mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	perf_output_wakeup() already marks the perf event fd available for polling. Trigger IO signals with FASYNC too. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240413141618.4160-3-khuey@kylehuey.com
		
			
				
	
	
		
			973 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			973 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Performance events ring-buffer code:
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | 
						|
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 | 
						|
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
 | 
						|
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/circ_buf.h>
 | 
						|
#include <linux/poll.h>
 | 
						|
#include <linux/nospec.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
static void perf_output_wakeup(struct perf_output_handle *handle)
 | 
						|
{
 | 
						|
	atomic_set(&handle->rb->poll, EPOLLIN);
 | 
						|
 | 
						|
	handle->event->pending_wakeup = 1;
 | 
						|
 | 
						|
	if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
 | 
						|
		handle->event->pending_kill = POLL_IN;
 | 
						|
 | 
						|
	irq_work_queue(&handle->event->pending_irq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to ensure a later event_id doesn't publish a head when a former
 | 
						|
 * event isn't done writing. However since we need to deal with NMIs we
 | 
						|
 * cannot fully serialize things.
 | 
						|
 *
 | 
						|
 * We only publish the head (and generate a wakeup) when the outer-most
 | 
						|
 * event completes.
 | 
						|
 */
 | 
						|
static void perf_output_get_handle(struct perf_output_handle *handle)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb = handle->rb;
 | 
						|
 | 
						|
	preempt_disable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Avoid an explicit LOAD/STORE such that architectures with memops
 | 
						|
	 * can use them.
 | 
						|
	 */
 | 
						|
	(*(volatile unsigned int *)&rb->nest)++;
 | 
						|
	handle->wakeup = local_read(&rb->wakeup);
 | 
						|
}
 | 
						|
 | 
						|
static void perf_output_put_handle(struct perf_output_handle *handle)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb = handle->rb;
 | 
						|
	unsigned long head;
 | 
						|
	unsigned int nest;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this isn't the outermost nesting, we don't have to update
 | 
						|
	 * @rb->user_page->data_head.
 | 
						|
	 */
 | 
						|
	nest = READ_ONCE(rb->nest);
 | 
						|
	if (nest > 1) {
 | 
						|
		WRITE_ONCE(rb->nest, nest - 1);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
again:
 | 
						|
	/*
 | 
						|
	 * In order to avoid publishing a head value that goes backwards,
 | 
						|
	 * we must ensure the load of @rb->head happens after we've
 | 
						|
	 * incremented @rb->nest.
 | 
						|
	 *
 | 
						|
	 * Otherwise we can observe a @rb->head value before one published
 | 
						|
	 * by an IRQ/NMI happening between the load and the increment.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	head = local_read(&rb->head);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * IRQ/NMI can happen here and advance @rb->head, causing our
 | 
						|
	 * load above to be stale.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since the mmap() consumer (userspace) can run on a different CPU:
 | 
						|
	 *
 | 
						|
	 *   kernel				user
 | 
						|
	 *
 | 
						|
	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 | 
						|
	 *			(A)		smp_rmb()	(C)
 | 
						|
	 *	STORE $data			LOAD $data
 | 
						|
	 *	smp_wmb()	(B)		smp_mb()	(D)
 | 
						|
	 *	STORE ->data_head		STORE ->data_tail
 | 
						|
	 *   }
 | 
						|
	 *
 | 
						|
	 * Where A pairs with D, and B pairs with C.
 | 
						|
	 *
 | 
						|
	 * In our case (A) is a control dependency that separates the load of
 | 
						|
	 * the ->data_tail and the stores of $data. In case ->data_tail
 | 
						|
	 * indicates there is no room in the buffer to store $data we do not.
 | 
						|
	 *
 | 
						|
	 * D needs to be a full barrier since it separates the data READ
 | 
						|
	 * from the tail WRITE.
 | 
						|
	 *
 | 
						|
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 | 
						|
	 * an RMB is sufficient since it separates two READs.
 | 
						|
	 *
 | 
						|
	 * See perf_output_begin().
 | 
						|
	 */
 | 
						|
	smp_wmb(); /* B, matches C */
 | 
						|
	WRITE_ONCE(rb->user_page->data_head, head);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We must publish the head before decrementing the nest count,
 | 
						|
	 * otherwise an IRQ/NMI can publish a more recent head value and our
 | 
						|
	 * write will (temporarily) publish a stale value.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	WRITE_ONCE(rb->nest, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure we decrement @rb->nest before we validate the @rb->head.
 | 
						|
	 * Otherwise we cannot be sure we caught the 'last' nested update.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	if (unlikely(head != local_read(&rb->head))) {
 | 
						|
		WRITE_ONCE(rb->nest, 1);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	if (handle->wakeup != local_read(&rb->wakeup))
 | 
						|
		perf_output_wakeup(handle);
 | 
						|
 | 
						|
out:
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline bool
 | 
						|
ring_buffer_has_space(unsigned long head, unsigned long tail,
 | 
						|
		      unsigned long data_size, unsigned int size,
 | 
						|
		      bool backward)
 | 
						|
{
 | 
						|
	if (!backward)
 | 
						|
		return CIRC_SPACE(head, tail, data_size) >= size;
 | 
						|
	else
 | 
						|
		return CIRC_SPACE(tail, head, data_size) >= size;
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline int
 | 
						|
__perf_output_begin(struct perf_output_handle *handle,
 | 
						|
		    struct perf_sample_data *data,
 | 
						|
		    struct perf_event *event, unsigned int size,
 | 
						|
		    bool backward)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb;
 | 
						|
	unsigned long tail, offset, head;
 | 
						|
	int have_lost, page_shift;
 | 
						|
	struct {
 | 
						|
		struct perf_event_header header;
 | 
						|
		u64			 id;
 | 
						|
		u64			 lost;
 | 
						|
	} lost_event;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	/*
 | 
						|
	 * For inherited events we send all the output towards the parent.
 | 
						|
	 */
 | 
						|
	if (event->parent)
 | 
						|
		event = event->parent;
 | 
						|
 | 
						|
	rb = rcu_dereference(event->rb);
 | 
						|
	if (unlikely(!rb))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (unlikely(rb->paused)) {
 | 
						|
		if (rb->nr_pages) {
 | 
						|
			local_inc(&rb->lost);
 | 
						|
			atomic64_inc(&event->lost_samples);
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	handle->rb    = rb;
 | 
						|
	handle->event = event;
 | 
						|
 | 
						|
	have_lost = local_read(&rb->lost);
 | 
						|
	if (unlikely(have_lost)) {
 | 
						|
		size += sizeof(lost_event);
 | 
						|
		if (event->attr.sample_id_all)
 | 
						|
			size += event->id_header_size;
 | 
						|
	}
 | 
						|
 | 
						|
	perf_output_get_handle(handle);
 | 
						|
 | 
						|
	offset = local_read(&rb->head);
 | 
						|
	do {
 | 
						|
		head = offset;
 | 
						|
		tail = READ_ONCE(rb->user_page->data_tail);
 | 
						|
		if (!rb->overwrite) {
 | 
						|
			if (unlikely(!ring_buffer_has_space(head, tail,
 | 
						|
							    perf_data_size(rb),
 | 
						|
							    size, backward)))
 | 
						|
				goto fail;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The above forms a control dependency barrier separating the
 | 
						|
		 * @tail load above from the data stores below. Since the @tail
 | 
						|
		 * load is required to compute the branch to fail below.
 | 
						|
		 *
 | 
						|
		 * A, matches D; the full memory barrier userspace SHOULD issue
 | 
						|
		 * after reading the data and before storing the new tail
 | 
						|
		 * position.
 | 
						|
		 *
 | 
						|
		 * See perf_output_put_handle().
 | 
						|
		 */
 | 
						|
 | 
						|
		if (!backward)
 | 
						|
			head += size;
 | 
						|
		else
 | 
						|
			head -= size;
 | 
						|
	} while (!local_try_cmpxchg(&rb->head, &offset, head));
 | 
						|
 | 
						|
	if (backward) {
 | 
						|
		offset = head;
 | 
						|
		head = (u64)(-head);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We rely on the implied barrier() by local_cmpxchg() to ensure
 | 
						|
	 * none of the data stores below can be lifted up by the compiler.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
 | 
						|
		local_add(rb->watermark, &rb->wakeup);
 | 
						|
 | 
						|
	page_shift = PAGE_SHIFT + page_order(rb);
 | 
						|
 | 
						|
	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
 | 
						|
	offset &= (1UL << page_shift) - 1;
 | 
						|
	handle->addr = rb->data_pages[handle->page] + offset;
 | 
						|
	handle->size = (1UL << page_shift) - offset;
 | 
						|
 | 
						|
	if (unlikely(have_lost)) {
 | 
						|
		lost_event.header.size = sizeof(lost_event);
 | 
						|
		lost_event.header.type = PERF_RECORD_LOST;
 | 
						|
		lost_event.header.misc = 0;
 | 
						|
		lost_event.id          = event->id;
 | 
						|
		lost_event.lost        = local_xchg(&rb->lost, 0);
 | 
						|
 | 
						|
		/* XXX mostly redundant; @data is already fully initializes */
 | 
						|
		perf_event_header__init_id(&lost_event.header, data, event);
 | 
						|
		perf_output_put(handle, lost_event);
 | 
						|
		perf_event__output_id_sample(event, handle, data);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
	local_inc(&rb->lost);
 | 
						|
	atomic64_inc(&event->lost_samples);
 | 
						|
	perf_output_put_handle(handle);
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return -ENOSPC;
 | 
						|
}
 | 
						|
 | 
						|
int perf_output_begin_forward(struct perf_output_handle *handle,
 | 
						|
			      struct perf_sample_data *data,
 | 
						|
			      struct perf_event *event, unsigned int size)
 | 
						|
{
 | 
						|
	return __perf_output_begin(handle, data, event, size, false);
 | 
						|
}
 | 
						|
 | 
						|
int perf_output_begin_backward(struct perf_output_handle *handle,
 | 
						|
			       struct perf_sample_data *data,
 | 
						|
			       struct perf_event *event, unsigned int size)
 | 
						|
{
 | 
						|
	return __perf_output_begin(handle, data, event, size, true);
 | 
						|
}
 | 
						|
 | 
						|
int perf_output_begin(struct perf_output_handle *handle,
 | 
						|
		      struct perf_sample_data *data,
 | 
						|
		      struct perf_event *event, unsigned int size)
 | 
						|
{
 | 
						|
 | 
						|
	return __perf_output_begin(handle, data, event, size,
 | 
						|
				   unlikely(is_write_backward(event)));
 | 
						|
}
 | 
						|
 | 
						|
unsigned int perf_output_copy(struct perf_output_handle *handle,
 | 
						|
		      const void *buf, unsigned int len)
 | 
						|
{
 | 
						|
	return __output_copy(handle, buf, len);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int perf_output_skip(struct perf_output_handle *handle,
 | 
						|
			      unsigned int len)
 | 
						|
{
 | 
						|
	return __output_skip(handle, NULL, len);
 | 
						|
}
 | 
						|
 | 
						|
void perf_output_end(struct perf_output_handle *handle)
 | 
						|
{
 | 
						|
	perf_output_put_handle(handle);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
 | 
						|
{
 | 
						|
	long max_size = perf_data_size(rb);
 | 
						|
 | 
						|
	if (watermark)
 | 
						|
		rb->watermark = min(max_size, watermark);
 | 
						|
 | 
						|
	if (!rb->watermark)
 | 
						|
		rb->watermark = max_size / 2;
 | 
						|
 | 
						|
	if (flags & RING_BUFFER_WRITABLE)
 | 
						|
		rb->overwrite = 0;
 | 
						|
	else
 | 
						|
		rb->overwrite = 1;
 | 
						|
 | 
						|
	refcount_set(&rb->refcount, 1);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&rb->event_list);
 | 
						|
	spin_lock_init(&rb->event_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * perf_output_begin() only checks rb->paused, therefore
 | 
						|
	 * rb->paused must be true if we have no pages for output.
 | 
						|
	 */
 | 
						|
	if (!rb->nr_pages)
 | 
						|
		rb->paused = 1;
 | 
						|
}
 | 
						|
 | 
						|
void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * OVERWRITE is determined by perf_aux_output_end() and can't
 | 
						|
	 * be passed in directly.
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
 | 
						|
		return;
 | 
						|
 | 
						|
	handle->aux_flags |= flags;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(perf_aux_output_flag);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called before hardware starts writing to the AUX area to
 | 
						|
 * obtain an output handle and make sure there's room in the buffer.
 | 
						|
 * When the capture completes, call perf_aux_output_end() to commit
 | 
						|
 * the recorded data to the buffer.
 | 
						|
 *
 | 
						|
 * The ordering is similar to that of perf_output_{begin,end}, with
 | 
						|
 * the exception of (B), which should be taken care of by the pmu
 | 
						|
 * driver, since ordering rules will differ depending on hardware.
 | 
						|
 *
 | 
						|
 * Call this from pmu::start(); see the comment in perf_aux_output_end()
 | 
						|
 * about its use in pmu callbacks. Both can also be called from the PMI
 | 
						|
 * handler if needed.
 | 
						|
 */
 | 
						|
void *perf_aux_output_begin(struct perf_output_handle *handle,
 | 
						|
			    struct perf_event *event)
 | 
						|
{
 | 
						|
	struct perf_event *output_event = event;
 | 
						|
	unsigned long aux_head, aux_tail;
 | 
						|
	struct perf_buffer *rb;
 | 
						|
	unsigned int nest;
 | 
						|
 | 
						|
	if (output_event->parent)
 | 
						|
		output_event = output_event->parent;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since this will typically be open across pmu::add/pmu::del, we
 | 
						|
	 * grab ring_buffer's refcount instead of holding rcu read lock
 | 
						|
	 * to make sure it doesn't disappear under us.
 | 
						|
	 */
 | 
						|
	rb = ring_buffer_get(output_event);
 | 
						|
	if (!rb)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!rb_has_aux(rb))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
 | 
						|
	 * about to get freed, so we leave immediately.
 | 
						|
	 *
 | 
						|
	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
 | 
						|
	 * the same order, see perf_mmap_close. Otherwise we end up freeing
 | 
						|
	 * aux pages in this path, which is a bug, because in_atomic().
 | 
						|
	 */
 | 
						|
	if (!atomic_read(&rb->aux_mmap_count))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	if (!refcount_inc_not_zero(&rb->aux_refcount))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	nest = READ_ONCE(rb->aux_nest);
 | 
						|
	/*
 | 
						|
	 * Nesting is not supported for AUX area, make sure nested
 | 
						|
	 * writers are caught early
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(nest))
 | 
						|
		goto err_put;
 | 
						|
 | 
						|
	WRITE_ONCE(rb->aux_nest, nest + 1);
 | 
						|
 | 
						|
	aux_head = rb->aux_head;
 | 
						|
 | 
						|
	handle->rb = rb;
 | 
						|
	handle->event = event;
 | 
						|
	handle->head = aux_head;
 | 
						|
	handle->size = 0;
 | 
						|
	handle->aux_flags = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In overwrite mode, AUX data stores do not depend on aux_tail,
 | 
						|
	 * therefore (A) control dependency barrier does not exist. The
 | 
						|
	 * (B) <-> (C) ordering is still observed by the pmu driver.
 | 
						|
	 */
 | 
						|
	if (!rb->aux_overwrite) {
 | 
						|
		aux_tail = READ_ONCE(rb->user_page->aux_tail);
 | 
						|
		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 | 
						|
		if (aux_head - aux_tail < perf_aux_size(rb))
 | 
						|
			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * handle->size computation depends on aux_tail load; this forms a
 | 
						|
		 * control dependency barrier separating aux_tail load from aux data
 | 
						|
		 * store that will be enabled on successful return
 | 
						|
		 */
 | 
						|
		if (!handle->size) { /* A, matches D */
 | 
						|
			event->pending_disable = smp_processor_id();
 | 
						|
			perf_output_wakeup(handle);
 | 
						|
			WRITE_ONCE(rb->aux_nest, 0);
 | 
						|
			goto err_put;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return handle->rb->aux_priv;
 | 
						|
 | 
						|
err_put:
 | 
						|
	/* can't be last */
 | 
						|
	rb_free_aux(rb);
 | 
						|
 | 
						|
err:
 | 
						|
	ring_buffer_put(rb);
 | 
						|
	handle->event = NULL;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(perf_aux_output_begin);
 | 
						|
 | 
						|
static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
 | 
						|
{
 | 
						|
	if (rb->aux_overwrite)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
 | 
						|
		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Commit the data written by hardware into the ring buffer by adjusting
 | 
						|
 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
 | 
						|
 * pmu driver's responsibility to observe ordering rules of the hardware,
 | 
						|
 * so that all the data is externally visible before this is called.
 | 
						|
 *
 | 
						|
 * Note: this has to be called from pmu::stop() callback, as the assumption
 | 
						|
 * of the AUX buffer management code is that after pmu::stop(), the AUX
 | 
						|
 * transaction must be stopped and therefore drop the AUX reference count.
 | 
						|
 */
 | 
						|
void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
 | 
						|
{
 | 
						|
	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
 | 
						|
	struct perf_buffer *rb = handle->rb;
 | 
						|
	unsigned long aux_head;
 | 
						|
 | 
						|
	/* in overwrite mode, driver provides aux_head via handle */
 | 
						|
	if (rb->aux_overwrite) {
 | 
						|
		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
 | 
						|
 | 
						|
		aux_head = handle->head;
 | 
						|
		rb->aux_head = aux_head;
 | 
						|
	} else {
 | 
						|
		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
 | 
						|
 | 
						|
		aux_head = rb->aux_head;
 | 
						|
		rb->aux_head += size;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only send RECORD_AUX if we have something useful to communicate
 | 
						|
	 *
 | 
						|
	 * Note: the OVERWRITE records by themselves are not considered
 | 
						|
	 * useful, as they don't communicate any *new* information,
 | 
						|
	 * aside from the short-lived offset, that becomes history at
 | 
						|
	 * the next event sched-in and therefore isn't useful.
 | 
						|
	 * The userspace that needs to copy out AUX data in overwrite
 | 
						|
	 * mode should know to use user_page::aux_head for the actual
 | 
						|
	 * offset. So, from now on we don't output AUX records that
 | 
						|
	 * have *only* OVERWRITE flag set.
 | 
						|
	 */
 | 
						|
	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
 | 
						|
		perf_event_aux_event(handle->event, aux_head, size,
 | 
						|
				     handle->aux_flags);
 | 
						|
 | 
						|
	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
 | 
						|
	if (rb_need_aux_wakeup(rb))
 | 
						|
		wakeup = true;
 | 
						|
 | 
						|
	if (wakeup) {
 | 
						|
		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
 | 
						|
			handle->event->pending_disable = smp_processor_id();
 | 
						|
		perf_output_wakeup(handle);
 | 
						|
	}
 | 
						|
 | 
						|
	handle->event = NULL;
 | 
						|
 | 
						|
	WRITE_ONCE(rb->aux_nest, 0);
 | 
						|
	/* can't be last */
 | 
						|
	rb_free_aux(rb);
 | 
						|
	ring_buffer_put(rb);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(perf_aux_output_end);
 | 
						|
 | 
						|
/*
 | 
						|
 * Skip over a given number of bytes in the AUX buffer, due to, for example,
 | 
						|
 * hardware's alignment constraints.
 | 
						|
 */
 | 
						|
int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb = handle->rb;
 | 
						|
 | 
						|
	if (size > handle->size)
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	rb->aux_head += size;
 | 
						|
 | 
						|
	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
 | 
						|
	if (rb_need_aux_wakeup(rb)) {
 | 
						|
		perf_output_wakeup(handle);
 | 
						|
		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 | 
						|
	}
 | 
						|
 | 
						|
	handle->head = rb->aux_head;
 | 
						|
	handle->size -= size;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(perf_aux_output_skip);
 | 
						|
 | 
						|
void *perf_get_aux(struct perf_output_handle *handle)
 | 
						|
{
 | 
						|
	/* this is only valid between perf_aux_output_begin and *_end */
 | 
						|
	if (!handle->event)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return handle->rb->aux_priv;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(perf_get_aux);
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy out AUX data from an AUX handle.
 | 
						|
 */
 | 
						|
long perf_output_copy_aux(struct perf_output_handle *aux_handle,
 | 
						|
			  struct perf_output_handle *handle,
 | 
						|
			  unsigned long from, unsigned long to)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb = aux_handle->rb;
 | 
						|
	unsigned long tocopy, remainder, len = 0;
 | 
						|
	void *addr;
 | 
						|
 | 
						|
	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | 
						|
	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | 
						|
 | 
						|
	do {
 | 
						|
		tocopy = PAGE_SIZE - offset_in_page(from);
 | 
						|
		if (to > from)
 | 
						|
			tocopy = min(tocopy, to - from);
 | 
						|
		if (!tocopy)
 | 
						|
			break;
 | 
						|
 | 
						|
		addr = rb->aux_pages[from >> PAGE_SHIFT];
 | 
						|
		addr += offset_in_page(from);
 | 
						|
 | 
						|
		remainder = perf_output_copy(handle, addr, tocopy);
 | 
						|
		if (remainder)
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		len += tocopy;
 | 
						|
		from += tocopy;
 | 
						|
		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | 
						|
	} while (to != from);
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
 | 
						|
 | 
						|
static struct page *rb_alloc_aux_page(int node, int order)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (order > MAX_PAGE_ORDER)
 | 
						|
		order = MAX_PAGE_ORDER;
 | 
						|
 | 
						|
	do {
 | 
						|
		page = alloc_pages_node(node, PERF_AUX_GFP, order);
 | 
						|
	} while (!page && order--);
 | 
						|
 | 
						|
	if (page && order) {
 | 
						|
		/*
 | 
						|
		 * Communicate the allocation size to the driver:
 | 
						|
		 * if we managed to secure a high-order allocation,
 | 
						|
		 * set its first page's private to this order;
 | 
						|
		 * !PagePrivate(page) means it's just a normal page.
 | 
						|
		 */
 | 
						|
		split_page(page, order);
 | 
						|
		SetPagePrivate(page);
 | 
						|
		set_page_private(page, order);
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static void rb_free_aux_page(struct perf_buffer *rb, int idx)
 | 
						|
{
 | 
						|
	struct page *page = virt_to_page(rb->aux_pages[idx]);
 | 
						|
 | 
						|
	ClearPagePrivate(page);
 | 
						|
	page->mapping = NULL;
 | 
						|
	__free_page(page);
 | 
						|
}
 | 
						|
 | 
						|
static void __rb_free_aux(struct perf_buffer *rb)
 | 
						|
{
 | 
						|
	int pg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Should never happen, the last reference should be dropped from
 | 
						|
	 * perf_mmap_close() path, which first stops aux transactions (which
 | 
						|
	 * in turn are the atomic holders of aux_refcount) and then does the
 | 
						|
	 * last rb_free_aux().
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(in_atomic());
 | 
						|
 | 
						|
	if (rb->aux_priv) {
 | 
						|
		rb->free_aux(rb->aux_priv);
 | 
						|
		rb->free_aux = NULL;
 | 
						|
		rb->aux_priv = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rb->aux_nr_pages) {
 | 
						|
		for (pg = 0; pg < rb->aux_nr_pages; pg++)
 | 
						|
			rb_free_aux_page(rb, pg);
 | 
						|
 | 
						|
		kfree(rb->aux_pages);
 | 
						|
		rb->aux_nr_pages = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
 | 
						|
		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
 | 
						|
{
 | 
						|
	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
 | 
						|
	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
 | 
						|
	int ret = -ENOMEM, max_order;
 | 
						|
 | 
						|
	if (!has_aux(event))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (!overwrite) {
 | 
						|
		/*
 | 
						|
		 * Watermark defaults to half the buffer, and so does the
 | 
						|
		 * max_order, to aid PMU drivers in double buffering.
 | 
						|
		 */
 | 
						|
		if (!watermark)
 | 
						|
			watermark = nr_pages << (PAGE_SHIFT - 1);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Use aux_watermark as the basis for chunking to
 | 
						|
		 * help PMU drivers honor the watermark.
 | 
						|
		 */
 | 
						|
		max_order = get_order(watermark);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * We need to start with the max_order that fits in nr_pages,
 | 
						|
		 * not the other way around, hence ilog2() and not get_order.
 | 
						|
		 */
 | 
						|
		max_order = ilog2(nr_pages);
 | 
						|
		watermark = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * kcalloc_node() is unable to allocate buffer if the size is larger
 | 
						|
	 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
 | 
						|
	 */
 | 
						|
	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER)
 | 
						|
		return -ENOMEM;
 | 
						|
	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
 | 
						|
				     node);
 | 
						|
	if (!rb->aux_pages)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	rb->free_aux = event->pmu->free_aux;
 | 
						|
	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
 | 
						|
		struct page *page;
 | 
						|
		int last, order;
 | 
						|
 | 
						|
		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
 | 
						|
		page = rb_alloc_aux_page(node, order);
 | 
						|
		if (!page)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		for (last = rb->aux_nr_pages + (1 << page_private(page));
 | 
						|
		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
 | 
						|
			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In overwrite mode, PMUs that don't support SG may not handle more
 | 
						|
	 * than one contiguous allocation, since they rely on PMI to do double
 | 
						|
	 * buffering. In this case, the entire buffer has to be one contiguous
 | 
						|
	 * chunk.
 | 
						|
	 */
 | 
						|
	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
 | 
						|
	    overwrite) {
 | 
						|
		struct page *page = virt_to_page(rb->aux_pages[0]);
 | 
						|
 | 
						|
		if (page_private(page) != max_order)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
 | 
						|
					     overwrite);
 | 
						|
	if (!rb->aux_priv)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * aux_pages (and pmu driver's private data, aux_priv) will be
 | 
						|
	 * referenced in both producer's and consumer's contexts, thus
 | 
						|
	 * we keep a refcount here to make sure either of the two can
 | 
						|
	 * reference them safely.
 | 
						|
	 */
 | 
						|
	refcount_set(&rb->aux_refcount, 1);
 | 
						|
 | 
						|
	rb->aux_overwrite = overwrite;
 | 
						|
	rb->aux_watermark = watermark;
 | 
						|
 | 
						|
out:
 | 
						|
	if (!ret)
 | 
						|
		rb->aux_pgoff = pgoff;
 | 
						|
	else
 | 
						|
		__rb_free_aux(rb);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void rb_free_aux(struct perf_buffer *rb)
 | 
						|
{
 | 
						|
	if (refcount_dec_and_test(&rb->aux_refcount))
 | 
						|
		__rb_free_aux(rb);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_PERF_USE_VMALLOC
 | 
						|
 | 
						|
/*
 | 
						|
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 | 
						|
 */
 | 
						|
 | 
						|
static struct page *
 | 
						|
__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | 
						|
{
 | 
						|
	if (pgoff > rb->nr_pages)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (pgoff == 0)
 | 
						|
		return virt_to_page(rb->user_page);
 | 
						|
 | 
						|
	return virt_to_page(rb->data_pages[pgoff - 1]);
 | 
						|
}
 | 
						|
 | 
						|
static void *perf_mmap_alloc_page(int cpu)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	int node;
 | 
						|
 | 
						|
	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | 
						|
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 | 
						|
	if (!page)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return page_address(page);
 | 
						|
}
 | 
						|
 | 
						|
static void perf_mmap_free_page(void *addr)
 | 
						|
{
 | 
						|
	struct page *page = virt_to_page(addr);
 | 
						|
 | 
						|
	page->mapping = NULL;
 | 
						|
	__free_page(page);
 | 
						|
}
 | 
						|
 | 
						|
struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb;
 | 
						|
	unsigned long size;
 | 
						|
	int i, node;
 | 
						|
 | 
						|
	size = sizeof(struct perf_buffer);
 | 
						|
	size += nr_pages * sizeof(void *);
 | 
						|
 | 
						|
	if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | 
						|
	rb = kzalloc_node(size, GFP_KERNEL, node);
 | 
						|
	if (!rb)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	rb->user_page = perf_mmap_alloc_page(cpu);
 | 
						|
	if (!rb->user_page)
 | 
						|
		goto fail_user_page;
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
 | 
						|
		if (!rb->data_pages[i])
 | 
						|
			goto fail_data_pages;
 | 
						|
	}
 | 
						|
 | 
						|
	rb->nr_pages = nr_pages;
 | 
						|
 | 
						|
	ring_buffer_init(rb, watermark, flags);
 | 
						|
 | 
						|
	return rb;
 | 
						|
 | 
						|
fail_data_pages:
 | 
						|
	for (i--; i >= 0; i--)
 | 
						|
		perf_mmap_free_page(rb->data_pages[i]);
 | 
						|
 | 
						|
	perf_mmap_free_page(rb->user_page);
 | 
						|
 | 
						|
fail_user_page:
 | 
						|
	kfree(rb);
 | 
						|
 | 
						|
fail:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void rb_free(struct perf_buffer *rb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	perf_mmap_free_page(rb->user_page);
 | 
						|
	for (i = 0; i < rb->nr_pages; i++)
 | 
						|
		perf_mmap_free_page(rb->data_pages[i]);
 | 
						|
	kfree(rb);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static struct page *
 | 
						|
__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | 
						|
{
 | 
						|
	/* The '>' counts in the user page. */
 | 
						|
	if (pgoff > data_page_nr(rb))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static void perf_mmap_unmark_page(void *addr)
 | 
						|
{
 | 
						|
	struct page *page = vmalloc_to_page(addr);
 | 
						|
 | 
						|
	page->mapping = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void rb_free_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb;
 | 
						|
	void *base;
 | 
						|
	int i, nr;
 | 
						|
 | 
						|
	rb = container_of(work, struct perf_buffer, work);
 | 
						|
	nr = data_page_nr(rb);
 | 
						|
 | 
						|
	base = rb->user_page;
 | 
						|
	/* The '<=' counts in the user page. */
 | 
						|
	for (i = 0; i <= nr; i++)
 | 
						|
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
 | 
						|
 | 
						|
	vfree(base);
 | 
						|
	kfree(rb);
 | 
						|
}
 | 
						|
 | 
						|
void rb_free(struct perf_buffer *rb)
 | 
						|
{
 | 
						|
	schedule_work(&rb->work);
 | 
						|
}
 | 
						|
 | 
						|
struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 | 
						|
{
 | 
						|
	struct perf_buffer *rb;
 | 
						|
	unsigned long size;
 | 
						|
	void *all_buf;
 | 
						|
	int node;
 | 
						|
 | 
						|
	size = sizeof(struct perf_buffer);
 | 
						|
	size += sizeof(void *);
 | 
						|
 | 
						|
	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | 
						|
	rb = kzalloc_node(size, GFP_KERNEL, node);
 | 
						|
	if (!rb)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	INIT_WORK(&rb->work, rb_free_work);
 | 
						|
 | 
						|
	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 | 
						|
	if (!all_buf)
 | 
						|
		goto fail_all_buf;
 | 
						|
 | 
						|
	rb->user_page = all_buf;
 | 
						|
	rb->data_pages[0] = all_buf + PAGE_SIZE;
 | 
						|
	if (nr_pages) {
 | 
						|
		rb->nr_pages = 1;
 | 
						|
		rb->page_order = ilog2(nr_pages);
 | 
						|
	}
 | 
						|
 | 
						|
	ring_buffer_init(rb, watermark, flags);
 | 
						|
 | 
						|
	return rb;
 | 
						|
 | 
						|
fail_all_buf:
 | 
						|
	kfree(rb);
 | 
						|
 | 
						|
fail:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
struct page *
 | 
						|
perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | 
						|
{
 | 
						|
	if (rb->aux_nr_pages) {
 | 
						|
		/* above AUX space */
 | 
						|
		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		/* AUX space */
 | 
						|
		if (pgoff >= rb->aux_pgoff) {
 | 
						|
			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
 | 
						|
			return virt_to_page(rb->aux_pages[aux_pgoff]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return __perf_mmap_to_page(rb, pgoff);
 | 
						|
}
 |