->ws_lock;
 | 
						|
	total_ws = &wsm->total_ws;
 | 
						|
	ws_wait	 = &wsm->ws_wait;
 | 
						|
	free_ws	 = &wsm->free_ws;
 | 
						|
 | 
						|
again:
 | 
						|
	spin_lock(ws_lock);
 | 
						|
	if (!list_empty(idle_ws)) {
 | 
						|
		workspace = idle_ws->next;
 | 
						|
		list_del(workspace);
 | 
						|
		(*free_ws)--;
 | 
						|
		spin_unlock(ws_lock);
 | 
						|
		return workspace;
 | 
						|
 | 
						|
	}
 | 
						|
	if (atomic_read(total_ws) > cpus) {
 | 
						|
		DEFINE_WAIT(wait);
 | 
						|
 | 
						|
		spin_unlock(ws_lock);
 | 
						|
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 | 
						|
		if (atomic_read(total_ws) > cpus && !*free_ws)
 | 
						|
			schedule();
 | 
						|
		finish_wait(ws_wait, &wait);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	atomic_inc(total_ws);
 | 
						|
	spin_unlock(ws_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 | 
						|
	 * to turn it off here because we might get called from the restricted
 | 
						|
	 * context of btrfs_compress_bio/btrfs_compress_pages
 | 
						|
	 */
 | 
						|
	nofs_flag = memalloc_nofs_save();
 | 
						|
	workspace = alloc_workspace(type, level);
 | 
						|
	memalloc_nofs_restore(nofs_flag);
 | 
						|
 | 
						|
	if (IS_ERR(workspace)) {
 | 
						|
		atomic_dec(total_ws);
 | 
						|
		wake_up(ws_wait);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do not return the error but go back to waiting. There's a
 | 
						|
		 * workspace preallocated for each type and the compression
 | 
						|
		 * time is bounded so we get to a workspace eventually. This
 | 
						|
		 * makes our caller's life easier.
 | 
						|
		 *
 | 
						|
		 * To prevent silent and low-probability deadlocks (when the
 | 
						|
		 * initial preallocation fails), check if there are any
 | 
						|
		 * workspaces at all.
 | 
						|
		 */
 | 
						|
		if (atomic_read(total_ws) == 0) {
 | 
						|
			static DEFINE_RATELIMIT_STATE(_rs,
 | 
						|
					/* once per minute */ 60 * HZ,
 | 
						|
					/* no burst */ 1);
 | 
						|
 | 
						|
			if (__ratelimit(&_rs)) {
 | 
						|
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 | 
						|
			}
 | 
						|
		}
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return workspace;
 | 
						|
}
 | 
						|
 | 
						|
static struct list_head *get_workspace(int type, int level)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * put a workspace struct back on the list or free it if we have enough
 | 
						|
 * idle ones sitting around
 | 
						|
 */
 | 
						|
void btrfs_put_workspace(int type, struct list_head *ws)
 | 
						|
{
 | 
						|
	struct workspace_manager *wsm;
 | 
						|
	struct list_head *idle_ws;
 | 
						|
	spinlock_t *ws_lock;
 | 
						|
	atomic_t *total_ws;
 | 
						|
	wait_queue_head_t *ws_wait;
 | 
						|
	int *free_ws;
 | 
						|
 | 
						|
	wsm = btrfs_compress_op[type]->workspace_manager;
 | 
						|
	idle_ws	 = &wsm->idle_ws;
 | 
						|
	ws_lock	 = &wsm->ws_lock;
 | 
						|
	total_ws = &wsm->total_ws;
 | 
						|
	ws_wait	 = &wsm->ws_wait;
 | 
						|
	free_ws	 = &wsm->free_ws;
 | 
						|
 | 
						|
	spin_lock(ws_lock);
 | 
						|
	if (*free_ws <= num_online_cpus()) {
 | 
						|
		list_add(ws, idle_ws);
 | 
						|
		(*free_ws)++;
 | 
						|
		spin_unlock(ws_lock);
 | 
						|
		goto wake;
 | 
						|
	}
 | 
						|
	spin_unlock(ws_lock);
 | 
						|
 | 
						|
	free_workspace(type, ws);
 | 
						|
	atomic_dec(total_ws);
 | 
						|
wake:
 | 
						|
	cond_wake_up(ws_wait);
 | 
						|
}
 | 
						|
 | 
						|
static void put_workspace(int type, struct list_head *ws)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
 | 
						|
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
 | 
						|
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
 | 
						|
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * This can't happen, the type is validated several times
 | 
						|
		 * before we get here.
 | 
						|
		 */
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adjust @level according to the limits of the compression algorithm or
 | 
						|
 * fallback to default
 | 
						|
 */
 | 
						|
static unsigned int btrfs_compress_set_level(int type, unsigned level)
 | 
						|
{
 | 
						|
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 | 
						|
 | 
						|
	if (level == 0)
 | 
						|
		level = ops->default_level;
 | 
						|
	else
 | 
						|
		level = min(level, ops->max_level);
 | 
						|
 | 
						|
	return level;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Given an address space and start and length, compress the bytes into @pages
 | 
						|
 * that are allocated on demand.
 | 
						|
 *
 | 
						|
 * @type_level is encoded algorithm and level, where level 0 means whatever
 | 
						|
 * default the algorithm chooses and is opaque here;
 | 
						|
 * - compression algo are 0-3
 | 
						|
 * - the level are bits 4-7
 | 
						|
 *
 | 
						|
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 | 
						|
 * and returns number of actually allocated pages
 | 
						|
 *
 | 
						|
 * @total_in is used to return the number of bytes actually read.  It
 | 
						|
 * may be smaller than the input length if we had to exit early because we
 | 
						|
 * ran out of room in the pages array or because we cross the
 | 
						|
 * max_out threshold.
 | 
						|
 *
 | 
						|
 * @total_out is an in/out parameter, must be set to the input length and will
 | 
						|
 * be also used to return the total number of compressed bytes
 | 
						|
 */
 | 
						|
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
 | 
						|
			 u64 start, struct page **pages,
 | 
						|
			 unsigned long *out_pages,
 | 
						|
			 unsigned long *total_in,
 | 
						|
			 unsigned long *total_out)
 | 
						|
{
 | 
						|
	int type = btrfs_compress_type(type_level);
 | 
						|
	int level = btrfs_compress_level(type_level);
 | 
						|
	struct list_head *workspace;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	level = btrfs_compress_set_level(type, level);
 | 
						|
	workspace = get_workspace(type, level);
 | 
						|
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
 | 
						|
					 out_pages, total_in, total_out);
 | 
						|
	put_workspace(type, workspace);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_decompress_bio(struct compressed_bio *cb)
 | 
						|
{
 | 
						|
	struct list_head *workspace;
 | 
						|
	int ret;
 | 
						|
	int type = cb->compress_type;
 | 
						|
 | 
						|
	workspace = get_workspace(type, 0);
 | 
						|
	ret = compression_decompress_bio(workspace, cb);
 | 
						|
	put_workspace(type, workspace);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * a less complex decompression routine.  Our compressed data fits in a
 | 
						|
 * single page, and we want to read a single page out of it.
 | 
						|
 * start_byte tells us the offset into the compressed data we're interested in
 | 
						|
 */
 | 
						|
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 | 
						|
		     unsigned long start_byte, size_t srclen, size_t destlen)
 | 
						|
{
 | 
						|
	struct list_head *workspace;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	workspace = get_workspace(type, 0);
 | 
						|
	ret = compression_decompress(type, workspace, data_in, dest_page,
 | 
						|
				     start_byte, srclen, destlen);
 | 
						|
	put_workspace(type, workspace);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void __init btrfs_init_compress(void)
 | 
						|
{
 | 
						|
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
 | 
						|
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
 | 
						|
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
 | 
						|
	zstd_init_workspace_manager();
 | 
						|
}
 | 
						|
 | 
						|
void __cold btrfs_exit_compress(void)
 | 
						|
{
 | 
						|
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
 | 
						|
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
 | 
						|
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
 | 
						|
	zstd_cleanup_workspace_manager();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy decompressed data from working buffer to pages.
 | 
						|
 *
 | 
						|
 * @buf:		The decompressed data buffer
 | 
						|
 * @buf_len:		The decompressed data length
 | 
						|
 * @decompressed:	Number of bytes that are already decompressed inside the
 | 
						|
 * 			compressed extent
 | 
						|
 * @cb:			The compressed extent descriptor
 | 
						|
 * @orig_bio:		The original bio that the caller wants to read for
 | 
						|
 *
 | 
						|
 * An easier to understand graph is like below:
 | 
						|
 *
 | 
						|
 * 		|<- orig_bio ->|     |<- orig_bio->|
 | 
						|
 * 	|<-------      full decompressed extent      ----->|
 | 
						|
 * 	|<-----------    @cb range   ---->|
 | 
						|
 * 	|			|<-- @buf_len -->|
 | 
						|
 * 	|<--- @decompressed --->|
 | 
						|
 *
 | 
						|
 * Note that, @cb can be a subpage of the full decompressed extent, but
 | 
						|
 * @cb->start always has the same as the orig_file_offset value of the full
 | 
						|
 * decompressed extent.
 | 
						|
 *
 | 
						|
 * When reading compressed extent, we have to read the full compressed extent,
 | 
						|
 * while @orig_bio may only want part of the range.
 | 
						|
 * Thus this function will ensure only data covered by @orig_bio will be copied
 | 
						|
 * to.
 | 
						|
 *
 | 
						|
 * Return 0 if we have copied all needed contents for @orig_bio.
 | 
						|
 * Return >0 if we need continue decompress.
 | 
						|
 */
 | 
						|
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
 | 
						|
			      struct compressed_bio *cb, u32 decompressed)
 | 
						|
{
 | 
						|
	struct bio *orig_bio = cb->orig_bio;
 | 
						|
	/* Offset inside the full decompressed extent */
 | 
						|
	u32 cur_offset;
 | 
						|
 | 
						|
	cur_offset = decompressed;
 | 
						|
	/* The main loop to do the copy */
 | 
						|
	while (cur_offset < decompressed + buf_len) {
 | 
						|
		struct bio_vec bvec;
 | 
						|
		size_t copy_len;
 | 
						|
		u32 copy_start;
 | 
						|
		/* Offset inside the full decompressed extent */
 | 
						|
		u32 bvec_offset;
 | 
						|
 | 
						|
		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
 | 
						|
		/*
 | 
						|
		 * cb->start may underflow, but subtracting that value can still
 | 
						|
		 * give us correct offset inside the full decompressed extent.
 | 
						|
		 */
 | 
						|
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
 | 
						|
 | 
						|
		/* Haven't reached the bvec range, exit */
 | 
						|
		if (decompressed + buf_len <= bvec_offset)
 | 
						|
			return 1;
 | 
						|
 | 
						|
		copy_start = max(cur_offset, bvec_offset);
 | 
						|
		copy_len = min(bvec_offset + bvec.bv_len,
 | 
						|
			       decompressed + buf_len) - copy_start;
 | 
						|
		ASSERT(copy_len);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Extra range check to ensure we didn't go beyond
 | 
						|
		 * @buf + @buf_len.
 | 
						|
		 */
 | 
						|
		ASSERT(copy_start - decompressed < buf_len);
 | 
						|
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
 | 
						|
			       buf + copy_start - decompressed, copy_len);
 | 
						|
		cur_offset += copy_len;
 | 
						|
 | 
						|
		bio_advance(orig_bio, copy_len);
 | 
						|
		/* Finished the bio */
 | 
						|
		if (!orig_bio->bi_iter.bi_size)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Shannon Entropy calculation
 | 
						|
 *
 | 
						|
 * Pure byte distribution analysis fails to determine compressibility of data.
 | 
						|
 * Try calculating entropy to estimate the average minimum number of bits
 | 
						|
 * needed to encode the sampled data.
 | 
						|
 *
 | 
						|
 * For convenience, return the percentage of needed bits, instead of amount of
 | 
						|
 * bits directly.
 | 
						|
 *
 | 
						|
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 | 
						|
 *			    and can be compressible with high probability
 | 
						|
 *
 | 
						|
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 | 
						|
 *
 | 
						|
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 | 
						|
 */
 | 
						|
#define ENTROPY_LVL_ACEPTABLE		(65)
 | 
						|
#define ENTROPY_LVL_HIGH		(80)
 | 
						|
 | 
						|
/*
 | 
						|
 * For increasead precision in shannon_entropy calculation,
 | 
						|
 * let's do pow(n, M) to save more digits after comma:
 | 
						|
 *
 | 
						|
 * - maximum int bit length is 64
 | 
						|
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 | 
						|
 * - 13 * 4 = 52 < 64		-> M = 4
 | 
						|
 *
 | 
						|
 * So use pow(n, 4).
 | 
						|
 */
 | 
						|
static inline u32 ilog2_w(u64 n)
 | 
						|
{
 | 
						|
	return ilog2(n * n * n * n);
 | 
						|
}
 | 
						|
 | 
						|
static u32 shannon_entropy(struct heuristic_ws *ws)
 | 
						|
{
 | 
						|
	const u32 entropy_max = 8 * ilog2_w(2);
 | 
						|
	u32 entropy_sum = 0;
 | 
						|
	u32 p, p_base, sz_base;
 | 
						|
	u32 i;
 | 
						|
 | 
						|
	sz_base = ilog2_w(ws->sample_size);
 | 
						|
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
 | 
						|
		p = ws->bucket[i].count;
 | 
						|
		p_base = ilog2_w(p);
 | 
						|
		entropy_sum += p * (sz_base - p_base);
 | 
						|
	}
 | 
						|
 | 
						|
	entropy_sum /= ws->sample_size;
 | 
						|
	return entropy_sum * 100 / entropy_max;
 | 
						|
}
 | 
						|
 | 
						|
#define RADIX_BASE		4U
 | 
						|
#define COUNTERS_SIZE		(1U << RADIX_BASE)
 | 
						|
 | 
						|
static u8 get4bits(u64 num, int shift) {
 | 
						|
	u8 low4bits;
 | 
						|
 | 
						|
	num >>= shift;
 | 
						|
	/* Reverse order */
 | 
						|
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
 | 
						|
	return low4bits;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Use 4 bits as radix base
 | 
						|
 * Use 16 u32 counters for calculating new position in buf array
 | 
						|
 *
 | 
						|
 * @array     - array that will be sorted
 | 
						|
 * @array_buf - buffer array to store sorting results
 | 
						|
 *              must be equal in size to @array
 | 
						|
 * @num       - array size
 | 
						|
 */
 | 
						|
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
 | 
						|
		       int num)
 | 
						|
{
 | 
						|
	u64 max_num;
 | 
						|
	u64 buf_num;
 | 
						|
	u32 counters[COUNTERS_SIZE];
 | 
						|
	u32 new_addr;
 | 
						|
	u32 addr;
 | 
						|
	int bitlen;
 | 
						|
	int shift;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try avoid useless loop iterations for small numbers stored in big
 | 
						|
	 * counters.  Example: 48 33 4 ... in 64bit array
 | 
						|
	 */
 | 
						|
	max_num = array[0].count;
 | 
						|
	for (i = 1; i < num; i++) {
 | 
						|
		buf_num = array[i].count;
 | 
						|
		if (buf_num > max_num)
 | 
						|
			max_num = buf_num;
 | 
						|
	}
 | 
						|
 | 
						|
	buf_num = ilog2(max_num);
 | 
						|
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
 | 
						|
 | 
						|
	shift = 0;
 | 
						|
	while (shift < bitlen) {
 | 
						|
		memset(counters, 0, sizeof(counters));
 | 
						|
 | 
						|
		for (i = 0; i < num; i++) {
 | 
						|
			buf_num = array[i].count;
 | 
						|
			addr = get4bits(buf_num, shift);
 | 
						|
			counters[addr]++;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 1; i < COUNTERS_SIZE; i++)
 | 
						|
			counters[i] += counters[i - 1];
 | 
						|
 | 
						|
		for (i = num - 1; i >= 0; i--) {
 | 
						|
			buf_num = array[i].count;
 | 
						|
			addr = get4bits(buf_num, shift);
 | 
						|
			counters[addr]--;
 | 
						|
			new_addr = counters[addr];
 | 
						|
			array_buf[new_addr] = array[i];
 | 
						|
		}
 | 
						|
 | 
						|
		shift += RADIX_BASE;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Normal radix expects to move data from a temporary array, to
 | 
						|
		 * the main one.  But that requires some CPU time. Avoid that
 | 
						|
		 * by doing another sort iteration to original array instead of
 | 
						|
		 * memcpy()
 | 
						|
		 */
 | 
						|
		memset(counters, 0, sizeof(counters));
 | 
						|
 | 
						|
		for (i = 0; i < num; i ++) {
 | 
						|
			buf_num = array_buf[i].count;
 | 
						|
			addr = get4bits(buf_num, shift);
 | 
						|
			counters[addr]++;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 1; i < COUNTERS_SIZE; i++)
 | 
						|
			counters[i] += counters[i - 1];
 | 
						|
 | 
						|
		for (i = num - 1; i >= 0; i--) {
 | 
						|
			buf_num = array_buf[i].count;
 | 
						|
			addr = get4bits(buf_num, shift);
 | 
						|
			counters[addr]--;
 | 
						|
			new_addr = counters[addr];
 | 
						|
			array[new_addr] = array_buf[i];
 | 
						|
		}
 | 
						|
 | 
						|
		shift += RADIX_BASE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Size of the core byte set - how many bytes cover 90% of the sample
 | 
						|
 *
 | 
						|
 * There are several types of structured binary data that use nearly all byte
 | 
						|
 * values. The distribution can be uniform and counts in all buckets will be
 | 
						|
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 | 
						|
 *
 | 
						|
 * Other possibility is normal (Gaussian) distribution, where the data could
 | 
						|
 * be potentially compressible, but we have to take a few more steps to decide
 | 
						|
 * how much.
 | 
						|
 *
 | 
						|
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 | 
						|
 *                       compression algo can easy fix that
 | 
						|
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 | 
						|
 *                       probability is not compressible
 | 
						|
 */
 | 
						|
#define BYTE_CORE_SET_LOW		(64)
 | 
						|
#define BYTE_CORE_SET_HIGH		(200)
 | 
						|
 | 
						|
static int byte_core_set_size(struct heuristic_ws *ws)
 | 
						|
{
 | 
						|
	u32 i;
 | 
						|
	u32 coreset_sum = 0;
 | 
						|
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
 | 
						|
	struct bucket_item *bucket = ws->bucket;
 | 
						|
 | 
						|
	/* Sort in reverse order */
 | 
						|
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
 | 
						|
 | 
						|
	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
 | 
						|
		coreset_sum += bucket[i].count;
 | 
						|
 | 
						|
	if (coreset_sum > core_set_threshold)
 | 
						|
		return i;
 | 
						|
 | 
						|
	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
 | 
						|
		coreset_sum += bucket[i].count;
 | 
						|
		if (coreset_sum > core_set_threshold)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Count byte values in buckets.
 | 
						|
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 | 
						|
 * Because in most text-like data byte set is restricted to limited number of
 | 
						|
 * possible characters, and that restriction in most cases makes data easy to
 | 
						|
 * compress.
 | 
						|
 *
 | 
						|
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 | 
						|
 *	less - compressible
 | 
						|
 *	more - need additional analysis
 | 
						|
 */
 | 
						|
#define BYTE_SET_THRESHOLD		(64)
 | 
						|
 | 
						|
static u32 byte_set_size(const struct heuristic_ws *ws)
 | 
						|
{
 | 
						|
	u32 i;
 | 
						|
	u32 byte_set_size = 0;
 | 
						|
 | 
						|
	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
 | 
						|
		if (ws->bucket[i].count > 0)
 | 
						|
			byte_set_size++;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Continue collecting count of byte values in buckets.  If the byte
 | 
						|
	 * set size is bigger then the threshold, it's pointless to continue,
 | 
						|
	 * the detection technique would fail for this type of data.
 | 
						|
	 */
 | 
						|
	for (; i < BUCKET_SIZE; i++) {
 | 
						|
		if (ws->bucket[i].count > 0) {
 | 
						|
			byte_set_size++;
 | 
						|
			if (byte_set_size > BYTE_SET_THRESHOLD)
 | 
						|
				return byte_set_size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return byte_set_size;
 | 
						|
}
 | 
						|
 | 
						|
static bool sample_repeated_patterns(struct heuristic_ws *ws)
 | 
						|
{
 | 
						|
	const u32 half_of_sample = ws->sample_size / 2;
 | 
						|
	const u8 *data = ws->sample;
 | 
						|
 | 
						|
	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
 | 
						|
				     struct heuristic_ws *ws)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	u64 index, index_end;
 | 
						|
	u32 i, curr_sample_pos;
 | 
						|
	u8 *in_data;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compression handles the input data by chunks of 128KiB
 | 
						|
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
 | 
						|
	 *
 | 
						|
	 * We do the same for the heuristic and loop over the whole range.
 | 
						|
	 *
 | 
						|
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
 | 
						|
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
 | 
						|
	 */
 | 
						|
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
 | 
						|
		end = start + BTRFS_MAX_UNCOMPRESSED;
 | 
						|
 | 
						|
	index = start >> PAGE_SHIFT;
 | 
						|
	index_end = end >> PAGE_SHIFT;
 | 
						|
 | 
						|
	/* Don't miss unaligned end */
 | 
						|
	if (!IS_ALIGNED(end, PAGE_SIZE))
 | 
						|
		index_end++;
 | 
						|
 | 
						|
	curr_sample_pos = 0;
 | 
						|
	while (index < index_end) {
 | 
						|
		page = find_get_page(inode->i_mapping, index);
 | 
						|
		in_data = kmap_local_page(page);
 | 
						|
		/* Handle case where the start is not aligned to PAGE_SIZE */
 | 
						|
		i = start % PAGE_SIZE;
 | 
						|
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
 | 
						|
			/* Don't sample any garbage from the last page */
 | 
						|
			if (start > end - SAMPLING_READ_SIZE)
 | 
						|
				break;
 | 
						|
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
 | 
						|
					SAMPLING_READ_SIZE);
 | 
						|
			i += SAMPLING_INTERVAL;
 | 
						|
			start += SAMPLING_INTERVAL;
 | 
						|
			curr_sample_pos += SAMPLING_READ_SIZE;
 | 
						|
		}
 | 
						|
		kunmap_local(in_data);
 | 
						|
		put_page(page);
 | 
						|
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
 | 
						|
	ws->sample_size = curr_sample_pos;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compression heuristic.
 | 
						|
 *
 | 
						|
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 | 
						|
 * quickly (compared to direct compression) detect data characteristics
 | 
						|
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 | 
						|
 * data.
 | 
						|
 *
 | 
						|
 * The following types of analysis can be performed:
 | 
						|
 * - detect mostly zero data
 | 
						|
 * - detect data with low "byte set" size (text, etc)
 | 
						|
 * - detect data with low/high "core byte" set
 | 
						|
 *
 | 
						|
 * Return non-zero if the compression should be done, 0 otherwise.
 | 
						|
 */
 | 
						|
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct list_head *ws_list = get_workspace(0, 0);
 | 
						|
	struct heuristic_ws *ws;
 | 
						|
	u32 i;
 | 
						|
	u8 byte;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ws = list_entry(ws_list, struct heuristic_ws, list);
 | 
						|
 | 
						|
	heuristic_collect_sample(inode, start, end, ws);
 | 
						|
 | 
						|
	if (sample_repeated_patterns(ws)) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
 | 
						|
 | 
						|
	for (i = 0; i < ws->sample_size; i++) {
 | 
						|
		byte = ws->sample[i];
 | 
						|
		ws->bucket[byte].count++;
 | 
						|
	}
 | 
						|
 | 
						|
	i = byte_set_size(ws);
 | 
						|
	if (i < BYTE_SET_THRESHOLD) {
 | 
						|
		ret = 2;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	i = byte_core_set_size(ws);
 | 
						|
	if (i <= BYTE_CORE_SET_LOW) {
 | 
						|
		ret = 3;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i >= BYTE_CORE_SET_HIGH) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	i = shannon_entropy(ws);
 | 
						|
	if (i <= ENTROPY_LVL_ACEPTABLE) {
 | 
						|
		ret = 4;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
 | 
						|
	 * needed to give green light to compression.
 | 
						|
	 *
 | 
						|
	 * For now just assume that compression at that level is not worth the
 | 
						|
	 * resources because:
 | 
						|
	 *
 | 
						|
	 * 1. it is possible to defrag the data later
 | 
						|
	 *
 | 
						|
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
 | 
						|
	 * values, every bucket has counter at level ~54. The heuristic would
 | 
						|
	 * be confused. This can happen when data have some internal repeated
 | 
						|
	 * patterns like "abbacbbc...". This can be detected by analyzing
 | 
						|
	 * pairs of bytes, which is too costly.
 | 
						|
	 */
 | 
						|
	if (i < ENTROPY_LVL_HIGH) {
 | 
						|
		ret = 5;
 | 
						|
		goto out;
 | 
						|
	} else {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	put_workspace(0, ws_list);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 | 
						|
 * level, unrecognized string will set the default level
 | 
						|
 */
 | 
						|
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
 | 
						|
{
 | 
						|
	unsigned int level = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!type)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (str[0] == ':') {
 | 
						|
		ret = kstrtouint(str + 1, 10, &level);
 | 
						|
		if (ret)
 | 
						|
			level = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	level = btrfs_compress_set_level(type, level);
 | 
						|
 | 
						|
	return level;
 | 
						|
}
 |