mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double().
 
   The cmpxchg128() family of functions is basically & functionally
   the same as cmpxchg_double(), but with a saner interface: instead
   of a 6-parameter horror that forced u128 - u64/u64-halves layout
   details on the interface and exposed users to complexity,
   fragility & bugs, use a natural 3-parameter interface with u128 types.
 
 - Restructure the generated atomic headers, and add
   kerneldoc comments for all of the generic atomic{,64,_long}_t
   operations. Generated definitions are much cleaner now,
   and come with documentation.
 
 - Implement lock_set_cmp_fn() on lockdep, for defining an ordering
   when taking multiple locks of the same type. This gets rid of
   one use of lockdep_set_novalidate_class() in the bcache code.
 
 - Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended
   variable shadowing generating garbage code on Clang on certain
   ARM builds.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSav3wRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gDyxAAjCHQjpolrre7fRpyiTDwqzIKT27H04vQ
 zrQVlVc42WBnn9pe8LthGy43/RvYvqlZvLoLONA4fMkuYriM6nSMsoZjeUmE+6Rs
 QAElQC74P5YvEBOa67VNY3/M7sj22ftDe7ODtVV8OrnPjMk1sQNRvaK025Cs3yig
 8MAI//hHGNmyVAp1dPYZMJNqxGCvluReLZ4SaUJFCMrg7YgUXgCBj/5Gi07TlKxn
 sT8BFCssoEW/B9FXkh59B1t6FBCZoSy4XSZfsZe0uVAUJ4XDEOO+zBgaWFCedNQT
 wP323ryBgMrkzUKA8j2/o5d3QnMA1GcBfHNNlvAl/fOfrxWXzDZnOEY26YcaLMa0
 YIuRF/JNbPZlt6DCUVBUEvMPpfNYi18dFN0rat1a6xL2L4w+tm55y3mFtSsg76Ka
 r7L2nWlRrAGXnuA+VEPqkqbSWRUSWOv5hT2Mcyb5BqqZRsxBETn6G8GVAzIO6j6v
 giyfUdA8Z9wmMZ7NtB6usxe3p1lXtnZ/shCE7ZHXm6xstyZrSXaHgOSgAnB9DcuJ
 7KpGIhhSODQSwC/h/J0KEpb9Pr/5jCWmXAQ2DWnZK6ndt1jUfFi8pfK58wm0AuAM
 o9t8Mx3o8wZjbMdt6up9OIM1HyFiMx2BSaZK+8f/bWemHQ0xwez5g4k5O5AwVOaC
 x9Nt+Tp0Ze4=
 =DsYj
 -----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 - Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
   The cmpxchg128() family of functions is basically & functionally the
   same as cmpxchg_double(), but with a saner interface.
   Instead of a 6-parameter horror that forced u128 - u64/u64-halves
   layout details on the interface and exposed users to complexity,
   fragility & bugs, use a natural 3-parameter interface with u128
   types.
 - Restructure the generated atomic headers, and add kerneldoc comments
   for all of the generic atomic{,64,_long}_t operations.
   The generated definitions are much cleaner now, and come with
   documentation.
 - Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
   taking multiple locks of the same type.
   This gets rid of one use of lockdep_set_novalidate_class() in the
   bcache code.
 - Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
   shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
  percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
  locking/atomic: treewide: delete arch_atomic_*() kerneldoc
  locking/atomic: docs: Add atomic operations to the driver basic API documentation
  locking/atomic: scripts: generate kerneldoc comments
  docs: scripts: kernel-doc: accept bitwise negation like ~@var
  locking/atomic: scripts: simplify raw_atomic*() definitions
  locking/atomic: scripts: simplify raw_atomic_long*() definitions
  locking/atomic: scripts: split pfx/name/sfx/order
  locking/atomic: scripts: restructure fallback ifdeffery
  locking/atomic: scripts: build raw_atomic_long*() directly
  locking/atomic: treewide: use raw_atomic*_<op>()
  locking/atomic: scripts: add trivial raw_atomic*_<op>()
  locking/atomic: scripts: factor out order template generation
  locking/atomic: scripts: remove leftover "${mult}"
  locking/atomic: scripts: remove bogus order parameter
  locking/atomic: xtensa: add preprocessor symbols
  locking/atomic: x86: add preprocessor symbols
  locking/atomic: sparc: add preprocessor symbols
  locking/atomic: sh: add preprocessor symbols
  ...
		
	
			
		
			
				
	
	
		
			505 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			505 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * sched_clock() for unstable CPU clocks
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
 | 
						|
 *
 | 
						|
 *  Updates and enhancements:
 | 
						|
 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
 | 
						|
 *
 | 
						|
 * Based on code by:
 | 
						|
 *   Ingo Molnar <mingo@redhat.com>
 | 
						|
 *   Guillaume Chazarain <guichaz@gmail.com>
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * What this file implements:
 | 
						|
 *
 | 
						|
 * cpu_clock(i) provides a fast (execution time) high resolution
 | 
						|
 * clock with bounded drift between CPUs. The value of cpu_clock(i)
 | 
						|
 * is monotonic for constant i. The timestamp returned is in nanoseconds.
 | 
						|
 *
 | 
						|
 * ######################### BIG FAT WARNING ##########################
 | 
						|
 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 | 
						|
 * # go backwards !!                                                  #
 | 
						|
 * ####################################################################
 | 
						|
 *
 | 
						|
 * There is no strict promise about the base, although it tends to start
 | 
						|
 * at 0 on boot (but people really shouldn't rely on that).
 | 
						|
 *
 | 
						|
 * cpu_clock(i)       -- can be used from any context, including NMI.
 | 
						|
 * local_clock()      -- is cpu_clock() on the current CPU.
 | 
						|
 *
 | 
						|
 * sched_clock_cpu(i)
 | 
						|
 *
 | 
						|
 * How it is implemented:
 | 
						|
 *
 | 
						|
 * The implementation either uses sched_clock() when
 | 
						|
 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
 | 
						|
 * sched_clock() is assumed to provide these properties (mostly it means
 | 
						|
 * the architecture provides a globally synchronized highres time source).
 | 
						|
 *
 | 
						|
 * Otherwise it tries to create a semi stable clock from a mixture of other
 | 
						|
 * clocks, including:
 | 
						|
 *
 | 
						|
 *  - GTOD (clock monotonic)
 | 
						|
 *  - sched_clock()
 | 
						|
 *  - explicit idle events
 | 
						|
 *
 | 
						|
 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
 | 
						|
 * deltas are filtered to provide monotonicity and keeping it within an
 | 
						|
 * expected window.
 | 
						|
 *
 | 
						|
 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
 | 
						|
 * that is otherwise invisible (TSC gets stopped).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Scheduler clock - returns current time in nanosec units.
 | 
						|
 * This is default implementation.
 | 
						|
 * Architectures and sub-architectures can override this.
 | 
						|
 */
 | 
						|
notrace unsigned long long __weak sched_clock(void)
 | 
						|
{
 | 
						|
	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
 | 
						|
					* (NSEC_PER_SEC / HZ);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock);
 | 
						|
 | 
						|
static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 | 
						|
/*
 | 
						|
 * We must start with !__sched_clock_stable because the unstable -> stable
 | 
						|
 * transition is accurate, while the stable -> unstable transition is not.
 | 
						|
 *
 | 
						|
 * Similarly we start with __sched_clock_stable_early, thereby assuming we
 | 
						|
 * will become stable, such that there's only a single 1 -> 0 transition.
 | 
						|
 */
 | 
						|
static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
 | 
						|
static int __sched_clock_stable_early = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
 | 
						|
 */
 | 
						|
__read_mostly u64 __sched_clock_offset;
 | 
						|
static __read_mostly u64 __gtod_offset;
 | 
						|
 | 
						|
struct sched_clock_data {
 | 
						|
	u64			tick_raw;
 | 
						|
	u64			tick_gtod;
 | 
						|
	u64			clock;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 | 
						|
 | 
						|
static __always_inline struct sched_clock_data *this_scd(void)
 | 
						|
{
 | 
						|
	return this_cpu_ptr(&sched_clock_data);
 | 
						|
}
 | 
						|
 | 
						|
notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
 | 
						|
{
 | 
						|
	return &per_cpu(sched_clock_data, cpu);
 | 
						|
}
 | 
						|
 | 
						|
notrace int sched_clock_stable(void)
 | 
						|
{
 | 
						|
	return static_branch_likely(&__sched_clock_stable);
 | 
						|
}
 | 
						|
 | 
						|
notrace static void __scd_stamp(struct sched_clock_data *scd)
 | 
						|
{
 | 
						|
	scd->tick_gtod = ktime_get_ns();
 | 
						|
	scd->tick_raw = sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
notrace static void __set_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we're still unstable and the tick is already running, we have
 | 
						|
	 * to disable IRQs in order to get a consistent scd->tick* reading.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	scd = this_scd();
 | 
						|
	/*
 | 
						|
	 * Attempt to make the (initial) unstable->stable transition continuous.
 | 
						|
	 */
 | 
						|
	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
 | 
						|
	local_irq_enable();
 | 
						|
 | 
						|
	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
 | 
						|
			scd->tick_gtod, __gtod_offset,
 | 
						|
			scd->tick_raw,  __sched_clock_offset);
 | 
						|
 | 
						|
	static_branch_enable(&__sched_clock_stable);
 | 
						|
	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If we ever get here, we're screwed, because we found out -- typically after
 | 
						|
 * the fact -- that TSC wasn't good. This means all our clocksources (including
 | 
						|
 * ktime) could have reported wrong values.
 | 
						|
 *
 | 
						|
 * What we do here is an attempt to fix up and continue sort of where we left
 | 
						|
 * off in a coherent manner.
 | 
						|
 *
 | 
						|
 * The only way to fully avoid random clock jumps is to boot with:
 | 
						|
 * "tsc=unstable".
 | 
						|
 */
 | 
						|
notrace static void __sched_clock_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/* take a current timestamp and set 'now' */
 | 
						|
	preempt_disable();
 | 
						|
	scd = this_scd();
 | 
						|
	__scd_stamp(scd);
 | 
						|
	scd->clock = scd->tick_gtod + __gtod_offset;
 | 
						|
	preempt_enable();
 | 
						|
 | 
						|
	/* clone to all CPUs */
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		per_cpu(sched_clock_data, cpu) = *scd;
 | 
						|
 | 
						|
	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
 | 
						|
	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
 | 
						|
			scd->tick_gtod, __gtod_offset,
 | 
						|
			scd->tick_raw,  __sched_clock_offset);
 | 
						|
 | 
						|
	static_branch_disable(&__sched_clock_stable);
 | 
						|
}
 | 
						|
 | 
						|
static DECLARE_WORK(sched_clock_work, __sched_clock_work);
 | 
						|
 | 
						|
notrace static void __clear_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	if (!sched_clock_stable())
 | 
						|
		return;
 | 
						|
 | 
						|
	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
 | 
						|
	schedule_work(&sched_clock_work);
 | 
						|
}
 | 
						|
 | 
						|
notrace void clear_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	__sched_clock_stable_early = 0;
 | 
						|
 | 
						|
	smp_mb(); /* matches sched_clock_init_late() */
 | 
						|
 | 
						|
	if (static_key_count(&sched_clock_running.key) == 2)
 | 
						|
		__clear_sched_clock_stable();
 | 
						|
}
 | 
						|
 | 
						|
notrace static void __sched_clock_gtod_offset(void)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd = this_scd();
 | 
						|
 | 
						|
	__scd_stamp(scd);
 | 
						|
	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
 | 
						|
}
 | 
						|
 | 
						|
void __init sched_clock_init(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Set __gtod_offset such that once we mark sched_clock_running,
 | 
						|
	 * sched_clock_tick() continues where sched_clock() left off.
 | 
						|
	 *
 | 
						|
	 * Even if TSC is buggered, we're still UP at this point so it
 | 
						|
	 * can't really be out of sync.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	__sched_clock_gtod_offset();
 | 
						|
	local_irq_enable();
 | 
						|
 | 
						|
	static_branch_inc(&sched_clock_running);
 | 
						|
}
 | 
						|
/*
 | 
						|
 * We run this as late_initcall() such that it runs after all built-in drivers,
 | 
						|
 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
 | 
						|
 */
 | 
						|
static int __init sched_clock_init_late(void)
 | 
						|
{
 | 
						|
	static_branch_inc(&sched_clock_running);
 | 
						|
	/*
 | 
						|
	 * Ensure that it is impossible to not do a static_key update.
 | 
						|
	 *
 | 
						|
	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 | 
						|
	 * and do the update, or we must see their __sched_clock_stable_early
 | 
						|
	 * and do the update, or both.
 | 
						|
	 */
 | 
						|
	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 | 
						|
 | 
						|
	if (__sched_clock_stable_early)
 | 
						|
		__set_sched_clock_stable();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(sched_clock_init_late);
 | 
						|
 | 
						|
/*
 | 
						|
 * min, max except they take wrapping into account
 | 
						|
 */
 | 
						|
 | 
						|
static __always_inline u64 wrap_min(u64 x, u64 y)
 | 
						|
{
 | 
						|
	return (s64)(x - y) < 0 ? x : y;
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline u64 wrap_max(u64 x, u64 y)
 | 
						|
{
 | 
						|
	return (s64)(x - y) > 0 ? x : y;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * update the percpu scd from the raw @now value
 | 
						|
 *
 | 
						|
 *  - filter out backward motion
 | 
						|
 *  - use the GTOD tick value to create a window to filter crazy TSC values
 | 
						|
 */
 | 
						|
static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
 | 
						|
{
 | 
						|
	u64 now, clock, old_clock, min_clock, max_clock, gtod;
 | 
						|
	s64 delta;
 | 
						|
 | 
						|
again:
 | 
						|
	now = sched_clock_noinstr();
 | 
						|
	delta = now - scd->tick_raw;
 | 
						|
	if (unlikely(delta < 0))
 | 
						|
		delta = 0;
 | 
						|
 | 
						|
	old_clock = scd->clock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * scd->clock = clamp(scd->tick_gtod + delta,
 | 
						|
	 *		      max(scd->tick_gtod, scd->clock),
 | 
						|
	 *		      scd->tick_gtod + TICK_NSEC);
 | 
						|
	 */
 | 
						|
 | 
						|
	gtod = scd->tick_gtod + __gtod_offset;
 | 
						|
	clock = gtod + delta;
 | 
						|
	min_clock = wrap_max(gtod, old_clock);
 | 
						|
	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
 | 
						|
 | 
						|
	clock = wrap_max(clock, min_clock);
 | 
						|
	clock = wrap_min(clock, max_clock);
 | 
						|
 | 
						|
	if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
 | 
						|
		goto again;
 | 
						|
 | 
						|
	return clock;
 | 
						|
}
 | 
						|
 | 
						|
noinstr u64 local_clock_noinstr(void)
 | 
						|
{
 | 
						|
	u64 clock;
 | 
						|
 | 
						|
	if (static_branch_likely(&__sched_clock_stable))
 | 
						|
		return sched_clock_noinstr() + __sched_clock_offset;
 | 
						|
 | 
						|
	if (!static_branch_likely(&sched_clock_running))
 | 
						|
		return sched_clock_noinstr();
 | 
						|
 | 
						|
	clock = sched_clock_local(this_scd());
 | 
						|
 | 
						|
	return clock;
 | 
						|
}
 | 
						|
 | 
						|
u64 local_clock(void)
 | 
						|
{
 | 
						|
	u64 now;
 | 
						|
	preempt_disable_notrace();
 | 
						|
	now = local_clock_noinstr();
 | 
						|
	preempt_enable_notrace();
 | 
						|
	return now;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(local_clock);
 | 
						|
 | 
						|
static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
 | 
						|
{
 | 
						|
	struct sched_clock_data *my_scd = this_scd();
 | 
						|
	u64 this_clock, remote_clock;
 | 
						|
	u64 *ptr, old_val, val;
 | 
						|
 | 
						|
#if BITS_PER_LONG != 64
 | 
						|
again:
 | 
						|
	/*
 | 
						|
	 * Careful here: The local and the remote clock values need to
 | 
						|
	 * be read out atomic as we need to compare the values and
 | 
						|
	 * then update either the local or the remote side. So the
 | 
						|
	 * cmpxchg64 below only protects one readout.
 | 
						|
	 *
 | 
						|
	 * We must reread via sched_clock_local() in the retry case on
 | 
						|
	 * 32-bit kernels as an NMI could use sched_clock_local() via the
 | 
						|
	 * tracer and hit between the readout of
 | 
						|
	 * the low 32-bit and the high 32-bit portion.
 | 
						|
	 */
 | 
						|
	this_clock = sched_clock_local(my_scd);
 | 
						|
	/*
 | 
						|
	 * We must enforce atomic readout on 32-bit, otherwise the
 | 
						|
	 * update on the remote CPU can hit inbetween the readout of
 | 
						|
	 * the low 32-bit and the high 32-bit portion.
 | 
						|
	 */
 | 
						|
	remote_clock = cmpxchg64(&scd->clock, 0, 0);
 | 
						|
#else
 | 
						|
	/*
 | 
						|
	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
 | 
						|
	 * update, so we can avoid the above 32-bit dance.
 | 
						|
	 */
 | 
						|
	sched_clock_local(my_scd);
 | 
						|
again:
 | 
						|
	this_clock = my_scd->clock;
 | 
						|
	remote_clock = scd->clock;
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the opportunity that we have both locks
 | 
						|
	 * taken to couple the two clocks: we take the
 | 
						|
	 * larger time as the latest time for both
 | 
						|
	 * runqueues. (this creates monotonic movement)
 | 
						|
	 */
 | 
						|
	if (likely((s64)(remote_clock - this_clock) < 0)) {
 | 
						|
		ptr = &scd->clock;
 | 
						|
		old_val = remote_clock;
 | 
						|
		val = this_clock;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Should be rare, but possible:
 | 
						|
		 */
 | 
						|
		ptr = &my_scd->clock;
 | 
						|
		old_val = this_clock;
 | 
						|
		val = remote_clock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!try_cmpxchg64(ptr, &old_val, val))
 | 
						|
		goto again;
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to cpu_clock(), but requires local IRQs to be disabled.
 | 
						|
 *
 | 
						|
 * See cpu_clock().
 | 
						|
 */
 | 
						|
notrace u64 sched_clock_cpu(int cpu)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
	u64 clock;
 | 
						|
 | 
						|
	if (sched_clock_stable())
 | 
						|
		return sched_clock() + __sched_clock_offset;
 | 
						|
 | 
						|
	if (!static_branch_likely(&sched_clock_running))
 | 
						|
		return sched_clock();
 | 
						|
 | 
						|
	preempt_disable_notrace();
 | 
						|
	scd = cpu_sdc(cpu);
 | 
						|
 | 
						|
	if (cpu != smp_processor_id())
 | 
						|
		clock = sched_clock_remote(scd);
 | 
						|
	else
 | 
						|
		clock = sched_clock_local(scd);
 | 
						|
	preempt_enable_notrace();
 | 
						|
 | 
						|
	return clock;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock_cpu);
 | 
						|
 | 
						|
notrace void sched_clock_tick(void)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
 | 
						|
	if (sched_clock_stable())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!static_branch_likely(&sched_clock_running))
 | 
						|
		return;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	scd = this_scd();
 | 
						|
	__scd_stamp(scd);
 | 
						|
	sched_clock_local(scd);
 | 
						|
}
 | 
						|
 | 
						|
notrace void sched_clock_tick_stable(void)
 | 
						|
{
 | 
						|
	if (!sched_clock_stable())
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Called under watchdog_lock.
 | 
						|
	 *
 | 
						|
	 * The watchdog just found this TSC to (still) be stable, so now is a
 | 
						|
	 * good moment to update our __gtod_offset. Because once we find the
 | 
						|
	 * TSC to be unstable, any computation will be computing crap.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	__sched_clock_gtod_offset();
 | 
						|
	local_irq_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We are going deep-idle (irqs are disabled):
 | 
						|
 */
 | 
						|
notrace void sched_clock_idle_sleep_event(void)
 | 
						|
{
 | 
						|
	sched_clock_cpu(smp_processor_id());
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 | 
						|
 | 
						|
/*
 | 
						|
 * We just idled; resync with ktime.
 | 
						|
 */
 | 
						|
notrace void sched_clock_idle_wakeup_event(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (sched_clock_stable())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (unlikely(timekeeping_suspended))
 | 
						|
		return;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	sched_clock_tick();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 | 
						|
 | 
						|
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 | 
						|
 | 
						|
void __init sched_clock_init(void)
 | 
						|
{
 | 
						|
	static_branch_inc(&sched_clock_running);
 | 
						|
	local_irq_disable();
 | 
						|
	generic_sched_clock_init();
 | 
						|
	local_irq_enable();
 | 
						|
}
 | 
						|
 | 
						|
notrace u64 sched_clock_cpu(int cpu)
 | 
						|
{
 | 
						|
	if (!static_branch_likely(&sched_clock_running))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 | 
						|
 | 
						|
/*
 | 
						|
 * Running clock - returns the time that has elapsed while a guest has been
 | 
						|
 * running.
 | 
						|
 * On a guest this value should be local_clock minus the time the guest was
 | 
						|
 * suspended by the hypervisor (for any reason).
 | 
						|
 * On bare metal this function should return the same as local_clock.
 | 
						|
 * Architectures and sub-architectures can override this.
 | 
						|
 */
 | 
						|
notrace u64 __weak running_clock(void)
 | 
						|
{
 | 
						|
	return local_clock();
 | 
						|
}
 |