mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Commit c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
turns an ifdef CONFIG_HIGH_RES_TIMERS into an conditional on
"IS_ENABLED(CONFIG_HIGHRES_TIMERS)"; note that the new conditional refers
to "HIGHRES_TIMERS" not "HIGH_RES_TIMERS" as before.
Fix this typo introduced in that refactoring.
Fixes: c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230609094643.26253-1-lukas.bulwahn@gmail.com
		
	
			
		
			
				
	
	
		
			1541 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1541 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * 2002-10-15  Posix Clocks & timers
 | 
						|
 *                           by George Anzinger george@mvista.com
 | 
						|
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 | 
						|
 *
 | 
						|
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 | 
						|
 *			     Copyright (C) 2004 Boris Hu
 | 
						|
 *
 | 
						|
 * These are all the functions necessary to implement POSIX clocks & timers
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/sched/task.h>
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/posix-clock.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/hashtable.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/nospec.h>
 | 
						|
#include <linux/time_namespace.h>
 | 
						|
 | 
						|
#include "timekeeping.h"
 | 
						|
#include "posix-timers.h"
 | 
						|
 | 
						|
static struct kmem_cache *posix_timers_cache;
 | 
						|
 | 
						|
/*
 | 
						|
 * Timers are managed in a hash table for lockless lookup. The hash key is
 | 
						|
 * constructed from current::signal and the timer ID and the timer is
 | 
						|
 * matched against current::signal and the timer ID when walking the hash
 | 
						|
 * bucket list.
 | 
						|
 *
 | 
						|
 * This allows checkpoint/restore to reconstruct the exact timer IDs for
 | 
						|
 * a process.
 | 
						|
 */
 | 
						|
static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
 | 
						|
static DEFINE_SPINLOCK(hash_lock);
 | 
						|
 | 
						|
static const struct k_clock * const posix_clocks[];
 | 
						|
static const struct k_clock *clockid_to_kclock(const clockid_t id);
 | 
						|
static const struct k_clock clock_realtime, clock_monotonic;
 | 
						|
 | 
						|
/* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
 | 
						|
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
 | 
						|
			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
 | 
						|
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
 | 
						|
#endif
 | 
						|
 | 
						|
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 | 
						|
 | 
						|
#define lock_timer(tid, flags)						   \
 | 
						|
({	struct k_itimer *__timr;					   \
 | 
						|
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 | 
						|
	__timr;								   \
 | 
						|
})
 | 
						|
 | 
						|
static int hash(struct signal_struct *sig, unsigned int nr)
 | 
						|
{
 | 
						|
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 | 
						|
					    struct signal_struct *sig,
 | 
						|
					    timer_t id)
 | 
						|
{
 | 
						|
	struct k_itimer *timer;
 | 
						|
 | 
						|
	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
 | 
						|
		/* timer->it_signal can be set concurrently */
 | 
						|
		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
 | 
						|
			return timer;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer *posix_timer_by_id(timer_t id)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = current->signal;
 | 
						|
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 | 
						|
 | 
						|
	return __posix_timers_find(head, sig, id);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_timer_add(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = current->signal;
 | 
						|
	struct hlist_head *head;
 | 
						|
	unsigned int cnt, id;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * FIXME: Replace this by a per signal struct xarray once there is
 | 
						|
	 * a plan to handle the resulting CRIU regression gracefully.
 | 
						|
	 */
 | 
						|
	for (cnt = 0; cnt <= INT_MAX; cnt++) {
 | 
						|
		spin_lock(&hash_lock);
 | 
						|
		id = sig->next_posix_timer_id;
 | 
						|
 | 
						|
		/* Write the next ID back. Clamp it to the positive space */
 | 
						|
		sig->next_posix_timer_id = (id + 1) & INT_MAX;
 | 
						|
 | 
						|
		head = &posix_timers_hashtable[hash(sig, id)];
 | 
						|
		if (!__posix_timers_find(head, sig, id)) {
 | 
						|
			hlist_add_head_rcu(&timer->t_hash, head);
 | 
						|
			spin_unlock(&hash_lock);
 | 
						|
			return id;
 | 
						|
		}
 | 
						|
		spin_unlock(&hash_lock);
 | 
						|
	}
 | 
						|
	/* POSIX return code when no timer ID could be allocated */
 | 
						|
	return -EAGAIN;
 | 
						|
}
 | 
						|
 | 
						|
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&timr->it_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_real_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
 | 
						|
{
 | 
						|
	return ktime_get_real();
 | 
						|
}
 | 
						|
 | 
						|
static int posix_clock_realtime_set(const clockid_t which_clock,
 | 
						|
				    const struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return do_sys_settimeofday64(tp, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_clock_realtime_adj(const clockid_t which_clock,
 | 
						|
				    struct __kernel_timex *t)
 | 
						|
{
 | 
						|
	return do_adjtimex(t);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_ts64(tp);
 | 
						|
	timens_add_monotonic(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
 | 
						|
{
 | 
						|
	return ktime_get();
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_raw_ts64(tp);
 | 
						|
	timens_add_monotonic(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_coarse_real_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_monotonic_coarse(clockid_t which_clock,
 | 
						|
						struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_coarse_ts64(tp);
 | 
						|
	timens_add_monotonic(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_boottime_ts64(tp);
 | 
						|
	timens_add_boottime(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
 | 
						|
{
 | 
						|
	return ktime_get_boottime();
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_clocktai_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t posix_get_tai_ktime(clockid_t which_clock)
 | 
						|
{
 | 
						|
	return ktime_get_clocktai();
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	tp->tv_sec = 0;
 | 
						|
	tp->tv_nsec = hrtimer_resolution;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static __init int init_posix_timers(void)
 | 
						|
{
 | 
						|
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 | 
						|
					sizeof(struct k_itimer), 0,
 | 
						|
					SLAB_PANIC | SLAB_ACCOUNT, NULL);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__initcall(init_posix_timers);
 | 
						|
 | 
						|
/*
 | 
						|
 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 | 
						|
 * are of type int. Clamp the overrun value to INT_MAX
 | 
						|
 */
 | 
						|
static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 | 
						|
{
 | 
						|
	s64 sum = timr->it_overrun_last + (s64)baseval;
 | 
						|
 | 
						|
	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 | 
						|
}
 | 
						|
 | 
						|
static void common_hrtimer_rearm(struct k_itimer *timr)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 | 
						|
					    timr->it_interval);
 | 
						|
	hrtimer_restart(timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called from the signal delivery code if
 | 
						|
 * info->si_sys_private is not zero, which indicates that the timer has to
 | 
						|
 * be rearmed. Restart the timer and update info::si_overrun.
 | 
						|
 */
 | 
						|
void posixtimer_rearm(struct kernel_siginfo *info)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(info->si_tid, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 | 
						|
		timr->kclock->timer_rearm(timr);
 | 
						|
 | 
						|
		timr->it_active = 1;
 | 
						|
		timr->it_overrun_last = timr->it_overrun;
 | 
						|
		timr->it_overrun = -1LL;
 | 
						|
		++timr->it_requeue_pending;
 | 
						|
 | 
						|
		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
}
 | 
						|
 | 
						|
int posix_timer_event(struct k_itimer *timr, int si_private)
 | 
						|
{
 | 
						|
	enum pid_type type;
 | 
						|
	int ret;
 | 
						|
	/*
 | 
						|
	 * FIXME: if ->sigq is queued we can race with
 | 
						|
	 * dequeue_signal()->posixtimer_rearm().
 | 
						|
	 *
 | 
						|
	 * If dequeue_signal() sees the "right" value of
 | 
						|
	 * si_sys_private it calls posixtimer_rearm().
 | 
						|
	 * We re-queue ->sigq and drop ->it_lock().
 | 
						|
	 * posixtimer_rearm() locks the timer
 | 
						|
	 * and re-schedules it while ->sigq is pending.
 | 
						|
	 * Not really bad, but not that we want.
 | 
						|
	 */
 | 
						|
	timr->sigq->info.si_sys_private = si_private;
 | 
						|
 | 
						|
	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 | 
						|
	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 | 
						|
	/* If we failed to send the signal the timer stops. */
 | 
						|
	return ret > 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function gets called when a POSIX.1b interval timer expires from
 | 
						|
 * the HRTIMER interrupt (soft interrupt on RT kernels).
 | 
						|
 *
 | 
						|
 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
 | 
						|
 * based timers.
 | 
						|
 */
 | 
						|
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	enum hrtimer_restart ret = HRTIMER_NORESTART;
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int si_private = 0;
 | 
						|
 | 
						|
	timr = container_of(timer, struct k_itimer, it.real.timer);
 | 
						|
	spin_lock_irqsave(&timr->it_lock, flags);
 | 
						|
 | 
						|
	timr->it_active = 0;
 | 
						|
	if (timr->it_interval != 0)
 | 
						|
		si_private = ++timr->it_requeue_pending;
 | 
						|
 | 
						|
	if (posix_timer_event(timr, si_private)) {
 | 
						|
		/*
 | 
						|
		 * The signal was not queued due to SIG_IGN. As a
 | 
						|
		 * consequence the timer is not going to be rearmed from
 | 
						|
		 * the signal delivery path. But as a real signal handler
 | 
						|
		 * can be installed later the timer must be rearmed here.
 | 
						|
		 */
 | 
						|
		if (timr->it_interval != 0) {
 | 
						|
			ktime_t now = hrtimer_cb_get_time(timer);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * FIXME: What we really want, is to stop this
 | 
						|
			 * timer completely and restart it in case the
 | 
						|
			 * SIG_IGN is removed. This is a non trivial
 | 
						|
			 * change to the signal handling code.
 | 
						|
			 *
 | 
						|
			 * For now let timers with an interval less than a
 | 
						|
			 * jiffie expire every jiffie and recheck for a
 | 
						|
			 * valid signal handler.
 | 
						|
			 *
 | 
						|
			 * This avoids interrupt starvation in case of a
 | 
						|
			 * very small interval, which would expire the
 | 
						|
			 * timer immediately again.
 | 
						|
			 *
 | 
						|
			 * Moving now ahead of time by one jiffie tricks
 | 
						|
			 * hrtimer_forward() to expire the timer later,
 | 
						|
			 * while it still maintains the overrun accuracy
 | 
						|
			 * for the price of a slight inconsistency in the
 | 
						|
			 * timer_gettime() case. This is at least better
 | 
						|
			 * than a timer storm.
 | 
						|
			 *
 | 
						|
			 * Only required when high resolution timers are
 | 
						|
			 * enabled as the periodic tick based timers are
 | 
						|
			 * automatically aligned to the next tick.
 | 
						|
			 */
 | 
						|
			if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
 | 
						|
				ktime_t kj = TICK_NSEC;
 | 
						|
 | 
						|
				if (timr->it_interval < kj)
 | 
						|
					now = ktime_add(now, kj);
 | 
						|
			}
 | 
						|
 | 
						|
			timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
 | 
						|
			ret = HRTIMER_RESTART;
 | 
						|
			++timr->it_requeue_pending;
 | 
						|
			timr->it_active = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct pid *good_sigevent(sigevent_t * event)
 | 
						|
{
 | 
						|
	struct pid *pid = task_tgid(current);
 | 
						|
	struct task_struct *rtn;
 | 
						|
 | 
						|
	switch (event->sigev_notify) {
 | 
						|
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 | 
						|
		pid = find_vpid(event->sigev_notify_thread_id);
 | 
						|
		rtn = pid_task(pid, PIDTYPE_PID);
 | 
						|
		if (!rtn || !same_thread_group(rtn, current))
 | 
						|
			return NULL;
 | 
						|
		fallthrough;
 | 
						|
	case SIGEV_SIGNAL:
 | 
						|
	case SIGEV_THREAD:
 | 
						|
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 | 
						|
			return NULL;
 | 
						|
		fallthrough;
 | 
						|
	case SIGEV_NONE:
 | 
						|
		return pid;
 | 
						|
	default:
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer * alloc_posix_timer(void)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 | 
						|
 | 
						|
	if (!tmr)
 | 
						|
		return tmr;
 | 
						|
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 | 
						|
		kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	clear_siginfo(&tmr->sigq->info);
 | 
						|
	return tmr;
 | 
						|
}
 | 
						|
 | 
						|
static void k_itimer_rcu_free(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
 | 
						|
 | 
						|
	kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
}
 | 
						|
 | 
						|
static void posix_timer_free(struct k_itimer *tmr)
 | 
						|
{
 | 
						|
	put_pid(tmr->it_pid);
 | 
						|
	sigqueue_free(tmr->sigq);
 | 
						|
	call_rcu(&tmr->rcu, k_itimer_rcu_free);
 | 
						|
}
 | 
						|
 | 
						|
static void posix_timer_unhash_and_free(struct k_itimer *tmr)
 | 
						|
{
 | 
						|
	spin_lock(&hash_lock);
 | 
						|
	hlist_del_rcu(&tmr->t_hash);
 | 
						|
	spin_unlock(&hash_lock);
 | 
						|
	posix_timer_free(tmr);
 | 
						|
}
 | 
						|
 | 
						|
static int common_timer_create(struct k_itimer *new_timer)
 | 
						|
{
 | 
						|
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a POSIX.1b interval timer. */
 | 
						|
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 | 
						|
			   timer_t __user *created_timer_id)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct k_itimer *new_timer;
 | 
						|
	int error, new_timer_id;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->timer_create)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	new_timer = alloc_posix_timer();
 | 
						|
	if (unlikely(!new_timer))
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	spin_lock_init(&new_timer->it_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add the timer to the hash table. The timer is not yet valid
 | 
						|
	 * because new_timer::it_signal is still NULL. The timer id is also
 | 
						|
	 * not yet visible to user space.
 | 
						|
	 */
 | 
						|
	new_timer_id = posix_timer_add(new_timer);
 | 
						|
	if (new_timer_id < 0) {
 | 
						|
		posix_timer_free(new_timer);
 | 
						|
		return new_timer_id;
 | 
						|
	}
 | 
						|
 | 
						|
	new_timer->it_id = (timer_t) new_timer_id;
 | 
						|
	new_timer->it_clock = which_clock;
 | 
						|
	new_timer->kclock = kc;
 | 
						|
	new_timer->it_overrun = -1LL;
 | 
						|
 | 
						|
	if (event) {
 | 
						|
		rcu_read_lock();
 | 
						|
		new_timer->it_pid = get_pid(good_sigevent(event));
 | 
						|
		rcu_read_unlock();
 | 
						|
		if (!new_timer->it_pid) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		new_timer->it_sigev_notify     = event->sigev_notify;
 | 
						|
		new_timer->sigq->info.si_signo = event->sigev_signo;
 | 
						|
		new_timer->sigq->info.si_value = event->sigev_value;
 | 
						|
	} else {
 | 
						|
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 | 
						|
		new_timer->sigq->info.si_signo = SIGALRM;
 | 
						|
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 | 
						|
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 | 
						|
		new_timer->it_pid = get_pid(task_tgid(current));
 | 
						|
	}
 | 
						|
 | 
						|
	new_timer->sigq->info.si_tid   = new_timer->it_id;
 | 
						|
	new_timer->sigq->info.si_code  = SI_TIMER;
 | 
						|
 | 
						|
	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
 | 
						|
		error = -EFAULT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * After succesful copy out, the timer ID is visible to user space
 | 
						|
	 * now but not yet valid because new_timer::signal is still NULL.
 | 
						|
	 *
 | 
						|
	 * Complete the initialization with the clock specific create
 | 
						|
	 * callback.
 | 
						|
	 */
 | 
						|
	error = kc->timer_create(new_timer);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	spin_lock_irq(¤t->sighand->siglock);
 | 
						|
	/* This makes the timer valid in the hash table */
 | 
						|
	WRITE_ONCE(new_timer->it_signal, current->signal);
 | 
						|
	list_add(&new_timer->list, ¤t->signal->posix_timers);
 | 
						|
	spin_unlock_irq(¤t->sighand->siglock);
 | 
						|
	/*
 | 
						|
	 * After unlocking sighand::siglock @new_timer is subject to
 | 
						|
	 * concurrent removal and cannot be touched anymore
 | 
						|
	 */
 | 
						|
	return 0;
 | 
						|
out:
 | 
						|
	posix_timer_unhash_and_free(new_timer);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 | 
						|
		struct sigevent __user *, timer_event_spec,
 | 
						|
		timer_t __user *, created_timer_id)
 | 
						|
{
 | 
						|
	if (timer_event_spec) {
 | 
						|
		sigevent_t event;
 | 
						|
 | 
						|
		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 | 
						|
			return -EFAULT;
 | 
						|
		return do_timer_create(which_clock, &event, created_timer_id);
 | 
						|
	}
 | 
						|
	return do_timer_create(which_clock, NULL, created_timer_id);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 | 
						|
		       struct compat_sigevent __user *, timer_event_spec,
 | 
						|
		       timer_t __user *, created_timer_id)
 | 
						|
{
 | 
						|
	if (timer_event_spec) {
 | 
						|
		sigevent_t event;
 | 
						|
 | 
						|
		if (get_compat_sigevent(&event, timer_event_spec))
 | 
						|
			return -EFAULT;
 | 
						|
		return do_timer_create(which_clock, &event, created_timer_id);
 | 
						|
	}
 | 
						|
	return do_timer_create(which_clock, NULL, created_timer_id);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * timer_t could be any type >= int and we want to make sure any
 | 
						|
	 * @timer_id outside positive int range fails lookup.
 | 
						|
	 */
 | 
						|
	if ((unsigned long long)timer_id > INT_MAX)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The hash lookup and the timers are RCU protected.
 | 
						|
	 *
 | 
						|
	 * Timers are added to the hash in invalid state where
 | 
						|
	 * timr::it_signal == NULL. timer::it_signal is only set after the
 | 
						|
	 * rest of the initialization succeeded.
 | 
						|
	 *
 | 
						|
	 * Timer destruction happens in steps:
 | 
						|
	 *  1) Set timr::it_signal to NULL with timr::it_lock held
 | 
						|
	 *  2) Release timr::it_lock
 | 
						|
	 *  3) Remove from the hash under hash_lock
 | 
						|
	 *  4) Call RCU for removal after the grace period
 | 
						|
	 *
 | 
						|
	 * Holding rcu_read_lock() accross the lookup ensures that
 | 
						|
	 * the timer cannot be freed.
 | 
						|
	 *
 | 
						|
	 * The lookup validates locklessly that timr::it_signal ==
 | 
						|
	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
 | 
						|
	 * can't change, but timr::it_signal becomes NULL during
 | 
						|
	 * destruction.
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	timr = posix_timer_by_id(timer_id);
 | 
						|
	if (timr) {
 | 
						|
		spin_lock_irqsave(&timr->it_lock, *flags);
 | 
						|
		/*
 | 
						|
		 * Validate under timr::it_lock that timr::it_signal is
 | 
						|
		 * still valid. Pairs with #1 above.
 | 
						|
		 */
 | 
						|
		if (timr->it_signal == current->signal) {
 | 
						|
			rcu_read_unlock();
 | 
						|
			return timr;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&timr->it_lock, *flags);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	return __hrtimer_expires_remaining_adjusted(timer, now);
 | 
						|
}
 | 
						|
 | 
						|
static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	return hrtimer_forward(timer, now, timr->it_interval);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the time remaining on a POSIX.1b interval timer.
 | 
						|
 *
 | 
						|
 * Two issues to handle here:
 | 
						|
 *
 | 
						|
 *  1) The timer has a requeue pending. The return value must appear as
 | 
						|
 *     if the timer has been requeued right now.
 | 
						|
 *
 | 
						|
 *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
 | 
						|
 *     into the hrtimer queue and therefore never expired. Emulate expiry
 | 
						|
 *     here taking #1 into account.
 | 
						|
 */
 | 
						|
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timr->kclock;
 | 
						|
	ktime_t now, remaining, iv;
 | 
						|
	bool sig_none;
 | 
						|
 | 
						|
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
 | 
						|
	iv = timr->it_interval;
 | 
						|
 | 
						|
	/* interval timer ? */
 | 
						|
	if (iv) {
 | 
						|
		cur_setting->it_interval = ktime_to_timespec64(iv);
 | 
						|
	} else if (!timr->it_active) {
 | 
						|
		/*
 | 
						|
		 * SIGEV_NONE oneshot timers are never queued and therefore
 | 
						|
		 * timr->it_active is always false. The check below
 | 
						|
		 * vs. remaining time will handle this case.
 | 
						|
		 *
 | 
						|
		 * For all other timers there is nothing to update here, so
 | 
						|
		 * return.
 | 
						|
		 */
 | 
						|
		if (!sig_none)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
 | 
						|
	now = kc->clock_get_ktime(timr->it_clock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is an interval timer and either has requeue pending or
 | 
						|
	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
 | 
						|
	 * so expiry is > now.
 | 
						|
	 */
 | 
						|
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 | 
						|
		timr->it_overrun += kc->timer_forward(timr, now);
 | 
						|
 | 
						|
	remaining = kc->timer_remaining(timr, now);
 | 
						|
	/*
 | 
						|
	 * As @now is retrieved before a possible timer_forward() and
 | 
						|
	 * cannot be reevaluated by the compiler @remaining is based on the
 | 
						|
	 * same @now value. Therefore @remaining is consistent vs. @now.
 | 
						|
	 *
 | 
						|
	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
 | 
						|
	 * remaining time <= 0 because timer_forward() guarantees to move
 | 
						|
	 * them forward so that the next timer expiry is > @now.
 | 
						|
	 */
 | 
						|
	if (remaining <= 0) {
 | 
						|
		/*
 | 
						|
		 * A single shot SIGEV_NONE timer must return 0, when it is
 | 
						|
		 * expired! Timers which have a real signal delivery mode
 | 
						|
		 * must return a remaining time greater than 0 because the
 | 
						|
		 * signal has not yet been delivered.
 | 
						|
		 */
 | 
						|
		if (!sig_none)
 | 
						|
			cur_setting->it_value.tv_nsec = 1;
 | 
						|
	} else {
 | 
						|
		cur_setting->it_value = ktime_to_timespec64(remaining);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 | 
						|
{
 | 
						|
	const struct k_clock *kc;
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	memset(setting, 0, sizeof(*setting));
 | 
						|
	kc = timr->kclock;
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
 | 
						|
		ret = -EINVAL;
 | 
						|
	else
 | 
						|
		kc->timer_get(timr, setting);
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Get the time remaining on a POSIX.1b interval timer. */
 | 
						|
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 | 
						|
		struct __kernel_itimerspec __user *, setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 cur_setting;
 | 
						|
 | 
						|
	int ret = do_timer_gettime(timer_id, &cur_setting);
 | 
						|
	if (!ret) {
 | 
						|
		if (put_itimerspec64(&cur_setting, setting))
 | 
						|
			ret = -EFAULT;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 | 
						|
		struct old_itimerspec32 __user *, setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 cur_setting;
 | 
						|
 | 
						|
	int ret = do_timer_gettime(timer_id, &cur_setting);
 | 
						|
	if (!ret) {
 | 
						|
		if (put_old_itimerspec32(&cur_setting, setting))
 | 
						|
			ret = -EFAULT;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
 | 
						|
 * @timer_id:	The timer ID which identifies the timer
 | 
						|
 *
 | 
						|
 * The "overrun count" of a timer is one plus the number of expiration
 | 
						|
 * intervals which have elapsed between the first expiry, which queues the
 | 
						|
 * signal and the actual signal delivery. On signal delivery the "overrun
 | 
						|
 * count" is calculated and cached, so it can be returned directly here.
 | 
						|
 *
 | 
						|
 * As this is relative to the last queued signal the returned overrun count
 | 
						|
 * is meaningless outside of the signal delivery path and even there it
 | 
						|
 * does not accurately reflect the current state when user space evaluates
 | 
						|
 * it.
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *	-EINVAL		@timer_id is invalid
 | 
						|
 *	1..INT_MAX	The number of overruns related to the last delivered signal
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int overrun;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	overrun = timer_overrun_to_int(timr, 0);
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
 | 
						|
	return overrun;
 | 
						|
}
 | 
						|
 | 
						|
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 | 
						|
			       bool absolute, bool sigev_none)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
	enum hrtimer_mode mode;
 | 
						|
 | 
						|
	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 | 
						|
	/*
 | 
						|
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 | 
						|
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
 | 
						|
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
 | 
						|
	 * functions which use timr->kclock->clock_get_*() work.
 | 
						|
	 *
 | 
						|
	 * Note: it_clock stays unmodified, because the next timer_set() might
 | 
						|
	 * use ABSTIME, so it needs to switch back.
 | 
						|
	 */
 | 
						|
	if (timr->it_clock == CLOCK_REALTIME)
 | 
						|
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 | 
						|
 | 
						|
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 | 
						|
	timr->it.real.timer.function = posix_timer_fn;
 | 
						|
 | 
						|
	if (!absolute)
 | 
						|
		expires = ktime_add_safe(expires, timer->base->get_time());
 | 
						|
	hrtimer_set_expires(timer, expires);
 | 
						|
 | 
						|
	if (!sigev_none)
 | 
						|
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 | 
						|
}
 | 
						|
 | 
						|
static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 | 
						|
{
 | 
						|
	return hrtimer_try_to_cancel(&timr->it.real.timer);
 | 
						|
}
 | 
						|
 | 
						|
static void common_timer_wait_running(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	hrtimer_cancel_wait_running(&timer->it.real.timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On PREEMPT_RT this prevents priority inversion and a potential livelock
 | 
						|
 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
 | 
						|
 * executing a hrtimer callback.
 | 
						|
 *
 | 
						|
 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
 | 
						|
 * just results in a cpu_relax().
 | 
						|
 *
 | 
						|
 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
 | 
						|
 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
 | 
						|
 * prevents spinning on an eventually scheduled out task and a livelock
 | 
						|
 * when the task which tries to delete or disarm the timer has preempted
 | 
						|
 * the task which runs the expiry in task work context.
 | 
						|
 */
 | 
						|
static struct k_itimer *timer_wait_running(struct k_itimer *timer,
 | 
						|
					   unsigned long *flags)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = READ_ONCE(timer->kclock);
 | 
						|
	timer_t timer_id = READ_ONCE(timer->it_id);
 | 
						|
 | 
						|
	/* Prevent kfree(timer) after dropping the lock */
 | 
						|
	rcu_read_lock();
 | 
						|
	unlock_timer(timer, *flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * kc->timer_wait_running() might drop RCU lock. So @timer
 | 
						|
	 * cannot be touched anymore after the function returns!
 | 
						|
	 */
 | 
						|
	if (!WARN_ON_ONCE(!kc->timer_wait_running))
 | 
						|
		kc->timer_wait_running(timer);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
	/* Relock the timer. It might be not longer hashed. */
 | 
						|
	return lock_timer(timer_id, flags);
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer. */
 | 
						|
int common_timer_set(struct k_itimer *timr, int flags,
 | 
						|
		     struct itimerspec64 *new_setting,
 | 
						|
		     struct itimerspec64 *old_setting)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timr->kclock;
 | 
						|
	bool sigev_none;
 | 
						|
	ktime_t expires;
 | 
						|
 | 
						|
	if (old_setting)
 | 
						|
		common_timer_get(timr, old_setting);
 | 
						|
 | 
						|
	/* Prevent rearming by clearing the interval */
 | 
						|
	timr->it_interval = 0;
 | 
						|
	/*
 | 
						|
	 * Careful here. On SMP systems the timer expiry function could be
 | 
						|
	 * active and spinning on timr->it_lock.
 | 
						|
	 */
 | 
						|
	if (kc->timer_try_to_cancel(timr) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
 | 
						|
	timr->it_active = 0;
 | 
						|
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 | 
						|
		~REQUEUE_PENDING;
 | 
						|
	timr->it_overrun_last = 0;
 | 
						|
 | 
						|
	/* Switch off the timer when it_value is zero */
 | 
						|
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 | 
						|
	expires = timespec64_to_ktime(new_setting->it_value);
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		expires = timens_ktime_to_host(timr->it_clock, expires);
 | 
						|
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 | 
						|
 | 
						|
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 | 
						|
	timr->it_active = !sigev_none;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int do_timer_settime(timer_t timer_id, int tmr_flags,
 | 
						|
			    struct itimerspec64 *new_spec64,
 | 
						|
			    struct itimerspec64 *old_spec64)
 | 
						|
{
 | 
						|
	const struct k_clock *kc;
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!timespec64_valid(&new_spec64->it_interval) ||
 | 
						|
	    !timespec64_valid(&new_spec64->it_value))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (old_spec64)
 | 
						|
		memset(old_spec64, 0, sizeof(*old_spec64));
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
retry:
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	kc = timr->kclock;
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 | 
						|
		error = -EINVAL;
 | 
						|
	else
 | 
						|
		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
 | 
						|
 | 
						|
	if (error == TIMER_RETRY) {
 | 
						|
		// We already got the old time...
 | 
						|
		old_spec64 = NULL;
 | 
						|
		/* Unlocks and relocks the timer if it still exists */
 | 
						|
		timr = timer_wait_running(timr, &flags);
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer */
 | 
						|
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 | 
						|
		const struct __kernel_itimerspec __user *, new_setting,
 | 
						|
		struct __kernel_itimerspec __user *, old_setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 new_spec, old_spec, *rtn;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!new_setting)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_itimerspec64(&new_spec, new_setting))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	rtn = old_setting ? &old_spec : NULL;
 | 
						|
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | 
						|
	if (!error && old_setting) {
 | 
						|
		if (put_itimerspec64(&old_spec, old_setting))
 | 
						|
			error = -EFAULT;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 | 
						|
		struct old_itimerspec32 __user *, new,
 | 
						|
		struct old_itimerspec32 __user *, old)
 | 
						|
{
 | 
						|
	struct itimerspec64 new_spec, old_spec;
 | 
						|
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!new)
 | 
						|
		return -EINVAL;
 | 
						|
	if (get_old_itimerspec32(&new_spec, new))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | 
						|
	if (!error && old) {
 | 
						|
		if (put_old_itimerspec32(&old_spec, old))
 | 
						|
			error = -EFAULT;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int common_timer_del(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timer->kclock;
 | 
						|
 | 
						|
	timer->it_interval = 0;
 | 
						|
	if (kc->timer_try_to_cancel(timer) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
	timer->it_active = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int timer_delete_hook(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timer->kclock;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_del))
 | 
						|
		return -EINVAL;
 | 
						|
	return kc->timer_del(timer);
 | 
						|
}
 | 
						|
 | 
						|
/* Delete a POSIX.1b interval timer. */
 | 
						|
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timer;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timer = lock_timer(timer_id, &flags);
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	if (!timer)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
 | 
						|
		/* Unlocks and relocks the timer if it still exists */
 | 
						|
		timer = timer_wait_running(timer, &flags);
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(¤t->sighand->siglock);
 | 
						|
	list_del(&timer->list);
 | 
						|
	spin_unlock(¤t->sighand->siglock);
 | 
						|
	/*
 | 
						|
	 * A concurrent lookup could check timer::it_signal lockless. It
 | 
						|
	 * will reevaluate with timer::it_lock held and observe the NULL.
 | 
						|
	 */
 | 
						|
	WRITE_ONCE(timer->it_signal, NULL);
 | 
						|
 | 
						|
	unlock_timer(timer, flags);
 | 
						|
	posix_timer_unhash_and_free(timer);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Delete a timer if it is armed, remove it from the hash and schedule it
 | 
						|
 * for RCU freeing.
 | 
						|
 */
 | 
						|
static void itimer_delete(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * irqsave is required to make timer_wait_running() work.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&timer->it_lock, flags);
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	/*
 | 
						|
	 * Even if the timer is not longer accessible from other tasks
 | 
						|
	 * it still might be armed and queued in the underlying timer
 | 
						|
	 * mechanism. Worse, that timer mechanism might run the expiry
 | 
						|
	 * function concurrently.
 | 
						|
	 */
 | 
						|
	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | 
						|
		/*
 | 
						|
		 * Timer is expired concurrently, prevent livelocks
 | 
						|
		 * and pointless spinning on RT.
 | 
						|
		 *
 | 
						|
		 * timer_wait_running() drops timer::it_lock, which opens
 | 
						|
		 * the possibility for another task to delete the timer.
 | 
						|
		 *
 | 
						|
		 * That's not possible here because this is invoked from
 | 
						|
		 * do_exit() only for the last thread of the thread group.
 | 
						|
		 * So no other task can access and delete that timer.
 | 
						|
		 */
 | 
						|
		if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
 | 
						|
			return;
 | 
						|
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
	list_del(&timer->list);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setting timer::it_signal to NULL is technically not required
 | 
						|
	 * here as nothing can access the timer anymore legitimately via
 | 
						|
	 * the hash table. Set it to NULL nevertheless so that all deletion
 | 
						|
	 * paths are consistent.
 | 
						|
	 */
 | 
						|
	WRITE_ONCE(timer->it_signal, NULL);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&timer->it_lock, flags);
 | 
						|
	posix_timer_unhash_and_free(timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoked from do_exit() when the last thread of a thread group exits.
 | 
						|
 * At that point no other task can access the timers of the dying
 | 
						|
 * task anymore.
 | 
						|
 */
 | 
						|
void exit_itimers(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct list_head timers;
 | 
						|
	struct k_itimer *tmr;
 | 
						|
 | 
						|
	if (list_empty(&tsk->signal->posix_timers))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Protect against concurrent read via /proc/$PID/timers */
 | 
						|
	spin_lock_irq(&tsk->sighand->siglock);
 | 
						|
	list_replace_init(&tsk->signal->posix_timers, &timers);
 | 
						|
	spin_unlock_irq(&tsk->sighand->siglock);
 | 
						|
 | 
						|
	/* The timers are not longer accessible via tsk::signal */
 | 
						|
	while (!list_empty(&timers)) {
 | 
						|
		tmr = list_first_entry(&timers, struct k_itimer, list);
 | 
						|
		itimer_delete(tmr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
 | 
						|
		const struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 new_tp;
 | 
						|
 | 
						|
	if (!kc || !kc->clock_set)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_timespec64(&new_tp, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Permission checks have to be done inside the clock specific
 | 
						|
	 * setter callback.
 | 
						|
	 */
 | 
						|
	return kc->clock_set(which_clock, &new_tp);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 kernel_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = kc->clock_get_timespec(which_clock, &kernel_tp);
 | 
						|
 | 
						|
	if (!error && put_timespec64(&kernel_tp, tp))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->clock_adj)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	return kc->clock_adj(which_clock, ktx);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timex __user *, utx)
 | 
						|
{
 | 
						|
	struct __kernel_timex ktx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (copy_from_user(&ktx, utx, sizeof(ktx)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	err = do_clock_adjtime(which_clock, &ktx);
 | 
						|
 | 
						|
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_clock_getres - Get the resolution of a clock
 | 
						|
 * @which_clock:	The clock to get the resolution for
 | 
						|
 * @tp:			Pointer to a a user space timespec64 for storage
 | 
						|
 *
 | 
						|
 * POSIX defines:
 | 
						|
 *
 | 
						|
 * "The clock_getres() function shall return the resolution of any
 | 
						|
 * clock. Clock resolutions are implementation-defined and cannot be set by
 | 
						|
 * a process. If the argument res is not NULL, the resolution of the
 | 
						|
 * specified clock shall be stored in the location pointed to by res. If
 | 
						|
 * res is NULL, the clock resolution is not returned. If the time argument
 | 
						|
 * of clock_settime() is not a multiple of res, then the value is truncated
 | 
						|
 * to a multiple of res."
 | 
						|
 *
 | 
						|
 * Due to the various hardware constraints the real resolution can vary
 | 
						|
 * wildly and even change during runtime when the underlying devices are
 | 
						|
 * replaced. The kernel also can use hardware devices with different
 | 
						|
 * resolutions for reading the time and for arming timers.
 | 
						|
 *
 | 
						|
 * The kernel therefore deviates from the POSIX spec in various aspects:
 | 
						|
 *
 | 
						|
 * 1) The resolution returned to user space
 | 
						|
 *
 | 
						|
 *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
 | 
						|
 *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
 | 
						|
 *    the kernel differentiates only two cases:
 | 
						|
 *
 | 
						|
 *    I)  Low resolution mode:
 | 
						|
 *
 | 
						|
 *	  When high resolution timers are disabled at compile or runtime
 | 
						|
 *	  the resolution returned is nanoseconds per tick, which represents
 | 
						|
 *	  the precision at which timers expire.
 | 
						|
 *
 | 
						|
 *    II) High resolution mode:
 | 
						|
 *
 | 
						|
 *	  When high resolution timers are enabled the resolution returned
 | 
						|
 *	  is always one nanosecond independent of the actual resolution of
 | 
						|
 *	  the underlying hardware devices.
 | 
						|
 *
 | 
						|
 *	  For CLOCK_*_ALARM the actual resolution depends on system
 | 
						|
 *	  state. When system is running the resolution is the same as the
 | 
						|
 *	  resolution of the other clocks. During suspend the actual
 | 
						|
 *	  resolution is the resolution of the underlying RTC device which
 | 
						|
 *	  might be way less precise than the clockevent device used during
 | 
						|
 *	  running state.
 | 
						|
 *
 | 
						|
 *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
 | 
						|
 *   returned is always nanoseconds per tick.
 | 
						|
 *
 | 
						|
 *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
 | 
						|
 *   returned is always one nanosecond under the assumption that the
 | 
						|
 *   underlying scheduler clock has a better resolution than nanoseconds
 | 
						|
 *   per tick.
 | 
						|
 *
 | 
						|
 *   For dynamic POSIX clocks (PTP devices) the resolution returned is
 | 
						|
 *   always one nanosecond.
 | 
						|
 *
 | 
						|
 * 2) Affect on sys_clock_settime()
 | 
						|
 *
 | 
						|
 *    The kernel does not truncate the time which is handed in to
 | 
						|
 *    sys_clock_settime(). The kernel internal timekeeping is always using
 | 
						|
 *    nanoseconds precision independent of the clocksource device which is
 | 
						|
 *    used to read the time from. The resolution of that device only
 | 
						|
 *    affects the presicion of the time returned by sys_clock_gettime().
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *	0		Success. @tp contains the resolution
 | 
						|
 *	-EINVAL		@which_clock is not a valid clock ID
 | 
						|
 *	-EFAULT		Copying the resolution to @tp faulted
 | 
						|
 *	-ENODEV		Dynamic POSIX clock is not backed by a device
 | 
						|
 *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 rtn_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = kc->clock_getres(which_clock, &rtn_tp);
 | 
						|
 | 
						|
	if (!error && tp && put_timespec64(&rtn_tp, tp))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
 | 
						|
	if (!kc || !kc->clock_set)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_old_timespec32(&ts, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return kc->clock_set(which_clock, &ts);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kc->clock_get_timespec(which_clock, &ts);
 | 
						|
 | 
						|
	if (!err && put_old_timespec32(&ts, tp))
 | 
						|
		err = -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
 | 
						|
		struct old_timex32 __user *, utp)
 | 
						|
{
 | 
						|
	struct __kernel_timex ktx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = get_old_timex32(&ktx, utp);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = do_clock_adjtime(which_clock, &ktx);
 | 
						|
 | 
						|
	if (err >= 0 && put_old_timex32(utp, &ktx))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kc->clock_getres(which_clock, &ts);
 | 
						|
	if (!err && tp && put_old_timespec32(&ts, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
 | 
						|
 */
 | 
						|
static int common_nsleep(const clockid_t which_clock, int flags,
 | 
						|
			 const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	ktime_t texp = timespec64_to_ktime(*rqtp);
 | 
						|
 | 
						|
	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
 | 
						|
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | 
						|
				 which_clock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
 | 
						|
 *
 | 
						|
 * Absolute nanosleeps for these clocks are time-namespace adjusted.
 | 
						|
 */
 | 
						|
static int common_nsleep_timens(const clockid_t which_clock, int flags,
 | 
						|
				const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	ktime_t texp = timespec64_to_ktime(*rqtp);
 | 
						|
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		texp = timens_ktime_to_host(which_clock, texp);
 | 
						|
 | 
						|
	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
 | 
						|
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | 
						|
				 which_clock);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
 | 
						|
		const struct __kernel_timespec __user *, rqtp,
 | 
						|
		struct __kernel_timespec __user *, rmtp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 t;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->nsleep)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (get_timespec64(&t, rqtp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec64_valid(&t))
 | 
						|
		return -EINVAL;
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		rmtp = NULL;
 | 
						|
	current->restart_block.fn = do_no_restart_syscall;
 | 
						|
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
 | 
						|
	current->restart_block.nanosleep.rmtp = rmtp;
 | 
						|
 | 
						|
	return kc->nsleep(which_clock, flags, &t);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
 | 
						|
		struct old_timespec32 __user *, rqtp,
 | 
						|
		struct old_timespec32 __user *, rmtp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 t;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->nsleep)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (get_old_timespec32(&t, rqtp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec64_valid(&t))
 | 
						|
		return -EINVAL;
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		rmtp = NULL;
 | 
						|
	current->restart_block.fn = do_no_restart_syscall;
 | 
						|
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
 | 
						|
	current->restart_block.nanosleep.compat_rmtp = rmtp;
 | 
						|
 | 
						|
	return kc->nsleep(which_clock, flags, &t);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct k_clock clock_realtime = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get_timespec	= posix_get_realtime_timespec,
 | 
						|
	.clock_get_ktime	= posix_get_realtime_ktime,
 | 
						|
	.clock_set		= posix_clock_realtime_set,
 | 
						|
	.clock_adj		= posix_clock_realtime_adj,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_wait_running	= common_timer_wait_running,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get_timespec	= posix_get_monotonic_timespec,
 | 
						|
	.clock_get_ktime	= posix_get_monotonic_ktime,
 | 
						|
	.nsleep			= common_nsleep_timens,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_wait_running	= common_timer_wait_running,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic_raw = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get_timespec	= posix_get_monotonic_raw,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_realtime_coarse = {
 | 
						|
	.clock_getres		= posix_get_coarse_res,
 | 
						|
	.clock_get_timespec	= posix_get_realtime_coarse,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic_coarse = {
 | 
						|
	.clock_getres		= posix_get_coarse_res,
 | 
						|
	.clock_get_timespec	= posix_get_monotonic_coarse,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_tai = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get_ktime	= posix_get_tai_ktime,
 | 
						|
	.clock_get_timespec	= posix_get_tai_timespec,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_wait_running	= common_timer_wait_running,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_boottime = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get_ktime	= posix_get_boottime_ktime,
 | 
						|
	.clock_get_timespec	= posix_get_boottime_timespec,
 | 
						|
	.nsleep			= common_nsleep_timens,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_wait_running	= common_timer_wait_running,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock * const posix_clocks[] = {
 | 
						|
	[CLOCK_REALTIME]		= &clock_realtime,
 | 
						|
	[CLOCK_MONOTONIC]		= &clock_monotonic,
 | 
						|
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
 | 
						|
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
 | 
						|
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
 | 
						|
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
 | 
						|
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
 | 
						|
	[CLOCK_BOOTTIME]		= &clock_boottime,
 | 
						|
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
 | 
						|
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
 | 
						|
	[CLOCK_TAI]			= &clock_tai,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock *clockid_to_kclock(const clockid_t id)
 | 
						|
{
 | 
						|
	clockid_t idx = id;
 | 
						|
 | 
						|
	if (id < 0) {
 | 
						|
		return (id & CLOCKFD_MASK) == CLOCKFD ?
 | 
						|
			&clock_posix_dynamic : &clock_posix_cpu;
 | 
						|
	}
 | 
						|
 | 
						|
	if (id >= ARRAY_SIZE(posix_clocks))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
 | 
						|
}
 |