mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 fd881d0a08
			
		
	
	
		fd881d0a08
		
	
	
	
	
		
			
			The rseq_cs field is documented as being set to 0 by user-space prior to registration, however this is not currently enforced by the kernel. This can result in a segfault on return to user-space if the value stored in the rseq_cs field doesn't point to a valid struct rseq_cs. The correct solution to this would be to fail the rseq registration when the rseq_cs field is non-zero. However, some older versions of glibc will reuse the rseq area of previous threads without clearing the rseq_cs field and will also terminate the process if the rseq registration fails in a secondary thread. This wasn't caught in testing because in this case the leftover rseq_cs does point to a valid struct rseq_cs. What we can do is clear the rseq_cs field on registration when it's non-zero which will prevent segfaults on registration and won't break the glibc versions that reuse rseq areas on thread creation. Signed-off-by: Michael Jeanson <mjeanson@efficios.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250306211223.109455-1-mjeanson@efficios.com
		
			
				
	
	
		
			573 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Restartable sequences system call
 | |
|  *
 | |
|  * Copyright (C) 2015, Google, Inc.,
 | |
|  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
 | |
|  * Copyright (C) 2015-2018, EfficiOS Inc.,
 | |
|  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/rseq.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/rseq.h>
 | |
| 
 | |
| /* The original rseq structure size (including padding) is 32 bytes. */
 | |
| #define ORIG_RSEQ_SIZE		32
 | |
| 
 | |
| #define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \
 | |
| 				  RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \
 | |
| 				  RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE)
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RSEQ
 | |
| static struct rseq *rseq_kernel_fields(struct task_struct *t)
 | |
| {
 | |
| 	return (struct rseq *) t->rseq_fields;
 | |
| }
 | |
| 
 | |
| static int rseq_validate_ro_fields(struct task_struct *t)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(_rs,
 | |
| 				      DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 	u32 cpu_id_start, cpu_id, node_id, mm_cid;
 | |
| 	struct rseq __user *rseq = t->rseq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate fields which are required to be read-only by
 | |
| 	 * user-space.
 | |
| 	 */
 | |
| 	if (!user_read_access_begin(rseq, t->rseq_len))
 | |
| 		goto efault;
 | |
| 	unsafe_get_user(cpu_id_start, &rseq->cpu_id_start, efault_end);
 | |
| 	unsafe_get_user(cpu_id, &rseq->cpu_id, efault_end);
 | |
| 	unsafe_get_user(node_id, &rseq->node_id, efault_end);
 | |
| 	unsafe_get_user(mm_cid, &rseq->mm_cid, efault_end);
 | |
| 	user_read_access_end();
 | |
| 
 | |
| 	if ((cpu_id_start != rseq_kernel_fields(t)->cpu_id_start ||
 | |
| 	    cpu_id != rseq_kernel_fields(t)->cpu_id ||
 | |
| 	    node_id != rseq_kernel_fields(t)->node_id ||
 | |
| 	    mm_cid != rseq_kernel_fields(t)->mm_cid) && __ratelimit(&_rs)) {
 | |
| 
 | |
| 		pr_warn("Detected rseq corruption for pid: %d, name: %s\n"
 | |
| 			"\tcpu_id_start: %u ?= %u\n"
 | |
| 			"\tcpu_id:       %u ?= %u\n"
 | |
| 			"\tnode_id:      %u ?= %u\n"
 | |
| 			"\tmm_cid:       %u ?= %u\n",
 | |
| 			t->pid, t->comm,
 | |
| 			cpu_id_start, rseq_kernel_fields(t)->cpu_id_start,
 | |
| 			cpu_id, rseq_kernel_fields(t)->cpu_id,
 | |
| 			node_id, rseq_kernel_fields(t)->node_id,
 | |
| 			mm_cid, rseq_kernel_fields(t)->mm_cid);
 | |
| 	}
 | |
| 
 | |
| 	/* For now, only print a console warning on mismatch. */
 | |
| 	return 0;
 | |
| 
 | |
| efault_end:
 | |
| 	user_read_access_end();
 | |
| efault:
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update an rseq field and its in-kernel copy in lock-step to keep a coherent
 | |
|  * state.
 | |
|  */
 | |
| #define rseq_unsafe_put_user(t, value, field, error_label)		\
 | |
| 	do {								\
 | |
| 		unsafe_put_user(value, &t->rseq->field, error_label);	\
 | |
| 		rseq_kernel_fields(t)->field = value;			\
 | |
| 	} while (0)
 | |
| 
 | |
| #else
 | |
| static int rseq_validate_ro_fields(struct task_struct *t)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define rseq_unsafe_put_user(t, value, field, error_label)		\
 | |
| 	unsafe_put_user(value, &t->rseq->field, error_label)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Restartable sequences are a lightweight interface that allows
 | |
|  * user-level code to be executed atomically relative to scheduler
 | |
|  * preemption and signal delivery. Typically used for implementing
 | |
|  * per-cpu operations.
 | |
|  *
 | |
|  * It allows user-space to perform update operations on per-cpu data
 | |
|  * without requiring heavy-weight atomic operations.
 | |
|  *
 | |
|  * Detailed algorithm of rseq user-space assembly sequences:
 | |
|  *
 | |
|  *                     init(rseq_cs)
 | |
|  *                     cpu = TLS->rseq::cpu_id_start
 | |
|  *   [1]               TLS->rseq::rseq_cs = rseq_cs
 | |
|  *   [start_ip]        ----------------------------
 | |
|  *   [2]               if (cpu != TLS->rseq::cpu_id)
 | |
|  *                             goto abort_ip;
 | |
|  *   [3]               <last_instruction_in_cs>
 | |
|  *   [post_commit_ip]  ----------------------------
 | |
|  *
 | |
|  *   The address of jump target abort_ip must be outside the critical
 | |
|  *   region, i.e.:
 | |
|  *
 | |
|  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
 | |
|  *
 | |
|  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
 | |
|  *   userspace that can handle being interrupted between any of those
 | |
|  *   instructions, and then resumed to the abort_ip.
 | |
|  *
 | |
|  *   1.  Userspace stores the address of the struct rseq_cs assembly
 | |
|  *       block descriptor into the rseq_cs field of the registered
 | |
|  *       struct rseq TLS area. This update is performed through a single
 | |
|  *       store within the inline assembly instruction sequence.
 | |
|  *       [start_ip]
 | |
|  *
 | |
|  *   2.  Userspace tests to check whether the current cpu_id field match
 | |
|  *       the cpu number loaded before start_ip, branching to abort_ip
 | |
|  *       in case of a mismatch.
 | |
|  *
 | |
|  *       If the sequence is preempted or interrupted by a signal
 | |
|  *       at or after start_ip and before post_commit_ip, then the kernel
 | |
|  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
 | |
|  *       ip to abort_ip before returning to user-space, so the preempted
 | |
|  *       execution resumes at abort_ip.
 | |
|  *
 | |
|  *   3.  Userspace critical section final instruction before
 | |
|  *       post_commit_ip is the commit. The critical section is
 | |
|  *       self-terminating.
 | |
|  *       [post_commit_ip]
 | |
|  *
 | |
|  *   4.  <success>
 | |
|  *
 | |
|  *   On failure at [2], or if interrupted by preempt or signal delivery
 | |
|  *   between [1] and [3]:
 | |
|  *
 | |
|  *       [abort_ip]
 | |
|  *   F1. <failure>
 | |
|  */
 | |
| 
 | |
| static int rseq_update_cpu_node_id(struct task_struct *t)
 | |
| {
 | |
| 	struct rseq __user *rseq = t->rseq;
 | |
| 	u32 cpu_id = raw_smp_processor_id();
 | |
| 	u32 node_id = cpu_to_node(cpu_id);
 | |
| 	u32 mm_cid = task_mm_cid(t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate read-only rseq fields.
 | |
| 	 */
 | |
| 	if (rseq_validate_ro_fields(t))
 | |
| 		goto efault;
 | |
| 	WARN_ON_ONCE((int) mm_cid < 0);
 | |
| 	if (!user_write_access_begin(rseq, t->rseq_len))
 | |
| 		goto efault;
 | |
| 
 | |
| 	rseq_unsafe_put_user(t, cpu_id, cpu_id_start, efault_end);
 | |
| 	rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end);
 | |
| 	rseq_unsafe_put_user(t, node_id, node_id, efault_end);
 | |
| 	rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Additional feature fields added after ORIG_RSEQ_SIZE
 | |
| 	 * need to be conditionally updated only if
 | |
| 	 * t->rseq_len != ORIG_RSEQ_SIZE.
 | |
| 	 */
 | |
| 	user_write_access_end();
 | |
| 	trace_rseq_update(t);
 | |
| 	return 0;
 | |
| 
 | |
| efault_end:
 | |
| 	user_write_access_end();
 | |
| efault:
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| static int rseq_reset_rseq_cpu_node_id(struct task_struct *t)
 | |
| {
 | |
| 	struct rseq __user *rseq = t->rseq;
 | |
| 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED, node_id = 0,
 | |
| 	    mm_cid = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate read-only rseq fields.
 | |
| 	 */
 | |
| 	if (rseq_validate_ro_fields(t))
 | |
| 		goto efault;
 | |
| 
 | |
| 	if (!user_write_access_begin(rseq, t->rseq_len))
 | |
| 		goto efault;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset all fields to their initial state.
 | |
| 	 *
 | |
| 	 * All fields have an initial state of 0 except cpu_id which is set to
 | |
| 	 * RSEQ_CPU_ID_UNINITIALIZED, so that any user coming in after
 | |
| 	 * unregistration can figure out that rseq needs to be registered
 | |
| 	 * again.
 | |
| 	 */
 | |
| 	rseq_unsafe_put_user(t, cpu_id_start, cpu_id_start, efault_end);
 | |
| 	rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end);
 | |
| 	rseq_unsafe_put_user(t, node_id, node_id, efault_end);
 | |
| 	rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Additional feature fields added after ORIG_RSEQ_SIZE
 | |
| 	 * need to be conditionally reset only if
 | |
| 	 * t->rseq_len != ORIG_RSEQ_SIZE.
 | |
| 	 */
 | |
| 	user_write_access_end();
 | |
| 	return 0;
 | |
| 
 | |
| efault_end:
 | |
| 	user_write_access_end();
 | |
| efault:
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the user-space pointer value stored in the 'rseq_cs' field.
 | |
|  */
 | |
| static int rseq_get_rseq_cs_ptr_val(struct rseq __user *rseq, u64 *rseq_cs)
 | |
| {
 | |
| 	if (!rseq_cs)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| 	if (get_user(*rseq_cs, &rseq->rseq_cs))
 | |
| 		return -EFAULT;
 | |
| #else
 | |
| 	if (copy_from_user(rseq_cs, &rseq->rseq_cs, sizeof(*rseq_cs)))
 | |
| 		return -EFAULT;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the rseq_cs field of 'struct rseq' contains a valid pointer to
 | |
|  * user-space, copy 'struct rseq_cs' from user-space and validate its fields.
 | |
|  */
 | |
| static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
 | |
| {
 | |
| 	struct rseq_cs __user *urseq_cs;
 | |
| 	u64 ptr;
 | |
| 	u32 __user *usig;
 | |
| 	u32 sig;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rseq_get_rseq_cs_ptr_val(t->rseq, &ptr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* If the rseq_cs pointer is NULL, return a cleared struct rseq_cs. */
 | |
| 	if (!ptr) {
 | |
| 		memset(rseq_cs, 0, sizeof(*rseq_cs));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Check that the pointer value fits in the user-space process space. */
 | |
| 	if (ptr >= TASK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
 | |
| 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (rseq_cs->start_ip >= TASK_SIZE ||
 | |
| 	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
 | |
| 	    rseq_cs->abort_ip >= TASK_SIZE ||
 | |
| 	    rseq_cs->version > 0)
 | |
| 		return -EINVAL;
 | |
| 	/* Check for overflow. */
 | |
| 	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
 | |
| 		return -EINVAL;
 | |
| 	/* Ensure that abort_ip is not in the critical section. */
 | |
| 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
 | |
| 	ret = get_user(sig, usig);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (current->rseq_sig != sig) {
 | |
| 		printk_ratelimited(KERN_WARNING
 | |
| 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
 | |
| 			sig, current->rseq_sig, current->pid, usig);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool rseq_warn_flags(const char *str, u32 flags)
 | |
| {
 | |
| 	u32 test_flags;
 | |
| 
 | |
| 	if (!flags)
 | |
| 		return false;
 | |
| 	test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS;
 | |
| 	if (test_flags)
 | |
| 		pr_warn_once("Deprecated flags (%u) in %s ABI structure", test_flags, str);
 | |
| 	test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS;
 | |
| 	if (test_flags)
 | |
| 		pr_warn_once("Unknown flags (%u) in %s ABI structure", test_flags, str);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
 | |
| {
 | |
| 	u32 flags, event_mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (rseq_warn_flags("rseq_cs", cs_flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Get thread flags. */
 | |
| 	ret = get_user(flags, &t->rseq->flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (rseq_warn_flags("rseq", flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Load and clear event mask atomically with respect to
 | |
| 	 * scheduler preemption.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	event_mask = t->rseq_event_mask;
 | |
| 	t->rseq_event_mask = 0;
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return !!event_mask;
 | |
| }
 | |
| 
 | |
| static int clear_rseq_cs(struct rseq __user *rseq)
 | |
| {
 | |
| 	/*
 | |
| 	 * The rseq_cs field is set to NULL on preemption or signal
 | |
| 	 * delivery on top of rseq assembly block, as well as on top
 | |
| 	 * of code outside of the rseq assembly block. This performs
 | |
| 	 * a lazy clear of the rseq_cs field.
 | |
| 	 *
 | |
| 	 * Set rseq_cs to NULL.
 | |
| 	 */
 | |
| #ifdef CONFIG_64BIT
 | |
| 	return put_user(0UL, &rseq->rseq_cs);
 | |
| #else
 | |
| 	if (clear_user(&rseq->rseq_cs, sizeof(rseq->rseq_cs)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned comparison will be true when ip >= start_ip, and when
 | |
|  * ip < start_ip + post_commit_offset.
 | |
|  */
 | |
| static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
 | |
| {
 | |
| 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
 | |
| }
 | |
| 
 | |
| static int rseq_ip_fixup(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ip = instruction_pointer(regs);
 | |
| 	struct task_struct *t = current;
 | |
| 	struct rseq_cs rseq_cs;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rseq_get_rseq_cs(t, &rseq_cs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle potentially not being within a critical section.
 | |
| 	 * If not nested over a rseq critical section, restart is useless.
 | |
| 	 * Clear the rseq_cs pointer and return.
 | |
| 	 */
 | |
| 	if (!in_rseq_cs(ip, &rseq_cs))
 | |
| 		return clear_rseq_cs(t->rseq);
 | |
| 	ret = rseq_need_restart(t, rseq_cs.flags);
 | |
| 	if (ret <= 0)
 | |
| 		return ret;
 | |
| 	ret = clear_rseq_cs(t->rseq);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
 | |
| 			    rseq_cs.abort_ip);
 | |
| 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This resume handler must always be executed between any of:
 | |
|  * - preemption,
 | |
|  * - signal delivery,
 | |
|  * and return to user-space.
 | |
|  *
 | |
|  * This is how we can ensure that the entire rseq critical section
 | |
|  * will issue the commit instruction only if executed atomically with
 | |
|  * respect to other threads scheduled on the same CPU, and with respect
 | |
|  * to signal handlers.
 | |
|  */
 | |
| void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	int ret, sig;
 | |
| 
 | |
| 	if (unlikely(t->flags & PF_EXITING))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * regs is NULL if and only if the caller is in a syscall path.  Skip
 | |
| 	 * fixup and leave rseq_cs as is so that rseq_sycall() will detect and
 | |
| 	 * kill a misbehaving userspace on debug kernels.
 | |
| 	 */
 | |
| 	if (regs) {
 | |
| 		ret = rseq_ip_fixup(regs);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			goto error;
 | |
| 	}
 | |
| 	if (unlikely(rseq_update_cpu_node_id(t)))
 | |
| 		goto error;
 | |
| 	return;
 | |
| 
 | |
| error:
 | |
| 	sig = ksig ? ksig->sig : 0;
 | |
| 	force_sigsegv(sig);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RSEQ
 | |
| 
 | |
| /*
 | |
|  * Terminate the process if a syscall is issued within a restartable
 | |
|  * sequence.
 | |
|  */
 | |
| void rseq_syscall(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ip = instruction_pointer(regs);
 | |
| 	struct task_struct *t = current;
 | |
| 	struct rseq_cs rseq_cs;
 | |
| 
 | |
| 	if (!t->rseq)
 | |
| 		return;
 | |
| 	if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
 | |
| 		force_sig(SIGSEGV);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sys_rseq - setup restartable sequences for caller thread.
 | |
|  */
 | |
| SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
 | |
| 		int, flags, u32, sig)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 rseq_cs;
 | |
| 
 | |
| 	if (flags & RSEQ_FLAG_UNREGISTER) {
 | |
| 		if (flags & ~RSEQ_FLAG_UNREGISTER)
 | |
| 			return -EINVAL;
 | |
| 		/* Unregister rseq for current thread. */
 | |
| 		if (current->rseq != rseq || !current->rseq)
 | |
| 			return -EINVAL;
 | |
| 		if (rseq_len != current->rseq_len)
 | |
| 			return -EINVAL;
 | |
| 		if (current->rseq_sig != sig)
 | |
| 			return -EPERM;
 | |
| 		ret = rseq_reset_rseq_cpu_node_id(current);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		current->rseq = NULL;
 | |
| 		current->rseq_sig = 0;
 | |
| 		current->rseq_len = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (current->rseq) {
 | |
| 		/*
 | |
| 		 * If rseq is already registered, check whether
 | |
| 		 * the provided address differs from the prior
 | |
| 		 * one.
 | |
| 		 */
 | |
| 		if (current->rseq != rseq || rseq_len != current->rseq_len)
 | |
| 			return -EINVAL;
 | |
| 		if (current->rseq_sig != sig)
 | |
| 			return -EPERM;
 | |
| 		/* Already registered. */
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there was no rseq previously registered, ensure the provided rseq
 | |
| 	 * is properly aligned, as communcated to user-space through the ELF
 | |
| 	 * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq
 | |
| 	 * size, the required alignment is the original struct rseq alignment.
 | |
| 	 *
 | |
| 	 * In order to be valid, rseq_len is either the original rseq size, or
 | |
| 	 * large enough to contain all supported fields, as communicated to
 | |
| 	 * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE.
 | |
| 	 */
 | |
| 	if (rseq_len < ORIG_RSEQ_SIZE ||
 | |
| 	    (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) ||
 | |
| 	    (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
 | |
| 					    rseq_len < offsetof(struct rseq, end))))
 | |
| 		return -EINVAL;
 | |
| 	if (!access_ok(rseq, rseq_len))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the rseq_cs pointer is non-NULL on registration, clear it to
 | |
| 	 * avoid a potential segfault on return to user-space. The proper thing
 | |
| 	 * to do would have been to fail the registration but this would break
 | |
| 	 * older libcs that reuse the rseq area for new threads without
 | |
| 	 * clearing the fields.
 | |
| 	 */
 | |
| 	if (rseq_get_rseq_cs_ptr_val(rseq, &rseq_cs))
 | |
| 	        return -EFAULT;
 | |
| 	if (rseq_cs && clear_rseq_cs(rseq))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RSEQ
 | |
| 	/*
 | |
| 	 * Initialize the in-kernel rseq fields copy for validation of
 | |
| 	 * read-only fields.
 | |
| 	 */
 | |
| 	if (get_user(rseq_kernel_fields(current)->cpu_id_start, &rseq->cpu_id_start) ||
 | |
| 	    get_user(rseq_kernel_fields(current)->cpu_id, &rseq->cpu_id) ||
 | |
| 	    get_user(rseq_kernel_fields(current)->node_id, &rseq->node_id) ||
 | |
| 	    get_user(rseq_kernel_fields(current)->mm_cid, &rseq->mm_cid))
 | |
| 		return -EFAULT;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Activate the registration by setting the rseq area address, length
 | |
| 	 * and signature in the task struct.
 | |
| 	 */
 | |
| 	current->rseq = rseq;
 | |
| 	current->rseq_len = rseq_len;
 | |
| 	current->rseq_sig = sig;
 | |
| 
 | |
| 	/*
 | |
| 	 * If rseq was previously inactive, and has just been
 | |
| 	 * registered, ensure the cpu_id_start and cpu_id fields
 | |
| 	 * are updated before returning to user-space.
 | |
| 	 */
 | |
| 	rseq_set_notify_resume(current);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |