mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	Similar to the syndrome calculation, the recovery algorithms also work on 64 bytes at a time to align with the L1 cache line size of current and future LoongArch cores (that we care about). Which means unrolled-by-4 LSX and unrolled-by-2 LASX code. The assembly is originally based on the x86 SSSE3/AVX2 ports, but register allocation has been redone to take advantage of LSX/LASX's 32 vector registers, and instruction sequence has been optimized to suit (e.g. LoongArch can perform per-byte srl and andi on vectors, but x86 cannot). Performance numbers measured by instrumenting the raid6test code, on a 3A5000 system clocked at 2.5GHz: > lasx 2data: 354.987 MiB/s > lasx datap: 350.430 MiB/s > lsx 2data: 340.026 MiB/s > lsx datap: 337.318 MiB/s > intx1 2data: 164.280 MiB/s > intx1 datap: 187.966 MiB/s Because recovery algorithms are chosen solely based on priority and availability, lasx is marked as priority 2 and lsx priority 1. At least for the current generation of LoongArch micro-architectures, LASX should always be faster than LSX whenever supported, and have similar power consumption characteristics (because the only known LASX-capable uarch, the LA464, always compute the full 256-bit result for vector ops). Acked-by: Song Liu <song@kernel.org> Signed-off-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
		
			
				
	
	
		
			513 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			513 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * RAID6 recovery algorithms in LoongArch SIMD (LSX & LASX)
 | 
						|
 *
 | 
						|
 * Copyright (C) 2023 WANG Xuerui <git@xen0n.name>
 | 
						|
 *
 | 
						|
 * Originally based on recov_avx2.c and recov_ssse3.c:
 | 
						|
 *
 | 
						|
 * Copyright (C) 2012 Intel Corporation
 | 
						|
 * Author: Jim Kukunas <james.t.kukunas@linux.intel.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/raid/pq.h>
 | 
						|
#include "loongarch.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Unlike with the syndrome calculation algorithms, there's no boot-time
 | 
						|
 * selection of recovery algorithms by benchmarking, so we have to specify
 | 
						|
 * the priorities and hope the future cores will all have decent vector
 | 
						|
 * support (i.e. no LASX slower than LSX, or even scalar code).
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_CPU_HAS_LSX
 | 
						|
static int raid6_has_lsx(void)
 | 
						|
{
 | 
						|
	return cpu_has_lsx;
 | 
						|
}
 | 
						|
 | 
						|
static void raid6_2data_recov_lsx(int disks, size_t bytes, int faila,
 | 
						|
				  int failb, void **ptrs)
 | 
						|
{
 | 
						|
	u8 *p, *q, *dp, *dq;
 | 
						|
	const u8 *pbmul;	/* P multiplier table for B data */
 | 
						|
	const u8 *qmul;		/* Q multiplier table (for both) */
 | 
						|
 | 
						|
	p = (u8 *)ptrs[disks - 2];
 | 
						|
	q = (u8 *)ptrs[disks - 1];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute syndrome with zero for the missing data pages
 | 
						|
	 * Use the dead data pages as temporary storage for
 | 
						|
	 * delta p and delta q
 | 
						|
	 */
 | 
						|
	dp = (u8 *)ptrs[faila];
 | 
						|
	ptrs[faila] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 2] = dp;
 | 
						|
	dq = (u8 *)ptrs[failb];
 | 
						|
	ptrs[failb] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 1] = dq;
 | 
						|
 | 
						|
	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | 
						|
 | 
						|
	/* Restore pointer table */
 | 
						|
	ptrs[faila] = dp;
 | 
						|
	ptrs[failb] = dq;
 | 
						|
	ptrs[disks - 2] = p;
 | 
						|
	ptrs[disks - 1] = q;
 | 
						|
 | 
						|
	/* Now, pick the proper data tables */
 | 
						|
	pbmul = raid6_vgfmul[raid6_gfexi[failb - faila]];
 | 
						|
	qmul  = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila] ^ raid6_gfexp[failb]]];
 | 
						|
 | 
						|
	kernel_fpu_begin();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vr20, vr21: qmul
 | 
						|
	 * vr22, vr23: pbmul
 | 
						|
	 */
 | 
						|
	asm volatile("vld $vr20, %0" : : "m" (qmul[0]));
 | 
						|
	asm volatile("vld $vr21, %0" : : "m" (qmul[16]));
 | 
						|
	asm volatile("vld $vr22, %0" : : "m" (pbmul[0]));
 | 
						|
	asm volatile("vld $vr23, %0" : : "m" (pbmul[16]));
 | 
						|
 | 
						|
	while (bytes) {
 | 
						|
		/* vr4 - vr7: Q */
 | 
						|
		asm volatile("vld $vr4, %0" : : "m" (q[0]));
 | 
						|
		asm volatile("vld $vr5, %0" : : "m" (q[16]));
 | 
						|
		asm volatile("vld $vr6, %0" : : "m" (q[32]));
 | 
						|
		asm volatile("vld $vr7, %0" : : "m" (q[48]));
 | 
						|
		/*  vr4 - vr7: Q + Qxy */
 | 
						|
		asm volatile("vld $vr8, %0" : : "m" (dq[0]));
 | 
						|
		asm volatile("vld $vr9, %0" : : "m" (dq[16]));
 | 
						|
		asm volatile("vld $vr10, %0" : : "m" (dq[32]));
 | 
						|
		asm volatile("vld $vr11, %0" : : "m" (dq[48]));
 | 
						|
		asm volatile("vxor.v $vr4, $vr4, $vr8");
 | 
						|
		asm volatile("vxor.v $vr5, $vr5, $vr9");
 | 
						|
		asm volatile("vxor.v $vr6, $vr6, $vr10");
 | 
						|
		asm volatile("vxor.v $vr7, $vr7, $vr11");
 | 
						|
		/* vr0 - vr3: P */
 | 
						|
		asm volatile("vld $vr0, %0" : : "m" (p[0]));
 | 
						|
		asm volatile("vld $vr1, %0" : : "m" (p[16]));
 | 
						|
		asm volatile("vld $vr2, %0" : : "m" (p[32]));
 | 
						|
		asm volatile("vld $vr3, %0" : : "m" (p[48]));
 | 
						|
		/* vr0 - vr3: P + Pxy */
 | 
						|
		asm volatile("vld $vr8, %0" : : "m" (dp[0]));
 | 
						|
		asm volatile("vld $vr9, %0" : : "m" (dp[16]));
 | 
						|
		asm volatile("vld $vr10, %0" : : "m" (dp[32]));
 | 
						|
		asm volatile("vld $vr11, %0" : : "m" (dp[48]));
 | 
						|
		asm volatile("vxor.v $vr0, $vr0, $vr8");
 | 
						|
		asm volatile("vxor.v $vr1, $vr1, $vr9");
 | 
						|
		asm volatile("vxor.v $vr2, $vr2, $vr10");
 | 
						|
		asm volatile("vxor.v $vr3, $vr3, $vr11");
 | 
						|
 | 
						|
		/* vr8 - vr11: higher 4 bits of each byte of (Q + Qxy) */
 | 
						|
		asm volatile("vsrli.b $vr8, $vr4, 4");
 | 
						|
		asm volatile("vsrli.b $vr9, $vr5, 4");
 | 
						|
		asm volatile("vsrli.b $vr10, $vr6, 4");
 | 
						|
		asm volatile("vsrli.b $vr11, $vr7, 4");
 | 
						|
		/* vr4 - vr7: lower 4 bits of each byte of (Q + Qxy) */
 | 
						|
		asm volatile("vandi.b $vr4, $vr4, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr5, $vr5, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr6, $vr6, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr7, $vr7, 0x0f");
 | 
						|
		/* lookup from qmul[0] */
 | 
						|
		asm volatile("vshuf.b $vr4, $vr20, $vr20, $vr4");
 | 
						|
		asm volatile("vshuf.b $vr5, $vr20, $vr20, $vr5");
 | 
						|
		asm volatile("vshuf.b $vr6, $vr20, $vr20, $vr6");
 | 
						|
		asm volatile("vshuf.b $vr7, $vr20, $vr20, $vr7");
 | 
						|
		/* lookup from qmul[16] */
 | 
						|
		asm volatile("vshuf.b $vr8, $vr21, $vr21, $vr8");
 | 
						|
		asm volatile("vshuf.b $vr9, $vr21, $vr21, $vr9");
 | 
						|
		asm volatile("vshuf.b $vr10, $vr21, $vr21, $vr10");
 | 
						|
		asm volatile("vshuf.b $vr11, $vr21, $vr21, $vr11");
 | 
						|
		/* vr16 - vr19: B(Q + Qxy) */
 | 
						|
		asm volatile("vxor.v $vr16, $vr8, $vr4");
 | 
						|
		asm volatile("vxor.v $vr17, $vr9, $vr5");
 | 
						|
		asm volatile("vxor.v $vr18, $vr10, $vr6");
 | 
						|
		asm volatile("vxor.v $vr19, $vr11, $vr7");
 | 
						|
 | 
						|
		/* vr4 - vr7: higher 4 bits of each byte of (P + Pxy) */
 | 
						|
		asm volatile("vsrli.b $vr4, $vr0, 4");
 | 
						|
		asm volatile("vsrli.b $vr5, $vr1, 4");
 | 
						|
		asm volatile("vsrli.b $vr6, $vr2, 4");
 | 
						|
		asm volatile("vsrli.b $vr7, $vr3, 4");
 | 
						|
		/* vr12 - vr15: lower 4 bits of each byte of (P + Pxy) */
 | 
						|
		asm volatile("vandi.b $vr12, $vr0, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr13, $vr1, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr14, $vr2, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr15, $vr3, 0x0f");
 | 
						|
		/* lookup from pbmul[0] */
 | 
						|
		asm volatile("vshuf.b $vr12, $vr22, $vr22, $vr12");
 | 
						|
		asm volatile("vshuf.b $vr13, $vr22, $vr22, $vr13");
 | 
						|
		asm volatile("vshuf.b $vr14, $vr22, $vr22, $vr14");
 | 
						|
		asm volatile("vshuf.b $vr15, $vr22, $vr22, $vr15");
 | 
						|
		/* lookup from pbmul[16] */
 | 
						|
		asm volatile("vshuf.b $vr4, $vr23, $vr23, $vr4");
 | 
						|
		asm volatile("vshuf.b $vr5, $vr23, $vr23, $vr5");
 | 
						|
		asm volatile("vshuf.b $vr6, $vr23, $vr23, $vr6");
 | 
						|
		asm volatile("vshuf.b $vr7, $vr23, $vr23, $vr7");
 | 
						|
		/* vr4 - vr7: A(P + Pxy) */
 | 
						|
		asm volatile("vxor.v $vr4, $vr4, $vr12");
 | 
						|
		asm volatile("vxor.v $vr5, $vr5, $vr13");
 | 
						|
		asm volatile("vxor.v $vr6, $vr6, $vr14");
 | 
						|
		asm volatile("vxor.v $vr7, $vr7, $vr15");
 | 
						|
 | 
						|
		/* vr4 - vr7: A(P + Pxy) + B(Q + Qxy) = Dx */
 | 
						|
		asm volatile("vxor.v $vr4, $vr4, $vr16");
 | 
						|
		asm volatile("vxor.v $vr5, $vr5, $vr17");
 | 
						|
		asm volatile("vxor.v $vr6, $vr6, $vr18");
 | 
						|
		asm volatile("vxor.v $vr7, $vr7, $vr19");
 | 
						|
		asm volatile("vst $vr4, %0" : "=m" (dq[0]));
 | 
						|
		asm volatile("vst $vr5, %0" : "=m" (dq[16]));
 | 
						|
		asm volatile("vst $vr6, %0" : "=m" (dq[32]));
 | 
						|
		asm volatile("vst $vr7, %0" : "=m" (dq[48]));
 | 
						|
 | 
						|
		/* vr0 - vr3: P + Pxy + Dx = Dy */
 | 
						|
		asm volatile("vxor.v $vr0, $vr0, $vr4");
 | 
						|
		asm volatile("vxor.v $vr1, $vr1, $vr5");
 | 
						|
		asm volatile("vxor.v $vr2, $vr2, $vr6");
 | 
						|
		asm volatile("vxor.v $vr3, $vr3, $vr7");
 | 
						|
		asm volatile("vst $vr0, %0" : "=m" (dp[0]));
 | 
						|
		asm volatile("vst $vr1, %0" : "=m" (dp[16]));
 | 
						|
		asm volatile("vst $vr2, %0" : "=m" (dp[32]));
 | 
						|
		asm volatile("vst $vr3, %0" : "=m" (dp[48]));
 | 
						|
 | 
						|
		bytes -= 64;
 | 
						|
		p += 64;
 | 
						|
		q += 64;
 | 
						|
		dp += 64;
 | 
						|
		dq += 64;
 | 
						|
	}
 | 
						|
 | 
						|
	kernel_fpu_end();
 | 
						|
}
 | 
						|
 | 
						|
static void raid6_datap_recov_lsx(int disks, size_t bytes, int faila,
 | 
						|
				  void **ptrs)
 | 
						|
{
 | 
						|
	u8 *p, *q, *dq;
 | 
						|
	const u8 *qmul;		/* Q multiplier table */
 | 
						|
 | 
						|
	p = (u8 *)ptrs[disks - 2];
 | 
						|
	q = (u8 *)ptrs[disks - 1];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute syndrome with zero for the missing data page
 | 
						|
	 * Use the dead data page as temporary storage for delta q
 | 
						|
	 */
 | 
						|
	dq = (u8 *)ptrs[faila];
 | 
						|
	ptrs[faila] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 1] = dq;
 | 
						|
 | 
						|
	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | 
						|
 | 
						|
	/* Restore pointer table */
 | 
						|
	ptrs[faila] = dq;
 | 
						|
	ptrs[disks - 1] = q;
 | 
						|
 | 
						|
	/* Now, pick the proper data tables */
 | 
						|
	qmul  = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila]]];
 | 
						|
 | 
						|
	kernel_fpu_begin();
 | 
						|
 | 
						|
	/* vr22, vr23: qmul */
 | 
						|
	asm volatile("vld $vr22, %0" : : "m" (qmul[0]));
 | 
						|
	asm volatile("vld $vr23, %0" : : "m" (qmul[16]));
 | 
						|
 | 
						|
	while (bytes) {
 | 
						|
		/* vr0 - vr3: P + Dx */
 | 
						|
		asm volatile("vld $vr0, %0" : : "m" (p[0]));
 | 
						|
		asm volatile("vld $vr1, %0" : : "m" (p[16]));
 | 
						|
		asm volatile("vld $vr2, %0" : : "m" (p[32]));
 | 
						|
		asm volatile("vld $vr3, %0" : : "m" (p[48]));
 | 
						|
		/* vr4 - vr7: Qx */
 | 
						|
		asm volatile("vld $vr4, %0" : : "m" (dq[0]));
 | 
						|
		asm volatile("vld $vr5, %0" : : "m" (dq[16]));
 | 
						|
		asm volatile("vld $vr6, %0" : : "m" (dq[32]));
 | 
						|
		asm volatile("vld $vr7, %0" : : "m" (dq[48]));
 | 
						|
		/* vr4 - vr7: Q + Qx */
 | 
						|
		asm volatile("vld $vr8, %0" : : "m" (q[0]));
 | 
						|
		asm volatile("vld $vr9, %0" : : "m" (q[16]));
 | 
						|
		asm volatile("vld $vr10, %0" : : "m" (q[32]));
 | 
						|
		asm volatile("vld $vr11, %0" : : "m" (q[48]));
 | 
						|
		asm volatile("vxor.v $vr4, $vr4, $vr8");
 | 
						|
		asm volatile("vxor.v $vr5, $vr5, $vr9");
 | 
						|
		asm volatile("vxor.v $vr6, $vr6, $vr10");
 | 
						|
		asm volatile("vxor.v $vr7, $vr7, $vr11");
 | 
						|
 | 
						|
		/* vr8 - vr11: higher 4 bits of each byte of (Q + Qx) */
 | 
						|
		asm volatile("vsrli.b $vr8, $vr4, 4");
 | 
						|
		asm volatile("vsrli.b $vr9, $vr5, 4");
 | 
						|
		asm volatile("vsrli.b $vr10, $vr6, 4");
 | 
						|
		asm volatile("vsrli.b $vr11, $vr7, 4");
 | 
						|
		/* vr4 - vr7: lower 4 bits of each byte of (Q + Qx) */
 | 
						|
		asm volatile("vandi.b $vr4, $vr4, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr5, $vr5, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr6, $vr6, 0x0f");
 | 
						|
		asm volatile("vandi.b $vr7, $vr7, 0x0f");
 | 
						|
		/* lookup from qmul[0] */
 | 
						|
		asm volatile("vshuf.b $vr4, $vr22, $vr22, $vr4");
 | 
						|
		asm volatile("vshuf.b $vr5, $vr22, $vr22, $vr5");
 | 
						|
		asm volatile("vshuf.b $vr6, $vr22, $vr22, $vr6");
 | 
						|
		asm volatile("vshuf.b $vr7, $vr22, $vr22, $vr7");
 | 
						|
		/* lookup from qmul[16] */
 | 
						|
		asm volatile("vshuf.b $vr8, $vr23, $vr23, $vr8");
 | 
						|
		asm volatile("vshuf.b $vr9, $vr23, $vr23, $vr9");
 | 
						|
		asm volatile("vshuf.b $vr10, $vr23, $vr23, $vr10");
 | 
						|
		asm volatile("vshuf.b $vr11, $vr23, $vr23, $vr11");
 | 
						|
		/* vr4 - vr7: qmul(Q + Qx) = Dx */
 | 
						|
		asm volatile("vxor.v $vr4, $vr4, $vr8");
 | 
						|
		asm volatile("vxor.v $vr5, $vr5, $vr9");
 | 
						|
		asm volatile("vxor.v $vr6, $vr6, $vr10");
 | 
						|
		asm volatile("vxor.v $vr7, $vr7, $vr11");
 | 
						|
		asm volatile("vst $vr4, %0" : "=m" (dq[0]));
 | 
						|
		asm volatile("vst $vr5, %0" : "=m" (dq[16]));
 | 
						|
		asm volatile("vst $vr6, %0" : "=m" (dq[32]));
 | 
						|
		asm volatile("vst $vr7, %0" : "=m" (dq[48]));
 | 
						|
 | 
						|
		/* vr0 - vr3: P + Dx + Dx = P */
 | 
						|
		asm volatile("vxor.v $vr0, $vr0, $vr4");
 | 
						|
		asm volatile("vxor.v $vr1, $vr1, $vr5");
 | 
						|
		asm volatile("vxor.v $vr2, $vr2, $vr6");
 | 
						|
		asm volatile("vxor.v $vr3, $vr3, $vr7");
 | 
						|
		asm volatile("vst $vr0, %0" : "=m" (p[0]));
 | 
						|
		asm volatile("vst $vr1, %0" : "=m" (p[16]));
 | 
						|
		asm volatile("vst $vr2, %0" : "=m" (p[32]));
 | 
						|
		asm volatile("vst $vr3, %0" : "=m" (p[48]));
 | 
						|
 | 
						|
		bytes -= 64;
 | 
						|
		p += 64;
 | 
						|
		q += 64;
 | 
						|
		dq += 64;
 | 
						|
	}
 | 
						|
 | 
						|
	kernel_fpu_end();
 | 
						|
}
 | 
						|
 | 
						|
const struct raid6_recov_calls raid6_recov_lsx = {
 | 
						|
	.data2 = raid6_2data_recov_lsx,
 | 
						|
	.datap = raid6_datap_recov_lsx,
 | 
						|
	.valid = raid6_has_lsx,
 | 
						|
	.name = "lsx",
 | 
						|
	.priority = 1,
 | 
						|
};
 | 
						|
#endif /* CONFIG_CPU_HAS_LSX */
 | 
						|
 | 
						|
#ifdef CONFIG_CPU_HAS_LASX
 | 
						|
static int raid6_has_lasx(void)
 | 
						|
{
 | 
						|
	return cpu_has_lasx;
 | 
						|
}
 | 
						|
 | 
						|
static void raid6_2data_recov_lasx(int disks, size_t bytes, int faila,
 | 
						|
				   int failb, void **ptrs)
 | 
						|
{
 | 
						|
	u8 *p, *q, *dp, *dq;
 | 
						|
	const u8 *pbmul;	/* P multiplier table for B data */
 | 
						|
	const u8 *qmul;		/* Q multiplier table (for both) */
 | 
						|
 | 
						|
	p = (u8 *)ptrs[disks - 2];
 | 
						|
	q = (u8 *)ptrs[disks - 1];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute syndrome with zero for the missing data pages
 | 
						|
	 * Use the dead data pages as temporary storage for
 | 
						|
	 * delta p and delta q
 | 
						|
	 */
 | 
						|
	dp = (u8 *)ptrs[faila];
 | 
						|
	ptrs[faila] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 2] = dp;
 | 
						|
	dq = (u8 *)ptrs[failb];
 | 
						|
	ptrs[failb] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 1] = dq;
 | 
						|
 | 
						|
	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | 
						|
 | 
						|
	/* Restore pointer table */
 | 
						|
	ptrs[faila] = dp;
 | 
						|
	ptrs[failb] = dq;
 | 
						|
	ptrs[disks - 2] = p;
 | 
						|
	ptrs[disks - 1] = q;
 | 
						|
 | 
						|
	/* Now, pick the proper data tables */
 | 
						|
	pbmul = raid6_vgfmul[raid6_gfexi[failb - faila]];
 | 
						|
	qmul  = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila] ^ raid6_gfexp[failb]]];
 | 
						|
 | 
						|
	kernel_fpu_begin();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * xr20, xr21: qmul
 | 
						|
	 * xr22, xr23: pbmul
 | 
						|
	 */
 | 
						|
	asm volatile("vld $vr20, %0" : : "m" (qmul[0]));
 | 
						|
	asm volatile("vld $vr21, %0" : : "m" (qmul[16]));
 | 
						|
	asm volatile("vld $vr22, %0" : : "m" (pbmul[0]));
 | 
						|
	asm volatile("vld $vr23, %0" : : "m" (pbmul[16]));
 | 
						|
	asm volatile("xvreplve0.q $xr20, $xr20");
 | 
						|
	asm volatile("xvreplve0.q $xr21, $xr21");
 | 
						|
	asm volatile("xvreplve0.q $xr22, $xr22");
 | 
						|
	asm volatile("xvreplve0.q $xr23, $xr23");
 | 
						|
 | 
						|
	while (bytes) {
 | 
						|
		/* xr0, xr1: Q */
 | 
						|
		asm volatile("xvld $xr0, %0" : : "m" (q[0]));
 | 
						|
		asm volatile("xvld $xr1, %0" : : "m" (q[32]));
 | 
						|
		/* xr0, xr1: Q + Qxy */
 | 
						|
		asm volatile("xvld $xr4, %0" : : "m" (dq[0]));
 | 
						|
		asm volatile("xvld $xr5, %0" : : "m" (dq[32]));
 | 
						|
		asm volatile("xvxor.v $xr0, $xr0, $xr4");
 | 
						|
		asm volatile("xvxor.v $xr1, $xr1, $xr5");
 | 
						|
		/* xr2, xr3: P */
 | 
						|
		asm volatile("xvld $xr2, %0" : : "m" (p[0]));
 | 
						|
		asm volatile("xvld $xr3, %0" : : "m" (p[32]));
 | 
						|
		/* xr2, xr3: P + Pxy */
 | 
						|
		asm volatile("xvld $xr4, %0" : : "m" (dp[0]));
 | 
						|
		asm volatile("xvld $xr5, %0" : : "m" (dp[32]));
 | 
						|
		asm volatile("xvxor.v $xr2, $xr2, $xr4");
 | 
						|
		asm volatile("xvxor.v $xr3, $xr3, $xr5");
 | 
						|
 | 
						|
		/* xr4, xr5: higher 4 bits of each byte of (Q + Qxy) */
 | 
						|
		asm volatile("xvsrli.b $xr4, $xr0, 4");
 | 
						|
		asm volatile("xvsrli.b $xr5, $xr1, 4");
 | 
						|
		/* xr0, xr1: lower 4 bits of each byte of (Q + Qxy) */
 | 
						|
		asm volatile("xvandi.b $xr0, $xr0, 0x0f");
 | 
						|
		asm volatile("xvandi.b $xr1, $xr1, 0x0f");
 | 
						|
		/* lookup from qmul[0] */
 | 
						|
		asm volatile("xvshuf.b $xr0, $xr20, $xr20, $xr0");
 | 
						|
		asm volatile("xvshuf.b $xr1, $xr20, $xr20, $xr1");
 | 
						|
		/* lookup from qmul[16] */
 | 
						|
		asm volatile("xvshuf.b $xr4, $xr21, $xr21, $xr4");
 | 
						|
		asm volatile("xvshuf.b $xr5, $xr21, $xr21, $xr5");
 | 
						|
		/* xr6, xr7: B(Q + Qxy) */
 | 
						|
		asm volatile("xvxor.v $xr6, $xr4, $xr0");
 | 
						|
		asm volatile("xvxor.v $xr7, $xr5, $xr1");
 | 
						|
 | 
						|
		/* xr4, xr5: higher 4 bits of each byte of (P + Pxy) */
 | 
						|
		asm volatile("xvsrli.b $xr4, $xr2, 4");
 | 
						|
		asm volatile("xvsrli.b $xr5, $xr3, 4");
 | 
						|
		/* xr0, xr1: lower 4 bits of each byte of (P + Pxy) */
 | 
						|
		asm volatile("xvandi.b $xr0, $xr2, 0x0f");
 | 
						|
		asm volatile("xvandi.b $xr1, $xr3, 0x0f");
 | 
						|
		/* lookup from pbmul[0] */
 | 
						|
		asm volatile("xvshuf.b $xr0, $xr22, $xr22, $xr0");
 | 
						|
		asm volatile("xvshuf.b $xr1, $xr22, $xr22, $xr1");
 | 
						|
		/* lookup from pbmul[16] */
 | 
						|
		asm volatile("xvshuf.b $xr4, $xr23, $xr23, $xr4");
 | 
						|
		asm volatile("xvshuf.b $xr5, $xr23, $xr23, $xr5");
 | 
						|
		/* xr0, xr1: A(P + Pxy) */
 | 
						|
		asm volatile("xvxor.v $xr0, $xr0, $xr4");
 | 
						|
		asm volatile("xvxor.v $xr1, $xr1, $xr5");
 | 
						|
 | 
						|
		/* xr0, xr1: A(P + Pxy) + B(Q + Qxy) = Dx */
 | 
						|
		asm volatile("xvxor.v $xr0, $xr0, $xr6");
 | 
						|
		asm volatile("xvxor.v $xr1, $xr1, $xr7");
 | 
						|
 | 
						|
		/* xr2, xr3: P + Pxy + Dx = Dy */
 | 
						|
		asm volatile("xvxor.v $xr2, $xr2, $xr0");
 | 
						|
		asm volatile("xvxor.v $xr3, $xr3, $xr1");
 | 
						|
 | 
						|
		asm volatile("xvst $xr0, %0" : "=m" (dq[0]));
 | 
						|
		asm volatile("xvst $xr1, %0" : "=m" (dq[32]));
 | 
						|
		asm volatile("xvst $xr2, %0" : "=m" (dp[0]));
 | 
						|
		asm volatile("xvst $xr3, %0" : "=m" (dp[32]));
 | 
						|
 | 
						|
		bytes -= 64;
 | 
						|
		p += 64;
 | 
						|
		q += 64;
 | 
						|
		dp += 64;
 | 
						|
		dq += 64;
 | 
						|
	}
 | 
						|
 | 
						|
	kernel_fpu_end();
 | 
						|
}
 | 
						|
 | 
						|
static void raid6_datap_recov_lasx(int disks, size_t bytes, int faila,
 | 
						|
				   void **ptrs)
 | 
						|
{
 | 
						|
	u8 *p, *q, *dq;
 | 
						|
	const u8 *qmul;		/* Q multiplier table */
 | 
						|
 | 
						|
	p = (u8 *)ptrs[disks - 2];
 | 
						|
	q = (u8 *)ptrs[disks - 1];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute syndrome with zero for the missing data page
 | 
						|
	 * Use the dead data page as temporary storage for delta q
 | 
						|
	 */
 | 
						|
	dq = (u8 *)ptrs[faila];
 | 
						|
	ptrs[faila] = (void *)raid6_empty_zero_page;
 | 
						|
	ptrs[disks - 1] = dq;
 | 
						|
 | 
						|
	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | 
						|
 | 
						|
	/* Restore pointer table */
 | 
						|
	ptrs[faila] = dq;
 | 
						|
	ptrs[disks - 1] = q;
 | 
						|
 | 
						|
	/* Now, pick the proper data tables */
 | 
						|
	qmul  = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila]]];
 | 
						|
 | 
						|
	kernel_fpu_begin();
 | 
						|
 | 
						|
	/* xr22, xr23: qmul */
 | 
						|
	asm volatile("vld $vr22, %0" : : "m" (qmul[0]));
 | 
						|
	asm volatile("xvreplve0.q $xr22, $xr22");
 | 
						|
	asm volatile("vld $vr23, %0" : : "m" (qmul[16]));
 | 
						|
	asm volatile("xvreplve0.q $xr23, $xr23");
 | 
						|
 | 
						|
	while (bytes) {
 | 
						|
		/* xr0, xr1: P + Dx */
 | 
						|
		asm volatile("xvld $xr0, %0" : : "m" (p[0]));
 | 
						|
		asm volatile("xvld $xr1, %0" : : "m" (p[32]));
 | 
						|
		/* xr2, xr3: Qx */
 | 
						|
		asm volatile("xvld $xr2, %0" : : "m" (dq[0]));
 | 
						|
		asm volatile("xvld $xr3, %0" : : "m" (dq[32]));
 | 
						|
		/* xr2, xr3: Q + Qx */
 | 
						|
		asm volatile("xvld $xr4, %0" : : "m" (q[0]));
 | 
						|
		asm volatile("xvld $xr5, %0" : : "m" (q[32]));
 | 
						|
		asm volatile("xvxor.v $xr2, $xr2, $xr4");
 | 
						|
		asm volatile("xvxor.v $xr3, $xr3, $xr5");
 | 
						|
 | 
						|
		/* xr4, xr5: higher 4 bits of each byte of (Q + Qx) */
 | 
						|
		asm volatile("xvsrli.b $xr4, $xr2, 4");
 | 
						|
		asm volatile("xvsrli.b $xr5, $xr3, 4");
 | 
						|
		/* xr2, xr3: lower 4 bits of each byte of (Q + Qx) */
 | 
						|
		asm volatile("xvandi.b $xr2, $xr2, 0x0f");
 | 
						|
		asm volatile("xvandi.b $xr3, $xr3, 0x0f");
 | 
						|
		/* lookup from qmul[0] */
 | 
						|
		asm volatile("xvshuf.b $xr2, $xr22, $xr22, $xr2");
 | 
						|
		asm volatile("xvshuf.b $xr3, $xr22, $xr22, $xr3");
 | 
						|
		/* lookup from qmul[16] */
 | 
						|
		asm volatile("xvshuf.b $xr4, $xr23, $xr23, $xr4");
 | 
						|
		asm volatile("xvshuf.b $xr5, $xr23, $xr23, $xr5");
 | 
						|
		/* xr2, xr3: qmul(Q + Qx) = Dx */
 | 
						|
		asm volatile("xvxor.v $xr2, $xr2, $xr4");
 | 
						|
		asm volatile("xvxor.v $xr3, $xr3, $xr5");
 | 
						|
 | 
						|
		/* xr0, xr1: P + Dx + Dx = P */
 | 
						|
		asm volatile("xvxor.v $xr0, $xr0, $xr2");
 | 
						|
		asm volatile("xvxor.v $xr1, $xr1, $xr3");
 | 
						|
 | 
						|
		asm volatile("xvst $xr2, %0" : "=m" (dq[0]));
 | 
						|
		asm volatile("xvst $xr3, %0" : "=m" (dq[32]));
 | 
						|
		asm volatile("xvst $xr0, %0" : "=m" (p[0]));
 | 
						|
		asm volatile("xvst $xr1, %0" : "=m" (p[32]));
 | 
						|
 | 
						|
		bytes -= 64;
 | 
						|
		p += 64;
 | 
						|
		q += 64;
 | 
						|
		dq += 64;
 | 
						|
	}
 | 
						|
 | 
						|
	kernel_fpu_end();
 | 
						|
}
 | 
						|
 | 
						|
const struct raid6_recov_calls raid6_recov_lasx = {
 | 
						|
	.data2 = raid6_2data_recov_lasx,
 | 
						|
	.datap = raid6_datap_recov_lasx,
 | 
						|
	.valid = raid6_has_lasx,
 | 
						|
	.name = "lasx",
 | 
						|
	.priority = 2,
 | 
						|
};
 | 
						|
#endif /* CONFIG_CPU_HAS_LASX */
 |