mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Commit 0c65f459ce intended to fix truncation issues with fls() on
ARMv5+ by renaming it to __fls() and wrapping it into a C function.
However that didn't take into account the fact that __fls() already
already had different semantics in the kernel.
Let's move the __fls() code into fls() function directly, and redefine
__fls() with the appropriate semantics.  While at it, bring a generic
__fls() definition for pre ARMv5 too.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
	
			
		
			
				
	
	
		
			344 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 1995, Russell King.
 | 
						|
 * Various bits and pieces copyrights include:
 | 
						|
 *  Linus Torvalds (test_bit).
 | 
						|
 * Big endian support: Copyright 2001, Nicolas Pitre
 | 
						|
 *  reworked by rmk.
 | 
						|
 *
 | 
						|
 * bit 0 is the LSB of an "unsigned long" quantity.
 | 
						|
 *
 | 
						|
 * Please note that the code in this file should never be included
 | 
						|
 * from user space.  Many of these are not implemented in assembler
 | 
						|
 * since they would be too costly.  Also, they require privileged
 | 
						|
 * instructions (which are not available from user mode) to ensure
 | 
						|
 * that they are atomic.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef __ASM_ARM_BITOPS_H
 | 
						|
#define __ASM_ARM_BITOPS_H
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
 | 
						|
#ifndef _LINUX_BITOPS_H
 | 
						|
#error only <linux/bitops.h> can be included directly
 | 
						|
#endif
 | 
						|
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <asm/system.h>
 | 
						|
 | 
						|
#define smp_mb__before_clear_bit()	mb()
 | 
						|
#define smp_mb__after_clear_bit()	mb()
 | 
						|
 | 
						|
/*
 | 
						|
 * These functions are the basis of our bit ops.
 | 
						|
 *
 | 
						|
 * First, the atomic bitops. These use native endian.
 | 
						|
 */
 | 
						|
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p |= mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p &= ~mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p ^= mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res | mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return res & mask;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res & ~mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return res & mask;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res ^ mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return res & mask;
 | 
						|
}
 | 
						|
 | 
						|
#include <asm-generic/bitops/non-atomic.h>
 | 
						|
 | 
						|
/*
 | 
						|
 *  A note about Endian-ness.
 | 
						|
 *  -------------------------
 | 
						|
 *
 | 
						|
 * When the ARM is put into big endian mode via CR15, the processor
 | 
						|
 * merely swaps the order of bytes within words, thus:
 | 
						|
 *
 | 
						|
 *          ------------ physical data bus bits -----------
 | 
						|
 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 | 
						|
 * little     byte 3       byte 2       byte 1      byte 0
 | 
						|
 * big        byte 0       byte 1       byte 2      byte 3
 | 
						|
 *
 | 
						|
 * This means that reading a 32-bit word at address 0 returns the same
 | 
						|
 * value irrespective of the endian mode bit.
 | 
						|
 *
 | 
						|
 * Peripheral devices should be connected with the data bus reversed in
 | 
						|
 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 | 
						|
 * available from http://www.arm.com/.
 | 
						|
 *
 | 
						|
 * The following assumes that the data bus connectivity for big endian
 | 
						|
 * mode has been followed.
 | 
						|
 *
 | 
						|
 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 | 
						|
 */
 | 
						|
extern void _set_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern void _clear_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern void _change_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
 | 
						|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
 | 
						|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
 | 
						|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
 | 
						|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
 | 
						|
 | 
						|
/*
 | 
						|
 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 | 
						|
 */
 | 
						|
extern void _set_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern void _clear_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern void _change_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
 | 
						|
extern int _find_first_zero_bit_be(const void * p, unsigned size);
 | 
						|
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
 | 
						|
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
 | 
						|
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
 | 
						|
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * The __* form of bitops are non-atomic and may be reordered.
 | 
						|
 */
 | 
						|
#define	ATOMIC_BITOP_LE(name,nr,p)		\
 | 
						|
	(__builtin_constant_p(nr) ?		\
 | 
						|
	 ____atomic_##name(nr, p) :		\
 | 
						|
	 _##name##_le(nr,p))
 | 
						|
 | 
						|
#define	ATOMIC_BITOP_BE(name,nr,p)		\
 | 
						|
	(__builtin_constant_p(nr) ?		\
 | 
						|
	 ____atomic_##name(nr, p) :		\
 | 
						|
	 _##name##_be(nr,p))
 | 
						|
#else
 | 
						|
#define ATOMIC_BITOP_LE(name,nr,p)	_##name##_le(nr,p)
 | 
						|
#define ATOMIC_BITOP_BE(name,nr,p)	_##name##_be(nr,p)
 | 
						|
#endif
 | 
						|
 | 
						|
#define NONATOMIC_BITOP(name,nr,p)		\
 | 
						|
	(____nonatomic_##name(nr, p))
 | 
						|
 | 
						|
#ifndef __ARMEB__
 | 
						|
/*
 | 
						|
 * These are the little endian, atomic definitions.
 | 
						|
 */
 | 
						|
#define set_bit(nr,p)			ATOMIC_BITOP_LE(set_bit,nr,p)
 | 
						|
#define clear_bit(nr,p)			ATOMIC_BITOP_LE(clear_bit,nr,p)
 | 
						|
#define change_bit(nr,p)		ATOMIC_BITOP_LE(change_bit,nr,p)
 | 
						|
#define test_and_set_bit(nr,p)		ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
 | 
						|
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
 | 
						|
#define test_and_change_bit(nr,p)	ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
 | 
						|
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
 | 
						|
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
 | 
						|
#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
 | 
						|
#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
 | 
						|
 | 
						|
#define WORD_BITOFF_TO_LE(x)		((x))
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/*
 | 
						|
 * These are the big endian, atomic definitions.
 | 
						|
 */
 | 
						|
#define set_bit(nr,p)			ATOMIC_BITOP_BE(set_bit,nr,p)
 | 
						|
#define clear_bit(nr,p)			ATOMIC_BITOP_BE(clear_bit,nr,p)
 | 
						|
#define change_bit(nr,p)		ATOMIC_BITOP_BE(change_bit,nr,p)
 | 
						|
#define test_and_set_bit(nr,p)		ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
 | 
						|
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
 | 
						|
#define test_and_change_bit(nr,p)	ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
 | 
						|
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
 | 
						|
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
 | 
						|
#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
 | 
						|
#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
 | 
						|
 | 
						|
#define WORD_BITOFF_TO_LE(x)		((x) ^ 0x18)
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if __LINUX_ARM_ARCH__ < 5
 | 
						|
 | 
						|
#include <asm-generic/bitops/ffz.h>
 | 
						|
#include <asm-generic/bitops/__fls.h>
 | 
						|
#include <asm-generic/bitops/__ffs.h>
 | 
						|
#include <asm-generic/bitops/fls.h>
 | 
						|
#include <asm-generic/bitops/ffs.h>
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline int constant_fls(int x)
 | 
						|
{
 | 
						|
	int r = 32;
 | 
						|
 | 
						|
	if (!x)
 | 
						|
		return 0;
 | 
						|
	if (!(x & 0xffff0000u)) {
 | 
						|
		x <<= 16;
 | 
						|
		r -= 16;
 | 
						|
	}
 | 
						|
	if (!(x & 0xff000000u)) {
 | 
						|
		x <<= 8;
 | 
						|
		r -= 8;
 | 
						|
	}
 | 
						|
	if (!(x & 0xf0000000u)) {
 | 
						|
		x <<= 4;
 | 
						|
		r -= 4;
 | 
						|
	}
 | 
						|
	if (!(x & 0xc0000000u)) {
 | 
						|
		x <<= 2;
 | 
						|
		r -= 2;
 | 
						|
	}
 | 
						|
	if (!(x & 0x80000000u)) {
 | 
						|
		x <<= 1;
 | 
						|
		r -= 1;
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On ARMv5 and above those functions can be implemented around
 | 
						|
 * the clz instruction for much better code efficiency.
 | 
						|
 */
 | 
						|
 | 
						|
static inline int fls(int x)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (__builtin_constant_p(x))
 | 
						|
	       return constant_fls(x);
 | 
						|
 | 
						|
	asm("clz\t%0, %1" : "=r" (ret) : "r" (x) : "cc");
 | 
						|
       	ret = 32 - ret;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define __fls(x) (fls(x) - 1)
 | 
						|
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
 | 
						|
#define __ffs(x) (ffs(x) - 1)
 | 
						|
#define ffz(x) __ffs( ~(x) )
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#include <asm-generic/bitops/fls64.h>
 | 
						|
 | 
						|
#include <asm-generic/bitops/sched.h>
 | 
						|
#include <asm-generic/bitops/hweight.h>
 | 
						|
#include <asm-generic/bitops/lock.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Ext2 is defined to use little-endian byte ordering.
 | 
						|
 * These do not need to be atomic.
 | 
						|
 */
 | 
						|
#define ext2_set_bit(nr,p)			\
 | 
						|
		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define ext2_set_bit_atomic(lock,nr,p)          \
 | 
						|
                test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define ext2_clear_bit(nr,p)			\
 | 
						|
		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define ext2_clear_bit_atomic(lock,nr,p)        \
 | 
						|
                test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define ext2_test_bit(nr,p)			\
 | 
						|
		test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define ext2_find_first_zero_bit(p,sz)		\
 | 
						|
		_find_first_zero_bit_le(p,sz)
 | 
						|
#define ext2_find_next_zero_bit(p,sz,off)	\
 | 
						|
		_find_next_zero_bit_le(p,sz,off)
 | 
						|
#define ext2_find_next_bit(p, sz, off) \
 | 
						|
		_find_next_bit_le(p, sz, off)
 | 
						|
 | 
						|
/*
 | 
						|
 * Minix is defined to use little-endian byte ordering.
 | 
						|
 * These do not need to be atomic.
 | 
						|
 */
 | 
						|
#define minix_set_bit(nr,p)			\
 | 
						|
		__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define minix_test_bit(nr,p)			\
 | 
						|
		test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define minix_test_and_set_bit(nr,p)		\
 | 
						|
		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define minix_test_and_clear_bit(nr,p)		\
 | 
						|
		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
 | 
						|
#define minix_find_first_zero_bit(p,sz)		\
 | 
						|
		_find_first_zero_bit_le(p,sz)
 | 
						|
 | 
						|
#endif /* __KERNEL__ */
 | 
						|
 | 
						|
#endif /* _ARM_BITOPS_H */
 |