mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	- The biggest change is the rework of the percpu code,
   to support the 'Named Address Spaces' GCC feature,
   by Uros Bizjak:
 
    - This allows C code to access GS and FS segment relative
      memory via variables declared with such attributes,
      which allows the compiler to better optimize those accesses
      than the previous inline assembly code.
 
    - The series also includes a number of micro-optimizations
      for various percpu access methods, plus a number of
      cleanups of %gs accesses in assembly code.
 
    - These changes have been exposed to linux-next testing for
      the last ~5 months, with no known regressions in this area.
 
 - Fix/clean up __switch_to()'s broken but accidentally
   working handling of FPU switching - which also generates
   better code.
 
 - Propagate more RIP-relative addressing in assembly code,
   to generate slightly better code.
 
 - Rework the CPU mitigations Kconfig space to be less idiosyncratic,
   to make it easier for distros to follow & maintain these options.
 
 - Rework the x86 idle code to cure RCU violations and
   to clean up the logic.
 
 - Clean up the vDSO Makefile logic.
 
 - Misc cleanups and fixes.
 
 [ Please note that there's a higher number of merge commits in
   this branch (three) than is usual in x86 topic trees. This happened
   due to the long testing lifecycle of the percpu changes that
   involved 3 merge windows, which generated a longer history
   and various interactions with other core x86 changes that we
   felt better about to carry in a single branch. ]
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
 9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
 Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
 nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
 e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
 NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
 ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
 rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
 2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
 EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
 Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
 F/mednG0gGc=
 =3v4F
 -----END PGP SIGNATURE-----
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
 - The biggest change is the rework of the percpu code, to support the
   'Named Address Spaces' GCC feature, by Uros Bizjak:
      - This allows C code to access GS and FS segment relative memory
        via variables declared with such attributes, which allows the
        compiler to better optimize those accesses than the previous
        inline assembly code.
      - The series also includes a number of micro-optimizations for
        various percpu access methods, plus a number of cleanups of %gs
        accesses in assembly code.
      - These changes have been exposed to linux-next testing for the
        last ~5 months, with no known regressions in this area.
 - Fix/clean up __switch_to()'s broken but accidentally working handling
   of FPU switching - which also generates better code
 - Propagate more RIP-relative addressing in assembly code, to generate
   slightly better code
 - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
   make it easier for distros to follow & maintain these options
 - Rework the x86 idle code to cure RCU violations and to clean up the
   logic
 - Clean up the vDSO Makefile logic
 - Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  x86/idle: Select idle routine only once
  x86/idle: Let prefer_mwait_c1_over_halt() return bool
  x86/idle: Cleanup idle_setup()
  x86/idle: Clean up idle selection
  x86/idle: Sanitize X86_BUG_AMD_E400 handling
  sched/idle: Conditionally handle tick broadcast in default_idle_call()
  x86: Increase brk randomness entropy for 64-bit systems
  x86/vdso: Move vDSO to mmap region
  x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
  x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
  x86/retpoline: Ensure default return thunk isn't used at runtime
  x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
  x86/vdso: Use $(addprefix ) instead of $(foreach )
  x86/vdso: Simplify obj-y addition
  x86/vdso: Consolidate targets and clean-files
  x86/bugs: Rename CONFIG_RETHUNK              => CONFIG_MITIGATION_RETHUNK
  x86/bugs: Rename CONFIG_CPU_SRSO             => CONFIG_MITIGATION_SRSO
  x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY       => CONFIG_MITIGATION_IBRS_ENTRY
  x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY      => CONFIG_MITIGATION_UNRET_ENTRY
  x86/bugs: Rename CONFIG_SLS                  => CONFIG_MITIGATION_SLS
  ...
		
	
			
		
			
				
	
	
		
			553 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			553 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Generic entry points for the idle threads and
 | 
						|
 * implementation of the idle task scheduling class.
 | 
						|
 *
 | 
						|
 * (NOTE: these are not related to SCHED_IDLE batch scheduled
 | 
						|
 *        tasks which are handled in sched/fair.c )
 | 
						|
 */
 | 
						|
 | 
						|
/* Linker adds these: start and end of __cpuidle functions */
 | 
						|
extern char __cpuidle_text_start[], __cpuidle_text_end[];
 | 
						|
 | 
						|
/**
 | 
						|
 * sched_idle_set_state - Record idle state for the current CPU.
 | 
						|
 * @idle_state: State to record.
 | 
						|
 */
 | 
						|
void sched_idle_set_state(struct cpuidle_state *idle_state)
 | 
						|
{
 | 
						|
	idle_set_state(this_rq(), idle_state);
 | 
						|
}
 | 
						|
 | 
						|
static int __read_mostly cpu_idle_force_poll;
 | 
						|
 | 
						|
void cpu_idle_poll_ctrl(bool enable)
 | 
						|
{
 | 
						|
	if (enable) {
 | 
						|
		cpu_idle_force_poll++;
 | 
						|
	} else {
 | 
						|
		cpu_idle_force_poll--;
 | 
						|
		WARN_ON_ONCE(cpu_idle_force_poll < 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
 | 
						|
static int __init cpu_idle_poll_setup(char *__unused)
 | 
						|
{
 | 
						|
	cpu_idle_force_poll = 1;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("nohlt", cpu_idle_poll_setup);
 | 
						|
 | 
						|
static int __init cpu_idle_nopoll_setup(char *__unused)
 | 
						|
{
 | 
						|
	cpu_idle_force_poll = 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hlt", cpu_idle_nopoll_setup);
 | 
						|
#endif
 | 
						|
 | 
						|
static noinline int __cpuidle cpu_idle_poll(void)
 | 
						|
{
 | 
						|
	instrumentation_begin();
 | 
						|
	trace_cpu_idle(0, smp_processor_id());
 | 
						|
	stop_critical_timings();
 | 
						|
	ct_cpuidle_enter();
 | 
						|
 | 
						|
	raw_local_irq_enable();
 | 
						|
	while (!tif_need_resched() &&
 | 
						|
	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
 | 
						|
		cpu_relax();
 | 
						|
	raw_local_irq_disable();
 | 
						|
 | 
						|
	ct_cpuidle_exit();
 | 
						|
	start_critical_timings();
 | 
						|
	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
 | 
						|
	local_irq_enable();
 | 
						|
	instrumentation_end();
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Weak implementations for optional arch specific functions */
 | 
						|
void __weak arch_cpu_idle_prepare(void) { }
 | 
						|
void __weak arch_cpu_idle_enter(void) { }
 | 
						|
void __weak arch_cpu_idle_exit(void) { }
 | 
						|
void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
 | 
						|
void __weak arch_cpu_idle(void)
 | 
						|
{
 | 
						|
	cpu_idle_force_poll = 1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
 | 
						|
DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
 | 
						|
 | 
						|
static inline void cond_tick_broadcast_enter(void)
 | 
						|
{
 | 
						|
	if (static_branch_unlikely(&arch_needs_tick_broadcast))
 | 
						|
		tick_broadcast_enter();
 | 
						|
}
 | 
						|
 | 
						|
static inline void cond_tick_broadcast_exit(void)
 | 
						|
{
 | 
						|
	if (static_branch_unlikely(&arch_needs_tick_broadcast))
 | 
						|
		tick_broadcast_exit();
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void cond_tick_broadcast_enter(void) { }
 | 
						|
static inline void cond_tick_broadcast_exit(void) { }
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * default_idle_call - Default CPU idle routine.
 | 
						|
 *
 | 
						|
 * To use when the cpuidle framework cannot be used.
 | 
						|
 */
 | 
						|
void __cpuidle default_idle_call(void)
 | 
						|
{
 | 
						|
	instrumentation_begin();
 | 
						|
	if (!current_clr_polling_and_test()) {
 | 
						|
		cond_tick_broadcast_enter();
 | 
						|
		trace_cpu_idle(1, smp_processor_id());
 | 
						|
		stop_critical_timings();
 | 
						|
 | 
						|
		ct_cpuidle_enter();
 | 
						|
		arch_cpu_idle();
 | 
						|
		ct_cpuidle_exit();
 | 
						|
 | 
						|
		start_critical_timings();
 | 
						|
		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
 | 
						|
		cond_tick_broadcast_exit();
 | 
						|
	}
 | 
						|
	local_irq_enable();
 | 
						|
	instrumentation_end();
 | 
						|
}
 | 
						|
 | 
						|
static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
 | 
						|
			       struct cpuidle_device *dev)
 | 
						|
{
 | 
						|
	if (current_clr_polling_and_test())
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	return cpuidle_enter_s2idle(drv, dev);
 | 
						|
}
 | 
						|
 | 
						|
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
 | 
						|
		      int next_state)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The idle task must be scheduled, it is pointless to go to idle, just
 | 
						|
	 * update no idle residency and return.
 | 
						|
	 */
 | 
						|
	if (current_clr_polling_and_test()) {
 | 
						|
		dev->last_residency_ns = 0;
 | 
						|
		local_irq_enable();
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Enter the idle state previously returned by the governor decision.
 | 
						|
	 * This function will block until an interrupt occurs and will take
 | 
						|
	 * care of re-enabling the local interrupts
 | 
						|
	 */
 | 
						|
	return cpuidle_enter(drv, dev, next_state);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * cpuidle_idle_call - the main idle function
 | 
						|
 *
 | 
						|
 * NOTE: no locks or semaphores should be used here
 | 
						|
 *
 | 
						|
 * On architectures that support TIF_POLLING_NRFLAG, is called with polling
 | 
						|
 * set, and it returns with polling set.  If it ever stops polling, it
 | 
						|
 * must clear the polling bit.
 | 
						|
 */
 | 
						|
static void cpuidle_idle_call(void)
 | 
						|
{
 | 
						|
	struct cpuidle_device *dev = cpuidle_get_device();
 | 
						|
	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
 | 
						|
	int next_state, entered_state;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if the idle task must be rescheduled. If it is the
 | 
						|
	 * case, exit the function after re-enabling the local irq.
 | 
						|
	 */
 | 
						|
	if (need_resched()) {
 | 
						|
		local_irq_enable();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The RCU framework needs to be told that we are entering an idle
 | 
						|
	 * section, so no more rcu read side critical sections and one more
 | 
						|
	 * step to the grace period
 | 
						|
	 */
 | 
						|
 | 
						|
	if (cpuidle_not_available(drv, dev)) {
 | 
						|
		tick_nohz_idle_stop_tick();
 | 
						|
 | 
						|
		default_idle_call();
 | 
						|
		goto exit_idle;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Suspend-to-idle ("s2idle") is a system state in which all user space
 | 
						|
	 * has been frozen, all I/O devices have been suspended and the only
 | 
						|
	 * activity happens here and in interrupts (if any). In that case bypass
 | 
						|
	 * the cpuidle governor and go straight for the deepest idle state
 | 
						|
	 * available.  Possibly also suspend the local tick and the entire
 | 
						|
	 * timekeeping to prevent timer interrupts from kicking us out of idle
 | 
						|
	 * until a proper wakeup interrupt happens.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
 | 
						|
		u64 max_latency_ns;
 | 
						|
 | 
						|
		if (idle_should_enter_s2idle()) {
 | 
						|
 | 
						|
			entered_state = call_cpuidle_s2idle(drv, dev);
 | 
						|
			if (entered_state > 0)
 | 
						|
				goto exit_idle;
 | 
						|
 | 
						|
			max_latency_ns = U64_MAX;
 | 
						|
		} else {
 | 
						|
			max_latency_ns = dev->forced_idle_latency_limit_ns;
 | 
						|
		}
 | 
						|
 | 
						|
		tick_nohz_idle_stop_tick();
 | 
						|
 | 
						|
		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
 | 
						|
		call_cpuidle(drv, dev, next_state);
 | 
						|
	} else {
 | 
						|
		bool stop_tick = true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ask the cpuidle framework to choose a convenient idle state.
 | 
						|
		 */
 | 
						|
		next_state = cpuidle_select(drv, dev, &stop_tick);
 | 
						|
 | 
						|
		if (stop_tick || tick_nohz_tick_stopped())
 | 
						|
			tick_nohz_idle_stop_tick();
 | 
						|
		else
 | 
						|
			tick_nohz_idle_retain_tick();
 | 
						|
 | 
						|
		entered_state = call_cpuidle(drv, dev, next_state);
 | 
						|
		/*
 | 
						|
		 * Give the governor an opportunity to reflect on the outcome
 | 
						|
		 */
 | 
						|
		cpuidle_reflect(dev, entered_state);
 | 
						|
	}
 | 
						|
 | 
						|
exit_idle:
 | 
						|
	__current_set_polling();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is up to the idle functions to reenable local interrupts
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(irqs_disabled()))
 | 
						|
		local_irq_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic idle loop implementation
 | 
						|
 *
 | 
						|
 * Called with polling cleared.
 | 
						|
 */
 | 
						|
static void do_idle(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if we need to update blocked load
 | 
						|
	 */
 | 
						|
	nohz_run_idle_balance(cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the arch has a polling bit, we maintain an invariant:
 | 
						|
	 *
 | 
						|
	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
 | 
						|
	 * rq->idle). This means that, if rq->idle has the polling bit set,
 | 
						|
	 * then setting need_resched is guaranteed to cause the CPU to
 | 
						|
	 * reschedule.
 | 
						|
	 */
 | 
						|
 | 
						|
	__current_set_polling();
 | 
						|
	tick_nohz_idle_enter();
 | 
						|
 | 
						|
	while (!need_resched()) {
 | 
						|
		rmb();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Interrupts shouldn't be re-enabled from that point on until
 | 
						|
		 * the CPU sleeping instruction is reached. Otherwise an interrupt
 | 
						|
		 * may fire and queue a timer that would be ignored until the CPU
 | 
						|
		 * wakes from the sleeping instruction. And testing need_resched()
 | 
						|
		 * doesn't tell about pending needed timer reprogram.
 | 
						|
		 *
 | 
						|
		 * Several cases to consider:
 | 
						|
		 *
 | 
						|
		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
 | 
						|
		 *   "wfi" or "mwait" are fine because they can be entered with
 | 
						|
		 *   interrupt disabled.
 | 
						|
		 *
 | 
						|
		 * - sti;mwait() couple is fine because the interrupts are
 | 
						|
		 *   re-enabled only upon the execution of mwait, leaving no gap
 | 
						|
		 *   in-between.
 | 
						|
		 *
 | 
						|
		 * - ROLLBACK based idle handlers with the sleeping instruction
 | 
						|
		 *   called with interrupts enabled are NOT fine. In this scheme
 | 
						|
		 *   when the interrupt detects it has interrupted an idle handler,
 | 
						|
		 *   it rolls back to its beginning which performs the
 | 
						|
		 *   need_resched() check before re-executing the sleeping
 | 
						|
		 *   instruction. This can leak a pending needed timer reprogram.
 | 
						|
		 *   If such a scheme is really mandatory due to the lack of an
 | 
						|
		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
 | 
						|
		 *   must instead be applied: when the interrupt detects it has
 | 
						|
		 *   interrupted an idle handler, it must resume to the end of
 | 
						|
		 *   this idle handler so that the generic idle loop is iterated
 | 
						|
		 *   again to reprogram the tick.
 | 
						|
		 */
 | 
						|
		local_irq_disable();
 | 
						|
 | 
						|
		if (cpu_is_offline(cpu)) {
 | 
						|
			cpuhp_report_idle_dead();
 | 
						|
			arch_cpu_idle_dead();
 | 
						|
		}
 | 
						|
 | 
						|
		arch_cpu_idle_enter();
 | 
						|
		rcu_nocb_flush_deferred_wakeup();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In poll mode we reenable interrupts and spin. Also if we
 | 
						|
		 * detected in the wakeup from idle path that the tick
 | 
						|
		 * broadcast device expired for us, we don't want to go deep
 | 
						|
		 * idle as we know that the IPI is going to arrive right away.
 | 
						|
		 */
 | 
						|
		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
 | 
						|
			tick_nohz_idle_restart_tick();
 | 
						|
			cpu_idle_poll();
 | 
						|
		} else {
 | 
						|
			cpuidle_idle_call();
 | 
						|
		}
 | 
						|
		arch_cpu_idle_exit();
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
 | 
						|
	 * be set, propagate it into PREEMPT_NEED_RESCHED.
 | 
						|
	 *
 | 
						|
	 * This is required because for polling idle loops we will not have had
 | 
						|
	 * an IPI to fold the state for us.
 | 
						|
	 */
 | 
						|
	preempt_set_need_resched();
 | 
						|
	tick_nohz_idle_exit();
 | 
						|
	__current_clr_polling();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We promise to call sched_ttwu_pending() and reschedule if
 | 
						|
	 * need_resched() is set while polling is set. That means that clearing
 | 
						|
	 * polling needs to be visible before doing these things.
 | 
						|
	 */
 | 
						|
	smp_mb__after_atomic();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * RCU relies on this call to be done outside of an RCU read-side
 | 
						|
	 * critical section.
 | 
						|
	 */
 | 
						|
	flush_smp_call_function_queue();
 | 
						|
	schedule_idle();
 | 
						|
 | 
						|
	if (unlikely(klp_patch_pending(current)))
 | 
						|
		klp_update_patch_state(current);
 | 
						|
}
 | 
						|
 | 
						|
bool cpu_in_idle(unsigned long pc)
 | 
						|
{
 | 
						|
	return pc >= (unsigned long)__cpuidle_text_start &&
 | 
						|
		pc < (unsigned long)__cpuidle_text_end;
 | 
						|
}
 | 
						|
 | 
						|
struct idle_timer {
 | 
						|
	struct hrtimer timer;
 | 
						|
	int done;
 | 
						|
};
 | 
						|
 | 
						|
static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
 | 
						|
 | 
						|
	WRITE_ONCE(it->done, 1);
 | 
						|
	set_tsk_need_resched(current);
 | 
						|
 | 
						|
	return HRTIMER_NORESTART;
 | 
						|
}
 | 
						|
 | 
						|
void play_idle_precise(u64 duration_ns, u64 latency_ns)
 | 
						|
{
 | 
						|
	struct idle_timer it;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only FIFO tasks can disable the tick since they don't need the forced
 | 
						|
	 * preemption.
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(current->policy != SCHED_FIFO);
 | 
						|
	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
 | 
						|
	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
 | 
						|
	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
 | 
						|
	WARN_ON_ONCE(!duration_ns);
 | 
						|
	WARN_ON_ONCE(current->mm);
 | 
						|
 | 
						|
	rcu_sleep_check();
 | 
						|
	preempt_disable();
 | 
						|
	current->flags |= PF_IDLE;
 | 
						|
	cpuidle_use_deepest_state(latency_ns);
 | 
						|
 | 
						|
	it.done = 0;
 | 
						|
	hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 | 
						|
	it.timer.function = idle_inject_timer_fn;
 | 
						|
	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
 | 
						|
		      HRTIMER_MODE_REL_PINNED_HARD);
 | 
						|
 | 
						|
	while (!READ_ONCE(it.done))
 | 
						|
		do_idle();
 | 
						|
 | 
						|
	cpuidle_use_deepest_state(0);
 | 
						|
	current->flags &= ~PF_IDLE;
 | 
						|
 | 
						|
	preempt_fold_need_resched();
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(play_idle_precise);
 | 
						|
 | 
						|
void cpu_startup_entry(enum cpuhp_state state)
 | 
						|
{
 | 
						|
	current->flags |= PF_IDLE;
 | 
						|
	arch_cpu_idle_prepare();
 | 
						|
	cpuhp_online_idle(state);
 | 
						|
	while (1)
 | 
						|
		do_idle();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * idle-task scheduling class.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static int
 | 
						|
select_task_rq_idle(struct task_struct *p, int cpu, int flags)
 | 
						|
{
 | 
						|
	return task_cpu(p); /* IDLE tasks as never migrated */
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 | 
						|
{
 | 
						|
	return WARN_ON_ONCE(1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Idle tasks are unconditionally rescheduled:
 | 
						|
 */
 | 
						|
static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
 | 
						|
{
 | 
						|
	resched_curr(rq);
 | 
						|
}
 | 
						|
 | 
						|
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
 | 
						|
{
 | 
						|
	update_idle_core(rq);
 | 
						|
	schedstat_inc(rq->sched_goidle);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static struct task_struct *pick_task_idle(struct rq *rq)
 | 
						|
{
 | 
						|
	return rq->idle;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
struct task_struct *pick_next_task_idle(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *next = rq->idle;
 | 
						|
 | 
						|
	set_next_task_idle(rq, next, true);
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * It is not legal to sleep in the idle task - print a warning
 | 
						|
 * message if some code attempts to do it:
 | 
						|
 */
 | 
						|
static void
 | 
						|
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
 | 
						|
{
 | 
						|
	raw_spin_rq_unlock_irq(rq);
 | 
						|
	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
 | 
						|
	dump_stack();
 | 
						|
	raw_spin_rq_lock_irq(rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * scheduler tick hitting a task of our scheduling class.
 | 
						|
 *
 | 
						|
 * NOTE: This function can be called remotely by the tick offload that
 | 
						|
 * goes along full dynticks. Therefore no local assumption can be made
 | 
						|
 * and everything must be accessed through the @rq and @curr passed in
 | 
						|
 * parameters.
 | 
						|
 */
 | 
						|
static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void switched_to_idle(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
 | 
						|
static void update_curr_idle(struct rq *rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Simple, special scheduling class for the per-CPU idle tasks:
 | 
						|
 */
 | 
						|
DEFINE_SCHED_CLASS(idle) = {
 | 
						|
 | 
						|
	/* no enqueue/yield_task for idle tasks */
 | 
						|
 | 
						|
	/* dequeue is not valid, we print a debug message there: */
 | 
						|
	.dequeue_task		= dequeue_task_idle,
 | 
						|
 | 
						|
	.wakeup_preempt		= wakeup_preempt_idle,
 | 
						|
 | 
						|
	.pick_next_task		= pick_next_task_idle,
 | 
						|
	.put_prev_task		= put_prev_task_idle,
 | 
						|
	.set_next_task          = set_next_task_idle,
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	.balance		= balance_idle,
 | 
						|
	.pick_task		= pick_task_idle,
 | 
						|
	.select_task_rq		= select_task_rq_idle,
 | 
						|
	.set_cpus_allowed	= set_cpus_allowed_common,
 | 
						|
#endif
 | 
						|
 | 
						|
	.task_tick		= task_tick_idle,
 | 
						|
 | 
						|
	.prio_changed		= prio_changed_idle,
 | 
						|
	.switched_to		= switched_to_idle,
 | 
						|
	.update_curr		= update_curr_idle,
 | 
						|
};
 |