mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCY0DP2AAKCRBZ7Krx/gZQ 6/+qAQCEGQWpcC5MB17zylaX7gqzhgAsDrwtpevlno3aIv/1pQD/YWr/E8tf7WTW ERXRXMRx1cAzBJhUhVgIY+3ANfU2Rg4= =cko4 -----END PGP SIGNATURE----- Merge tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs tmpfile updates from Al Viro: "Miklos' ->tmpfile() signature change; pass an unopened struct file to it, let it open the damn thing. Allows to add tmpfile support to FUSE" * tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fuse: implement ->tmpfile() vfs: open inside ->tmpfile() vfs: move open right after ->tmpfile() vfs: make vfs_tmpfile() static ovl: use vfs_tmpfile_open() helper cachefiles: use vfs_tmpfile_open() helper cachefiles: only pass inode to *mark_inode_inuse() helpers cachefiles: tmpfile error handling cleanup hugetlbfs: cleanup mknod and tmpfile vfs: add vfs_tmpfile_open() helper
		
			
				
	
	
		
			1706 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1706 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * hugetlbpage-backed filesystem.  Based on ramfs.
 | 
						|
 *
 | 
						|
 * Nadia Yvette Chambers, 2002
 | 
						|
 *
 | 
						|
 * Copyright (C) 2002 Linus Torvalds.
 | 
						|
 * License: GPL
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/thread_info.h>
 | 
						|
#include <asm/current.h>
 | 
						|
#include <linux/falloc.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/fs_parser.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/dnotify.h>
 | 
						|
#include <linux/statfs.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/magic.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/uio.h>
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
 | 
						|
static const struct address_space_operations hugetlbfs_aops;
 | 
						|
const struct file_operations hugetlbfs_file_operations;
 | 
						|
static const struct inode_operations hugetlbfs_dir_inode_operations;
 | 
						|
static const struct inode_operations hugetlbfs_inode_operations;
 | 
						|
 | 
						|
enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
 | 
						|
 | 
						|
struct hugetlbfs_fs_context {
 | 
						|
	struct hstate		*hstate;
 | 
						|
	unsigned long long	max_size_opt;
 | 
						|
	unsigned long long	min_size_opt;
 | 
						|
	long			max_hpages;
 | 
						|
	long			nr_inodes;
 | 
						|
	long			min_hpages;
 | 
						|
	enum hugetlbfs_size_type max_val_type;
 | 
						|
	enum hugetlbfs_size_type min_val_type;
 | 
						|
	kuid_t			uid;
 | 
						|
	kgid_t			gid;
 | 
						|
	umode_t			mode;
 | 
						|
};
 | 
						|
 | 
						|
int sysctl_hugetlb_shm_group;
 | 
						|
 | 
						|
enum hugetlb_param {
 | 
						|
	Opt_gid,
 | 
						|
	Opt_min_size,
 | 
						|
	Opt_mode,
 | 
						|
	Opt_nr_inodes,
 | 
						|
	Opt_pagesize,
 | 
						|
	Opt_size,
 | 
						|
	Opt_uid,
 | 
						|
};
 | 
						|
 | 
						|
static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
 | 
						|
	fsparam_u32   ("gid",		Opt_gid),
 | 
						|
	fsparam_string("min_size",	Opt_min_size),
 | 
						|
	fsparam_u32oct("mode",		Opt_mode),
 | 
						|
	fsparam_string("nr_inodes",	Opt_nr_inodes),
 | 
						|
	fsparam_string("pagesize",	Opt_pagesize),
 | 
						|
	fsparam_string("size",		Opt_size),
 | 
						|
	fsparam_u32   ("uid",		Opt_uid),
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 | 
						|
					struct inode *inode, pgoff_t index)
 | 
						|
{
 | 
						|
	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
 | 
						|
							index);
 | 
						|
}
 | 
						|
 | 
						|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	mpol_cond_put(vma->vm_policy);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 | 
						|
					struct inode *inode, pgoff_t index)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Mask used when checking the page offset value passed in via system
 | 
						|
 * calls.  This value will be converted to a loff_t which is signed.
 | 
						|
 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 | 
						|
 * value.  The extra bit (- 1 in the shift value) is to take the sign
 | 
						|
 * bit into account.
 | 
						|
 */
 | 
						|
#define PGOFF_LOFFT_MAX \
 | 
						|
	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 | 
						|
 | 
						|
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | 
						|
	loff_t len, vma_len;
 | 
						|
	int ret;
 | 
						|
	struct hstate *h = hstate_file(file);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma address alignment (but not the pgoff alignment) has
 | 
						|
	 * already been checked by prepare_hugepage_range.  If you add
 | 
						|
	 * any error returns here, do so after setting VM_HUGETLB, so
 | 
						|
	 * is_vm_hugetlb_page tests below unmap_region go the right
 | 
						|
	 * way when do_mmap unwinds (may be important on powerpc
 | 
						|
	 * and ia64).
 | 
						|
	 */
 | 
						|
	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 | 
						|
	vma->vm_ops = &hugetlb_vm_ops;
 | 
						|
 | 
						|
	ret = seal_check_future_write(info->seals, vma);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * page based offset in vm_pgoff could be sufficiently large to
 | 
						|
	 * overflow a loff_t when converted to byte offset.  This can
 | 
						|
	 * only happen on architectures where sizeof(loff_t) ==
 | 
						|
	 * sizeof(unsigned long).  So, only check in those instances.
 | 
						|
	 */
 | 
						|
	if (sizeof(unsigned long) == sizeof(loff_t)) {
 | 
						|
		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* must be huge page aligned */
 | 
						|
	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 | 
						|
	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 | 
						|
	/* check for overflow */
 | 
						|
	if (len < vma_len)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
	file_accessed(file);
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
	if (!hugetlb_reserve_pages(inode,
 | 
						|
				vma->vm_pgoff >> huge_page_order(h),
 | 
						|
				len >> huge_page_shift(h), vma,
 | 
						|
				vma->vm_flags))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 | 
						|
		i_size_write(inode, len);
 | 
						|
out:
 | 
						|
	inode_unlock(inode);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called under mmap_write_lock(mm).
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long
 | 
						|
hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
 | 
						|
		unsigned long len, unsigned long pgoff, unsigned long flags)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_file(file);
 | 
						|
	struct vm_unmapped_area_info info;
 | 
						|
 | 
						|
	info.flags = 0;
 | 
						|
	info.length = len;
 | 
						|
	info.low_limit = current->mm->mmap_base;
 | 
						|
	info.high_limit = arch_get_mmap_end(addr, len, flags);
 | 
						|
	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | 
						|
	info.align_offset = 0;
 | 
						|
	return vm_unmapped_area(&info);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
 | 
						|
		unsigned long len, unsigned long pgoff, unsigned long flags)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_file(file);
 | 
						|
	struct vm_unmapped_area_info info;
 | 
						|
 | 
						|
	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 | 
						|
	info.length = len;
 | 
						|
	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
 | 
						|
	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
 | 
						|
	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | 
						|
	info.align_offset = 0;
 | 
						|
	addr = vm_unmapped_area(&info);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A failed mmap() very likely causes application failure,
 | 
						|
	 * so fall back to the bottom-up function here. This scenario
 | 
						|
	 * can happen with large stack limits and large mmap()
 | 
						|
	 * allocations.
 | 
						|
	 */
 | 
						|
	if (unlikely(offset_in_page(addr))) {
 | 
						|
		VM_BUG_ON(addr != -ENOMEM);
 | 
						|
		info.flags = 0;
 | 
						|
		info.low_limit = current->mm->mmap_base;
 | 
						|
		info.high_limit = arch_get_mmap_end(addr, len, flags);
 | 
						|
		addr = vm_unmapped_area(&info);
 | 
						|
	}
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | 
						|
				  unsigned long len, unsigned long pgoff,
 | 
						|
				  unsigned long flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	struct hstate *h = hstate_file(file);
 | 
						|
	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 | 
						|
 | 
						|
	if (len & ~huge_page_mask(h))
 | 
						|
		return -EINVAL;
 | 
						|
	if (len > TASK_SIZE)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (flags & MAP_FIXED) {
 | 
						|
		if (prepare_hugepage_range(file, addr, len))
 | 
						|
			return -EINVAL;
 | 
						|
		return addr;
 | 
						|
	}
 | 
						|
 | 
						|
	if (addr) {
 | 
						|
		addr = ALIGN(addr, huge_page_size(h));
 | 
						|
		vma = find_vma(mm, addr);
 | 
						|
		if (mmap_end - len >= addr &&
 | 
						|
		    (!vma || addr + len <= vm_start_gap(vma)))
 | 
						|
			return addr;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
 | 
						|
	 * If architectures have special needs, they should define their own
 | 
						|
	 * version of hugetlb_get_unmapped_area.
 | 
						|
	 */
 | 
						|
	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
 | 
						|
		return hugetlb_get_unmapped_area_topdown(file, addr, len,
 | 
						|
				pgoff, flags);
 | 
						|
	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 | 
						|
			pgoff, flags);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 | 
						|
static unsigned long
 | 
						|
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | 
						|
			  unsigned long len, unsigned long pgoff,
 | 
						|
			  unsigned long flags)
 | 
						|
{
 | 
						|
	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Support for read() - Find the page attached to f_mapping and copy out the
 | 
						|
 * data. This provides functionality similar to filemap_read().
 | 
						|
 */
 | 
						|
static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct hstate *h = hstate_file(file);
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 | 
						|
	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 | 
						|
	unsigned long end_index;
 | 
						|
	loff_t isize;
 | 
						|
	ssize_t retval = 0;
 | 
						|
 | 
						|
	while (iov_iter_count(to)) {
 | 
						|
		struct page *page;
 | 
						|
		size_t nr, copied;
 | 
						|
 | 
						|
		/* nr is the maximum number of bytes to copy from this page */
 | 
						|
		nr = huge_page_size(h);
 | 
						|
		isize = i_size_read(inode);
 | 
						|
		if (!isize)
 | 
						|
			break;
 | 
						|
		end_index = (isize - 1) >> huge_page_shift(h);
 | 
						|
		if (index > end_index)
 | 
						|
			break;
 | 
						|
		if (index == end_index) {
 | 
						|
			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 | 
						|
			if (nr <= offset)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		nr = nr - offset;
 | 
						|
 | 
						|
		/* Find the page */
 | 
						|
		page = find_lock_page(mapping, index);
 | 
						|
		if (unlikely(page == NULL)) {
 | 
						|
			/*
 | 
						|
			 * We have a HOLE, zero out the user-buffer for the
 | 
						|
			 * length of the hole or request.
 | 
						|
			 */
 | 
						|
			copied = iov_iter_zero(nr, to);
 | 
						|
		} else {
 | 
						|
			unlock_page(page);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We have the page, copy it to user space buffer.
 | 
						|
			 */
 | 
						|
			copied = copy_page_to_iter(page, offset, nr, to);
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
		offset += copied;
 | 
						|
		retval += copied;
 | 
						|
		if (copied != nr && iov_iter_count(to)) {
 | 
						|
			if (!retval)
 | 
						|
				retval = -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		index += offset >> huge_page_shift(h);
 | 
						|
		offset &= ~huge_page_mask(h);
 | 
						|
	}
 | 
						|
	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_write_begin(struct file *file,
 | 
						|
			struct address_space *mapping,
 | 
						|
			loff_t pos, unsigned len,
 | 
						|
			struct page **pagep, void **fsdata)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 | 
						|
			loff_t pos, unsigned len, unsigned copied,
 | 
						|
			struct page *page, void *fsdata)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_delete_from_page_cache(struct page *page)
 | 
						|
{
 | 
						|
	ClearPageDirty(page);
 | 
						|
	ClearPageUptodate(page);
 | 
						|
	delete_from_page_cache(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with i_mmap_rwsem held for inode based vma maps.  This makes
 | 
						|
 * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
 | 
						|
 * mutex for the page in the mapping.  So, we can not race with page being
 | 
						|
 * faulted into the vma.
 | 
						|
 */
 | 
						|
static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
 | 
						|
				unsigned long addr, struct page *page)
 | 
						|
{
 | 
						|
	pte_t *ptep, pte;
 | 
						|
 | 
						|
	ptep = huge_pte_offset(vma->vm_mm, addr,
 | 
						|
			huge_page_size(hstate_vma(vma)));
 | 
						|
 | 
						|
	if (!ptep)
 | 
						|
		return false;
 | 
						|
 | 
						|
	pte = huge_ptep_get(ptep);
 | 
						|
	if (huge_pte_none(pte) || !pte_present(pte))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (pte_page(pte) == page)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
 | 
						|
 * No, because the interval tree returns us only those vmas
 | 
						|
 * which overlap the truncated area starting at pgoff,
 | 
						|
 * and no vma on a 32-bit arch can span beyond the 4GB.
 | 
						|
 */
 | 
						|
static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
 | 
						|
{
 | 
						|
	if (vma->vm_pgoff < start)
 | 
						|
		return (start - vma->vm_pgoff) << PAGE_SHIFT;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
 | 
						|
{
 | 
						|
	unsigned long t_end;
 | 
						|
 | 
						|
	if (!end)
 | 
						|
		return vma->vm_end;
 | 
						|
 | 
						|
	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
 | 
						|
	if (t_end > vma->vm_end)
 | 
						|
		t_end = vma->vm_end;
 | 
						|
	return t_end;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with hugetlb fault mutex held.  Therefore, no more mappings to
 | 
						|
 * this folio can be created while executing the routine.
 | 
						|
 */
 | 
						|
static void hugetlb_unmap_file_folio(struct hstate *h,
 | 
						|
					struct address_space *mapping,
 | 
						|
					struct folio *folio, pgoff_t index)
 | 
						|
{
 | 
						|
	struct rb_root_cached *root = &mapping->i_mmap;
 | 
						|
	struct hugetlb_vma_lock *vma_lock;
 | 
						|
	struct page *page = &folio->page;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	unsigned long v_start;
 | 
						|
	unsigned long v_end;
 | 
						|
	pgoff_t start, end;
 | 
						|
 | 
						|
	start = index * pages_per_huge_page(h);
 | 
						|
	end = (index + 1) * pages_per_huge_page(h);
 | 
						|
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
retry:
 | 
						|
	vma_lock = NULL;
 | 
						|
	vma_interval_tree_foreach(vma, root, start, end - 1) {
 | 
						|
		v_start = vma_offset_start(vma, start);
 | 
						|
		v_end = vma_offset_end(vma, end);
 | 
						|
 | 
						|
		if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!hugetlb_vma_trylock_write(vma)) {
 | 
						|
			vma_lock = vma->vm_private_data;
 | 
						|
			/*
 | 
						|
			 * If we can not get vma lock, we need to drop
 | 
						|
			 * immap_sema and take locks in order.  First,
 | 
						|
			 * take a ref on the vma_lock structure so that
 | 
						|
			 * we can be guaranteed it will not go away when
 | 
						|
			 * dropping immap_sema.
 | 
						|
			 */
 | 
						|
			kref_get(&vma_lock->refs);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
 | 
						|
				NULL, ZAP_FLAG_DROP_MARKER);
 | 
						|
		hugetlb_vma_unlock_write(vma);
 | 
						|
	}
 | 
						|
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
 | 
						|
	if (vma_lock) {
 | 
						|
		/*
 | 
						|
		 * Wait on vma_lock.  We know it is still valid as we have
 | 
						|
		 * a reference.  We must 'open code' vma locking as we do
 | 
						|
		 * not know if vma_lock is still attached to vma.
 | 
						|
		 */
 | 
						|
		down_write(&vma_lock->rw_sema);
 | 
						|
		i_mmap_lock_write(mapping);
 | 
						|
 | 
						|
		vma = vma_lock->vma;
 | 
						|
		if (!vma) {
 | 
						|
			/*
 | 
						|
			 * If lock is no longer attached to vma, then just
 | 
						|
			 * unlock, drop our reference and retry looking for
 | 
						|
			 * other vmas.
 | 
						|
			 */
 | 
						|
			up_write(&vma_lock->rw_sema);
 | 
						|
			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * vma_lock is still attached to vma.  Check to see if vma
 | 
						|
		 * still maps page and if so, unmap.
 | 
						|
		 */
 | 
						|
		v_start = vma_offset_start(vma, start);
 | 
						|
		v_end = vma_offset_end(vma, end);
 | 
						|
		if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
 | 
						|
			unmap_hugepage_range(vma, vma->vm_start + v_start,
 | 
						|
						v_end, NULL,
 | 
						|
						ZAP_FLAG_DROP_MARKER);
 | 
						|
 | 
						|
		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 | 
						|
		hugetlb_vma_unlock_write(vma);
 | 
						|
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
 | 
						|
		      zap_flags_t zap_flags)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * end == 0 indicates that the entire range after start should be
 | 
						|
	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
 | 
						|
	 * an inclusive "last".
 | 
						|
	 */
 | 
						|
	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
 | 
						|
		unsigned long v_start;
 | 
						|
		unsigned long v_end;
 | 
						|
 | 
						|
		if (!hugetlb_vma_trylock_write(vma))
 | 
						|
			continue;
 | 
						|
 | 
						|
		v_start = vma_offset_start(vma, start);
 | 
						|
		v_end = vma_offset_end(vma, end);
 | 
						|
 | 
						|
		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
 | 
						|
				     NULL, zap_flags);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Note that vma lock only exists for shared/non-private
 | 
						|
		 * vmas.  Therefore, lock is not held when calling
 | 
						|
		 * unmap_hugepage_range for private vmas.
 | 
						|
		 */
 | 
						|
		hugetlb_vma_unlock_write(vma);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with hugetlb fault mutex held.
 | 
						|
 * Returns true if page was actually removed, false otherwise.
 | 
						|
 */
 | 
						|
static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
 | 
						|
					struct address_space *mapping,
 | 
						|
					struct folio *folio, pgoff_t index,
 | 
						|
					bool truncate_op)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If folio is mapped, it was faulted in after being
 | 
						|
	 * unmapped in caller.  Unmap (again) while holding
 | 
						|
	 * the fault mutex.  The mutex will prevent faults
 | 
						|
	 * until we finish removing the folio.
 | 
						|
	 */
 | 
						|
	if (unlikely(folio_mapped(folio)))
 | 
						|
		hugetlb_unmap_file_folio(h, mapping, folio, index);
 | 
						|
 | 
						|
	folio_lock(folio);
 | 
						|
	/*
 | 
						|
	 * We must remove the folio from page cache before removing
 | 
						|
	 * the region/ reserve map (hugetlb_unreserve_pages).  In
 | 
						|
	 * rare out of memory conditions, removal of the region/reserve
 | 
						|
	 * map could fail.  Correspondingly, the subpool and global
 | 
						|
	 * reserve usage count can need to be adjusted.
 | 
						|
	 */
 | 
						|
	VM_BUG_ON(HPageRestoreReserve(&folio->page));
 | 
						|
	hugetlb_delete_from_page_cache(&folio->page);
 | 
						|
	ret = true;
 | 
						|
	if (!truncate_op) {
 | 
						|
		if (unlikely(hugetlb_unreserve_pages(inode, index,
 | 
						|
							index + 1, 1)))
 | 
						|
			hugetlb_fix_reserve_counts(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	folio_unlock(folio);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * remove_inode_hugepages handles two distinct cases: truncation and hole
 | 
						|
 * punch.  There are subtle differences in operation for each case.
 | 
						|
 *
 | 
						|
 * truncation is indicated by end of range being LLONG_MAX
 | 
						|
 *	In this case, we first scan the range and release found pages.
 | 
						|
 *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
 | 
						|
 *	maps and global counts.  Page faults can race with truncation.
 | 
						|
 *	During faults, hugetlb_no_page() checks i_size before page allocation,
 | 
						|
 *	and again after obtaining page table lock.  It will 'back out'
 | 
						|
 *	allocations in the truncated range.
 | 
						|
 * hole punch is indicated if end is not LLONG_MAX
 | 
						|
 *	In the hole punch case we scan the range and release found pages.
 | 
						|
 *	Only when releasing a page is the associated region/reserve map
 | 
						|
 *	deleted.  The region/reserve map for ranges without associated
 | 
						|
 *	pages are not modified.  Page faults can race with hole punch.
 | 
						|
 *	This is indicated if we find a mapped page.
 | 
						|
 * Note: If the passed end of range value is beyond the end of file, but
 | 
						|
 * not LLONG_MAX this routine still performs a hole punch operation.
 | 
						|
 */
 | 
						|
static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 | 
						|
				   loff_t lend)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct address_space *mapping = &inode->i_data;
 | 
						|
	const pgoff_t start = lstart >> huge_page_shift(h);
 | 
						|
	const pgoff_t end = lend >> huge_page_shift(h);
 | 
						|
	struct folio_batch fbatch;
 | 
						|
	pgoff_t next, index;
 | 
						|
	int i, freed = 0;
 | 
						|
	bool truncate_op = (lend == LLONG_MAX);
 | 
						|
 | 
						|
	folio_batch_init(&fbatch);
 | 
						|
	next = start;
 | 
						|
	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
 | 
						|
		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
 | 
						|
			struct folio *folio = fbatch.folios[i];
 | 
						|
			u32 hash = 0;
 | 
						|
 | 
						|
			index = folio->index;
 | 
						|
			hash = hugetlb_fault_mutex_hash(mapping, index);
 | 
						|
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Remove folio that was part of folio_batch.
 | 
						|
			 */
 | 
						|
			if (remove_inode_single_folio(h, inode, mapping, folio,
 | 
						|
							index, truncate_op))
 | 
						|
				freed++;
 | 
						|
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
		}
 | 
						|
		folio_batch_release(&fbatch);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	if (truncate_op)
 | 
						|
		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_evict_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	struct resv_map *resv_map;
 | 
						|
 | 
						|
	remove_inode_hugepages(inode, 0, LLONG_MAX);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the resv_map from the address space embedded in the inode.
 | 
						|
	 * This is the address space which points to any resv_map allocated
 | 
						|
	 * at inode creation time.  If this is a device special inode,
 | 
						|
	 * i_mapping may not point to the original address space.
 | 
						|
	 */
 | 
						|
	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
 | 
						|
	/* Only regular and link inodes have associated reserve maps */
 | 
						|
	if (resv_map)
 | 
						|
		resv_map_release(&resv_map->refs);
 | 
						|
	clear_inode(inode);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 | 
						|
{
 | 
						|
	pgoff_t pgoff;
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
 | 
						|
	BUG_ON(offset & ~huge_page_mask(h));
 | 
						|
	pgoff = offset >> PAGE_SHIFT;
 | 
						|
 | 
						|
	i_size_write(inode, offset);
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | 
						|
		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
 | 
						|
				      ZAP_FLAG_DROP_MARKER);
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
	remove_inode_hugepages(inode, offset, LLONG_MAX);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_zero_partial_page(struct hstate *h,
 | 
						|
					struct address_space *mapping,
 | 
						|
					loff_t start,
 | 
						|
					loff_t end)
 | 
						|
{
 | 
						|
	pgoff_t idx = start >> huge_page_shift(h);
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	folio = filemap_lock_folio(mapping, idx);
 | 
						|
	if (!folio)
 | 
						|
		return;
 | 
						|
 | 
						|
	start = start & ~huge_page_mask(h);
 | 
						|
	end = end & ~huge_page_mask(h);
 | 
						|
	if (!end)
 | 
						|
		end = huge_page_size(h);
 | 
						|
 | 
						|
	folio_zero_segment(folio, (size_t)start, (size_t)end);
 | 
						|
 | 
						|
	folio_unlock(folio);
 | 
						|
	folio_put(folio);
 | 
						|
}
 | 
						|
 | 
						|
static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 | 
						|
{
 | 
						|
	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	loff_t hpage_size = huge_page_size(h);
 | 
						|
	loff_t hole_start, hole_end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hole_start and hole_end indicate the full pages within the hole.
 | 
						|
	 */
 | 
						|
	hole_start = round_up(offset, hpage_size);
 | 
						|
	hole_end = round_down(offset + len, hpage_size);
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
 | 
						|
	/* protected by i_rwsem */
 | 
						|
	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 | 
						|
		inode_unlock(inode);
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
 | 
						|
	/* If range starts before first full page, zero partial page. */
 | 
						|
	if (offset < hole_start)
 | 
						|
		hugetlbfs_zero_partial_page(h, mapping,
 | 
						|
				offset, min(offset + len, hole_start));
 | 
						|
 | 
						|
	/* Unmap users of full pages in the hole. */
 | 
						|
	if (hole_end > hole_start) {
 | 
						|
		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | 
						|
			hugetlb_vmdelete_list(&mapping->i_mmap,
 | 
						|
					      hole_start >> PAGE_SHIFT,
 | 
						|
					      hole_end >> PAGE_SHIFT, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	/* If range extends beyond last full page, zero partial page. */
 | 
						|
	if ((offset + len) > hole_end && (offset + len) > hole_start)
 | 
						|
		hugetlbfs_zero_partial_page(h, mapping,
 | 
						|
				hole_end, offset + len);
 | 
						|
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
 | 
						|
	/* Remove full pages from the file. */
 | 
						|
	if (hole_end > hole_start)
 | 
						|
		remove_inode_hugepages(inode, hole_start, hole_end);
 | 
						|
 | 
						|
	inode_unlock(inode);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 | 
						|
				loff_t len)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct vm_area_struct pseudo_vma;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
	loff_t hpage_size = huge_page_size(h);
 | 
						|
	unsigned long hpage_shift = huge_page_shift(h);
 | 
						|
	pgoff_t start, index, end;
 | 
						|
	int error;
 | 
						|
	u32 hash;
 | 
						|
 | 
						|
	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (mode & FALLOC_FL_PUNCH_HOLE)
 | 
						|
		return hugetlbfs_punch_hole(inode, offset, len);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Default preallocate case.
 | 
						|
	 * For this range, start is rounded down and end is rounded up
 | 
						|
	 * as well as being converted to page offsets.
 | 
						|
	 */
 | 
						|
	start = offset >> hpage_shift;
 | 
						|
	end = (offset + len + hpage_size - 1) >> hpage_shift;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
 | 
						|
	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 | 
						|
	error = inode_newsize_ok(inode, offset + len);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 | 
						|
		error = -EPERM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize a pseudo vma as this is required by the huge page
 | 
						|
	 * allocation routines.  If NUMA is configured, use page index
 | 
						|
	 * as input to create an allocation policy.
 | 
						|
	 */
 | 
						|
	vma_init(&pseudo_vma, mm);
 | 
						|
	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 | 
						|
	pseudo_vma.vm_file = file;
 | 
						|
 | 
						|
	for (index = start; index < end; index++) {
 | 
						|
		/*
 | 
						|
		 * This is supposed to be the vaddr where the page is being
 | 
						|
		 * faulted in, but we have no vaddr here.
 | 
						|
		 */
 | 
						|
		struct page *page;
 | 
						|
		unsigned long addr;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * fallocate(2) manpage permits EINTR; we may have been
 | 
						|
		 * interrupted because we are using up too much memory.
 | 
						|
		 */
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			error = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Set numa allocation policy based on index */
 | 
						|
		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 | 
						|
 | 
						|
		/* addr is the offset within the file (zero based) */
 | 
						|
		addr = index * hpage_size;
 | 
						|
 | 
						|
		/* mutex taken here, fault path and hole punch */
 | 
						|
		hash = hugetlb_fault_mutex_hash(mapping, index);
 | 
						|
		mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
		/* See if already present in mapping to avoid alloc/free */
 | 
						|
		page = find_get_page(mapping, index);
 | 
						|
		if (page) {
 | 
						|
			put_page(page);
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			hugetlb_drop_vma_policy(&pseudo_vma);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allocate page without setting the avoid_reserve argument.
 | 
						|
		 * There certainly are no reserves associated with the
 | 
						|
		 * pseudo_vma.  However, there could be shared mappings with
 | 
						|
		 * reserves for the file at the inode level.  If we fallocate
 | 
						|
		 * pages in these areas, we need to consume the reserves
 | 
						|
		 * to keep reservation accounting consistent.
 | 
						|
		 */
 | 
						|
		page = alloc_huge_page(&pseudo_vma, addr, 0);
 | 
						|
		hugetlb_drop_vma_policy(&pseudo_vma);
 | 
						|
		if (IS_ERR(page)) {
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			error = PTR_ERR(page);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		clear_huge_page(page, addr, pages_per_huge_page(h));
 | 
						|
		__SetPageUptodate(page);
 | 
						|
		error = hugetlb_add_to_page_cache(page, mapping, index);
 | 
						|
		if (unlikely(error)) {
 | 
						|
			restore_reserve_on_error(h, &pseudo_vma, addr, page);
 | 
						|
			put_page(page);
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
		SetHPageMigratable(page);
 | 
						|
		/*
 | 
						|
		 * unlock_page because locked by hugetlb_add_to_page_cache()
 | 
						|
		 * put_page() due to reference from alloc_huge_page()
 | 
						|
		 */
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 | 
						|
		i_size_write(inode, offset + len);
 | 
						|
	inode->i_ctime = current_time(inode);
 | 
						|
out:
 | 
						|
	inode_unlock(inode);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
 | 
						|
			     struct dentry *dentry, struct iattr *attr)
 | 
						|
{
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	int error;
 | 
						|
	unsigned int ia_valid = attr->ia_valid;
 | 
						|
	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | 
						|
 | 
						|
	error = setattr_prepare(&init_user_ns, dentry, attr);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	if (ia_valid & ATTR_SIZE) {
 | 
						|
		loff_t oldsize = inode->i_size;
 | 
						|
		loff_t newsize = attr->ia_size;
 | 
						|
 | 
						|
		if (newsize & ~huge_page_mask(h))
 | 
						|
			return -EINVAL;
 | 
						|
		/* protected by i_rwsem */
 | 
						|
		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 | 
						|
		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 | 
						|
			return -EPERM;
 | 
						|
		hugetlb_vmtruncate(inode, newsize);
 | 
						|
	}
 | 
						|
 | 
						|
	setattr_copy(&init_user_ns, inode, attr);
 | 
						|
	mark_inode_dirty(inode);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct inode *hugetlbfs_get_root(struct super_block *sb,
 | 
						|
					struct hugetlbfs_fs_context *ctx)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(sb);
 | 
						|
	if (inode) {
 | 
						|
		inode->i_ino = get_next_ino();
 | 
						|
		inode->i_mode = S_IFDIR | ctx->mode;
 | 
						|
		inode->i_uid = ctx->uid;
 | 
						|
		inode->i_gid = ctx->gid;
 | 
						|
		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 | 
						|
		inode->i_op = &hugetlbfs_dir_inode_operations;
 | 
						|
		inode->i_fop = &simple_dir_operations;
 | 
						|
		/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | 
						|
		inc_nlink(inode);
 | 
						|
		lockdep_annotate_inode_mutex_key(inode);
 | 
						|
	}
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 | 
						|
 * be taken from reclaim -- unlike regular filesystems. This needs an
 | 
						|
 * annotation because huge_pmd_share() does an allocation under hugetlb's
 | 
						|
 * i_mmap_rwsem.
 | 
						|
 */
 | 
						|
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 | 
						|
 | 
						|
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 | 
						|
					struct inode *dir,
 | 
						|
					umode_t mode, dev_t dev)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
	struct resv_map *resv_map = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reserve maps are only needed for inodes that can have associated
 | 
						|
	 * page allocations.
 | 
						|
	 */
 | 
						|
	if (S_ISREG(mode) || S_ISLNK(mode)) {
 | 
						|
		resv_map = resv_map_alloc();
 | 
						|
		if (!resv_map)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	inode = new_inode(sb);
 | 
						|
	if (inode) {
 | 
						|
		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | 
						|
 | 
						|
		inode->i_ino = get_next_ino();
 | 
						|
		inode_init_owner(&init_user_ns, inode, dir, mode);
 | 
						|
		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 | 
						|
				&hugetlbfs_i_mmap_rwsem_key);
 | 
						|
		inode->i_mapping->a_ops = &hugetlbfs_aops;
 | 
						|
		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 | 
						|
		inode->i_mapping->private_data = resv_map;
 | 
						|
		info->seals = F_SEAL_SEAL;
 | 
						|
		switch (mode & S_IFMT) {
 | 
						|
		default:
 | 
						|
			init_special_inode(inode, mode, dev);
 | 
						|
			break;
 | 
						|
		case S_IFREG:
 | 
						|
			inode->i_op = &hugetlbfs_inode_operations;
 | 
						|
			inode->i_fop = &hugetlbfs_file_operations;
 | 
						|
			break;
 | 
						|
		case S_IFDIR:
 | 
						|
			inode->i_op = &hugetlbfs_dir_inode_operations;
 | 
						|
			inode->i_fop = &simple_dir_operations;
 | 
						|
 | 
						|
			/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | 
						|
			inc_nlink(inode);
 | 
						|
			break;
 | 
						|
		case S_IFLNK:
 | 
						|
			inode->i_op = &page_symlink_inode_operations;
 | 
						|
			inode_nohighmem(inode);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		lockdep_annotate_inode_mutex_key(inode);
 | 
						|
	} else {
 | 
						|
		if (resv_map)
 | 
						|
			kref_put(&resv_map->refs, resv_map_release);
 | 
						|
	}
 | 
						|
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * File creation. Allocate an inode, and we're done..
 | 
						|
 */
 | 
						|
static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
			   struct dentry *dentry, umode_t mode, dev_t dev)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOSPC;
 | 
						|
	dir->i_ctime = dir->i_mtime = current_time(dir);
 | 
						|
	d_instantiate(dentry, inode);
 | 
						|
	dget(dentry);/* Extra count - pin the dentry in core */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
			   struct dentry *dentry, umode_t mode)
 | 
						|
{
 | 
						|
	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
 | 
						|
				     mode | S_IFDIR, 0);
 | 
						|
	if (!retval)
 | 
						|
		inc_nlink(dir);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_create(struct user_namespace *mnt_userns,
 | 
						|
			    struct inode *dir, struct dentry *dentry,
 | 
						|
			    umode_t mode, bool excl)
 | 
						|
{
 | 
						|
	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
 | 
						|
			     struct inode *dir, struct file *file,
 | 
						|
			     umode_t mode)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOSPC;
 | 
						|
	dir->i_ctime = dir->i_mtime = current_time(dir);
 | 
						|
	d_tmpfile(file, inode);
 | 
						|
	return finish_open_simple(file, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
 | 
						|
			     struct inode *dir, struct dentry *dentry,
 | 
						|
			     const char *symname)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
	int error = -ENOSPC;
 | 
						|
 | 
						|
	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 | 
						|
	if (inode) {
 | 
						|
		int l = strlen(symname)+1;
 | 
						|
		error = page_symlink(inode, symname, l);
 | 
						|
		if (!error) {
 | 
						|
			d_instantiate(dentry, inode);
 | 
						|
			dget(dentry);
 | 
						|
		} else
 | 
						|
			iput(inode);
 | 
						|
	}
 | 
						|
	dir->i_ctime = dir->i_mtime = current_time(dir);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
static int hugetlbfs_migrate_folio(struct address_space *mapping,
 | 
						|
				struct folio *dst, struct folio *src,
 | 
						|
				enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = migrate_huge_page_move_mapping(mapping, dst, src);
 | 
						|
	if (rc != MIGRATEPAGE_SUCCESS)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	if (hugetlb_page_subpool(&src->page)) {
 | 
						|
		hugetlb_set_page_subpool(&dst->page,
 | 
						|
					hugetlb_page_subpool(&src->page));
 | 
						|
		hugetlb_set_page_subpool(&src->page, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (mode != MIGRATE_SYNC_NO_COPY)
 | 
						|
		folio_migrate_copy(dst, src);
 | 
						|
	else
 | 
						|
		folio_migrate_flags(dst, src);
 | 
						|
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
#else
 | 
						|
#define hugetlbfs_migrate_folio NULL
 | 
						|
#endif
 | 
						|
 | 
						|
static int hugetlbfs_error_remove_page(struct address_space *mapping,
 | 
						|
				struct page *page)
 | 
						|
{
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	pgoff_t index = page->index;
 | 
						|
 | 
						|
	hugetlb_delete_from_page_cache(page);
 | 
						|
	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 | 
						|
		hugetlb_fix_reserve_counts(inode);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Display the mount options in /proc/mounts.
 | 
						|
 */
 | 
						|
static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 | 
						|
{
 | 
						|
	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 | 
						|
	struct hugepage_subpool *spool = sbinfo->spool;
 | 
						|
	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 | 
						|
	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 | 
						|
	char mod;
 | 
						|
 | 
						|
	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 | 
						|
		seq_printf(m, ",uid=%u",
 | 
						|
			   from_kuid_munged(&init_user_ns, sbinfo->uid));
 | 
						|
	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 | 
						|
		seq_printf(m, ",gid=%u",
 | 
						|
			   from_kgid_munged(&init_user_ns, sbinfo->gid));
 | 
						|
	if (sbinfo->mode != 0755)
 | 
						|
		seq_printf(m, ",mode=%o", sbinfo->mode);
 | 
						|
	if (sbinfo->max_inodes != -1)
 | 
						|
		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 | 
						|
 | 
						|
	hpage_size /= 1024;
 | 
						|
	mod = 'K';
 | 
						|
	if (hpage_size >= 1024) {
 | 
						|
		hpage_size /= 1024;
 | 
						|
		mod = 'M';
 | 
						|
	}
 | 
						|
	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 | 
						|
	if (spool) {
 | 
						|
		if (spool->max_hpages != -1)
 | 
						|
			seq_printf(m, ",size=%llu",
 | 
						|
				   (unsigned long long)spool->max_hpages << hpage_shift);
 | 
						|
		if (spool->min_hpages != -1)
 | 
						|
			seq_printf(m, ",min_size=%llu",
 | 
						|
				   (unsigned long long)spool->min_hpages << hpage_shift);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 | 
						|
{
 | 
						|
	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 | 
						|
	struct hstate *h = hstate_inode(d_inode(dentry));
 | 
						|
 | 
						|
	buf->f_type = HUGETLBFS_MAGIC;
 | 
						|
	buf->f_bsize = huge_page_size(h);
 | 
						|
	if (sbinfo) {
 | 
						|
		spin_lock(&sbinfo->stat_lock);
 | 
						|
		/* If no limits set, just report 0 or -1 for max/free/used
 | 
						|
		 * blocks, like simple_statfs() */
 | 
						|
		if (sbinfo->spool) {
 | 
						|
			long free_pages;
 | 
						|
 | 
						|
			spin_lock_irq(&sbinfo->spool->lock);
 | 
						|
			buf->f_blocks = sbinfo->spool->max_hpages;
 | 
						|
			free_pages = sbinfo->spool->max_hpages
 | 
						|
				- sbinfo->spool->used_hpages;
 | 
						|
			buf->f_bavail = buf->f_bfree = free_pages;
 | 
						|
			spin_unlock_irq(&sbinfo->spool->lock);
 | 
						|
			buf->f_files = sbinfo->max_inodes;
 | 
						|
			buf->f_ffree = sbinfo->free_inodes;
 | 
						|
		}
 | 
						|
		spin_unlock(&sbinfo->stat_lock);
 | 
						|
	}
 | 
						|
	buf->f_namelen = NAME_MAX;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_put_super(struct super_block *sb)
 | 
						|
{
 | 
						|
	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 | 
						|
 | 
						|
	if (sbi) {
 | 
						|
		sb->s_fs_info = NULL;
 | 
						|
 | 
						|
		if (sbi->spool)
 | 
						|
			hugepage_put_subpool(sbi->spool);
 | 
						|
 | 
						|
		kfree(sbi);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | 
						|
{
 | 
						|
	if (sbinfo->free_inodes >= 0) {
 | 
						|
		spin_lock(&sbinfo->stat_lock);
 | 
						|
		if (unlikely(!sbinfo->free_inodes)) {
 | 
						|
			spin_unlock(&sbinfo->stat_lock);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		sbinfo->free_inodes--;
 | 
						|
		spin_unlock(&sbinfo->stat_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | 
						|
{
 | 
						|
	if (sbinfo->free_inodes >= 0) {
 | 
						|
		spin_lock(&sbinfo->stat_lock);
 | 
						|
		sbinfo->free_inodes++;
 | 
						|
		spin_unlock(&sbinfo->stat_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static struct kmem_cache *hugetlbfs_inode_cachep;
 | 
						|
 | 
						|
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 | 
						|
{
 | 
						|
	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 | 
						|
	struct hugetlbfs_inode_info *p;
 | 
						|
 | 
						|
	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 | 
						|
		return NULL;
 | 
						|
	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
 | 
						|
	if (unlikely(!p)) {
 | 
						|
		hugetlbfs_inc_free_inodes(sbinfo);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Any time after allocation, hugetlbfs_destroy_inode can be called
 | 
						|
	 * for the inode.  mpol_free_shared_policy is unconditionally called
 | 
						|
	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
 | 
						|
	 * in case of a quick call to destroy.
 | 
						|
	 *
 | 
						|
	 * Note that the policy is initialized even if we are creating a
 | 
						|
	 * private inode.  This simplifies hugetlbfs_destroy_inode.
 | 
						|
	 */
 | 
						|
	mpol_shared_policy_init(&p->policy, NULL);
 | 
						|
 | 
						|
	return &p->vfs_inode;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_free_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_destroy_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
 | 
						|
	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
 | 
						|
}
 | 
						|
 | 
						|
static const struct address_space_operations hugetlbfs_aops = {
 | 
						|
	.write_begin	= hugetlbfs_write_begin,
 | 
						|
	.write_end	= hugetlbfs_write_end,
 | 
						|
	.dirty_folio	= noop_dirty_folio,
 | 
						|
	.migrate_folio  = hugetlbfs_migrate_folio,
 | 
						|
	.error_remove_page	= hugetlbfs_error_remove_page,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static void init_once(void *foo)
 | 
						|
{
 | 
						|
	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
 | 
						|
 | 
						|
	inode_init_once(&ei->vfs_inode);
 | 
						|
}
 | 
						|
 | 
						|
const struct file_operations hugetlbfs_file_operations = {
 | 
						|
	.read_iter		= hugetlbfs_read_iter,
 | 
						|
	.mmap			= hugetlbfs_file_mmap,
 | 
						|
	.fsync			= noop_fsync,
 | 
						|
	.get_unmapped_area	= hugetlb_get_unmapped_area,
 | 
						|
	.llseek			= default_llseek,
 | 
						|
	.fallocate		= hugetlbfs_fallocate,
 | 
						|
};
 | 
						|
 | 
						|
static const struct inode_operations hugetlbfs_dir_inode_operations = {
 | 
						|
	.create		= hugetlbfs_create,
 | 
						|
	.lookup		= simple_lookup,
 | 
						|
	.link		= simple_link,
 | 
						|
	.unlink		= simple_unlink,
 | 
						|
	.symlink	= hugetlbfs_symlink,
 | 
						|
	.mkdir		= hugetlbfs_mkdir,
 | 
						|
	.rmdir		= simple_rmdir,
 | 
						|
	.mknod		= hugetlbfs_mknod,
 | 
						|
	.rename		= simple_rename,
 | 
						|
	.setattr	= hugetlbfs_setattr,
 | 
						|
	.tmpfile	= hugetlbfs_tmpfile,
 | 
						|
};
 | 
						|
 | 
						|
static const struct inode_operations hugetlbfs_inode_operations = {
 | 
						|
	.setattr	= hugetlbfs_setattr,
 | 
						|
};
 | 
						|
 | 
						|
static const struct super_operations hugetlbfs_ops = {
 | 
						|
	.alloc_inode    = hugetlbfs_alloc_inode,
 | 
						|
	.free_inode     = hugetlbfs_free_inode,
 | 
						|
	.destroy_inode  = hugetlbfs_destroy_inode,
 | 
						|
	.evict_inode	= hugetlbfs_evict_inode,
 | 
						|
	.statfs		= hugetlbfs_statfs,
 | 
						|
	.put_super	= hugetlbfs_put_super,
 | 
						|
	.show_options	= hugetlbfs_show_options,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert size option passed from command line to number of huge pages
 | 
						|
 * in the pool specified by hstate.  Size option could be in bytes
 | 
						|
 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
 | 
						|
 */
 | 
						|
static long
 | 
						|
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
 | 
						|
			 enum hugetlbfs_size_type val_type)
 | 
						|
{
 | 
						|
	if (val_type == NO_SIZE)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	if (val_type == SIZE_PERCENT) {
 | 
						|
		size_opt <<= huge_page_shift(h);
 | 
						|
		size_opt *= h->max_huge_pages;
 | 
						|
		do_div(size_opt, 100);
 | 
						|
	}
 | 
						|
 | 
						|
	size_opt >>= huge_page_shift(h);
 | 
						|
	return size_opt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Parse one mount parameter.
 | 
						|
 */
 | 
						|
static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | 
						|
{
 | 
						|
	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | 
						|
	struct fs_parse_result result;
 | 
						|
	char *rest;
 | 
						|
	unsigned long ps;
 | 
						|
	int opt;
 | 
						|
 | 
						|
	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
 | 
						|
	if (opt < 0)
 | 
						|
		return opt;
 | 
						|
 | 
						|
	switch (opt) {
 | 
						|
	case Opt_uid:
 | 
						|
		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
 | 
						|
		if (!uid_valid(ctx->uid))
 | 
						|
			goto bad_val;
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_gid:
 | 
						|
		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
 | 
						|
		if (!gid_valid(ctx->gid))
 | 
						|
			goto bad_val;
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_mode:
 | 
						|
		ctx->mode = result.uint_32 & 01777U;
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_size:
 | 
						|
		/* memparse() will accept a K/M/G without a digit */
 | 
						|
		if (!isdigit(param->string[0]))
 | 
						|
			goto bad_val;
 | 
						|
		ctx->max_size_opt = memparse(param->string, &rest);
 | 
						|
		ctx->max_val_type = SIZE_STD;
 | 
						|
		if (*rest == '%')
 | 
						|
			ctx->max_val_type = SIZE_PERCENT;
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_nr_inodes:
 | 
						|
		/* memparse() will accept a K/M/G without a digit */
 | 
						|
		if (!isdigit(param->string[0]))
 | 
						|
			goto bad_val;
 | 
						|
		ctx->nr_inodes = memparse(param->string, &rest);
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_pagesize:
 | 
						|
		ps = memparse(param->string, &rest);
 | 
						|
		ctx->hstate = size_to_hstate(ps);
 | 
						|
		if (!ctx->hstate) {
 | 
						|
			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case Opt_min_size:
 | 
						|
		/* memparse() will accept a K/M/G without a digit */
 | 
						|
		if (!isdigit(param->string[0]))
 | 
						|
			goto bad_val;
 | 
						|
		ctx->min_size_opt = memparse(param->string, &rest);
 | 
						|
		ctx->min_val_type = SIZE_STD;
 | 
						|
		if (*rest == '%')
 | 
						|
			ctx->min_val_type = SIZE_PERCENT;
 | 
						|
		return 0;
 | 
						|
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
bad_val:
 | 
						|
	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
 | 
						|
		      param->string, param->key);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate the parsed options.
 | 
						|
 */
 | 
						|
static int hugetlbfs_validate(struct fs_context *fc)
 | 
						|
{
 | 
						|
	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use huge page pool size (in hstate) to convert the size
 | 
						|
	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
 | 
						|
	 */
 | 
						|
	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | 
						|
						   ctx->max_size_opt,
 | 
						|
						   ctx->max_val_type);
 | 
						|
	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | 
						|
						   ctx->min_size_opt,
 | 
						|
						   ctx->min_val_type);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If max_size was specified, then min_size must be smaller
 | 
						|
	 */
 | 
						|
	if (ctx->max_val_type > NO_SIZE &&
 | 
						|
	    ctx->min_hpages > ctx->max_hpages) {
 | 
						|
		pr_err("Minimum size can not be greater than maximum size\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
 | 
						|
{
 | 
						|
	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | 
						|
	struct hugetlbfs_sb_info *sbinfo;
 | 
						|
 | 
						|
	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
 | 
						|
	if (!sbinfo)
 | 
						|
		return -ENOMEM;
 | 
						|
	sb->s_fs_info = sbinfo;
 | 
						|
	spin_lock_init(&sbinfo->stat_lock);
 | 
						|
	sbinfo->hstate		= ctx->hstate;
 | 
						|
	sbinfo->max_inodes	= ctx->nr_inodes;
 | 
						|
	sbinfo->free_inodes	= ctx->nr_inodes;
 | 
						|
	sbinfo->spool		= NULL;
 | 
						|
	sbinfo->uid		= ctx->uid;
 | 
						|
	sbinfo->gid		= ctx->gid;
 | 
						|
	sbinfo->mode		= ctx->mode;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize subpool if maximum or minimum size is
 | 
						|
	 * specified.  Any needed reservations (for minimum size) are taken
 | 
						|
	 * when the subpool is created.
 | 
						|
	 */
 | 
						|
	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
 | 
						|
		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
 | 
						|
						     ctx->max_hpages,
 | 
						|
						     ctx->min_hpages);
 | 
						|
		if (!sbinfo->spool)
 | 
						|
			goto out_free;
 | 
						|
	}
 | 
						|
	sb->s_maxbytes = MAX_LFS_FILESIZE;
 | 
						|
	sb->s_blocksize = huge_page_size(ctx->hstate);
 | 
						|
	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
 | 
						|
	sb->s_magic = HUGETLBFS_MAGIC;
 | 
						|
	sb->s_op = &hugetlbfs_ops;
 | 
						|
	sb->s_time_gran = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to the special and limited functionality of hugetlbfs, it does
 | 
						|
	 * not work well as a stacking filesystem.
 | 
						|
	 */
 | 
						|
	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
 | 
						|
	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
 | 
						|
	if (!sb->s_root)
 | 
						|
		goto out_free;
 | 
						|
	return 0;
 | 
						|
out_free:
 | 
						|
	kfree(sbinfo->spool);
 | 
						|
	kfree(sbinfo);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlbfs_get_tree(struct fs_context *fc)
 | 
						|
{
 | 
						|
	int err = hugetlbfs_validate(fc);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	return get_tree_nodev(fc, hugetlbfs_fill_super);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlbfs_fs_context_free(struct fs_context *fc)
 | 
						|
{
 | 
						|
	kfree(fc->fs_private);
 | 
						|
}
 | 
						|
 | 
						|
static const struct fs_context_operations hugetlbfs_fs_context_ops = {
 | 
						|
	.free		= hugetlbfs_fs_context_free,
 | 
						|
	.parse_param	= hugetlbfs_parse_param,
 | 
						|
	.get_tree	= hugetlbfs_get_tree,
 | 
						|
};
 | 
						|
 | 
						|
static int hugetlbfs_init_fs_context(struct fs_context *fc)
 | 
						|
{
 | 
						|
	struct hugetlbfs_fs_context *ctx;
 | 
						|
 | 
						|
	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
 | 
						|
	if (!ctx)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ctx->max_hpages	= -1; /* No limit on size by default */
 | 
						|
	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
 | 
						|
	ctx->uid	= current_fsuid();
 | 
						|
	ctx->gid	= current_fsgid();
 | 
						|
	ctx->mode	= 0755;
 | 
						|
	ctx->hstate	= &default_hstate;
 | 
						|
	ctx->min_hpages	= -1; /* No default minimum size */
 | 
						|
	ctx->max_val_type = NO_SIZE;
 | 
						|
	ctx->min_val_type = NO_SIZE;
 | 
						|
	fc->fs_private = ctx;
 | 
						|
	fc->ops	= &hugetlbfs_fs_context_ops;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct file_system_type hugetlbfs_fs_type = {
 | 
						|
	.name			= "hugetlbfs",
 | 
						|
	.init_fs_context	= hugetlbfs_init_fs_context,
 | 
						|
	.parameters		= hugetlb_fs_parameters,
 | 
						|
	.kill_sb		= kill_litter_super,
 | 
						|
};
 | 
						|
 | 
						|
static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
 | 
						|
 | 
						|
static int can_do_hugetlb_shm(void)
 | 
						|
{
 | 
						|
	kgid_t shm_group;
 | 
						|
	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
 | 
						|
	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
 | 
						|
}
 | 
						|
 | 
						|
static int get_hstate_idx(int page_size_log)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_sizelog(page_size_log);
 | 
						|
 | 
						|
	if (!h)
 | 
						|
		return -1;
 | 
						|
	return hstate_index(h);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note that size should be aligned to proper hugepage size in caller side,
 | 
						|
 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
 | 
						|
 */
 | 
						|
struct file *hugetlb_file_setup(const char *name, size_t size,
 | 
						|
				vm_flags_t acctflag, int creat_flags,
 | 
						|
				int page_size_log)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
	struct vfsmount *mnt;
 | 
						|
	int hstate_idx;
 | 
						|
	struct file *file;
 | 
						|
 | 
						|
	hstate_idx = get_hstate_idx(page_size_log);
 | 
						|
	if (hstate_idx < 0)
 | 
						|
		return ERR_PTR(-ENODEV);
 | 
						|
 | 
						|
	mnt = hugetlbfs_vfsmount[hstate_idx];
 | 
						|
	if (!mnt)
 | 
						|
		return ERR_PTR(-ENOENT);
 | 
						|
 | 
						|
	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
 | 
						|
		struct ucounts *ucounts = current_ucounts();
 | 
						|
 | 
						|
		if (user_shm_lock(size, ucounts)) {
 | 
						|
			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
 | 
						|
				current->comm, current->pid);
 | 
						|
			user_shm_unlock(size, ucounts);
 | 
						|
		}
 | 
						|
		return ERR_PTR(-EPERM);
 | 
						|
	}
 | 
						|
 | 
						|
	file = ERR_PTR(-ENOSPC);
 | 
						|
	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
 | 
						|
	if (!inode)
 | 
						|
		goto out;
 | 
						|
	if (creat_flags == HUGETLB_SHMFS_INODE)
 | 
						|
		inode->i_flags |= S_PRIVATE;
 | 
						|
 | 
						|
	inode->i_size = size;
 | 
						|
	clear_nlink(inode);
 | 
						|
 | 
						|
	if (!hugetlb_reserve_pages(inode, 0,
 | 
						|
			size >> huge_page_shift(hstate_inode(inode)), NULL,
 | 
						|
			acctflag))
 | 
						|
		file = ERR_PTR(-ENOMEM);
 | 
						|
	else
 | 
						|
		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
 | 
						|
					&hugetlbfs_file_operations);
 | 
						|
	if (!IS_ERR(file))
 | 
						|
		return file;
 | 
						|
 | 
						|
	iput(inode);
 | 
						|
out:
 | 
						|
	return file;
 | 
						|
}
 | 
						|
 | 
						|
static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
 | 
						|
{
 | 
						|
	struct fs_context *fc;
 | 
						|
	struct vfsmount *mnt;
 | 
						|
 | 
						|
	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
 | 
						|
	if (IS_ERR(fc)) {
 | 
						|
		mnt = ERR_CAST(fc);
 | 
						|
	} else {
 | 
						|
		struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | 
						|
		ctx->hstate = h;
 | 
						|
		mnt = fc_mount(fc);
 | 
						|
		put_fs_context(fc);
 | 
						|
	}
 | 
						|
	if (IS_ERR(mnt))
 | 
						|
		pr_err("Cannot mount internal hugetlbfs for page size %luK",
 | 
						|
		       huge_page_size(h) / SZ_1K);
 | 
						|
	return mnt;
 | 
						|
}
 | 
						|
 | 
						|
static int __init init_hugetlbfs_fs(void)
 | 
						|
{
 | 
						|
	struct vfsmount *mnt;
 | 
						|
	struct hstate *h;
 | 
						|
	int error;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!hugepages_supported()) {
 | 
						|
		pr_info("disabling because there are no supported hugepage sizes\n");
 | 
						|
		return -ENOTSUPP;
 | 
						|
	}
 | 
						|
 | 
						|
	error = -ENOMEM;
 | 
						|
	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
 | 
						|
					sizeof(struct hugetlbfs_inode_info),
 | 
						|
					0, SLAB_ACCOUNT, init_once);
 | 
						|
	if (hugetlbfs_inode_cachep == NULL)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = register_filesystem(&hugetlbfs_fs_type);
 | 
						|
	if (error)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	/* default hstate mount is required */
 | 
						|
	mnt = mount_one_hugetlbfs(&default_hstate);
 | 
						|
	if (IS_ERR(mnt)) {
 | 
						|
		error = PTR_ERR(mnt);
 | 
						|
		goto out_unreg;
 | 
						|
	}
 | 
						|
	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
 | 
						|
 | 
						|
	/* other hstates are optional */
 | 
						|
	i = 0;
 | 
						|
	for_each_hstate(h) {
 | 
						|
		if (i == default_hstate_idx) {
 | 
						|
			i++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		mnt = mount_one_hugetlbfs(h);
 | 
						|
		if (IS_ERR(mnt))
 | 
						|
			hugetlbfs_vfsmount[i] = NULL;
 | 
						|
		else
 | 
						|
			hugetlbfs_vfsmount[i] = mnt;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 out_unreg:
 | 
						|
	(void)unregister_filesystem(&hugetlbfs_fs_type);
 | 
						|
 out_free:
 | 
						|
	kmem_cache_destroy(hugetlbfs_inode_cachep);
 | 
						|
 out:
 | 
						|
	return error;
 | 
						|
}
 | 
						|
fs_initcall(init_hugetlbfs_fs)
 |