mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 44e4e0297c
			
		
	
	
		44e4e0297c
		
	
	
	
	
		
			
			Track the blocked-on relation for mutexes, to allow following this
relation at schedule time.
   task
     | blocked-on
     v
   mutex
     | owner
     v
   task
This all will be used for tracking blocked-task/mutex chains
with the prox-execution patch in a similar fashion to how
priority inheritance is done with rt_mutexes.
For serialization, blocked-on is only set by the task itself
(current). And both when setting or clearing (potentially by
others), is done while holding the mutex::wait_lock.
[minor changes while rebasing]
[jstultz: Fix blocked_on tracking in __mutex_lock_common in error paths]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lkml.kernel.org/r/20250712033407.2383110-3-jstultz@google.com
		
	
			
		
			
				
	
	
		
			3239 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3239 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/kernel/fork.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  'fork.c' contains the help-routines for the 'fork' system call
 | |
|  * (see also entry.S and others).
 | |
|  * Fork is rather simple, once you get the hang of it, but the memory
 | |
|  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 | |
|  */
 | |
| 
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/autogroup.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/user.h>
 | |
| #include <linux/sched/numa_balancing.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/sched/ext.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/rtmutex.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/sem.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/kmsan.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/seccomp.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/syscall_user_dispatch.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/futex.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/taskstats_kern.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/signalfd.h>
 | |
| #include <linux/uprobes.h>
 | |
| #include <linux/aio.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/kcov.h>
 | |
| #include <linux/livepatch.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/stackleak.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/scs.h>
 | |
| #include <linux/io_uring.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/stackprotector.h>
 | |
| #include <linux/user_events.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/rseq.h>
 | |
| #include <uapi/linux/pidfd.h>
 | |
| #include <linux/pidfs.h>
 | |
| #include <linux/tick.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| /* For dup_mmap(). */
 | |
| #include "../mm/internal.h"
 | |
| 
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/task.h>
 | |
| 
 | |
| #include <kunit/visibility.h>
 | |
| 
 | |
| /*
 | |
|  * Minimum number of threads to boot the kernel
 | |
|  */
 | |
| #define MIN_THREADS 20
 | |
| 
 | |
| /*
 | |
|  * Maximum number of threads
 | |
|  */
 | |
| #define MAX_THREADS FUTEX_TID_MASK
 | |
| 
 | |
| /*
 | |
|  * Protected counters by write_lock_irq(&tasklist_lock)
 | |
|  */
 | |
| unsigned long total_forks;	/* Handle normal Linux uptimes. */
 | |
| int nr_threads;			/* The idle threads do not count.. */
 | |
| 
 | |
| static int max_threads;		/* tunable limit on nr_threads */
 | |
| 
 | |
| #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 | |
| 
 | |
| static const char * const resident_page_types[] = {
 | |
| 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 | |
| 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 | |
| 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 | |
| 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 | |
| };
 | |
| 
 | |
| DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 | |
| 
 | |
| __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 | |
| 
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| int lockdep_tasklist_lock_is_held(void)
 | |
| {
 | |
| 	return lockdep_is_held(&tasklist_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 | |
| #endif /* #ifdef CONFIG_PROVE_RCU */
 | |
| 
 | |
| int nr_processes(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int total = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		total += per_cpu(process_counts, cpu);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| void __weak arch_release_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *task_struct_cachep;
 | |
| 
 | |
| static inline struct task_struct *alloc_task_struct_node(int node)
 | |
| {
 | |
| 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 | |
| }
 | |
| 
 | |
| static inline void free_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| 	kmem_cache_free(task_struct_cachep, tsk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 | |
|  * kmemcache based allocator.
 | |
|  */
 | |
| # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 | |
| 
 | |
| #  ifdef CONFIG_VMAP_STACK
 | |
| /*
 | |
|  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 | |
|  * flush.  Try to minimize the number of calls by caching stacks.
 | |
|  */
 | |
| #define NR_CACHED_STACKS 2
 | |
| static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 | |
| 
 | |
| struct vm_stack {
 | |
| 	struct rcu_head rcu;
 | |
| 	struct vm_struct *stack_vm_area;
 | |
| };
 | |
| 
 | |
| static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_CACHED_STACKS; i++) {
 | |
| 		struct vm_struct *tmp = NULL;
 | |
| 
 | |
| 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void thread_stack_free_rcu(struct rcu_head *rh)
 | |
| {
 | |
| 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 | |
| 
 | |
| 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 | |
| 		return;
 | |
| 
 | |
| 	vfree(vm_stack);
 | |
| }
 | |
| 
 | |
| static void thread_stack_delayed_free(struct task_struct *tsk)
 | |
| {
 | |
| 	struct vm_stack *vm_stack = tsk->stack;
 | |
| 
 | |
| 	vm_stack->stack_vm_area = tsk->stack_vm_area;
 | |
| 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 | |
| }
 | |
| 
 | |
| static int free_vm_stack_cache(unsigned int cpu)
 | |
| {
 | |
| 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_CACHED_STACKS; i++) {
 | |
| 		struct vm_struct *vm_stack = cached_vm_stacks[i];
 | |
| 
 | |
| 		if (!vm_stack)
 | |
| 			continue;
 | |
| 
 | |
| 		vfree(vm_stack->addr);
 | |
| 		cached_vm_stacks[i] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memcg_charge_kernel_stack(struct vm_struct *vm)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	int nr_charged = 0;
 | |
| 
 | |
| 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 | |
| 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 | |
| 		if (ret)
 | |
| 			goto err;
 | |
| 		nr_charged++;
 | |
| 	}
 | |
| 	return 0;
 | |
| err:
 | |
| 	for (i = 0; i < nr_charged; i++)
 | |
| 		memcg_kmem_uncharge_page(vm->pages[i], 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 | |
| {
 | |
| 	struct vm_struct *vm;
 | |
| 	void *stack;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_CACHED_STACKS; i++) {
 | |
| 		struct vm_struct *s;
 | |
| 
 | |
| 		s = this_cpu_xchg(cached_stacks[i], NULL);
 | |
| 
 | |
| 		if (!s)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Reset stack metadata. */
 | |
| 		kasan_unpoison_range(s->addr, THREAD_SIZE);
 | |
| 
 | |
| 		stack = kasan_reset_tag(s->addr);
 | |
| 
 | |
| 		/* Clear stale pointers from reused stack. */
 | |
| 		memset(stack, 0, THREAD_SIZE);
 | |
| 
 | |
| 		if (memcg_charge_kernel_stack(s)) {
 | |
| 			vfree(s->addr);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		tsk->stack_vm_area = s;
 | |
| 		tsk->stack = stack;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocated stacks are cached and later reused by new threads,
 | |
| 	 * so memcg accounting is performed manually on assigning/releasing
 | |
| 	 * stacks to tasks. Drop __GFP_ACCOUNT.
 | |
| 	 */
 | |
| 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
 | |
| 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 | |
| 				     node, __builtin_return_address(0));
 | |
| 	if (!stack)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vm = find_vm_area(stack);
 | |
| 	if (memcg_charge_kernel_stack(vm)) {
 | |
| 		vfree(stack);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We can't call find_vm_area() in interrupt context, and
 | |
| 	 * free_thread_stack() can be called in interrupt context,
 | |
| 	 * so cache the vm_struct.
 | |
| 	 */
 | |
| 	tsk->stack_vm_area = vm;
 | |
| 	stack = kasan_reset_tag(stack);
 | |
| 	tsk->stack = stack;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_thread_stack(struct task_struct *tsk)
 | |
| {
 | |
| 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 | |
| 		thread_stack_delayed_free(tsk);
 | |
| 
 | |
| 	tsk->stack = NULL;
 | |
| 	tsk->stack_vm_area = NULL;
 | |
| }
 | |
| 
 | |
| #  else /* !CONFIG_VMAP_STACK */
 | |
| 
 | |
| static void thread_stack_free_rcu(struct rcu_head *rh)
 | |
| {
 | |
| 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 | |
| }
 | |
| 
 | |
| static void thread_stack_delayed_free(struct task_struct *tsk)
 | |
| {
 | |
| 	struct rcu_head *rh = tsk->stack;
 | |
| 
 | |
| 	call_rcu(rh, thread_stack_free_rcu);
 | |
| }
 | |
| 
 | |
| static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 | |
| {
 | |
| 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 | |
| 					     THREAD_SIZE_ORDER);
 | |
| 
 | |
| 	if (likely(page)) {
 | |
| 		tsk->stack = kasan_reset_tag(page_address(page));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void free_thread_stack(struct task_struct *tsk)
 | |
| {
 | |
| 	thread_stack_delayed_free(tsk);
 | |
| 	tsk->stack = NULL;
 | |
| }
 | |
| 
 | |
| #  endif /* CONFIG_VMAP_STACK */
 | |
| # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 | |
| 
 | |
| static struct kmem_cache *thread_stack_cache;
 | |
| 
 | |
| static void thread_stack_free_rcu(struct rcu_head *rh)
 | |
| {
 | |
| 	kmem_cache_free(thread_stack_cache, rh);
 | |
| }
 | |
| 
 | |
| static void thread_stack_delayed_free(struct task_struct *tsk)
 | |
| {
 | |
| 	struct rcu_head *rh = tsk->stack;
 | |
| 
 | |
| 	call_rcu(rh, thread_stack_free_rcu);
 | |
| }
 | |
| 
 | |
| static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 | |
| {
 | |
| 	unsigned long *stack;
 | |
| 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 | |
| 	stack = kasan_reset_tag(stack);
 | |
| 	tsk->stack = stack;
 | |
| 	return stack ? 0 : -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void free_thread_stack(struct task_struct *tsk)
 | |
| {
 | |
| 	thread_stack_delayed_free(tsk);
 | |
| 	tsk->stack = NULL;
 | |
| }
 | |
| 
 | |
| void thread_stack_cache_init(void)
 | |
| {
 | |
| 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 | |
| 					THREAD_SIZE, THREAD_SIZE, 0, 0,
 | |
| 					THREAD_SIZE, NULL);
 | |
| 	BUG_ON(thread_stack_cache == NULL);
 | |
| }
 | |
| 
 | |
| # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 | |
| 
 | |
| /* SLAB cache for signal_struct structures (tsk->signal) */
 | |
| static struct kmem_cache *signal_cachep;
 | |
| 
 | |
| /* SLAB cache for sighand_struct structures (tsk->sighand) */
 | |
| struct kmem_cache *sighand_cachep;
 | |
| 
 | |
| /* SLAB cache for files_struct structures (tsk->files) */
 | |
| struct kmem_cache *files_cachep;
 | |
| 
 | |
| /* SLAB cache for fs_struct structures (tsk->fs) */
 | |
| struct kmem_cache *fs_cachep;
 | |
| 
 | |
| /* SLAB cache for mm_struct structures (tsk->mm) */
 | |
| static struct kmem_cache *mm_cachep;
 | |
| 
 | |
| static void account_kernel_stack(struct task_struct *tsk, int account)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 | |
| 		struct vm_struct *vm = task_stack_vm_area(tsk);
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 | |
| 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 | |
| 					      account * (PAGE_SIZE / 1024));
 | |
| 	} else {
 | |
| 		void *stack = task_stack_page(tsk);
 | |
| 
 | |
| 		/* All stack pages are in the same node. */
 | |
| 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 | |
| 				      account * (THREAD_SIZE / 1024));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void exit_task_stack_account(struct task_struct *tsk)
 | |
| {
 | |
| 	account_kernel_stack(tsk, -1);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 | |
| 		struct vm_struct *vm;
 | |
| 		int i;
 | |
| 
 | |
| 		vm = task_stack_vm_area(tsk);
 | |
| 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 | |
| 			memcg_kmem_uncharge_page(vm->pages[i], 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void release_task_stack(struct task_struct *tsk)
 | |
| {
 | |
| 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 | |
| 		return;  /* Better to leak the stack than to free prematurely */
 | |
| 
 | |
| 	free_thread_stack(tsk);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_THREAD_INFO_IN_TASK
 | |
| void put_task_stack(struct task_struct *tsk)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&tsk->stack_refcount))
 | |
| 		release_task_stack(tsk);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void free_task(struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_SECCOMP
 | |
| 	WARN_ON_ONCE(tsk->seccomp.filter);
 | |
| #endif
 | |
| 	release_user_cpus_ptr(tsk);
 | |
| 	scs_release(tsk);
 | |
| 
 | |
| #ifndef CONFIG_THREAD_INFO_IN_TASK
 | |
| 	/*
 | |
| 	 * The task is finally done with both the stack and thread_info,
 | |
| 	 * so free both.
 | |
| 	 */
 | |
| 	release_task_stack(tsk);
 | |
| #else
 | |
| 	/*
 | |
| 	 * If the task had a separate stack allocation, it should be gone
 | |
| 	 * by now.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 | |
| #endif
 | |
| 	rt_mutex_debug_task_free(tsk);
 | |
| 	ftrace_graph_exit_task(tsk);
 | |
| 	arch_release_task_struct(tsk);
 | |
| 	if (tsk->flags & PF_KTHREAD)
 | |
| 		free_kthread_struct(tsk);
 | |
| 	bpf_task_storage_free(tsk);
 | |
| 	free_task_struct(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL(free_task);
 | |
| 
 | |
| void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 | |
| {
 | |
| 	struct file *exe_file;
 | |
| 
 | |
| 	exe_file = get_mm_exe_file(oldmm);
 | |
| 	RCU_INIT_POINTER(mm->exe_file, exe_file);
 | |
| 	/*
 | |
| 	 * We depend on the oldmm having properly denied write access to the
 | |
| 	 * exe_file already.
 | |
| 	 */
 | |
| 	if (exe_file && exe_file_deny_write_access(exe_file))
 | |
| 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static inline int mm_alloc_pgd(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->pgd = pgd_alloc(mm);
 | |
| 	if (unlikely(!mm->pgd))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_free_pgd(struct mm_struct *mm)
 | |
| {
 | |
| 	pgd_free(mm, mm->pgd);
 | |
| }
 | |
| #else
 | |
| #define mm_alloc_pgd(mm)	(0)
 | |
| #define mm_free_pgd(mm)
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #ifdef CONFIG_MM_ID
 | |
| static DEFINE_IDA(mm_ida);
 | |
| 
 | |
| static inline int mm_alloc_id(struct mm_struct *mm)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	mm->mm_id = ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_free_id(struct mm_struct *mm)
 | |
| {
 | |
| 	const mm_id_t id = mm->mm_id;
 | |
| 
 | |
| 	mm->mm_id = MM_ID_DUMMY;
 | |
| 	if (id == MM_ID_DUMMY)
 | |
| 		return;
 | |
| 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
 | |
| 		return;
 | |
| 	ida_free(&mm_ida, id);
 | |
| }
 | |
| #else /* !CONFIG_MM_ID */
 | |
| static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
 | |
| static inline void mm_free_id(struct mm_struct *mm) {}
 | |
| #endif /* CONFIG_MM_ID */
 | |
| 
 | |
| static void check_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 | |
| 			 "Please make sure 'struct resident_page_types[]' is updated as well");
 | |
| 
 | |
| 	for (i = 0; i < NR_MM_COUNTERS; i++) {
 | |
| 		long x = percpu_counter_sum(&mm->rss_stat[i]);
 | |
| 
 | |
| 		if (unlikely(x))
 | |
| 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 | |
| 				 mm, resident_page_types[i], x);
 | |
| 	}
 | |
| 
 | |
| 	if (mm_pgtables_bytes(mm))
 | |
| 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 | |
| 				mm_pgtables_bytes(mm));
 | |
| 
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
 | |
| 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 | |
| #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 | |
| 
 | |
| static void do_check_lazy_tlb(void *arg)
 | |
| {
 | |
| 	struct mm_struct *mm = arg;
 | |
| 
 | |
| 	WARN_ON_ONCE(current->active_mm == mm);
 | |
| }
 | |
| 
 | |
| static void do_shoot_lazy_tlb(void *arg)
 | |
| {
 | |
| 	struct mm_struct *mm = arg;
 | |
| 
 | |
| 	if (current->active_mm == mm) {
 | |
| 		WARN_ON_ONCE(current->mm);
 | |
| 		current->active_mm = &init_mm;
 | |
| 		switch_mm(mm, &init_mm, current);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cleanup_lazy_tlbs(struct mm_struct *mm)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
 | |
| 		/*
 | |
| 		 * In this case, lazy tlb mms are refounted and would not reach
 | |
| 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
 | |
| 	 * requires lazy mm users to switch to another mm when the refcount
 | |
| 	 * drops to zero, before the mm is freed. This requires IPIs here to
 | |
| 	 * switch kernel threads to init_mm.
 | |
| 	 *
 | |
| 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
 | |
| 	 * switch with the final userspace teardown TLB flush which leaves the
 | |
| 	 * mm lazy on this CPU but no others, reducing the need for additional
 | |
| 	 * IPIs here. There are cases where a final IPI is still required here,
 | |
| 	 * such as the final mmdrop being performed on a different CPU than the
 | |
| 	 * one exiting, or kernel threads using the mm when userspace exits.
 | |
| 	 *
 | |
| 	 * IPI overheads have not found to be expensive, but they could be
 | |
| 	 * reduced in a number of possible ways, for example (roughly
 | |
| 	 * increasing order of complexity):
 | |
| 	 * - The last lazy reference created by exit_mm() could instead switch
 | |
| 	 *   to init_mm, however it's probable this will run on the same CPU
 | |
| 	 *   immediately afterwards, so this may not reduce IPIs much.
 | |
| 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
 | |
| 	 * - CPUs store active_mm where it can be remotely checked without a
 | |
| 	 *   lock, to filter out false-positives in the cpumask.
 | |
| 	 * - After mm_users or mm_count reaches zero, switching away from the
 | |
| 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
 | |
| 	 *   with some batching or delaying of the final IPIs.
 | |
| 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
 | |
| 	 *   switching to avoid IPIs completely.
 | |
| 	 */
 | |
| 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
 | |
| 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
 | |
| 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the mm
 | |
|  * is dropped: either by a lazy thread or by
 | |
|  * mmput. Free the page directory and the mm.
 | |
|  */
 | |
| void __mmdrop(struct mm_struct *mm)
 | |
| {
 | |
| 	BUG_ON(mm == &init_mm);
 | |
| 	WARN_ON_ONCE(mm == current->mm);
 | |
| 
 | |
| 	/* Ensure no CPUs are using this as their lazy tlb mm */
 | |
| 	cleanup_lazy_tlbs(mm);
 | |
| 
 | |
| 	WARN_ON_ONCE(mm == current->active_mm);
 | |
| 	mm_free_pgd(mm);
 | |
| 	mm_free_id(mm);
 | |
| 	destroy_context(mm);
 | |
| 	mmu_notifier_subscriptions_destroy(mm);
 | |
| 	check_mm(mm);
 | |
| 	put_user_ns(mm->user_ns);
 | |
| 	mm_pasid_drop(mm);
 | |
| 	mm_destroy_cid(mm);
 | |
| 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
 | |
| 
 | |
| 	free_mm(mm);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__mmdrop);
 | |
| 
 | |
| static void mmdrop_async_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	mm = container_of(work, struct mm_struct, async_put_work);
 | |
| 	__mmdrop(mm);
 | |
| }
 | |
| 
 | |
| static void mmdrop_async(struct mm_struct *mm)
 | |
| {
 | |
| 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 | |
| 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 | |
| 		schedule_work(&mm->async_put_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void free_signal_struct(struct signal_struct *sig)
 | |
| {
 | |
| 	taskstats_tgid_free(sig);
 | |
| 	sched_autogroup_exit(sig);
 | |
| 	/*
 | |
| 	 * __mmdrop is not safe to call from softirq context on x86 due to
 | |
| 	 * pgd_dtor so postpone it to the async context
 | |
| 	 */
 | |
| 	if (sig->oom_mm)
 | |
| 		mmdrop_async(sig->oom_mm);
 | |
| 	kmem_cache_free(signal_cachep, sig);
 | |
| }
 | |
| 
 | |
| static inline void put_signal_struct(struct signal_struct *sig)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sig->sigcnt))
 | |
| 		free_signal_struct(sig);
 | |
| }
 | |
| 
 | |
| void __put_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| 	WARN_ON(!tsk->exit_state);
 | |
| 	WARN_ON(refcount_read(&tsk->usage));
 | |
| 	WARN_ON(tsk == current);
 | |
| 
 | |
| 	sched_ext_free(tsk);
 | |
| 	io_uring_free(tsk);
 | |
| 	cgroup_free(tsk);
 | |
| 	task_numa_free(tsk, true);
 | |
| 	security_task_free(tsk);
 | |
| 	exit_creds(tsk);
 | |
| 	delayacct_tsk_free(tsk);
 | |
| 	put_signal_struct(tsk->signal);
 | |
| 	sched_core_free(tsk);
 | |
| 	free_task(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__put_task_struct);
 | |
| 
 | |
| void __put_task_struct_rcu_cb(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
 | |
| 
 | |
| 	__put_task_struct(task);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
 | |
| 
 | |
| void __init __weak arch_task_cache_init(void) { }
 | |
| 
 | |
| /*
 | |
|  * set_max_threads
 | |
|  */
 | |
| static void __init set_max_threads(unsigned int max_threads_suggested)
 | |
| {
 | |
| 	u64 threads;
 | |
| 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of threads shall be limited such that the thread
 | |
| 	 * structures may only consume a small part of the available memory.
 | |
| 	 */
 | |
| 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 | |
| 		threads = MAX_THREADS;
 | |
| 	else
 | |
| 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 | |
| 				    (u64) THREAD_SIZE * 8UL);
 | |
| 
 | |
| 	if (threads > max_threads_suggested)
 | |
| 		threads = max_threads_suggested;
 | |
| 
 | |
| 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 | |
| /* Initialized by the architecture: */
 | |
| int arch_task_struct_size __read_mostly;
 | |
| #endif
 | |
| 
 | |
| static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
 | |
| {
 | |
| 	/* Fetch thread_struct whitelist for the architecture. */
 | |
| 	arch_thread_struct_whitelist(offset, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 | |
| 	 * adjust offset to position of thread_struct in task_struct.
 | |
| 	 */
 | |
| 	if (unlikely(*size == 0))
 | |
| 		*offset = 0;
 | |
| 	else
 | |
| 		*offset += offsetof(struct task_struct, thread);
 | |
| }
 | |
| 
 | |
| void __init fork_init(void)
 | |
| {
 | |
| 	int i;
 | |
| #ifndef ARCH_MIN_TASKALIGN
 | |
| #define ARCH_MIN_TASKALIGN	0
 | |
| #endif
 | |
| 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 | |
| 	unsigned long useroffset, usersize;
 | |
| 
 | |
| 	/* create a slab on which task_structs can be allocated */
 | |
| 	task_struct_whitelist(&useroffset, &usersize);
 | |
| 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 | |
| 			arch_task_struct_size, align,
 | |
| 			SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			useroffset, usersize, NULL);
 | |
| 
 | |
| 	/* do the arch specific task caches init */
 | |
| 	arch_task_cache_init();
 | |
| 
 | |
| 	set_max_threads(MAX_THREADS);
 | |
| 
 | |
| 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 | |
| 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 | |
| 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 | |
| 		init_task.signal->rlim[RLIMIT_NPROC];
 | |
| 
 | |
| 	for (i = 0; i < UCOUNT_COUNTS; i++)
 | |
| 		init_user_ns.ucount_max[i] = max_threads/2;
 | |
| 
 | |
| 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 | |
| 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 | |
| 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 | |
| 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 | |
| 
 | |
| #ifdef CONFIG_VMAP_STACK
 | |
| 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 | |
| 			  NULL, free_vm_stack_cache);
 | |
| #endif
 | |
| 
 | |
| 	scs_init();
 | |
| 
 | |
| 	lockdep_init_task(&init_task);
 | |
| 	uprobes_init();
 | |
| }
 | |
| 
 | |
| int __weak arch_dup_task_struct(struct task_struct *dst,
 | |
| 					       struct task_struct *src)
 | |
| {
 | |
| 	*dst = *src;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void set_task_stack_end_magic(struct task_struct *tsk)
 | |
| {
 | |
| 	unsigned long *stackend;
 | |
| 
 | |
| 	stackend = end_of_stack(tsk);
 | |
| 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 | |
| }
 | |
| 
 | |
| static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	int err;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		node = tsk_fork_get_node(orig);
 | |
| 	tsk = alloc_task_struct_node(node);
 | |
| 	if (!tsk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	err = arch_dup_task_struct(tsk, orig);
 | |
| 	if (err)
 | |
| 		goto free_tsk;
 | |
| 
 | |
| 	err = alloc_thread_stack_node(tsk, node);
 | |
| 	if (err)
 | |
| 		goto free_tsk;
 | |
| 
 | |
| #ifdef CONFIG_THREAD_INFO_IN_TASK
 | |
| 	refcount_set(&tsk->stack_refcount, 1);
 | |
| #endif
 | |
| 	account_kernel_stack(tsk, 1);
 | |
| 
 | |
| 	err = scs_prepare(tsk, node);
 | |
| 	if (err)
 | |
| 		goto free_stack;
 | |
| 
 | |
| #ifdef CONFIG_SECCOMP
 | |
| 	/*
 | |
| 	 * We must handle setting up seccomp filters once we're under
 | |
| 	 * the sighand lock in case orig has changed between now and
 | |
| 	 * then. Until then, filter must be NULL to avoid messing up
 | |
| 	 * the usage counts on the error path calling free_task.
 | |
| 	 */
 | |
| 	tsk->seccomp.filter = NULL;
 | |
| #endif
 | |
| 
 | |
| 	setup_thread_stack(tsk, orig);
 | |
| 	clear_user_return_notifier(tsk);
 | |
| 	clear_tsk_need_resched(tsk);
 | |
| 	set_task_stack_end_magic(tsk);
 | |
| 	clear_syscall_work_syscall_user_dispatch(tsk);
 | |
| 
 | |
| #ifdef CONFIG_STACKPROTECTOR
 | |
| 	tsk->stack_canary = get_random_canary();
 | |
| #endif
 | |
| 	if (orig->cpus_ptr == &orig->cpus_mask)
 | |
| 		tsk->cpus_ptr = &tsk->cpus_mask;
 | |
| 	dup_user_cpus_ptr(tsk, orig, node);
 | |
| 
 | |
| 	/*
 | |
| 	 * One for the user space visible state that goes away when reaped.
 | |
| 	 * One for the scheduler.
 | |
| 	 */
 | |
| 	refcount_set(&tsk->rcu_users, 2);
 | |
| 	/* One for the rcu users */
 | |
| 	refcount_set(&tsk->usage, 1);
 | |
| #ifdef CONFIG_BLK_DEV_IO_TRACE
 | |
| 	tsk->btrace_seq = 0;
 | |
| #endif
 | |
| 	tsk->splice_pipe = NULL;
 | |
| 	tsk->task_frag.page = NULL;
 | |
| 	tsk->wake_q.next = NULL;
 | |
| 	tsk->worker_private = NULL;
 | |
| 
 | |
| 	kcov_task_init(tsk);
 | |
| 	kmsan_task_create(tsk);
 | |
| 	kmap_local_fork(tsk);
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION
 | |
| 	tsk->fail_nth = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_BLK_CGROUP
 | |
| 	tsk->throttle_disk = NULL;
 | |
| 	tsk->use_memdelay = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_CPU_PASID
 | |
| 	tsk->pasid_activated = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	tsk->active_memcg = NULL;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_BUS_LOCK_DETECT
 | |
| 	tsk->reported_split_lock = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MM_CID
 | |
| 	tsk->mm_cid = -1;
 | |
| 	tsk->last_mm_cid = -1;
 | |
| 	tsk->mm_cid_active = 0;
 | |
| 	tsk->migrate_from_cpu = -1;
 | |
| #endif
 | |
| 	return tsk;
 | |
| 
 | |
| free_stack:
 | |
| 	exit_task_stack_account(tsk);
 | |
| 	free_thread_stack(tsk);
 | |
| free_tsk:
 | |
| 	free_task_struct(tsk);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 | |
| 
 | |
| static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 | |
| 
 | |
| static int __init coredump_filter_setup(char *s)
 | |
| {
 | |
| 	default_dump_filter =
 | |
| 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 | |
| 		MMF_DUMP_FILTER_MASK;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("coredump_filter=", coredump_filter_setup);
 | |
| 
 | |
| #include <linux/init_task.h>
 | |
| 
 | |
| static void mm_init_aio(struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_AIO
 | |
| 	spin_lock_init(&mm->ioctx_lock);
 | |
| 	mm->ioctx_table = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __always_inline void mm_clear_owner(struct mm_struct *mm,
 | |
| 					   struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (mm->owner == p)
 | |
| 		WRITE_ONCE(mm->owner, NULL);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	mm->owner = p;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void mm_init_uprobes_state(struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_UPROBES
 | |
| 	mm->uprobes_state.xol_area = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void mmap_init_lock(struct mm_struct *mm)
 | |
| {
 | |
| 	init_rwsem(&mm->mmap_lock);
 | |
| 	mm_lock_seqcount_init(mm);
 | |
| #ifdef CONFIG_PER_VMA_LOCK
 | |
| 	rcuwait_init(&mm->vma_writer_wait);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 | |
| 	struct user_namespace *user_ns)
 | |
| {
 | |
| 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
 | |
| 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
 | |
| 	atomic_set(&mm->mm_users, 1);
 | |
| 	atomic_set(&mm->mm_count, 1);
 | |
| 	seqcount_init(&mm->write_protect_seq);
 | |
| 	mmap_init_lock(mm);
 | |
| 	INIT_LIST_HEAD(&mm->mmlist);
 | |
| 	mm_pgtables_bytes_init(mm);
 | |
| 	mm->map_count = 0;
 | |
| 	mm->locked_vm = 0;
 | |
| 	atomic64_set(&mm->pinned_vm, 0);
 | |
| 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 | |
| 	spin_lock_init(&mm->page_table_lock);
 | |
| 	spin_lock_init(&mm->arg_lock);
 | |
| 	mm_init_cpumask(mm);
 | |
| 	mm_init_aio(mm);
 | |
| 	mm_init_owner(mm, p);
 | |
| 	mm_pasid_init(mm);
 | |
| 	RCU_INIT_POINTER(mm->exe_file, NULL);
 | |
| 	mmu_notifier_subscriptions_init(mm);
 | |
| 	init_tlb_flush_pending(mm);
 | |
| 	futex_mm_init(mm);
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
 | |
| 	mm->pmd_huge_pte = NULL;
 | |
| #endif
 | |
| 	mm_init_uprobes_state(mm);
 | |
| 	hugetlb_count_init(mm);
 | |
| 
 | |
| 	if (current->mm) {
 | |
| 		mm->flags = mmf_init_flags(current->mm->flags);
 | |
| 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 | |
| 	} else {
 | |
| 		mm->flags = default_dump_filter;
 | |
| 		mm->def_flags = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mm_alloc_pgd(mm))
 | |
| 		goto fail_nopgd;
 | |
| 
 | |
| 	if (mm_alloc_id(mm))
 | |
| 		goto fail_noid;
 | |
| 
 | |
| 	if (init_new_context(p, mm))
 | |
| 		goto fail_nocontext;
 | |
| 
 | |
| 	if (mm_alloc_cid(mm, p))
 | |
| 		goto fail_cid;
 | |
| 
 | |
| 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
 | |
| 				     NR_MM_COUNTERS))
 | |
| 		goto fail_pcpu;
 | |
| 
 | |
| 	mm->user_ns = get_user_ns(user_ns);
 | |
| 	lru_gen_init_mm(mm);
 | |
| 	return mm;
 | |
| 
 | |
| fail_pcpu:
 | |
| 	mm_destroy_cid(mm);
 | |
| fail_cid:
 | |
| 	destroy_context(mm);
 | |
| fail_nocontext:
 | |
| 	mm_free_id(mm);
 | |
| fail_noid:
 | |
| 	mm_free_pgd(mm);
 | |
| fail_nopgd:
 | |
| 	free_mm(mm);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an mm_struct.
 | |
|  */
 | |
| struct mm_struct *mm_alloc(void)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	mm = allocate_mm();
 | |
| 	if (!mm)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(mm, 0, sizeof(*mm));
 | |
| 	return mm_init(mm, current, current_user_ns());
 | |
| }
 | |
| EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
 | |
| 
 | |
| static inline void __mmput(struct mm_struct *mm)
 | |
| {
 | |
| 	VM_BUG_ON(atomic_read(&mm->mm_users));
 | |
| 
 | |
| 	uprobe_clear_state(mm);
 | |
| 	exit_aio(mm);
 | |
| 	ksm_exit(mm);
 | |
| 	khugepaged_exit(mm); /* must run before exit_mmap */
 | |
| 	exit_mmap(mm);
 | |
| 	mm_put_huge_zero_folio(mm);
 | |
| 	set_mm_exe_file(mm, NULL);
 | |
| 	if (!list_empty(&mm->mmlist)) {
 | |
| 		spin_lock(&mmlist_lock);
 | |
| 		list_del(&mm->mmlist);
 | |
| 		spin_unlock(&mmlist_lock);
 | |
| 	}
 | |
| 	if (mm->binfmt)
 | |
| 		module_put(mm->binfmt->module);
 | |
| 	lru_gen_del_mm(mm);
 | |
| 	futex_hash_free(mm);
 | |
| 	mmdrop(mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the use count and release all resources for an mm.
 | |
|  */
 | |
| void mmput(struct mm_struct *mm)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (atomic_dec_and_test(&mm->mm_users))
 | |
| 		__mmput(mm);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mmput);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static void mmput_async_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct mm_struct *mm = container_of(work, struct mm_struct,
 | |
| 					    async_put_work);
 | |
| 
 | |
| 	__mmput(mm);
 | |
| }
 | |
| 
 | |
| void mmput_async(struct mm_struct *mm)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&mm->mm_users)) {
 | |
| 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
 | |
| 		schedule_work(&mm->async_put_work);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mmput_async);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * set_mm_exe_file - change a reference to the mm's executable file
 | |
|  * @mm: The mm to change.
 | |
|  * @new_exe_file: The new file to use.
 | |
|  *
 | |
|  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 | |
|  *
 | |
|  * Main users are mmput() and sys_execve(). Callers prevent concurrent
 | |
|  * invocations: in mmput() nobody alive left, in execve it happens before
 | |
|  * the new mm is made visible to anyone.
 | |
|  *
 | |
|  * Can only fail if new_exe_file != NULL.
 | |
|  */
 | |
| int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 | |
| {
 | |
| 	struct file *old_exe_file;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is safe to dereference the exe_file without RCU as
 | |
| 	 * this function is only called if nobody else can access
 | |
| 	 * this mm -- see comment above for justification.
 | |
| 	 */
 | |
| 	old_exe_file = rcu_dereference_raw(mm->exe_file);
 | |
| 
 | |
| 	if (new_exe_file) {
 | |
| 		/*
 | |
| 		 * We expect the caller (i.e., sys_execve) to already denied
 | |
| 		 * write access, so this is unlikely to fail.
 | |
| 		 */
 | |
| 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
 | |
| 			return -EACCES;
 | |
| 		get_file(new_exe_file);
 | |
| 	}
 | |
| 	rcu_assign_pointer(mm->exe_file, new_exe_file);
 | |
| 	if (old_exe_file) {
 | |
| 		exe_file_allow_write_access(old_exe_file);
 | |
| 		fput(old_exe_file);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * replace_mm_exe_file - replace a reference to the mm's executable file
 | |
|  * @mm: The mm to change.
 | |
|  * @new_exe_file: The new file to use.
 | |
|  *
 | |
|  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 | |
|  *
 | |
|  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
 | |
|  */
 | |
| int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct file *old_exe_file;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Forbid mm->exe_file change if old file still mapped. */
 | |
| 	old_exe_file = get_mm_exe_file(mm);
 | |
| 	if (old_exe_file) {
 | |
| 		VMA_ITERATOR(vmi, mm, 0);
 | |
| 		mmap_read_lock(mm);
 | |
| 		for_each_vma(vmi, vma) {
 | |
| 			if (!vma->vm_file)
 | |
| 				continue;
 | |
| 			if (path_equal(&vma->vm_file->f_path,
 | |
| 				       &old_exe_file->f_path)) {
 | |
| 				ret = -EBUSY;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		mmap_read_unlock(mm);
 | |
| 		fput(old_exe_file);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = exe_file_deny_write_access(new_exe_file);
 | |
| 	if (ret)
 | |
| 		return -EACCES;
 | |
| 	get_file(new_exe_file);
 | |
| 
 | |
| 	/* set the new file */
 | |
| 	mmap_write_lock(mm);
 | |
| 	old_exe_file = rcu_dereference_raw(mm->exe_file);
 | |
| 	rcu_assign_pointer(mm->exe_file, new_exe_file);
 | |
| 	mmap_write_unlock(mm);
 | |
| 
 | |
| 	if (old_exe_file) {
 | |
| 		exe_file_allow_write_access(old_exe_file);
 | |
| 		fput(old_exe_file);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_mm_exe_file - acquire a reference to the mm's executable file
 | |
|  * @mm: The mm of interest.
 | |
|  *
 | |
|  * Returns %NULL if mm has no associated executable file.
 | |
|  * User must release file via fput().
 | |
|  */
 | |
| struct file *get_mm_exe_file(struct mm_struct *mm)
 | |
| {
 | |
| 	struct file *exe_file;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	exe_file = get_file_rcu(&mm->exe_file);
 | |
| 	rcu_read_unlock();
 | |
| 	return exe_file;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_task_exe_file - acquire a reference to the task's executable file
 | |
|  * @task: The task.
 | |
|  *
 | |
|  * Returns %NULL if task's mm (if any) has no associated executable file or
 | |
|  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 | |
|  * User must release file via fput().
 | |
|  */
 | |
| struct file *get_task_exe_file(struct task_struct *task)
 | |
| {
 | |
| 	struct file *exe_file = NULL;
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	if (task->flags & PF_KTHREAD)
 | |
| 		return NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	mm = task->mm;
 | |
| 	if (mm)
 | |
| 		exe_file = get_mm_exe_file(mm);
 | |
| 	task_unlock(task);
 | |
| 	return exe_file;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_task_mm - acquire a reference to the task's mm
 | |
|  * @task: The task.
 | |
|  *
 | |
|  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 | |
|  * this kernel workthread has transiently adopted a user mm with use_mm,
 | |
|  * to do its AIO) is not set and if so returns a reference to it, after
 | |
|  * bumping up the use count.  User must release the mm via mmput()
 | |
|  * after use.  Typically used by /proc and ptrace.
 | |
|  */
 | |
| struct mm_struct *get_task_mm(struct task_struct *task)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	if (task->flags & PF_KTHREAD)
 | |
| 		return NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	mm = task->mm;
 | |
| 	if (mm)
 | |
| 		mmget(mm);
 | |
| 	task_unlock(task);
 | |
| 	return mm;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_task_mm);
 | |
| 
 | |
| static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
 | |
| {
 | |
| 	if (mm == current->mm)
 | |
| 		return true;
 | |
| 	if (ptrace_may_access(task, mode))
 | |
| 		return true;
 | |
| 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 
 | |
| 	err =  down_read_killable(&task->signal->exec_update_lock);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	mm = get_task_mm(task);
 | |
| 	if (!mm) {
 | |
| 		mm = ERR_PTR(-ESRCH);
 | |
| 	} else if (!may_access_mm(mm, task, mode)) {
 | |
| 		mmput(mm);
 | |
| 		mm = ERR_PTR(-EACCES);
 | |
| 	}
 | |
| 	up_read(&task->signal->exec_update_lock);
 | |
| 
 | |
| 	return mm;
 | |
| }
 | |
| 
 | |
| static void complete_vfork_done(struct task_struct *tsk)
 | |
| {
 | |
| 	struct completion *vfork;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	vfork = tsk->vfork_done;
 | |
| 	if (likely(vfork)) {
 | |
| 		tsk->vfork_done = NULL;
 | |
| 		complete(vfork);
 | |
| 	}
 | |
| 	task_unlock(tsk);
 | |
| }
 | |
| 
 | |
| static int wait_for_vfork_done(struct task_struct *child,
 | |
| 				struct completion *vfork)
 | |
| {
 | |
| 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
 | |
| 	int killed;
 | |
| 
 | |
| 	cgroup_enter_frozen();
 | |
| 	killed = wait_for_completion_state(vfork, state);
 | |
| 	cgroup_leave_frozen(false);
 | |
| 
 | |
| 	if (killed) {
 | |
| 		task_lock(child);
 | |
| 		child->vfork_done = NULL;
 | |
| 		task_unlock(child);
 | |
| 	}
 | |
| 
 | |
| 	put_task_struct(child);
 | |
| 	return killed;
 | |
| }
 | |
| 
 | |
| /* Please note the differences between mmput and mm_release.
 | |
|  * mmput is called whenever we stop holding onto a mm_struct,
 | |
|  * error success whatever.
 | |
|  *
 | |
|  * mm_release is called after a mm_struct has been removed
 | |
|  * from the current process.
 | |
|  *
 | |
|  * This difference is important for error handling, when we
 | |
|  * only half set up a mm_struct for a new process and need to restore
 | |
|  * the old one.  Because we mmput the new mm_struct before
 | |
|  * restoring the old one. . .
 | |
|  * Eric Biederman 10 January 1998
 | |
|  */
 | |
| static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	uprobe_free_utask(tsk);
 | |
| 
 | |
| 	/* Get rid of any cached register state */
 | |
| 	deactivate_mm(tsk, mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Signal userspace if we're not exiting with a core dump
 | |
| 	 * because we want to leave the value intact for debugging
 | |
| 	 * purposes.
 | |
| 	 */
 | |
| 	if (tsk->clear_child_tid) {
 | |
| 		if (atomic_read(&mm->mm_users) > 1) {
 | |
| 			/*
 | |
| 			 * We don't check the error code - if userspace has
 | |
| 			 * not set up a proper pointer then tough luck.
 | |
| 			 */
 | |
| 			put_user(0, tsk->clear_child_tid);
 | |
| 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
 | |
| 					1, NULL, NULL, 0, 0);
 | |
| 		}
 | |
| 		tsk->clear_child_tid = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All done, finally we can wake up parent and return this mm to him.
 | |
| 	 * Also kthread_stop() uses this completion for synchronization.
 | |
| 	 */
 | |
| 	if (tsk->vfork_done)
 | |
| 		complete_vfork_done(tsk);
 | |
| }
 | |
| 
 | |
| void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	futex_exit_release(tsk);
 | |
| 	mm_release(tsk, mm);
 | |
| }
 | |
| 
 | |
| void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	futex_exec_release(tsk);
 | |
| 	mm_release(tsk, mm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dup_mm() - duplicates an existing mm structure
 | |
|  * @tsk: the task_struct with which the new mm will be associated.
 | |
|  * @oldmm: the mm to duplicate.
 | |
|  *
 | |
|  * Allocates a new mm structure and duplicates the provided @oldmm structure
 | |
|  * content into it.
 | |
|  *
 | |
|  * Return: the duplicated mm or NULL on failure.
 | |
|  */
 | |
| static struct mm_struct *dup_mm(struct task_struct *tsk,
 | |
| 				struct mm_struct *oldmm)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 
 | |
| 	mm = allocate_mm();
 | |
| 	if (!mm)
 | |
| 		goto fail_nomem;
 | |
| 
 | |
| 	memcpy(mm, oldmm, sizeof(*mm));
 | |
| 
 | |
| 	if (!mm_init(mm, tsk, mm->user_ns))
 | |
| 		goto fail_nomem;
 | |
| 
 | |
| 	uprobe_start_dup_mmap();
 | |
| 	err = dup_mmap(mm, oldmm);
 | |
| 	if (err)
 | |
| 		goto free_pt;
 | |
| 	uprobe_end_dup_mmap();
 | |
| 
 | |
| 	mm->hiwater_rss = get_mm_rss(mm);
 | |
| 	mm->hiwater_vm = mm->total_vm;
 | |
| 
 | |
| 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 | |
| 		goto free_pt;
 | |
| 
 | |
| 	return mm;
 | |
| 
 | |
| free_pt:
 | |
| 	/* don't put binfmt in mmput, we haven't got module yet */
 | |
| 	mm->binfmt = NULL;
 | |
| 	mm_init_owner(mm, NULL);
 | |
| 	mmput(mm);
 | |
| 	if (err)
 | |
| 		uprobe_end_dup_mmap();
 | |
| 
 | |
| fail_nomem:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct mm_struct *mm, *oldmm;
 | |
| 
 | |
| 	tsk->min_flt = tsk->maj_flt = 0;
 | |
| 	tsk->nvcsw = tsk->nivcsw = 0;
 | |
| #ifdef CONFIG_DETECT_HUNG_TASK
 | |
| 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 | |
| 	tsk->last_switch_time = 0;
 | |
| #endif
 | |
| 
 | |
| 	tsk->mm = NULL;
 | |
| 	tsk->active_mm = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we cloning a kernel thread?
 | |
| 	 *
 | |
| 	 * We need to steal a active VM for that..
 | |
| 	 */
 | |
| 	oldmm = current->mm;
 | |
| 	if (!oldmm)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (clone_flags & CLONE_VM) {
 | |
| 		mmget(oldmm);
 | |
| 		mm = oldmm;
 | |
| 	} else {
 | |
| 		mm = dup_mm(tsk, current->mm);
 | |
| 		if (!mm)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tsk->mm = mm;
 | |
| 	tsk->active_mm = mm;
 | |
| 	sched_mm_cid_fork(tsk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct fs_struct *fs = current->fs;
 | |
| 	if (clone_flags & CLONE_FS) {
 | |
| 		/* tsk->fs is already what we want */
 | |
| 		spin_lock(&fs->lock);
 | |
| 		/* "users" and "in_exec" locked for check_unsafe_exec() */
 | |
| 		if (fs->in_exec) {
 | |
| 			spin_unlock(&fs->lock);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		fs->users++;
 | |
| 		spin_unlock(&fs->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	tsk->fs = copy_fs_struct(fs);
 | |
| 	if (!tsk->fs)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
 | |
| 		      int no_files)
 | |
| {
 | |
| 	struct files_struct *oldf, *newf;
 | |
| 
 | |
| 	/*
 | |
| 	 * A background process may not have any files ...
 | |
| 	 */
 | |
| 	oldf = current->files;
 | |
| 	if (!oldf)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (no_files) {
 | |
| 		tsk->files = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (clone_flags & CLONE_FILES) {
 | |
| 		atomic_inc(&oldf->count);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	newf = dup_fd(oldf, NULL);
 | |
| 	if (IS_ERR(newf))
 | |
| 		return PTR_ERR(newf);
 | |
| 
 | |
| 	tsk->files = newf;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct sighand_struct *sig;
 | |
| 
 | |
| 	if (clone_flags & CLONE_SIGHAND) {
 | |
| 		refcount_inc(¤t->sighand->count);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 | |
| 	RCU_INIT_POINTER(tsk->sighand, sig);
 | |
| 	if (!sig)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	refcount_set(&sig->count, 1);
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
 | |
| 	if (clone_flags & CLONE_CLEAR_SIGHAND)
 | |
| 		flush_signal_handlers(tsk, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cleanup_sighand(struct sighand_struct *sighand)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sighand->count)) {
 | |
| 		signalfd_cleanup(sighand);
 | |
| 		/*
 | |
| 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
 | |
| 		 * without an RCU grace period, see __lock_task_sighand().
 | |
| 		 */
 | |
| 		kmem_cache_free(sighand_cachep, sighand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize POSIX timer handling for a thread group.
 | |
|  */
 | |
| static void posix_cpu_timers_init_group(struct signal_struct *sig)
 | |
| {
 | |
| 	struct posix_cputimers *pct = &sig->posix_cputimers;
 | |
| 	unsigned long cpu_limit;
 | |
| 
 | |
| 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 | |
| 	posix_cputimers_group_init(pct, cpu_limit);
 | |
| }
 | |
| 
 | |
| static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig;
 | |
| 
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		return 0;
 | |
| 
 | |
| 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
 | |
| 	tsk->signal = sig;
 | |
| 	if (!sig)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sig->nr_threads = 1;
 | |
| 	sig->quick_threads = 1;
 | |
| 	atomic_set(&sig->live, 1);
 | |
| 	refcount_set(&sig->sigcnt, 1);
 | |
| 
 | |
| 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
 | |
| 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
 | |
| 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
 | |
| 
 | |
| 	init_waitqueue_head(&sig->wait_chldexit);
 | |
| 	sig->curr_target = tsk;
 | |
| 	init_sigpending(&sig->shared_pending);
 | |
| 	INIT_HLIST_HEAD(&sig->multiprocess);
 | |
| 	seqlock_init(&sig->stats_lock);
 | |
| 	prev_cputime_init(&sig->prev_cputime);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 	INIT_HLIST_HEAD(&sig->posix_timers);
 | |
| 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
 | |
| 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| #endif
 | |
| 
 | |
| 	task_lock(current->group_leader);
 | |
| 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 | |
| 	task_unlock(current->group_leader);
 | |
| 
 | |
| 	posix_cpu_timers_init_group(sig);
 | |
| 
 | |
| 	tty_audit_fork(sig);
 | |
| 	sched_autogroup_fork(sig);
 | |
| 
 | |
| 	sig->oom_score_adj = current->signal->oom_score_adj;
 | |
| 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
 | |
| 
 | |
| 	mutex_init(&sig->cred_guard_mutex);
 | |
| 	init_rwsem(&sig->exec_update_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void copy_seccomp(struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SECCOMP
 | |
| 	/*
 | |
| 	 * Must be called with sighand->lock held, which is common to
 | |
| 	 * all threads in the group. Holding cred_guard_mutex is not
 | |
| 	 * needed because this new task is not yet running and cannot
 | |
| 	 * be racing exec.
 | |
| 	 */
 | |
| 	assert_spin_locked(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* Ref-count the new filter user, and assign it. */
 | |
| 	get_seccomp_filter(current);
 | |
| 	p->seccomp = current->seccomp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Explicitly enable no_new_privs here in case it got set
 | |
| 	 * between the task_struct being duplicated and holding the
 | |
| 	 * sighand lock. The seccomp state and nnp must be in sync.
 | |
| 	 */
 | |
| 	if (task_no_new_privs(current))
 | |
| 		task_set_no_new_privs(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent gained a seccomp mode after copying thread
 | |
| 	 * flags and between before we held the sighand lock, we have
 | |
| 	 * to manually enable the seccomp thread flag here.
 | |
| 	 */
 | |
| 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
 | |
| 		set_task_syscall_work(p, SECCOMP);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
 | |
| {
 | |
| 	current->clear_child_tid = tidptr;
 | |
| 
 | |
| 	return task_pid_vnr(current);
 | |
| }
 | |
| 
 | |
| static void rt_mutex_init_task(struct task_struct *p)
 | |
| {
 | |
| 	raw_spin_lock_init(&p->pi_lock);
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	p->pi_waiters = RB_ROOT_CACHED;
 | |
| 	p->pi_top_task = NULL;
 | |
| 	p->pi_blocked_on = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void init_task_pid_links(struct task_struct *task)
 | |
| {
 | |
| 	enum pid_type type;
 | |
| 
 | |
| 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
 | |
| 		INIT_HLIST_NODE(&task->pid_links[type]);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
 | |
| {
 | |
| 	if (type == PIDTYPE_PID)
 | |
| 		task->thread_pid = pid;
 | |
| 	else
 | |
| 		task->signal->pids[type] = pid;
 | |
| }
 | |
| 
 | |
| static inline void rcu_copy_process(struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| 	p->rcu_read_lock_nesting = 0;
 | |
| 	p->rcu_read_unlock_special.s = 0;
 | |
| 	p->rcu_blocked_node = NULL;
 | |
| 	INIT_LIST_HEAD(&p->rcu_node_entry);
 | |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */
 | |
| #ifdef CONFIG_TASKS_RCU
 | |
| 	p->rcu_tasks_holdout = false;
 | |
| 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
 | |
| 	p->rcu_tasks_idle_cpu = -1;
 | |
| 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU */
 | |
| #ifdef CONFIG_TASKS_TRACE_RCU
 | |
| 	p->trc_reader_nesting = 0;
 | |
| 	p->trc_reader_special.s = 0;
 | |
| 	INIT_LIST_HEAD(&p->trc_holdout_list);
 | |
| 	INIT_LIST_HEAD(&p->trc_blkd_node);
 | |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
 | |
|  * @pid:   the struct pid for which to create a pidfd
 | |
|  * @flags: flags of the new @pidfd
 | |
|  * @ret_file: return the new pidfs file
 | |
|  *
 | |
|  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
 | |
|  * caller's file descriptor table. The pidfd is reserved but not installed yet.
 | |
|  *
 | |
|  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
 | |
|  * task identified by @pid must be a thread-group leader.
 | |
|  *
 | |
|  * If this function returns successfully the caller is responsible to either
 | |
|  * call fd_install() passing the returned pidfd and pidfd file as arguments in
 | |
|  * order to install the pidfd into its file descriptor table or they must use
 | |
|  * put_unused_fd() and fput() on the returned pidfd and pidfd file
 | |
|  * respectively.
 | |
|  *
 | |
|  * This function is useful when a pidfd must already be reserved but there
 | |
|  * might still be points of failure afterwards and the caller wants to ensure
 | |
|  * that no pidfd is leaked into its file descriptor table.
 | |
|  *
 | |
|  * Return: On success, a reserved pidfd is returned from the function and a new
 | |
|  *         pidfd file is returned in the last argument to the function. On
 | |
|  *         error, a negative error code is returned from the function and the
 | |
|  *         last argument remains unchanged.
 | |
|  */
 | |
| int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
 | |
| {
 | |
| 	struct file *pidfs_file;
 | |
| 
 | |
| 	/*
 | |
| 	 * PIDFD_STALE is only allowed to be passed if the caller knows
 | |
| 	 * that @pid is already registered in pidfs and thus
 | |
| 	 * PIDFD_INFO_EXIT information is guaranteed to be available.
 | |
| 	 */
 | |
| 	if (!(flags & PIDFD_STALE)) {
 | |
| 		/*
 | |
| 		 * While holding the pidfd waitqueue lock removing the
 | |
| 		 * task linkage for the thread-group leader pid
 | |
| 		 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
 | |
| 		 * task linkage for PIDTYPE_PID not having thread-group
 | |
| 		 * leader linkage for the pid means it wasn't a
 | |
| 		 * thread-group leader in the first place.
 | |
| 		 */
 | |
| 		guard(spinlock_irq)(&pid->wait_pidfd.lock);
 | |
| 
 | |
| 		/* Task has already been reaped. */
 | |
| 		if (!pid_has_task(pid, PIDTYPE_PID))
 | |
| 			return -ESRCH;
 | |
| 		/*
 | |
| 		 * If this struct pid isn't used as a thread-group
 | |
| 		 * leader but the caller requested to create a
 | |
| 		 * thread-group leader pidfd then report ENOENT.
 | |
| 		 */
 | |
| 		if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
 | |
| 			return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
 | |
| 	if (pidfd < 0)
 | |
| 		return pidfd;
 | |
| 
 | |
| 	pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
 | |
| 	if (IS_ERR(pidfs_file))
 | |
| 		return PTR_ERR(pidfs_file);
 | |
| 
 | |
| 	*ret_file = pidfs_file;
 | |
| 	return take_fd(pidfd);
 | |
| }
 | |
| 
 | |
| static void __delayed_free_task(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 | |
| 
 | |
| 	free_task(tsk);
 | |
| }
 | |
| 
 | |
| static __always_inline void delayed_free_task(struct task_struct *tsk)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_MEMCG))
 | |
| 		call_rcu(&tsk->rcu, __delayed_free_task);
 | |
| 	else
 | |
| 		free_task(tsk);
 | |
| }
 | |
| 
 | |
| static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	/* Skip if kernel thread */
 | |
| 	if (!tsk->mm)
 | |
| 		return;
 | |
| 
 | |
| 	/* Skip if spawning a thread or using vfork */
 | |
| 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
 | |
| 		return;
 | |
| 
 | |
| 	/* We need to synchronize with __set_oom_adj */
 | |
| 	mutex_lock(&oom_adj_mutex);
 | |
| 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
 | |
| 	/* Update the values in case they were changed after copy_signal */
 | |
| 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
 | |
| 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
 | |
| 	mutex_unlock(&oom_adj_mutex);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RV
 | |
| static void rv_task_fork(struct task_struct *p)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
 | |
| 		p->rv[i].da_mon.monitoring = false;
 | |
| }
 | |
| #else
 | |
| #define rv_task_fork(p) do {} while (0)
 | |
| #endif
 | |
| 
 | |
| static bool need_futex_hash_allocate_default(u64 clone_flags)
 | |
| {
 | |
| 	if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This creates a new process as a copy of the old one,
 | |
|  * but does not actually start it yet.
 | |
|  *
 | |
|  * It copies the registers, and all the appropriate
 | |
|  * parts of the process environment (as per the clone
 | |
|  * flags). The actual kick-off is left to the caller.
 | |
|  */
 | |
| __latent_entropy struct task_struct *copy_process(
 | |
| 					struct pid *pid,
 | |
| 					int trace,
 | |
| 					int node,
 | |
| 					struct kernel_clone_args *args)
 | |
| {
 | |
| 	int pidfd = -1, retval;
 | |
| 	struct task_struct *p;
 | |
| 	struct multiprocess_signals delayed;
 | |
| 	struct file *pidfile = NULL;
 | |
| 	const u64 clone_flags = args->flags;
 | |
| 	struct nsproxy *nsp = current->nsproxy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow sharing the root directory with processes in a different
 | |
| 	 * namespace
 | |
| 	 */
 | |
| 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Thread groups must share signals as well, and detached threads
 | |
| 	 * can only be started up within the thread group.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Shared signal handlers imply shared VM. By way of the above,
 | |
| 	 * thread groups also imply shared VM. Blocking this case allows
 | |
| 	 * for various simplifications in other code.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Siblings of global init remain as zombies on exit since they are
 | |
| 	 * not reaped by their parent (swapper). To solve this and to avoid
 | |
| 	 * multi-rooted process trees, prevent global and container-inits
 | |
| 	 * from creating siblings.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_PARENT) &&
 | |
| 				current->signal->flags & SIGNAL_UNKILLABLE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new process will be in a different pid or user namespace
 | |
| 	 * do not allow it to share a thread group with the forking task.
 | |
| 	 */
 | |
| 	if (clone_flags & CLONE_THREAD) {
 | |
| 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
 | |
| 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (clone_flags & CLONE_PIDFD) {
 | |
| 		/*
 | |
| 		 * - CLONE_DETACHED is blocked so that we can potentially
 | |
| 		 *   reuse it later for CLONE_PIDFD.
 | |
| 		 */
 | |
| 		if (clone_flags & CLONE_DETACHED)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Force any signals received before this point to be delivered
 | |
| 	 * before the fork happens.  Collect up signals sent to multiple
 | |
| 	 * processes that happen during the fork and delay them so that
 | |
| 	 * they appear to happen after the fork.
 | |
| 	 */
 | |
| 	sigemptyset(&delayed.signal);
 | |
| 	INIT_HLIST_NODE(&delayed.node);
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (!(clone_flags & CLONE_THREAD))
 | |
| 		hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	retval = -ERESTARTNOINTR;
 | |
| 	if (task_sigpending(current))
 | |
| 		goto fork_out;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	p = dup_task_struct(current, node);
 | |
| 	if (!p)
 | |
| 		goto fork_out;
 | |
| 	p->flags &= ~PF_KTHREAD;
 | |
| 	if (args->kthread)
 | |
| 		p->flags |= PF_KTHREAD;
 | |
| 	if (args->user_worker) {
 | |
| 		/*
 | |
| 		 * Mark us a user worker, and block any signal that isn't
 | |
| 		 * fatal or STOP
 | |
| 		 */
 | |
| 		p->flags |= PF_USER_WORKER;
 | |
| 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 	}
 | |
| 	if (args->io_thread)
 | |
| 		p->flags |= PF_IO_WORKER;
 | |
| 
 | |
| 	if (args->name)
 | |
| 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
 | |
| 
 | |
| 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
 | |
| 	/*
 | |
| 	 * Clear TID on mm_release()?
 | |
| 	 */
 | |
| 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
 | |
| 
 | |
| 	ftrace_graph_init_task(p);
 | |
| 
 | |
| 	rt_mutex_init_task(p);
 | |
| 
 | |
| 	lockdep_assert_irqs_enabled();
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
 | |
| #endif
 | |
| 	retval = copy_creds(p, clone_flags);
 | |
| 	if (retval < 0)
 | |
| 		goto bad_fork_free;
 | |
| 
 | |
| 	retval = -EAGAIN;
 | |
| 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
 | |
| 		if (p->real_cred->user != INIT_USER &&
 | |
| 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
 | |
| 			goto bad_fork_cleanup_count;
 | |
| 	}
 | |
| 	current->flags &= ~PF_NPROC_EXCEEDED;
 | |
| 
 | |
| 	/*
 | |
| 	 * If multiple threads are within copy_process(), then this check
 | |
| 	 * triggers too late. This doesn't hurt, the check is only there
 | |
| 	 * to stop root fork bombs.
 | |
| 	 */
 | |
| 	retval = -EAGAIN;
 | |
| 	if (data_race(nr_threads >= max_threads))
 | |
| 		goto bad_fork_cleanup_count;
 | |
| 
 | |
| 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
 | |
| 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
 | |
| 	p->flags |= PF_FORKNOEXEC;
 | |
| 	INIT_LIST_HEAD(&p->children);
 | |
| 	INIT_LIST_HEAD(&p->sibling);
 | |
| 	rcu_copy_process(p);
 | |
| 	p->vfork_done = NULL;
 | |
| 	spin_lock_init(&p->alloc_lock);
 | |
| 
 | |
| 	init_sigpending(&p->pending);
 | |
| 
 | |
| 	p->utime = p->stime = p->gtime = 0;
 | |
| #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 | |
| 	p->utimescaled = p->stimescaled = 0;
 | |
| #endif
 | |
| 	prev_cputime_init(&p->prev_cputime);
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 | |
| 	seqcount_init(&p->vtime.seqcount);
 | |
| 	p->vtime.starttime = 0;
 | |
| 	p->vtime.state = VTIME_INACTIVE;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IO_URING
 | |
| 	p->io_uring = NULL;
 | |
| #endif
 | |
| 
 | |
| 	p->default_timer_slack_ns = current->timer_slack_ns;
 | |
| 
 | |
| #ifdef CONFIG_PSI
 | |
| 	p->psi_flags = 0;
 | |
| #endif
 | |
| 
 | |
| 	task_io_accounting_init(&p->ioac);
 | |
| 	acct_clear_integrals(p);
 | |
| 
 | |
| 	posix_cputimers_init(&p->posix_cputimers);
 | |
| 	tick_dep_init_task(p);
 | |
| 
 | |
| 	p->io_context = NULL;
 | |
| 	audit_set_context(p, NULL);
 | |
| 	cgroup_fork(p);
 | |
| 	if (args->kthread) {
 | |
| 		if (!set_kthread_struct(p))
 | |
| 			goto bad_fork_cleanup_delayacct;
 | |
| 	}
 | |
| #ifdef CONFIG_NUMA
 | |
| 	p->mempolicy = mpol_dup(p->mempolicy);
 | |
| 	if (IS_ERR(p->mempolicy)) {
 | |
| 		retval = PTR_ERR(p->mempolicy);
 | |
| 		p->mempolicy = NULL;
 | |
| 		goto bad_fork_cleanup_delayacct;
 | |
| 	}
 | |
| #endif
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
 | |
| 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
 | |
| #endif
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
 | |
| 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
 | |
| 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
 | |
| 	p->softirqs_enabled		= 1;
 | |
| 	p->softirq_context		= 0;
 | |
| #endif
 | |
| 
 | |
| 	p->pagefault_disabled = 0;
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| 	lockdep_init_task(p);
 | |
| #endif
 | |
| 
 | |
| 	p->blocked_on = NULL; /* not blocked yet */
 | |
| 
 | |
| #ifdef CONFIG_BCACHE
 | |
| 	p->sequential_io	= 0;
 | |
| 	p->sequential_io_avg	= 0;
 | |
| #endif
 | |
| #ifdef CONFIG_BPF_SYSCALL
 | |
| 	RCU_INIT_POINTER(p->bpf_storage, NULL);
 | |
| 	p->bpf_ctx = NULL;
 | |
| #endif
 | |
| 
 | |
| 	/* Perform scheduler related setup. Assign this task to a CPU. */
 | |
| 	retval = sched_fork(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_policy;
 | |
| 
 | |
| 	retval = perf_event_init_task(p, clone_flags);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_sched_cancel_fork;
 | |
| 	retval = audit_alloc(p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_perf;
 | |
| 	/* copy all the process information */
 | |
| 	shm_init_task(p);
 | |
| 	retval = security_task_alloc(p, clone_flags);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_audit;
 | |
| 	retval = copy_semundo(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_security;
 | |
| 	retval = copy_files(clone_flags, p, args->no_files);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_semundo;
 | |
| 	retval = copy_fs(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_files;
 | |
| 	retval = copy_sighand(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_fs;
 | |
| 	retval = copy_signal(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_sighand;
 | |
| 	retval = copy_mm(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_signal;
 | |
| 	retval = copy_namespaces(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_mm;
 | |
| 	retval = copy_io(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_namespaces;
 | |
| 	retval = copy_thread(p, args);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_io;
 | |
| 
 | |
| 	stackleak_task_init(p);
 | |
| 
 | |
| 	if (pid != &init_struct_pid) {
 | |
| 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
 | |
| 				args->set_tid_size);
 | |
| 		if (IS_ERR(pid)) {
 | |
| 			retval = PTR_ERR(pid);
 | |
| 			goto bad_fork_cleanup_thread;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This has to happen after we've potentially unshared the file
 | |
| 	 * descriptor table (so that the pidfd doesn't leak into the child
 | |
| 	 * if the fd table isn't shared).
 | |
| 	 */
 | |
| 	if (clone_flags & CLONE_PIDFD) {
 | |
| 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Note that no task has been attached to @pid yet indicate
 | |
| 		 * that via CLONE_PIDFD.
 | |
| 		 */
 | |
| 		retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
 | |
| 		if (retval < 0)
 | |
| 			goto bad_fork_free_pid;
 | |
| 		pidfd = retval;
 | |
| 
 | |
| 		retval = put_user(pidfd, args->pidfd);
 | |
| 		if (retval)
 | |
| 			goto bad_fork_put_pidfd;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| 	p->plug = NULL;
 | |
| #endif
 | |
| 	futex_init_task(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * sigaltstack should be cleared when sharing the same VM
 | |
| 	 */
 | |
| 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
 | |
| 		sas_ss_reset(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Syscall tracing and stepping should be turned off in the
 | |
| 	 * child regardless of CLONE_PTRACE.
 | |
| 	 */
 | |
| 	user_disable_single_step(p);
 | |
| 	clear_task_syscall_work(p, SYSCALL_TRACE);
 | |
| #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
 | |
| 	clear_task_syscall_work(p, SYSCALL_EMU);
 | |
| #endif
 | |
| 	clear_tsk_latency_tracing(p);
 | |
| 
 | |
| 	/* ok, now we should be set up.. */
 | |
| 	p->pid = pid_nr(pid);
 | |
| 	if (clone_flags & CLONE_THREAD) {
 | |
| 		p->group_leader = current->group_leader;
 | |
| 		p->tgid = current->tgid;
 | |
| 	} else {
 | |
| 		p->group_leader = p;
 | |
| 		p->tgid = p->pid;
 | |
| 	}
 | |
| 
 | |
| 	p->nr_dirtied = 0;
 | |
| 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
 | |
| 	p->dirty_paused_when = 0;
 | |
| 
 | |
| 	p->pdeath_signal = 0;
 | |
| 	p->task_works = NULL;
 | |
| 	clear_posix_cputimers_work(p);
 | |
| 
 | |
| #ifdef CONFIG_KRETPROBES
 | |
| 	p->kretprobe_instances.first = NULL;
 | |
| #endif
 | |
| #ifdef CONFIG_RETHOOK
 | |
| 	p->rethooks.first = NULL;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the cgroup subsystem policies allow the new process to be
 | |
| 	 * forked. It should be noted that the new process's css_set can be changed
 | |
| 	 * between here and cgroup_post_fork() if an organisation operation is in
 | |
| 	 * progress.
 | |
| 	 */
 | |
| 	retval = cgroup_can_fork(p, args);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_put_pidfd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
 | |
| 	 * the new task on the correct runqueue. All this *before* the task
 | |
| 	 * becomes visible.
 | |
| 	 *
 | |
| 	 * This isn't part of ->can_fork() because while the re-cloning is
 | |
| 	 * cgroup specific, it unconditionally needs to place the task on a
 | |
| 	 * runqueue.
 | |
| 	 */
 | |
| 	retval = sched_cgroup_fork(p, args);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cancel_cgroup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a default futex hash for the user process once the first
 | |
| 	 * thread spawns.
 | |
| 	 */
 | |
| 	if (need_futex_hash_allocate_default(clone_flags)) {
 | |
| 		retval = futex_hash_allocate_default();
 | |
| 		if (retval)
 | |
| 			goto bad_fork_core_free;
 | |
| 		/*
 | |
| 		 * If we fail beyond this point we don't free the allocated
 | |
| 		 * futex hash map. We assume that another thread will be created
 | |
| 		 * and makes use of it. The hash map will be freed once the main
 | |
| 		 * thread terminates.
 | |
| 		 */
 | |
| 	}
 | |
| 	/*
 | |
| 	 * From this point on we must avoid any synchronous user-space
 | |
| 	 * communication until we take the tasklist-lock. In particular, we do
 | |
| 	 * not want user-space to be able to predict the process start-time by
 | |
| 	 * stalling fork(2) after we recorded the start_time but before it is
 | |
| 	 * visible to the system.
 | |
| 	 */
 | |
| 
 | |
| 	p->start_time = ktime_get_ns();
 | |
| 	p->start_boottime = ktime_get_boottime_ns();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make it visible to the rest of the system, but dont wake it up yet.
 | |
| 	 * Need tasklist lock for parent etc handling!
 | |
| 	 */
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	/* CLONE_PARENT re-uses the old parent */
 | |
| 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
 | |
| 		p->real_parent = current->real_parent;
 | |
| 		p->parent_exec_id = current->parent_exec_id;
 | |
| 		if (clone_flags & CLONE_THREAD)
 | |
| 			p->exit_signal = -1;
 | |
| 		else
 | |
| 			p->exit_signal = current->group_leader->exit_signal;
 | |
| 	} else {
 | |
| 		p->real_parent = current;
 | |
| 		p->parent_exec_id = current->self_exec_id;
 | |
| 		p->exit_signal = args->exit_signal;
 | |
| 	}
 | |
| 
 | |
| 	klp_copy_process(p);
 | |
| 
 | |
| 	sched_core_fork(p);
 | |
| 
 | |
| 	spin_lock(¤t->sighand->siglock);
 | |
| 
 | |
| 	rv_task_fork(p);
 | |
| 
 | |
| 	rseq_fork(p, clone_flags);
 | |
| 
 | |
| 	/* Don't start children in a dying pid namespace */
 | |
| 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto bad_fork_core_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Let kill terminate clone/fork in the middle */
 | |
| 	if (fatal_signal_pending(current)) {
 | |
| 		retval = -EINTR;
 | |
| 		goto bad_fork_core_free;
 | |
| 	}
 | |
| 
 | |
| 	/* No more failure paths after this point. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy seccomp details explicitly here, in case they were changed
 | |
| 	 * before holding sighand lock.
 | |
| 	 */
 | |
| 	copy_seccomp(p);
 | |
| 
 | |
| 	init_task_pid_links(p);
 | |
| 	if (likely(p->pid)) {
 | |
| 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
 | |
| 
 | |
| 		init_task_pid(p, PIDTYPE_PID, pid);
 | |
| 		if (thread_group_leader(p)) {
 | |
| 			init_task_pid(p, PIDTYPE_TGID, pid);
 | |
| 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
 | |
| 			init_task_pid(p, PIDTYPE_SID, task_session(current));
 | |
| 
 | |
| 			if (is_child_reaper(pid)) {
 | |
| 				ns_of_pid(pid)->child_reaper = p;
 | |
| 				p->signal->flags |= SIGNAL_UNKILLABLE;
 | |
| 			}
 | |
| 			p->signal->shared_pending.signal = delayed.signal;
 | |
| 			p->signal->tty = tty_kref_get(current->signal->tty);
 | |
| 			/*
 | |
| 			 * Inherit has_child_subreaper flag under the same
 | |
| 			 * tasklist_lock with adding child to the process tree
 | |
| 			 * for propagate_has_child_subreaper optimization.
 | |
| 			 */
 | |
| 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
 | |
| 							 p->real_parent->signal->is_child_subreaper;
 | |
| 			list_add_tail(&p->sibling, &p->real_parent->children);
 | |
| 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 | |
| 			attach_pid(p, PIDTYPE_TGID);
 | |
| 			attach_pid(p, PIDTYPE_PGID);
 | |
| 			attach_pid(p, PIDTYPE_SID);
 | |
| 			__this_cpu_inc(process_counts);
 | |
| 		} else {
 | |
| 			current->signal->nr_threads++;
 | |
| 			current->signal->quick_threads++;
 | |
| 			atomic_inc(¤t->signal->live);
 | |
| 			refcount_inc(¤t->signal->sigcnt);
 | |
| 			task_join_group_stop(p);
 | |
| 			list_add_tail_rcu(&p->thread_node,
 | |
| 					  &p->signal->thread_head);
 | |
| 		}
 | |
| 		attach_pid(p, PIDTYPE_PID);
 | |
| 		nr_threads++;
 | |
| 	}
 | |
| 	total_forks++;
 | |
| 	hlist_del_init(&delayed.node);
 | |
| 	spin_unlock(¤t->sighand->siglock);
 | |
| 	syscall_tracepoint_update(p);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 	if (pidfile)
 | |
| 		fd_install(pidfd, pidfile);
 | |
| 
 | |
| 	proc_fork_connector(p);
 | |
| 	sched_post_fork(p);
 | |
| 	cgroup_post_fork(p, args);
 | |
| 	perf_event_fork(p);
 | |
| 
 | |
| 	trace_task_newtask(p, clone_flags);
 | |
| 	uprobe_copy_process(p, clone_flags);
 | |
| 	user_events_fork(p, clone_flags);
 | |
| 
 | |
| 	copy_oom_score_adj(clone_flags, p);
 | |
| 
 | |
| 	return p;
 | |
| 
 | |
| bad_fork_core_free:
 | |
| 	sched_core_free(p);
 | |
| 	spin_unlock(¤t->sighand->siglock);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| bad_fork_cancel_cgroup:
 | |
| 	cgroup_cancel_fork(p, args);
 | |
| bad_fork_put_pidfd:
 | |
| 	if (clone_flags & CLONE_PIDFD) {
 | |
| 		fput(pidfile);
 | |
| 		put_unused_fd(pidfd);
 | |
| 	}
 | |
| bad_fork_free_pid:
 | |
| 	if (pid != &init_struct_pid)
 | |
| 		free_pid(pid);
 | |
| bad_fork_cleanup_thread:
 | |
| 	exit_thread(p);
 | |
| bad_fork_cleanup_io:
 | |
| 	if (p->io_context)
 | |
| 		exit_io_context(p);
 | |
| bad_fork_cleanup_namespaces:
 | |
| 	exit_task_namespaces(p);
 | |
| bad_fork_cleanup_mm:
 | |
| 	if (p->mm) {
 | |
| 		mm_clear_owner(p->mm, p);
 | |
| 		mmput(p->mm);
 | |
| 	}
 | |
| bad_fork_cleanup_signal:
 | |
| 	if (!(clone_flags & CLONE_THREAD))
 | |
| 		free_signal_struct(p->signal);
 | |
| bad_fork_cleanup_sighand:
 | |
| 	__cleanup_sighand(p->sighand);
 | |
| bad_fork_cleanup_fs:
 | |
| 	exit_fs(p); /* blocking */
 | |
| bad_fork_cleanup_files:
 | |
| 	exit_files(p); /* blocking */
 | |
| bad_fork_cleanup_semundo:
 | |
| 	exit_sem(p);
 | |
| bad_fork_cleanup_security:
 | |
| 	security_task_free(p);
 | |
| bad_fork_cleanup_audit:
 | |
| 	audit_free(p);
 | |
| bad_fork_cleanup_perf:
 | |
| 	perf_event_free_task(p);
 | |
| bad_fork_sched_cancel_fork:
 | |
| 	sched_cancel_fork(p);
 | |
| bad_fork_cleanup_policy:
 | |
| 	lockdep_free_task(p);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	mpol_put(p->mempolicy);
 | |
| #endif
 | |
| bad_fork_cleanup_delayacct:
 | |
| 	delayacct_tsk_free(p);
 | |
| bad_fork_cleanup_count:
 | |
| 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
 | |
| 	exit_creds(p);
 | |
| bad_fork_free:
 | |
| 	WRITE_ONCE(p->__state, TASK_DEAD);
 | |
| 	exit_task_stack_account(p);
 | |
| 	put_task_stack(p);
 | |
| 	delayed_free_task(p);
 | |
| fork_out:
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	hlist_del_init(&delayed.node);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return ERR_PTR(retval);
 | |
| }
 | |
| 
 | |
| static inline void init_idle_pids(struct task_struct *idle)
 | |
| {
 | |
| 	enum pid_type type;
 | |
| 
 | |
| 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
 | |
| 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
 | |
| 		init_task_pid(idle, type, &init_struct_pid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int idle_dummy(void *dummy)
 | |
| {
 | |
| 	/* This function is never called */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct task_struct * __init fork_idle(int cpu)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= CLONE_VM,
 | |
| 		.fn		= &idle_dummy,
 | |
| 		.fn_arg		= NULL,
 | |
| 		.kthread	= 1,
 | |
| 		.idle		= 1,
 | |
| 	};
 | |
| 
 | |
| 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
 | |
| 	if (!IS_ERR(task)) {
 | |
| 		init_idle_pids(task);
 | |
| 		init_idle(task, cpu);
 | |
| 	}
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is like kernel_clone(), but shaved down and tailored to just
 | |
|  * creating io_uring workers. It returns a created task, or an error pointer.
 | |
|  * The returned task is inactive, and the caller must fire it up through
 | |
|  * wake_up_new_task(p). All signals are blocked in the created task.
 | |
|  */
 | |
| struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
 | |
| {
 | |
| 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
 | |
| 				CLONE_IO;
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
 | |
| 				    CLONE_UNTRACED) & ~CSIGNAL),
 | |
| 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
 | |
| 		.fn		= fn,
 | |
| 		.fn_arg		= arg,
 | |
| 		.io_thread	= 1,
 | |
| 		.user_worker	= 1,
 | |
| 	};
 | |
| 
 | |
| 	return copy_process(NULL, 0, node, &args);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Ok, this is the main fork-routine.
 | |
|  *
 | |
|  * It copies the process, and if successful kick-starts
 | |
|  * it and waits for it to finish using the VM if required.
 | |
|  *
 | |
|  * args->exit_signal is expected to be checked for sanity by the caller.
 | |
|  */
 | |
| pid_t kernel_clone(struct kernel_clone_args *args)
 | |
| {
 | |
| 	u64 clone_flags = args->flags;
 | |
| 	struct completion vfork;
 | |
| 	struct pid *pid;
 | |
| 	struct task_struct *p;
 | |
| 	int trace = 0;
 | |
| 	pid_t nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
 | |
| 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
 | |
| 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
 | |
| 	 * field in struct clone_args and it still doesn't make sense to have
 | |
| 	 * them both point at the same memory location. Performing this check
 | |
| 	 * here has the advantage that we don't need to have a separate helper
 | |
| 	 * to check for legacy clone().
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_PIDFD) &&
 | |
| 	    (clone_flags & CLONE_PARENT_SETTID) &&
 | |
| 	    (args->pidfd == args->parent_tid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether and which event to report to ptracer.  When
 | |
| 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
 | |
| 	 * requested, no event is reported; otherwise, report if the event
 | |
| 	 * for the type of forking is enabled.
 | |
| 	 */
 | |
| 	if (!(clone_flags & CLONE_UNTRACED)) {
 | |
| 		if (clone_flags & CLONE_VFORK)
 | |
| 			trace = PTRACE_EVENT_VFORK;
 | |
| 		else if (args->exit_signal != SIGCHLD)
 | |
| 			trace = PTRACE_EVENT_CLONE;
 | |
| 		else
 | |
| 			trace = PTRACE_EVENT_FORK;
 | |
| 
 | |
| 		if (likely(!ptrace_event_enabled(current, trace)))
 | |
| 			trace = 0;
 | |
| 	}
 | |
| 
 | |
| 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
 | |
| 	add_latent_entropy();
 | |
| 
 | |
| 	if (IS_ERR(p))
 | |
| 		return PTR_ERR(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this prior waking up the new thread - the thread pointer
 | |
| 	 * might get invalid after that point, if the thread exits quickly.
 | |
| 	 */
 | |
| 	trace_sched_process_fork(current, p);
 | |
| 
 | |
| 	pid = get_task_pid(p, PIDTYPE_PID);
 | |
| 	nr = pid_vnr(pid);
 | |
| 
 | |
| 	if (clone_flags & CLONE_PARENT_SETTID)
 | |
| 		put_user(nr, args->parent_tid);
 | |
| 
 | |
| 	if (clone_flags & CLONE_VFORK) {
 | |
| 		p->vfork_done = &vfork;
 | |
| 		init_completion(&vfork);
 | |
| 		get_task_struct(p);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
 | |
| 		/* lock the task to synchronize with memcg migration */
 | |
| 		task_lock(p);
 | |
| 		lru_gen_add_mm(p->mm);
 | |
| 		task_unlock(p);
 | |
| 	}
 | |
| 
 | |
| 	wake_up_new_task(p);
 | |
| 
 | |
| 	/* forking complete and child started to run, tell ptracer */
 | |
| 	if (unlikely(trace))
 | |
| 		ptrace_event_pid(trace, pid);
 | |
| 
 | |
| 	if (clone_flags & CLONE_VFORK) {
 | |
| 		if (!wait_for_vfork_done(p, &vfork))
 | |
| 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
 | |
| 	}
 | |
| 
 | |
| 	put_pid(pid);
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a kernel thread.
 | |
|  */
 | |
| pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
 | |
| 		    unsigned long flags)
 | |
| {
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
 | |
| 				    CLONE_UNTRACED) & ~CSIGNAL),
 | |
| 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
 | |
| 		.fn		= fn,
 | |
| 		.fn_arg		= arg,
 | |
| 		.name		= name,
 | |
| 		.kthread	= 1,
 | |
| 	};
 | |
| 
 | |
| 	return kernel_clone(&args);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a user mode thread.
 | |
|  */
 | |
| pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
 | |
| {
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
 | |
| 				    CLONE_UNTRACED) & ~CSIGNAL),
 | |
| 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
 | |
| 		.fn		= fn,
 | |
| 		.fn_arg		= arg,
 | |
| 	};
 | |
| 
 | |
| 	return kernel_clone(&args);
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_FORK
 | |
| SYSCALL_DEFINE0(fork)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.exit_signal = SIGCHLD,
 | |
| 	};
 | |
| 
 | |
| 	return kernel_clone(&args);
 | |
| #else
 | |
| 	/* can not support in nommu mode */
 | |
| 	return -EINVAL;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_VFORK
 | |
| SYSCALL_DEFINE0(vfork)
 | |
| {
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= CLONE_VFORK | CLONE_VM,
 | |
| 		.exit_signal	= SIGCHLD,
 | |
| 	};
 | |
| 
 | |
| 	return kernel_clone(&args);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_CLONE
 | |
| #ifdef CONFIG_CLONE_BACKWARDS
 | |
| SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 unsigned long, tls,
 | |
| 		 int __user *, child_tidptr)
 | |
| #elif defined(CONFIG_CLONE_BACKWARDS2)
 | |
| SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 int __user *, child_tidptr,
 | |
| 		 unsigned long, tls)
 | |
| #elif defined(CONFIG_CLONE_BACKWARDS3)
 | |
| SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
 | |
| 		int, stack_size,
 | |
| 		int __user *, parent_tidptr,
 | |
| 		int __user *, child_tidptr,
 | |
| 		unsigned long, tls)
 | |
| #else
 | |
| SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 int __user *, child_tidptr,
 | |
| 		 unsigned long, tls)
 | |
| #endif
 | |
| {
 | |
| 	struct kernel_clone_args args = {
 | |
| 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
 | |
| 		.pidfd		= parent_tidptr,
 | |
| 		.child_tid	= child_tidptr,
 | |
| 		.parent_tid	= parent_tidptr,
 | |
| 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
 | |
| 		.stack		= newsp,
 | |
| 		.tls		= tls,
 | |
| 	};
 | |
| 
 | |
| 	return kernel_clone(&args);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
 | |
| 					      struct clone_args __user *uargs,
 | |
| 					      size_t usize)
 | |
| {
 | |
| 	int err;
 | |
| 	struct clone_args args;
 | |
| 	pid_t *kset_tid = kargs->set_tid;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
 | |
| 		     CLONE_ARGS_SIZE_VER0);
 | |
| 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
 | |
| 		     CLONE_ARGS_SIZE_VER1);
 | |
| 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
 | |
| 		     CLONE_ARGS_SIZE_VER2);
 | |
| 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
 | |
| 
 | |
| 	if (unlikely(usize > PAGE_SIZE))
 | |
| 		return -E2BIG;
 | |
| 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(args.set_tid && args.set_tid_size == 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that higher 32bits of exit_signal are unset and that
 | |
| 	 * it is a valid signal
 | |
| 	 */
 | |
| 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
 | |
| 		     !valid_signal(args.exit_signal)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((args.flags & CLONE_INTO_CGROUP) &&
 | |
| 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*kargs = (struct kernel_clone_args){
 | |
| 		.flags		= args.flags,
 | |
| 		.pidfd		= u64_to_user_ptr(args.pidfd),
 | |
| 		.child_tid	= u64_to_user_ptr(args.child_tid),
 | |
| 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
 | |
| 		.exit_signal	= args.exit_signal,
 | |
| 		.stack		= args.stack,
 | |
| 		.stack_size	= args.stack_size,
 | |
| 		.tls		= args.tls,
 | |
| 		.set_tid_size	= args.set_tid_size,
 | |
| 		.cgroup		= args.cgroup,
 | |
| 	};
 | |
| 
 | |
| 	if (args.set_tid &&
 | |
| 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
 | |
| 			(kargs->set_tid_size * sizeof(pid_t))))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	kargs->set_tid = kset_tid;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clone3_stack_valid - check and prepare stack
 | |
|  * @kargs: kernel clone args
 | |
|  *
 | |
|  * Verify that the stack arguments userspace gave us are sane.
 | |
|  * In addition, set the stack direction for userspace since it's easy for us to
 | |
|  * determine.
 | |
|  */
 | |
| static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
 | |
| {
 | |
| 	if (kargs->stack == 0) {
 | |
| 		if (kargs->stack_size > 0)
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		if (kargs->stack_size == 0)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
 | |
| 			return false;
 | |
| 
 | |
| #if !defined(CONFIG_STACK_GROWSUP)
 | |
| 		kargs->stack += kargs->stack_size;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool clone3_args_valid(struct kernel_clone_args *kargs)
 | |
| {
 | |
| 	/* Verify that no unknown flags are passed along. */
 | |
| 	if (kargs->flags &
 | |
| 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * - make the CLONE_DETACHED bit reusable for clone3
 | |
| 	 * - make the CSIGNAL bits reusable for clone3
 | |
| 	 */
 | |
| 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
 | |
| 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
 | |
| 	    kargs->exit_signal)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!clone3_stack_valid(kargs))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_clone3 - create a new process with specific properties
 | |
|  * @uargs: argument structure
 | |
|  * @size:  size of @uargs
 | |
|  *
 | |
|  * clone3() is the extensible successor to clone()/clone2().
 | |
|  * It takes a struct as argument that is versioned by its size.
 | |
|  *
 | |
|  * Return: On success, a positive PID for the child process.
 | |
|  *         On error, a negative errno number.
 | |
|  */
 | |
| SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	struct kernel_clone_args kargs;
 | |
| 	pid_t set_tid[MAX_PID_NS_LEVEL];
 | |
| 
 | |
| #ifdef __ARCH_BROKEN_SYS_CLONE3
 | |
| #warning clone3() entry point is missing, please fix
 | |
| 	return -ENOSYS;
 | |
| #endif
 | |
| 
 | |
| 	kargs.set_tid = set_tid;
 | |
| 
 | |
| 	err = copy_clone_args_from_user(&kargs, uargs, size);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!clone3_args_valid(&kargs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return kernel_clone(&kargs);
 | |
| }
 | |
| 
 | |
| void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
 | |
| {
 | |
| 	struct task_struct *leader, *parent, *child;
 | |
| 	int res;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	leader = top = top->group_leader;
 | |
| down:
 | |
| 	for_each_thread(leader, parent) {
 | |
| 		list_for_each_entry(child, &parent->children, sibling) {
 | |
| 			res = visitor(child, data);
 | |
| 			if (res) {
 | |
| 				if (res < 0)
 | |
| 					goto out;
 | |
| 				leader = child;
 | |
| 				goto down;
 | |
| 			}
 | |
| up:
 | |
| 			;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (leader != top) {
 | |
| 		child = leader;
 | |
| 		parent = child->real_parent;
 | |
| 		leader = parent->group_leader;
 | |
| 		goto up;
 | |
| 	}
 | |
| out:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| #ifndef ARCH_MIN_MMSTRUCT_ALIGN
 | |
| #define ARCH_MIN_MMSTRUCT_ALIGN 0
 | |
| #endif
 | |
| 
 | |
| static void sighand_ctor(void *data)
 | |
| {
 | |
| 	struct sighand_struct *sighand = data;
 | |
| 
 | |
| 	spin_lock_init(&sighand->siglock);
 | |
| 	init_waitqueue_head(&sighand->signalfd_wqh);
 | |
| }
 | |
| 
 | |
| void __init mm_cache_init(void)
 | |
| {
 | |
| 	unsigned int mm_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The mm_cpumask is located at the end of mm_struct, and is
 | |
| 	 * dynamically sized based on the maximum CPU number this system
 | |
| 	 * can have, taking hotplug into account (nr_cpu_ids).
 | |
| 	 */
 | |
| 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
 | |
| 
 | |
| 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
 | |
| 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			offsetof(struct mm_struct, saved_auxv),
 | |
| 			sizeof_field(struct mm_struct, saved_auxv),
 | |
| 			NULL);
 | |
| }
 | |
| 
 | |
| void __init proc_caches_init(void)
 | |
| {
 | |
| 	sighand_cachep = kmem_cache_create("sighand_cache",
 | |
| 			sizeof(struct sighand_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
 | |
| 			SLAB_ACCOUNT, sighand_ctor);
 | |
| 	signal_cachep = kmem_cache_create("signal_cache",
 | |
| 			sizeof(struct signal_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			NULL);
 | |
| 	files_cachep = kmem_cache_create("files_cache",
 | |
| 			sizeof(struct files_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			NULL);
 | |
| 	fs_cachep = kmem_cache_create("fs_cache",
 | |
| 			sizeof(struct fs_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			NULL);
 | |
| 	mmap_init();
 | |
| 	nsproxy_cache_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check constraints on flags passed to the unshare system call.
 | |
|  */
 | |
| static int check_unshare_flags(unsigned long unshare_flags)
 | |
| {
 | |
| 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
 | |
| 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
 | |
| 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
 | |
| 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
 | |
| 				CLONE_NEWTIME))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * Not implemented, but pretend it works if there is nothing
 | |
| 	 * to unshare.  Note that unsharing the address space or the
 | |
| 	 * signal handlers also need to unshare the signal queues (aka
 | |
| 	 * CLONE_THREAD).
 | |
| 	 */
 | |
| 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
 | |
| 		if (!thread_group_empty(current))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
 | |
| 		if (refcount_read(¤t->sighand->count) > 1)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	if (unshare_flags & CLONE_VM) {
 | |
| 		if (!current_is_single_threaded())
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare the filesystem structure if it is being shared
 | |
|  */
 | |
| static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
 | |
| {
 | |
| 	struct fs_struct *fs = current->fs;
 | |
| 
 | |
| 	if (!(unshare_flags & CLONE_FS) || !fs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* don't need lock here; in the worst case we'll do useless copy */
 | |
| 	if (fs->users == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	*new_fsp = copy_fs_struct(fs);
 | |
| 	if (!*new_fsp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare file descriptor table if it is being shared
 | |
|  */
 | |
| static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 | |
| {
 | |
| 	struct files_struct *fd = current->files;
 | |
| 
 | |
| 	if ((unshare_flags & CLONE_FILES) &&
 | |
| 	    (fd && atomic_read(&fd->count) > 1)) {
 | |
| 		fd = dup_fd(fd, NULL);
 | |
| 		if (IS_ERR(fd))
 | |
| 			return PTR_ERR(fd);
 | |
| 		*new_fdp = fd;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unshare allows a process to 'unshare' part of the process
 | |
|  * context which was originally shared using clone.  copy_*
 | |
|  * functions used by kernel_clone() cannot be used here directly
 | |
|  * because they modify an inactive task_struct that is being
 | |
|  * constructed. Here we are modifying the current, active,
 | |
|  * task_struct.
 | |
|  */
 | |
| int ksys_unshare(unsigned long unshare_flags)
 | |
| {
 | |
| 	struct fs_struct *fs, *new_fs = NULL;
 | |
| 	struct files_struct *new_fd = NULL;
 | |
| 	struct cred *new_cred = NULL;
 | |
| 	struct nsproxy *new_nsproxy = NULL;
 | |
| 	int do_sysvsem = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If unsharing a user namespace must also unshare the thread group
 | |
| 	 * and unshare the filesystem root and working directories.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_NEWUSER)
 | |
| 		unshare_flags |= CLONE_THREAD | CLONE_FS;
 | |
| 	/*
 | |
| 	 * If unsharing vm, must also unshare signal handlers.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_VM)
 | |
| 		unshare_flags |= CLONE_SIGHAND;
 | |
| 	/*
 | |
| 	 * If unsharing a signal handlers, must also unshare the signal queues.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_SIGHAND)
 | |
| 		unshare_flags |= CLONE_THREAD;
 | |
| 	/*
 | |
| 	 * If unsharing namespace, must also unshare filesystem information.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_NEWNS)
 | |
| 		unshare_flags |= CLONE_FS;
 | |
| 
 | |
| 	err = check_unshare_flags(unshare_flags);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_out;
 | |
| 	/*
 | |
| 	 * CLONE_NEWIPC must also detach from the undolist: after switching
 | |
| 	 * to a new ipc namespace, the semaphore arrays from the old
 | |
| 	 * namespace are unreachable.
 | |
| 	 */
 | |
| 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
 | |
| 		do_sysvsem = 1;
 | |
| 	err = unshare_fs(unshare_flags, &new_fs);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_out;
 | |
| 	err = unshare_fd(unshare_flags, &new_fd);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_fs;
 | |
| 	err = unshare_userns(unshare_flags, &new_cred);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_fd;
 | |
| 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
 | |
| 					 new_cred, new_fs);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_cred;
 | |
| 
 | |
| 	if (new_cred) {
 | |
| 		err = set_cred_ucounts(new_cred);
 | |
| 		if (err)
 | |
| 			goto bad_unshare_cleanup_cred;
 | |
| 	}
 | |
| 
 | |
| 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
 | |
| 		if (do_sysvsem) {
 | |
| 			/*
 | |
| 			 * CLONE_SYSVSEM is equivalent to sys_exit().
 | |
| 			 */
 | |
| 			exit_sem(current);
 | |
| 		}
 | |
| 		if (unshare_flags & CLONE_NEWIPC) {
 | |
| 			/* Orphan segments in old ns (see sem above). */
 | |
| 			exit_shm(current);
 | |
| 			shm_init_task(current);
 | |
| 		}
 | |
| 
 | |
| 		if (new_nsproxy)
 | |
| 			switch_task_namespaces(current, new_nsproxy);
 | |
| 
 | |
| 		task_lock(current);
 | |
| 
 | |
| 		if (new_fs) {
 | |
| 			fs = current->fs;
 | |
| 			spin_lock(&fs->lock);
 | |
| 			current->fs = new_fs;
 | |
| 			if (--fs->users)
 | |
| 				new_fs = NULL;
 | |
| 			else
 | |
| 				new_fs = fs;
 | |
| 			spin_unlock(&fs->lock);
 | |
| 		}
 | |
| 
 | |
| 		if (new_fd)
 | |
| 			swap(current->files, new_fd);
 | |
| 
 | |
| 		task_unlock(current);
 | |
| 
 | |
| 		if (new_cred) {
 | |
| 			/* Install the new user namespace */
 | |
| 			commit_creds(new_cred);
 | |
| 			new_cred = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_event_namespaces(current);
 | |
| 
 | |
| bad_unshare_cleanup_cred:
 | |
| 	if (new_cred)
 | |
| 		put_cred(new_cred);
 | |
| bad_unshare_cleanup_fd:
 | |
| 	if (new_fd)
 | |
| 		put_files_struct(new_fd);
 | |
| 
 | |
| bad_unshare_cleanup_fs:
 | |
| 	if (new_fs)
 | |
| 		free_fs_struct(new_fs);
 | |
| 
 | |
| bad_unshare_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
 | |
| {
 | |
| 	return ksys_unshare(unshare_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Helper to unshare the files of the current task.
 | |
|  *	We don't want to expose copy_files internals to
 | |
|  *	the exec layer of the kernel.
 | |
|  */
 | |
| 
 | |
| int unshare_files(void)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	struct files_struct *old, *copy = NULL;
 | |
| 	int error;
 | |
| 
 | |
| 	error = unshare_fd(CLONE_FILES, ©);
 | |
| 	if (error || !copy)
 | |
| 		return error;
 | |
| 
 | |
| 	old = task->files;
 | |
| 	task_lock(task);
 | |
| 	task->files = copy;
 | |
| 	task_unlock(task);
 | |
| 	put_files_struct(old);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sysctl_max_threads(const struct ctl_table *table, int write,
 | |
| 		       void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct ctl_table t;
 | |
| 	int ret;
 | |
| 	int threads = max_threads;
 | |
| 	int min = 1;
 | |
| 	int max = MAX_THREADS;
 | |
| 
 | |
| 	t = *table;
 | |
| 	t.data = &threads;
 | |
| 	t.extra1 = &min;
 | |
| 	t.extra2 = &max;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	max_threads = threads;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |