mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			7249 lines
		
	
	
	
		
			204 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7249 lines
		
	
	
	
		
			204 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
 | |
|  *
 | |
|  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 | |
|  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 | |
|  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 | |
|  */
 | |
| #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
 | |
| 
 | |
| enum scx_consts {
 | |
| 	SCX_SLICE_BYPASS		= SCX_SLICE_DFL / 4,
 | |
| 	SCX_DSP_DFL_MAX_BATCH		= 32,
 | |
| 	SCX_DSP_MAX_LOOPS		= 32,
 | |
| 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
 | |
| 
 | |
| 	SCX_EXIT_BT_LEN			= 64,
 | |
| 	SCX_EXIT_MSG_LEN		= 1024,
 | |
| 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
 | |
| 
 | |
| 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
 | |
| };
 | |
| 
 | |
| enum scx_exit_kind {
 | |
| 	SCX_EXIT_NONE,
 | |
| 	SCX_EXIT_DONE,
 | |
| 
 | |
| 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
 | |
| 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
 | |
| 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
 | |
| 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
 | |
| 
 | |
| 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
 | |
| 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
 | |
| 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * An exit code can be specified when exiting with scx_bpf_exit() or
 | |
|  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
 | |
|  * respectively. The codes are 64bit of the format:
 | |
|  *
 | |
|  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
 | |
|  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
 | |
|  *
 | |
|  *   SYS ACT: System-defined exit actions
 | |
|  *   SYS RSN: System-defined exit reasons
 | |
|  *   USR    : User-defined exit codes and reasons
 | |
|  *
 | |
|  * Using the above, users may communicate intention and context by ORing system
 | |
|  * actions and/or system reasons with a user-defined exit code.
 | |
|  */
 | |
| enum scx_exit_code {
 | |
| 	/* Reasons */
 | |
| 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
 | |
| 
 | |
| 	/* Actions */
 | |
| 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
 | |
|  * being disabled.
 | |
|  */
 | |
| struct scx_exit_info {
 | |
| 	/* %SCX_EXIT_* - broad category of the exit reason */
 | |
| 	enum scx_exit_kind	kind;
 | |
| 
 | |
| 	/* exit code if gracefully exiting */
 | |
| 	s64			exit_code;
 | |
| 
 | |
| 	/* textual representation of the above */
 | |
| 	const char		*reason;
 | |
| 
 | |
| 	/* backtrace if exiting due to an error */
 | |
| 	unsigned long		*bt;
 | |
| 	u32			bt_len;
 | |
| 
 | |
| 	/* informational message */
 | |
| 	char			*msg;
 | |
| 
 | |
| 	/* debug dump */
 | |
| 	char			*dump;
 | |
| };
 | |
| 
 | |
| /* sched_ext_ops.flags */
 | |
| enum scx_ops_flags {
 | |
| 	/*
 | |
| 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
 | |
| 	 */
 | |
| 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
 | |
| 
 | |
| 	/*
 | |
| 	 * By default, if there are no other task to run on the CPU, ext core
 | |
| 	 * keeps running the current task even after its slice expires. If this
 | |
| 	 * flag is specified, such tasks are passed to ops.enqueue() with
 | |
| 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
 | |
| 	 */
 | |
| 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
 | |
| 
 | |
| 	/*
 | |
| 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
 | |
| 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
 | |
| 	 * scheduler depends on pid lookup for dispatching, the task will be
 | |
| 	 * lost leading to various issues including RCU grace period stalls.
 | |
| 	 *
 | |
| 	 * To mask this problem, by default, unhashed tasks are automatically
 | |
| 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
 | |
| 	 * depend on pid lookups and wants to handle these tasks directly, the
 | |
| 	 * following flag can be used.
 | |
| 	 */
 | |
| 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
 | |
| 
 | |
| 	/*
 | |
| 	 * If set, only tasks with policy set to SCHED_EXT are attached to
 | |
| 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
 | |
| 	 */
 | |
| 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU cgroup support flags
 | |
| 	 */
 | |
| 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
 | |
| 
 | |
| 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
 | |
| 				  SCX_OPS_ENQ_LAST |
 | |
| 				  SCX_OPS_ENQ_EXITING |
 | |
| 				  SCX_OPS_SWITCH_PARTIAL |
 | |
| 				  SCX_OPS_HAS_CGROUP_WEIGHT,
 | |
| };
 | |
| 
 | |
| /* argument container for ops.init_task() */
 | |
| struct scx_init_task_args {
 | |
| 	/*
 | |
| 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
 | |
| 	 * to the scheduler transition path.
 | |
| 	 */
 | |
| 	bool			fork;
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| 	/* the cgroup the task is joining */
 | |
| 	struct cgroup		*cgroup;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* argument container for ops.exit_task() */
 | |
| struct scx_exit_task_args {
 | |
| 	/* Whether the task exited before running on sched_ext. */
 | |
| 	bool cancelled;
 | |
| };
 | |
| 
 | |
| /* argument container for ops->cgroup_init() */
 | |
| struct scx_cgroup_init_args {
 | |
| 	/* the weight of the cgroup [1..10000] */
 | |
| 	u32			weight;
 | |
| };
 | |
| 
 | |
| enum scx_cpu_preempt_reason {
 | |
| 	/* next task is being scheduled by &sched_class_rt */
 | |
| 	SCX_CPU_PREEMPT_RT,
 | |
| 	/* next task is being scheduled by &sched_class_dl */
 | |
| 	SCX_CPU_PREEMPT_DL,
 | |
| 	/* next task is being scheduled by &sched_class_stop */
 | |
| 	SCX_CPU_PREEMPT_STOP,
 | |
| 	/* unknown reason for SCX being preempted */
 | |
| 	SCX_CPU_PREEMPT_UNKNOWN,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Argument container for ops->cpu_acquire(). Currently empty, but may be
 | |
|  * expanded in the future.
 | |
|  */
 | |
| struct scx_cpu_acquire_args {};
 | |
| 
 | |
| /* argument container for ops->cpu_release() */
 | |
| struct scx_cpu_release_args {
 | |
| 	/* the reason the CPU was preempted */
 | |
| 	enum scx_cpu_preempt_reason reason;
 | |
| 
 | |
| 	/* the task that's going to be scheduled on the CPU */
 | |
| 	struct task_struct	*task;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Informational context provided to dump operations.
 | |
|  */
 | |
| struct scx_dump_ctx {
 | |
| 	enum scx_exit_kind	kind;
 | |
| 	s64			exit_code;
 | |
| 	const char		*reason;
 | |
| 	u64			at_ns;
 | |
| 	u64			at_jiffies;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct sched_ext_ops - Operation table for BPF scheduler implementation
 | |
|  *
 | |
|  * Userland can implement an arbitrary scheduling policy by implementing and
 | |
|  * loading operations in this table.
 | |
|  */
 | |
| struct sched_ext_ops {
 | |
| 	/**
 | |
| 	 * select_cpu - Pick the target CPU for a task which is being woken up
 | |
| 	 * @p: task being woken up
 | |
| 	 * @prev_cpu: the cpu @p was on before sleeping
 | |
| 	 * @wake_flags: SCX_WAKE_*
 | |
| 	 *
 | |
| 	 * Decision made here isn't final. @p may be moved to any CPU while it
 | |
| 	 * is getting dispatched for execution later. However, as @p is not on
 | |
| 	 * the rq at this point, getting the eventual execution CPU right here
 | |
| 	 * saves a small bit of overhead down the line.
 | |
| 	 *
 | |
| 	 * If an idle CPU is returned, the CPU is kicked and will try to
 | |
| 	 * dispatch. While an explicit custom mechanism can be added,
 | |
| 	 * select_cpu() serves as the default way to wake up idle CPUs.
 | |
| 	 *
 | |
| 	 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
 | |
| 	 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
 | |
| 	 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
 | |
| 	 * local DSQ of whatever CPU is returned by this callback.
 | |
| 	 */
 | |
| 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
 | |
| 
 | |
| 	/**
 | |
| 	 * enqueue - Enqueue a task on the BPF scheduler
 | |
| 	 * @p: task being enqueued
 | |
| 	 * @enq_flags: %SCX_ENQ_*
 | |
| 	 *
 | |
| 	 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
 | |
| 	 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
 | |
| 	 * scheduler owns @p and if it fails to dispatch @p, the task will
 | |
| 	 * stall.
 | |
| 	 *
 | |
| 	 * If @p was dispatched from ops.select_cpu(), this callback is
 | |
| 	 * skipped.
 | |
| 	 */
 | |
| 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
 | |
| 
 | |
| 	/**
 | |
| 	 * dequeue - Remove a task from the BPF scheduler
 | |
| 	 * @p: task being dequeued
 | |
| 	 * @deq_flags: %SCX_DEQ_*
 | |
| 	 *
 | |
| 	 * Remove @p from the BPF scheduler. This is usually called to isolate
 | |
| 	 * the task while updating its scheduling properties (e.g. priority).
 | |
| 	 *
 | |
| 	 * The ext core keeps track of whether the BPF side owns a given task or
 | |
| 	 * not and can gracefully ignore spurious dispatches from BPF side,
 | |
| 	 * which makes it safe to not implement this method. However, depending
 | |
| 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
 | |
| 	 * scheduling position not being updated across a priority change.
 | |
| 	 */
 | |
| 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
 | |
| 
 | |
| 	/**
 | |
| 	 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
 | |
| 	 * @cpu: CPU to dispatch tasks for
 | |
| 	 * @prev: previous task being switched out
 | |
| 	 *
 | |
| 	 * Called when a CPU's local dsq is empty. The operation should dispatch
 | |
| 	 * one or more tasks from the BPF scheduler into the DSQs using
 | |
| 	 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
 | |
| 	 * scx_bpf_consume().
 | |
| 	 *
 | |
| 	 * The maximum number of times scx_bpf_dispatch() can be called without
 | |
| 	 * an intervening scx_bpf_consume() is specified by
 | |
| 	 * ops.dispatch_max_batch. See the comments on top of the two functions
 | |
| 	 * for more details.
 | |
| 	 *
 | |
| 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
 | |
| 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
 | |
| 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
 | |
| 	 * ops.dispatch() returns. To keep executing @prev, return without
 | |
| 	 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
 | |
| 	 */
 | |
| 	void (*dispatch)(s32 cpu, struct task_struct *prev);
 | |
| 
 | |
| 	/**
 | |
| 	 * tick - Periodic tick
 | |
| 	 * @p: task running currently
 | |
| 	 *
 | |
| 	 * This operation is called every 1/HZ seconds on CPUs which are
 | |
| 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
 | |
| 	 * immediate dispatch cycle on the CPU.
 | |
| 	 */
 | |
| 	void (*tick)(struct task_struct *p);
 | |
| 
 | |
| 	/**
 | |
| 	 * runnable - A task is becoming runnable on its associated CPU
 | |
| 	 * @p: task becoming runnable
 | |
| 	 * @enq_flags: %SCX_ENQ_*
 | |
| 	 *
 | |
| 	 * This and the following three functions can be used to track a task's
 | |
| 	 * execution state transitions. A task becomes ->runnable() on a CPU,
 | |
| 	 * and then goes through one or more ->running() and ->stopping() pairs
 | |
| 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
 | |
| 	 * done running on the CPU.
 | |
| 	 *
 | |
| 	 * @p is becoming runnable on the CPU because it's
 | |
| 	 *
 | |
| 	 * - waking up (%SCX_ENQ_WAKEUP)
 | |
| 	 * - being moved from another CPU
 | |
| 	 * - being restored after temporarily taken off the queue for an
 | |
| 	 *   attribute change.
 | |
| 	 *
 | |
| 	 * This and ->enqueue() are related but not coupled. This operation
 | |
| 	 * notifies @p's state transition and may not be followed by ->enqueue()
 | |
| 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
 | |
| 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
 | |
| 	 * task may be ->enqueue()'d without being preceded by this operation
 | |
| 	 * e.g. after exhausting its slice.
 | |
| 	 */
 | |
| 	void (*runnable)(struct task_struct *p, u64 enq_flags);
 | |
| 
 | |
| 	/**
 | |
| 	 * running - A task is starting to run on its associated CPU
 | |
| 	 * @p: task starting to run
 | |
| 	 *
 | |
| 	 * See ->runnable() for explanation on the task state notifiers.
 | |
| 	 */
 | |
| 	void (*running)(struct task_struct *p);
 | |
| 
 | |
| 	/**
 | |
| 	 * stopping - A task is stopping execution
 | |
| 	 * @p: task stopping to run
 | |
| 	 * @runnable: is task @p still runnable?
 | |
| 	 *
 | |
| 	 * See ->runnable() for explanation on the task state notifiers. If
 | |
| 	 * !@runnable, ->quiescent() will be invoked after this operation
 | |
| 	 * returns.
 | |
| 	 */
 | |
| 	void (*stopping)(struct task_struct *p, bool runnable);
 | |
| 
 | |
| 	/**
 | |
| 	 * quiescent - A task is becoming not runnable on its associated CPU
 | |
| 	 * @p: task becoming not runnable
 | |
| 	 * @deq_flags: %SCX_DEQ_*
 | |
| 	 *
 | |
| 	 * See ->runnable() for explanation on the task state notifiers.
 | |
| 	 *
 | |
| 	 * @p is becoming quiescent on the CPU because it's
 | |
| 	 *
 | |
| 	 * - sleeping (%SCX_DEQ_SLEEP)
 | |
| 	 * - being moved to another CPU
 | |
| 	 * - being temporarily taken off the queue for an attribute change
 | |
| 	 *   (%SCX_DEQ_SAVE)
 | |
| 	 *
 | |
| 	 * This and ->dequeue() are related but not coupled. This operation
 | |
| 	 * notifies @p's state transition and may not be preceded by ->dequeue()
 | |
| 	 * e.g. when @p is being dispatched to a remote CPU.
 | |
| 	 */
 | |
| 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
 | |
| 
 | |
| 	/**
 | |
| 	 * yield - Yield CPU
 | |
| 	 * @from: yielding task
 | |
| 	 * @to: optional yield target task
 | |
| 	 *
 | |
| 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
 | |
| 	 * The BPF scheduler should ensure that other available tasks are
 | |
| 	 * dispatched before the yielding task. Return value is ignored in this
 | |
| 	 * case.
 | |
| 	 *
 | |
| 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
 | |
| 	 * scheduler can implement the request, return %true; otherwise, %false.
 | |
| 	 */
 | |
| 	bool (*yield)(struct task_struct *from, struct task_struct *to);
 | |
| 
 | |
| 	/**
 | |
| 	 * core_sched_before - Task ordering for core-sched
 | |
| 	 * @a: task A
 | |
| 	 * @b: task B
 | |
| 	 *
 | |
| 	 * Used by core-sched to determine the ordering between two tasks. See
 | |
| 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
 | |
| 	 * core-sched.
 | |
| 	 *
 | |
| 	 * Both @a and @b are runnable and may or may not currently be queued on
 | |
| 	 * the BPF scheduler. Should return %true if @a should run before @b.
 | |
| 	 * %false if there's no required ordering or @b should run before @a.
 | |
| 	 *
 | |
| 	 * If not specified, the default is ordering them according to when they
 | |
| 	 * became runnable.
 | |
| 	 */
 | |
| 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
 | |
| 
 | |
| 	/**
 | |
| 	 * set_weight - Set task weight
 | |
| 	 * @p: task to set weight for
 | |
| 	 * @weight: new weight [1..10000]
 | |
| 	 *
 | |
| 	 * Update @p's weight to @weight.
 | |
| 	 */
 | |
| 	void (*set_weight)(struct task_struct *p, u32 weight);
 | |
| 
 | |
| 	/**
 | |
| 	 * set_cpumask - Set CPU affinity
 | |
| 	 * @p: task to set CPU affinity for
 | |
| 	 * @cpumask: cpumask of cpus that @p can run on
 | |
| 	 *
 | |
| 	 * Update @p's CPU affinity to @cpumask.
 | |
| 	 */
 | |
| 	void (*set_cpumask)(struct task_struct *p,
 | |
| 			    const struct cpumask *cpumask);
 | |
| 
 | |
| 	/**
 | |
| 	 * update_idle - Update the idle state of a CPU
 | |
| 	 * @cpu: CPU to udpate the idle state for
 | |
| 	 * @idle: whether entering or exiting the idle state
 | |
| 	 *
 | |
| 	 * This operation is called when @rq's CPU goes or leaves the idle
 | |
| 	 * state. By default, implementing this operation disables the built-in
 | |
| 	 * idle CPU tracking and the following helpers become unavailable:
 | |
| 	 *
 | |
| 	 * - scx_bpf_select_cpu_dfl()
 | |
| 	 * - scx_bpf_test_and_clear_cpu_idle()
 | |
| 	 * - scx_bpf_pick_idle_cpu()
 | |
| 	 *
 | |
| 	 * The user also must implement ops.select_cpu() as the default
 | |
| 	 * implementation relies on scx_bpf_select_cpu_dfl().
 | |
| 	 *
 | |
| 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
 | |
| 	 * tracking.
 | |
| 	 */
 | |
| 	void (*update_idle)(s32 cpu, bool idle);
 | |
| 
 | |
| 	/**
 | |
| 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
 | |
| 	 * @cpu: The CPU being acquired by the BPF scheduler.
 | |
| 	 * @args: Acquire arguments, see the struct definition.
 | |
| 	 *
 | |
| 	 * A CPU that was previously released from the BPF scheduler is now once
 | |
| 	 * again under its control.
 | |
| 	 */
 | |
| 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
 | |
| 
 | |
| 	/**
 | |
| 	 * cpu_release - A CPU is taken away from the BPF scheduler
 | |
| 	 * @cpu: The CPU being released by the BPF scheduler.
 | |
| 	 * @args: Release arguments, see the struct definition.
 | |
| 	 *
 | |
| 	 * The specified CPU is no longer under the control of the BPF
 | |
| 	 * scheduler. This could be because it was preempted by a higher
 | |
| 	 * priority sched_class, though there may be other reasons as well. The
 | |
| 	 * caller should consult @args->reason to determine the cause.
 | |
| 	 */
 | |
| 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
 | |
| 
 | |
| 	/**
 | |
| 	 * init_task - Initialize a task to run in a BPF scheduler
 | |
| 	 * @p: task to initialize for BPF scheduling
 | |
| 	 * @args: init arguments, see the struct definition
 | |
| 	 *
 | |
| 	 * Either we're loading a BPF scheduler or a new task is being forked.
 | |
| 	 * Initialize @p for BPF scheduling. This operation may block and can
 | |
| 	 * be used for allocations, and is called exactly once for a task.
 | |
| 	 *
 | |
| 	 * Return 0 for success, -errno for failure. An error return while
 | |
| 	 * loading will abort loading of the BPF scheduler. During a fork, it
 | |
| 	 * will abort that specific fork.
 | |
| 	 */
 | |
| 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
 | |
| 
 | |
| 	/**
 | |
| 	 * exit_task - Exit a previously-running task from the system
 | |
| 	 * @p: task to exit
 | |
| 	 *
 | |
| 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
 | |
| 	 * necessary cleanup for @p.
 | |
| 	 */
 | |
| 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
 | |
| 
 | |
| 	/**
 | |
| 	 * enable - Enable BPF scheduling for a task
 | |
| 	 * @p: task to enable BPF scheduling for
 | |
| 	 *
 | |
| 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
 | |
| 	 * enters SCX, and is always paired with a matching disable().
 | |
| 	 */
 | |
| 	void (*enable)(struct task_struct *p);
 | |
| 
 | |
| 	/**
 | |
| 	 * disable - Disable BPF scheduling for a task
 | |
| 	 * @p: task to disable BPF scheduling for
 | |
| 	 *
 | |
| 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
 | |
| 	 * Disable BPF scheduling for @p. A disable() call is always matched
 | |
| 	 * with a prior enable() call.
 | |
| 	 */
 | |
| 	void (*disable)(struct task_struct *p);
 | |
| 
 | |
| 	/**
 | |
| 	 * dump - Dump BPF scheduler state on error
 | |
| 	 * @ctx: debug dump context
 | |
| 	 *
 | |
| 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
 | |
| 	 */
 | |
| 	void (*dump)(struct scx_dump_ctx *ctx);
 | |
| 
 | |
| 	/**
 | |
| 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
 | |
| 	 * @ctx: debug dump context
 | |
| 	 * @cpu: CPU to generate debug dump for
 | |
| 	 * @idle: @cpu is currently idle without any runnable tasks
 | |
| 	 *
 | |
| 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
 | |
| 	 * @cpu. If @idle is %true and this operation doesn't produce any
 | |
| 	 * output, @cpu is skipped for dump.
 | |
| 	 */
 | |
| 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
 | |
| 
 | |
| 	/**
 | |
| 	 * dump_task - Dump BPF scheduler state for a runnable task on error
 | |
| 	 * @ctx: debug dump context
 | |
| 	 * @p: runnable task to generate debug dump for
 | |
| 	 *
 | |
| 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
 | |
| 	 * @p.
 | |
| 	 */
 | |
| 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| 	/**
 | |
| 	 * cgroup_init - Initialize a cgroup
 | |
| 	 * @cgrp: cgroup being initialized
 | |
| 	 * @args: init arguments, see the struct definition
 | |
| 	 *
 | |
| 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
 | |
| 	 * @cgrp for sched_ext. This operation may block.
 | |
| 	 *
 | |
| 	 * Return 0 for success, -errno for failure. An error return while
 | |
| 	 * loading will abort loading of the BPF scheduler. During cgroup
 | |
| 	 * creation, it will abort the specific cgroup creation.
 | |
| 	 */
 | |
| 	s32 (*cgroup_init)(struct cgroup *cgrp,
 | |
| 			   struct scx_cgroup_init_args *args);
 | |
| 
 | |
| 	/**
 | |
| 	 * cgroup_exit - Exit a cgroup
 | |
| 	 * @cgrp: cgroup being exited
 | |
| 	 *
 | |
| 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
 | |
| 	 * @cgrp for sched_ext. This operation my block.
 | |
| 	 */
 | |
| 	void (*cgroup_exit)(struct cgroup *cgrp);
 | |
| 
 | |
| 	/**
 | |
| 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
 | |
| 	 * @p: task being moved
 | |
| 	 * @from: cgroup @p is being moved from
 | |
| 	 * @to: cgroup @p is being moved to
 | |
| 	 *
 | |
| 	 * Prepare @p for move from cgroup @from to @to. This operation may
 | |
| 	 * block and can be used for allocations.
 | |
| 	 *
 | |
| 	 * Return 0 for success, -errno for failure. An error return aborts the
 | |
| 	 * migration.
 | |
| 	 */
 | |
| 	s32 (*cgroup_prep_move)(struct task_struct *p,
 | |
| 				struct cgroup *from, struct cgroup *to);
 | |
| 
 | |
| 	/**
 | |
| 	 * cgroup_move - Commit cgroup move
 | |
| 	 * @p: task being moved
 | |
| 	 * @from: cgroup @p is being moved from
 | |
| 	 * @to: cgroup @p is being moved to
 | |
| 	 *
 | |
| 	 * Commit the move. @p is dequeued during this operation.
 | |
| 	 */
 | |
| 	void (*cgroup_move)(struct task_struct *p,
 | |
| 			    struct cgroup *from, struct cgroup *to);
 | |
| 
 | |
| 	/**
 | |
| 	 * cgroup_cancel_move - Cancel cgroup move
 | |
| 	 * @p: task whose cgroup move is being canceled
 | |
| 	 * @from: cgroup @p was being moved from
 | |
| 	 * @to: cgroup @p was being moved to
 | |
| 	 *
 | |
| 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
 | |
| 	 * Undo the preparation.
 | |
| 	 */
 | |
| 	void (*cgroup_cancel_move)(struct task_struct *p,
 | |
| 				   struct cgroup *from, struct cgroup *to);
 | |
| 
 | |
| 	/**
 | |
| 	 * cgroup_set_weight - A cgroup's weight is being changed
 | |
| 	 * @cgrp: cgroup whose weight is being updated
 | |
| 	 * @weight: new weight [1..10000]
 | |
| 	 *
 | |
| 	 * Update @tg's weight to @weight.
 | |
| 	 */
 | |
| 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
 | |
| #endif	/* CONFIG_CGROUPS */
 | |
| 
 | |
| 	/*
 | |
| 	 * All online ops must come before ops.cpu_online().
 | |
| 	 */
 | |
| 
 | |
| 	/**
 | |
| 	 * cpu_online - A CPU became online
 | |
| 	 * @cpu: CPU which just came up
 | |
| 	 *
 | |
| 	 * @cpu just came online. @cpu will not call ops.enqueue() or
 | |
| 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
 | |
| 	 */
 | |
| 	void (*cpu_online)(s32 cpu);
 | |
| 
 | |
| 	/**
 | |
| 	 * cpu_offline - A CPU is going offline
 | |
| 	 * @cpu: CPU which is going offline
 | |
| 	 *
 | |
| 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
 | |
| 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
 | |
| 	 */
 | |
| 	void (*cpu_offline)(s32 cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * All CPU hotplug ops must come before ops.init().
 | |
| 	 */
 | |
| 
 | |
| 	/**
 | |
| 	 * init - Initialize the BPF scheduler
 | |
| 	 */
 | |
| 	s32 (*init)(void);
 | |
| 
 | |
| 	/**
 | |
| 	 * exit - Clean up after the BPF scheduler
 | |
| 	 * @info: Exit info
 | |
| 	 */
 | |
| 	void (*exit)(struct scx_exit_info *info);
 | |
| 
 | |
| 	/**
 | |
| 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
 | |
| 	 */
 | |
| 	u32 dispatch_max_batch;
 | |
| 
 | |
| 	/**
 | |
| 	 * flags - %SCX_OPS_* flags
 | |
| 	 */
 | |
| 	u64 flags;
 | |
| 
 | |
| 	/**
 | |
| 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
 | |
| 	 * runnable task should be able to wait before being scheduled. The
 | |
| 	 * maximum timeout may not exceed the default timeout of 30 seconds.
 | |
| 	 *
 | |
| 	 * Defaults to the maximum allowed timeout value of 30 seconds.
 | |
| 	 */
 | |
| 	u32 timeout_ms;
 | |
| 
 | |
| 	/**
 | |
| 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
 | |
| 	 * value of 32768 is used.
 | |
| 	 */
 | |
| 	u32 exit_dump_len;
 | |
| 
 | |
| 	/**
 | |
| 	 * hotplug_seq - A sequence number that may be set by the scheduler to
 | |
| 	 * detect when a hotplug event has occurred during the loading process.
 | |
| 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
 | |
| 	 * load if the sequence number does not match @scx_hotplug_seq on the
 | |
| 	 * enable path.
 | |
| 	 */
 | |
| 	u64 hotplug_seq;
 | |
| 
 | |
| 	/**
 | |
| 	 * name - BPF scheduler's name
 | |
| 	 *
 | |
| 	 * Must be a non-zero valid BPF object name including only isalnum(),
 | |
| 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
 | |
| 	 * BPF scheduler is enabled.
 | |
| 	 */
 | |
| 	char name[SCX_OPS_NAME_LEN];
 | |
| };
 | |
| 
 | |
| enum scx_opi {
 | |
| 	SCX_OPI_BEGIN			= 0,
 | |
| 	SCX_OPI_NORMAL_BEGIN		= 0,
 | |
| 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
 | |
| 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
 | |
| 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
 | |
| 	SCX_OPI_END			= SCX_OP_IDX(init),
 | |
| };
 | |
| 
 | |
| enum scx_wake_flags {
 | |
| 	/* expose select WF_* flags as enums */
 | |
| 	SCX_WAKE_FORK		= WF_FORK,
 | |
| 	SCX_WAKE_TTWU		= WF_TTWU,
 | |
| 	SCX_WAKE_SYNC		= WF_SYNC,
 | |
| };
 | |
| 
 | |
| enum scx_enq_flags {
 | |
| 	/* expose select ENQUEUE_* flags as enums */
 | |
| 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
 | |
| 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
 | |
| 
 | |
| 	/* high 32bits are SCX specific */
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the following to trigger preemption when calling
 | |
| 	 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
 | |
| 	 * current task is cleared to zero and the CPU is kicked into the
 | |
| 	 * scheduling path. Implies %SCX_ENQ_HEAD.
 | |
| 	 */
 | |
| 	SCX_ENQ_PREEMPT		= 1LLU << 32,
 | |
| 
 | |
| 	/*
 | |
| 	 * The task being enqueued was previously enqueued on the current CPU's
 | |
| 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
 | |
| 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
 | |
| 	 * invoked in a ->cpu_release() callback, and the task is again
 | |
| 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
 | |
| 	 * task will not be scheduled on the CPU until at least the next invocation
 | |
| 	 * of the ->cpu_acquire() callback.
 | |
| 	 */
 | |
| 	SCX_ENQ_REENQ		= 1LLU << 40,
 | |
| 
 | |
| 	/*
 | |
| 	 * The task being enqueued is the only task available for the cpu. By
 | |
| 	 * default, ext core keeps executing such tasks but when
 | |
| 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
 | |
| 	 * %SCX_ENQ_LAST flag set.
 | |
| 	 *
 | |
| 	 * The BPF scheduler is responsible for triggering a follow-up
 | |
| 	 * scheduling event. Otherwise, Execution may stall.
 | |
| 	 */
 | |
| 	SCX_ENQ_LAST		= 1LLU << 41,
 | |
| 
 | |
| 	/* high 8 bits are internal */
 | |
| 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
 | |
| 
 | |
| 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
 | |
| 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
 | |
| };
 | |
| 
 | |
| enum scx_deq_flags {
 | |
| 	/* expose select DEQUEUE_* flags as enums */
 | |
| 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
 | |
| 
 | |
| 	/* high 32bits are SCX specific */
 | |
| 
 | |
| 	/*
 | |
| 	 * The generic core-sched layer decided to execute the task even though
 | |
| 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
 | |
| 	 */
 | |
| 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
 | |
| };
 | |
| 
 | |
| enum scx_pick_idle_cpu_flags {
 | |
| 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
 | |
| };
 | |
| 
 | |
| enum scx_kick_flags {
 | |
| 	/*
 | |
| 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
 | |
| 	 * through at least one full scheduling cycle before going idle. If the
 | |
| 	 * target CPU can be determined to be currently not idle and going to go
 | |
| 	 * through a scheduling cycle before going idle, noop.
 | |
| 	 */
 | |
| 	SCX_KICK_IDLE		= 1LLU << 0,
 | |
| 
 | |
| 	/*
 | |
| 	 * Preempt the current task and execute the dispatch path. If the
 | |
| 	 * current task of the target CPU is an SCX task, its ->scx.slice is
 | |
| 	 * cleared to zero before the scheduling path is invoked so that the
 | |
| 	 * task expires and the dispatch path is invoked.
 | |
| 	 */
 | |
| 	SCX_KICK_PREEMPT	= 1LLU << 1,
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
 | |
| 	 * return after the target CPU finishes picking the next task.
 | |
| 	 */
 | |
| 	SCX_KICK_WAIT		= 1LLU << 2,
 | |
| };
 | |
| 
 | |
| enum scx_tg_flags {
 | |
| 	SCX_TG_ONLINE		= 1U << 0,
 | |
| 	SCX_TG_INITED		= 1U << 1,
 | |
| };
 | |
| 
 | |
| enum scx_ops_enable_state {
 | |
| 	SCX_OPS_ENABLING,
 | |
| 	SCX_OPS_ENABLED,
 | |
| 	SCX_OPS_DISABLING,
 | |
| 	SCX_OPS_DISABLED,
 | |
| };
 | |
| 
 | |
| static const char *scx_ops_enable_state_str[] = {
 | |
| 	[SCX_OPS_ENABLING]	= "enabling",
 | |
| 	[SCX_OPS_ENABLED]	= "enabled",
 | |
| 	[SCX_OPS_DISABLING]	= "disabling",
 | |
| 	[SCX_OPS_DISABLED]	= "disabled",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sched_ext_entity->ops_state
 | |
|  *
 | |
|  * Used to track the task ownership between the SCX core and the BPF scheduler.
 | |
|  * State transitions look as follows:
 | |
|  *
 | |
|  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
 | |
|  *   ^              |                 |
 | |
|  *   |              v                 v
 | |
|  *   \-------------------------------/
 | |
|  *
 | |
|  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
 | |
|  * sites for explanations on the conditions being waited upon and why they are
 | |
|  * safe. Transitions out of them into NONE or QUEUED must store_release and the
 | |
|  * waiters should load_acquire.
 | |
|  *
 | |
|  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
 | |
|  * any given task can be dispatched by the BPF scheduler at all times and thus
 | |
|  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
 | |
|  * to try to dispatch any task anytime regardless of its state as the SCX core
 | |
|  * can safely reject invalid dispatches.
 | |
|  */
 | |
| enum scx_ops_state {
 | |
| 	SCX_OPSS_NONE,		/* owned by the SCX core */
 | |
| 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
 | |
| 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
 | |
| 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
 | |
| 
 | |
| 	/*
 | |
| 	 * QSEQ brands each QUEUED instance so that, when dispatch races
 | |
| 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
 | |
| 	 * on the task being dispatched.
 | |
| 	 *
 | |
| 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
 | |
| 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
 | |
| 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
 | |
| 	 * and runs with IRQ disabled. 30 bits should be sufficient.
 | |
| 	 */
 | |
| 	SCX_OPSS_QSEQ_SHIFT	= 2,
 | |
| };
 | |
| 
 | |
| /* Use macros to ensure that the type is unsigned long for the masks */
 | |
| #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
 | |
| #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
 | |
| 
 | |
| /*
 | |
|  * During exit, a task may schedule after losing its PIDs. When disabling the
 | |
|  * BPF scheduler, we need to be able to iterate tasks in every state to
 | |
|  * guarantee system safety. Maintain a dedicated task list which contains every
 | |
|  * task between its fork and eventual free.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(scx_tasks_lock);
 | |
| static LIST_HEAD(scx_tasks);
 | |
| 
 | |
| /* ops enable/disable */
 | |
| static struct kthread_worker *scx_ops_helper;
 | |
| static DEFINE_MUTEX(scx_ops_enable_mutex);
 | |
| DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
 | |
| DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
 | |
| static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
 | |
| static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
 | |
| static bool scx_ops_init_task_enabled;
 | |
| static bool scx_switching_all;
 | |
| DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
 | |
| 
 | |
| static struct sched_ext_ops scx_ops;
 | |
| static bool scx_warned_zero_slice;
 | |
| 
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
 | |
| 
 | |
| static struct static_key_false scx_has_op[SCX_OPI_END] =
 | |
| 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
 | |
| 
 | |
| static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
 | |
| static struct scx_exit_info *scx_exit_info;
 | |
| 
 | |
| static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
 | |
| static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * A monotically increasing sequence number that is incremented every time a
 | |
|  * scheduler is enabled. This can be used by to check if any custom sched_ext
 | |
|  * scheduler has ever been used in the system.
 | |
|  */
 | |
| static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * The maximum amount of time in jiffies that a task may be runnable without
 | |
|  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
 | |
|  * scx_ops_error().
 | |
|  */
 | |
| static unsigned long scx_watchdog_timeout;
 | |
| 
 | |
| /*
 | |
|  * The last time the delayed work was run. This delayed work relies on
 | |
|  * ksoftirqd being able to run to service timer interrupts, so it's possible
 | |
|  * that this work itself could get wedged. To account for this, we check that
 | |
|  * it's not stalled in the timer tick, and trigger an error if it is.
 | |
|  */
 | |
| static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
 | |
| 
 | |
| static struct delayed_work scx_watchdog_work;
 | |
| 
 | |
| /* idle tracking */
 | |
| #ifdef CONFIG_SMP
 | |
| #ifdef CONFIG_CPUMASK_OFFSTACK
 | |
| #define CL_ALIGNED_IF_ONSTACK
 | |
| #else
 | |
| #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
 | |
| #endif
 | |
| 
 | |
| static struct {
 | |
| 	cpumask_var_t cpu;
 | |
| 	cpumask_var_t smt;
 | |
| } idle_masks CL_ALIGNED_IF_ONSTACK;
 | |
| 
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| /* for %SCX_KICK_WAIT */
 | |
| static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
 | |
| 
 | |
| /*
 | |
|  * Direct dispatch marker.
 | |
|  *
 | |
|  * Non-NULL values are used for direct dispatch from enqueue path. A valid
 | |
|  * pointer points to the task currently being enqueued. An ERR_PTR value is used
 | |
|  * to indicate that direct dispatch has already happened.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
 | |
| 
 | |
| /*
 | |
|  * Dispatch queues.
 | |
|  *
 | |
|  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
 | |
|  * to avoid live-locking in bypass mode where all tasks are dispatched to
 | |
|  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
 | |
|  * sufficient, it can be further split.
 | |
|  */
 | |
| static struct scx_dispatch_q **global_dsqs;
 | |
| 
 | |
| static const struct rhashtable_params dsq_hash_params = {
 | |
| 	.key_len		= 8,
 | |
| 	.key_offset		= offsetof(struct scx_dispatch_q, id),
 | |
| 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
 | |
| };
 | |
| 
 | |
| static struct rhashtable dsq_hash;
 | |
| static LLIST_HEAD(dsqs_to_free);
 | |
| 
 | |
| /* dispatch buf */
 | |
| struct scx_dsp_buf_ent {
 | |
| 	struct task_struct	*task;
 | |
| 	unsigned long		qseq;
 | |
| 	u64			dsq_id;
 | |
| 	u64			enq_flags;
 | |
| };
 | |
| 
 | |
| static u32 scx_dsp_max_batch;
 | |
| 
 | |
| struct scx_dsp_ctx {
 | |
| 	struct rq		*rq;
 | |
| 	u32			cursor;
 | |
| 	u32			nr_tasks;
 | |
| 	struct scx_dsp_buf_ent	buf[];
 | |
| };
 | |
| 
 | |
| static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
 | |
| 
 | |
| /* string formatting from BPF */
 | |
| struct scx_bstr_buf {
 | |
| 	u64			data[MAX_BPRINTF_VARARGS];
 | |
| 	char			line[SCX_EXIT_MSG_LEN];
 | |
| };
 | |
| 
 | |
| static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
 | |
| static struct scx_bstr_buf scx_exit_bstr_buf;
 | |
| 
 | |
| /* ops debug dump */
 | |
| struct scx_dump_data {
 | |
| 	s32			cpu;
 | |
| 	bool			first;
 | |
| 	s32			cursor;
 | |
| 	struct seq_buf		*s;
 | |
| 	const char		*prefix;
 | |
| 	struct scx_bstr_buf	buf;
 | |
| };
 | |
| 
 | |
| static struct scx_dump_data scx_dump_data = {
 | |
| 	.cpu			= -1,
 | |
| };
 | |
| 
 | |
| /* /sys/kernel/sched_ext interface */
 | |
| static struct kset *scx_kset;
 | |
| static struct kobject *scx_root_kobj;
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/sched_ext.h>
 | |
| 
 | |
| static void process_ddsp_deferred_locals(struct rq *rq);
 | |
| static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
 | |
| static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
 | |
| 					     s64 exit_code,
 | |
| 					     const char *fmt, ...);
 | |
| 
 | |
| #define scx_ops_error_kind(err, fmt, args...)					\
 | |
| 	scx_ops_exit_kind((err), 0, fmt, ##args)
 | |
| 
 | |
| #define scx_ops_exit(code, fmt, args...)					\
 | |
| 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
 | |
| 
 | |
| #define scx_ops_error(fmt, args...)						\
 | |
| 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
 | |
| 
 | |
| #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
 | |
| 
 | |
| static long jiffies_delta_msecs(unsigned long at, unsigned long now)
 | |
| {
 | |
| 	if (time_after(at, now))
 | |
| 		return jiffies_to_msecs(at - now);
 | |
| 	else
 | |
| 		return -(long)jiffies_to_msecs(now - at);
 | |
| }
 | |
| 
 | |
| /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
 | |
| static u32 higher_bits(u32 flags)
 | |
| {
 | |
| 	return ~((1 << fls(flags)) - 1);
 | |
| }
 | |
| 
 | |
| /* return the mask with only the highest bit set */
 | |
| static u32 highest_bit(u32 flags)
 | |
| {
 | |
| 	int bit = fls(flags);
 | |
| 	return ((u64)1 << bit) >> 1;
 | |
| }
 | |
| 
 | |
| static bool u32_before(u32 a, u32 b)
 | |
| {
 | |
| 	return (s32)(a - b) < 0;
 | |
| }
 | |
| 
 | |
| static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
 | |
| {
 | |
| 	return global_dsqs[cpu_to_node(task_cpu(p))];
 | |
| }
 | |
| 
 | |
| static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
 | |
| {
 | |
| 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
 | |
|  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
 | |
|  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
 | |
|  * whether it's running from an allowed context.
 | |
|  *
 | |
|  * @mask is constant, always inline to cull the mask calculations.
 | |
|  */
 | |
| static __always_inline void scx_kf_allow(u32 mask)
 | |
| {
 | |
| 	/* nesting is allowed only in increasing scx_kf_mask order */
 | |
| 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
 | |
| 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
 | |
| 		  current->scx.kf_mask, mask);
 | |
| 	current->scx.kf_mask |= mask;
 | |
| 	barrier();
 | |
| }
 | |
| 
 | |
| static void scx_kf_disallow(u32 mask)
 | |
| {
 | |
| 	barrier();
 | |
| 	current->scx.kf_mask &= ~mask;
 | |
| }
 | |
| 
 | |
| #define SCX_CALL_OP(mask, op, args...)						\
 | |
| do {										\
 | |
| 	if (mask) {								\
 | |
| 		scx_kf_allow(mask);						\
 | |
| 		scx_ops.op(args);						\
 | |
| 		scx_kf_disallow(mask);						\
 | |
| 	} else {								\
 | |
| 		scx_ops.op(args);						\
 | |
| 	}									\
 | |
| } while (0)
 | |
| 
 | |
| #define SCX_CALL_OP_RET(mask, op, args...)					\
 | |
| ({										\
 | |
| 	__typeof__(scx_ops.op(args)) __ret;					\
 | |
| 	if (mask) {								\
 | |
| 		scx_kf_allow(mask);						\
 | |
| 		__ret = scx_ops.op(args);					\
 | |
| 		scx_kf_disallow(mask);						\
 | |
| 	} else {								\
 | |
| 		__ret = scx_ops.op(args);					\
 | |
| 	}									\
 | |
| 	__ret;									\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * Some kfuncs are allowed only on the tasks that are subjects of the
 | |
|  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
 | |
|  * restrictions, the following SCX_CALL_OP_*() variants should be used when
 | |
|  * invoking scx_ops operations that take task arguments. These can only be used
 | |
|  * for non-nesting operations due to the way the tasks are tracked.
 | |
|  *
 | |
|  * kfuncs which can only operate on such tasks can in turn use
 | |
|  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
 | |
|  * the specific task.
 | |
|  */
 | |
| #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
 | |
| do {										\
 | |
| 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
 | |
| 	current->scx.kf_tasks[0] = task;					\
 | |
| 	SCX_CALL_OP(mask, op, task, ##args);					\
 | |
| 	current->scx.kf_tasks[0] = NULL;					\
 | |
| } while (0)
 | |
| 
 | |
| #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
 | |
| ({										\
 | |
| 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
 | |
| 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
 | |
| 	current->scx.kf_tasks[0] = task;					\
 | |
| 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
 | |
| 	current->scx.kf_tasks[0] = NULL;					\
 | |
| 	__ret;									\
 | |
| })
 | |
| 
 | |
| #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
 | |
| ({										\
 | |
| 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
 | |
| 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
 | |
| 	current->scx.kf_tasks[0] = task0;					\
 | |
| 	current->scx.kf_tasks[1] = task1;					\
 | |
| 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
 | |
| 	current->scx.kf_tasks[0] = NULL;					\
 | |
| 	current->scx.kf_tasks[1] = NULL;					\
 | |
| 	__ret;									\
 | |
| })
 | |
| 
 | |
| /* @mask is constant, always inline to cull unnecessary branches */
 | |
| static __always_inline bool scx_kf_allowed(u32 mask)
 | |
| {
 | |
| 	if (unlikely(!(current->scx.kf_mask & mask))) {
 | |
| 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
 | |
| 			      mask, current->scx.kf_mask);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
 | |
| 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
 | |
| 	 * inside ops.dispatch(). We don't need to check boundaries for any
 | |
| 	 * blocking kfuncs as the verifier ensures they're only called from
 | |
| 	 * sleepable progs.
 | |
| 	 */
 | |
| 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
 | |
| 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
 | |
| 		scx_ops_error("cpu_release kfunc called from a nested operation");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
 | |
| 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
 | |
| 		scx_ops_error("dispatch kfunc called from a nested operation");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* see SCX_CALL_OP_TASK() */
 | |
| static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
 | |
| 							struct task_struct *p)
 | |
| {
 | |
| 	if (!scx_kf_allowed(mask))
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely((p != current->scx.kf_tasks[0] &&
 | |
| 		      p != current->scx.kf_tasks[1]))) {
 | |
| 		scx_ops_error("called on a task not being operated on");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool scx_kf_allowed_if_unlocked(void)
 | |
| {
 | |
| 	return !current->scx.kf_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nldsq_next_task - Iterate to the next task in a non-local DSQ
 | |
|  * @dsq: user dsq being interated
 | |
|  * @cur: current position, %NULL to start iteration
 | |
|  * @rev: walk backwards
 | |
|  *
 | |
|  * Returns %NULL when iteration is finished.
 | |
|  */
 | |
| static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
 | |
| 					   struct task_struct *cur, bool rev)
 | |
| {
 | |
| 	struct list_head *list_node;
 | |
| 	struct scx_dsq_list_node *dsq_lnode;
 | |
| 
 | |
| 	lockdep_assert_held(&dsq->lock);
 | |
| 
 | |
| 	if (cur)
 | |
| 		list_node = &cur->scx.dsq_list.node;
 | |
| 	else
 | |
| 		list_node = &dsq->list;
 | |
| 
 | |
| 	/* find the next task, need to skip BPF iteration cursors */
 | |
| 	do {
 | |
| 		if (rev)
 | |
| 			list_node = list_node->prev;
 | |
| 		else
 | |
| 			list_node = list_node->next;
 | |
| 
 | |
| 		if (list_node == &dsq->list)
 | |
| 			return NULL;
 | |
| 
 | |
| 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
 | |
| 					 node);
 | |
| 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
 | |
| 
 | |
| 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
 | |
| }
 | |
| 
 | |
| #define nldsq_for_each_task(p, dsq)						\
 | |
| 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
 | |
| 	     (p) = nldsq_next_task((dsq), (p), false))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
 | |
|  * dispatch order. BPF-visible iterator is opaque and larger to allow future
 | |
|  * changes without breaking backward compatibility. Can be used with
 | |
|  * bpf_for_each(). See bpf_iter_scx_dsq_*().
 | |
|  */
 | |
| enum scx_dsq_iter_flags {
 | |
| 	/* iterate in the reverse dispatch order */
 | |
| 	SCX_DSQ_ITER_REV		= 1U << 16,
 | |
| 
 | |
| 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
 | |
| 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
 | |
| 
 | |
| 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
 | |
| 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
 | |
| 					  __SCX_DSQ_ITER_HAS_SLICE |
 | |
| 					  __SCX_DSQ_ITER_HAS_VTIME,
 | |
| };
 | |
| 
 | |
| struct bpf_iter_scx_dsq_kern {
 | |
| 	struct scx_dsq_list_node	cursor;
 | |
| 	struct scx_dispatch_q		*dsq;
 | |
| 	u64				slice;
 | |
| 	u64				vtime;
 | |
| } __attribute__((aligned(8)));
 | |
| 
 | |
| struct bpf_iter_scx_dsq {
 | |
| 	u64				__opaque[6];
 | |
| } __attribute__((aligned(8)));
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * SCX task iterator.
 | |
|  */
 | |
| struct scx_task_iter {
 | |
| 	struct sched_ext_entity		cursor;
 | |
| 	struct task_struct		*locked;
 | |
| 	struct rq			*rq;
 | |
| 	struct rq_flags			rf;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * scx_task_iter_init - Initialize a task iterator
 | |
|  * @iter: iterator to init
 | |
|  *
 | |
|  * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
 | |
|  * @iter must eventually be exited with scx_task_iter_exit().
 | |
|  *
 | |
|  * scx_tasks_lock may be released between this and the first next() call or
 | |
|  * between any two next() calls. If scx_tasks_lock is released between two
 | |
|  * next() calls, the caller is responsible for ensuring that the task being
 | |
|  * iterated remains accessible either through RCU read lock or obtaining a
 | |
|  * reference count.
 | |
|  *
 | |
|  * All tasks which existed when the iteration started are guaranteed to be
 | |
|  * visited as long as they still exist.
 | |
|  */
 | |
| static void scx_task_iter_init(struct scx_task_iter *iter)
 | |
| {
 | |
| 	lockdep_assert_held(&scx_tasks_lock);
 | |
| 
 | |
| 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
 | |
| 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
 | |
| 
 | |
| 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
 | |
| 	list_add(&iter->cursor.tasks_node, &scx_tasks);
 | |
| 	iter->locked = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator
 | |
|  * @iter: iterator to unlock rq for
 | |
|  *
 | |
|  * If @iter is in the middle of a locked iteration, it may be locking the rq of
 | |
|  * the task currently being visited. Unlock the rq if so. This function can be
 | |
|  * safely called anytime during an iteration.
 | |
|  *
 | |
|  * Returns %true if the rq @iter was locking is unlocked. %false if @iter was
 | |
|  * not locking an rq.
 | |
|  */
 | |
| static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter)
 | |
| {
 | |
| 	if (iter->locked) {
 | |
| 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
 | |
| 		iter->locked = NULL;
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_task_iter_exit - Exit a task iterator
 | |
|  * @iter: iterator to exit
 | |
|  *
 | |
|  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
 | |
|  * If the iterator holds a task's rq lock, that rq lock is released. See
 | |
|  * scx_task_iter_init() for details.
 | |
|  */
 | |
| static void scx_task_iter_exit(struct scx_task_iter *iter)
 | |
| {
 | |
| 	lockdep_assert_held(&scx_tasks_lock);
 | |
| 
 | |
| 	scx_task_iter_rq_unlock(iter);
 | |
| 	list_del_init(&iter->cursor.tasks_node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_task_iter_next - Next task
 | |
|  * @iter: iterator to walk
 | |
|  *
 | |
|  * Visit the next task. See scx_task_iter_init() for details.
 | |
|  */
 | |
| static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
 | |
| {
 | |
| 	struct list_head *cursor = &iter->cursor.tasks_node;
 | |
| 	struct sched_ext_entity *pos;
 | |
| 
 | |
| 	lockdep_assert_held(&scx_tasks_lock);
 | |
| 
 | |
| 	list_for_each_entry(pos, cursor, tasks_node) {
 | |
| 		if (&pos->tasks_node == &scx_tasks)
 | |
| 			return NULL;
 | |
| 		if (!(pos->flags & SCX_TASK_CURSOR)) {
 | |
| 			list_move(cursor, &pos->tasks_node);
 | |
| 			return container_of(pos, struct task_struct, scx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* can't happen, should always terminate at scx_tasks above */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_task_iter_next_locked - Next non-idle task with its rq locked
 | |
|  * @iter: iterator to walk
 | |
|  * @include_dead: Whether we should include dead tasks in the iteration
 | |
|  *
 | |
|  * Visit the non-idle task with its rq lock held. Allows callers to specify
 | |
|  * whether they would like to filter out dead tasks. See scx_task_iter_init()
 | |
|  * for details.
 | |
|  */
 | |
| static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	scx_task_iter_rq_unlock(iter);
 | |
| 
 | |
| 	while ((p = scx_task_iter_next(iter))) {
 | |
| 		/*
 | |
| 		 * scx_task_iter is used to prepare and move tasks into SCX
 | |
| 		 * while loading the BPF scheduler and vice-versa while
 | |
| 		 * unloading. The init_tasks ("swappers") should be excluded
 | |
| 		 * from the iteration because:
 | |
| 		 *
 | |
| 		 * - It's unsafe to use __setschduler_prio() on an init_task to
 | |
| 		 *   determine the sched_class to use as it won't preserve its
 | |
| 		 *   idle_sched_class.
 | |
| 		 *
 | |
| 		 * - ops.init/exit_task() can easily be confused if called with
 | |
| 		 *   init_tasks as they, e.g., share PID 0.
 | |
| 		 *
 | |
| 		 * As init_tasks are never scheduled through SCX, they can be
 | |
| 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
 | |
| 		 * doesn't work here:
 | |
| 		 *
 | |
| 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
 | |
| 		 *   yet been onlined.
 | |
| 		 *
 | |
| 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
 | |
| 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
 | |
| 		 *
 | |
| 		 * Test for idle_sched_class as only init_tasks are on it.
 | |
| 		 */
 | |
| 		if (p->sched_class != &idle_sched_class)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 
 | |
| 	iter->rq = task_rq_lock(p, &iter->rf);
 | |
| 	iter->locked = p;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static enum scx_ops_enable_state scx_ops_enable_state(void)
 | |
| {
 | |
| 	return atomic_read(&scx_ops_enable_state_var);
 | |
| }
 | |
| 
 | |
| static enum scx_ops_enable_state
 | |
| scx_ops_set_enable_state(enum scx_ops_enable_state to)
 | |
| {
 | |
| 	return atomic_xchg(&scx_ops_enable_state_var, to);
 | |
| }
 | |
| 
 | |
| static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
 | |
| 					enum scx_ops_enable_state from)
 | |
| {
 | |
| 	int from_v = from;
 | |
| 
 | |
| 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
 | |
| }
 | |
| 
 | |
| static bool scx_rq_bypassing(struct rq *rq)
 | |
| {
 | |
| 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wait_ops_state - Busy-wait the specified ops state to end
 | |
|  * @p: target task
 | |
|  * @opss: state to wait the end of
 | |
|  *
 | |
|  * Busy-wait for @p to transition out of @opss. This can only be used when the
 | |
|  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
 | |
|  * has load_acquire semantics to ensure that the caller can see the updates made
 | |
|  * in the enqueueing and dispatching paths.
 | |
|  */
 | |
| static void wait_ops_state(struct task_struct *p, unsigned long opss)
 | |
| {
 | |
| 	do {
 | |
| 		cpu_relax();
 | |
| 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ops_cpu_valid - Verify a cpu number
 | |
|  * @cpu: cpu number which came from a BPF ops
 | |
|  * @where: extra information reported on error
 | |
|  *
 | |
|  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
 | |
|  * Verify that it is in range and one of the possible cpus. If invalid, trigger
 | |
|  * an ops error.
 | |
|  */
 | |
| static bool ops_cpu_valid(s32 cpu, const char *where)
 | |
| {
 | |
| 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		scx_ops_error("invalid CPU %d%s%s", cpu,
 | |
| 			      where ? " " : "", where ?: "");
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ops_sanitize_err - Sanitize a -errno value
 | |
|  * @ops_name: operation to blame on failure
 | |
|  * @err: -errno value to sanitize
 | |
|  *
 | |
|  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
 | |
|  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
 | |
|  * cause misbehaviors. For an example, a large negative return from
 | |
|  * ops.init_task() triggers an oops when passed up the call chain because the
 | |
|  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
 | |
|  * handled as a pointer.
 | |
|  */
 | |
| static int ops_sanitize_err(const char *ops_name, s32 err)
 | |
| {
 | |
| 	if (err < 0 && err >= -MAX_ERRNO)
 | |
| 		return err;
 | |
| 
 | |
| 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
 | |
| 	return -EPROTO;
 | |
| }
 | |
| 
 | |
| static void run_deferred(struct rq *rq)
 | |
| {
 | |
| 	process_ddsp_deferred_locals(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void deferred_bal_cb_workfn(struct rq *rq)
 | |
| {
 | |
| 	run_deferred(rq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void deferred_irq_workfn(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
 | |
| 
 | |
| 	raw_spin_rq_lock(rq);
 | |
| 	run_deferred(rq);
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * schedule_deferred - Schedule execution of deferred actions on an rq
 | |
|  * @rq: target rq
 | |
|  *
 | |
|  * Schedule execution of deferred actions on @rq. Must be called with @rq
 | |
|  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
 | |
|  * can unlock @rq to e.g. migrate tasks to other rqs.
 | |
|  */
 | |
| static void schedule_deferred(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * If in the middle of waking up a task, task_woken_scx() will be called
 | |
| 	 * afterwards which will then run the deferred actions, no need to
 | |
| 	 * schedule anything.
 | |
| 	 */
 | |
| 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If in balance, the balance callbacks will be called before rq lock is
 | |
| 	 * released. Schedule one.
 | |
| 	 */
 | |
| 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
 | |
| 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
 | |
| 				       deferred_bal_cb_workfn);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * No scheduler hooks available. Queue an irq work. They are executed on
 | |
| 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
 | |
| 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
 | |
| 	 * the time to IRQ re-enable shouldn't be long.
 | |
| 	 */
 | |
| 	irq_work_queue(&rq->scx.deferred_irq_work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * touch_core_sched - Update timestamp used for core-sched task ordering
 | |
|  * @rq: rq to read clock from, must be locked
 | |
|  * @p: task to update the timestamp for
 | |
|  *
 | |
|  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
 | |
|  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
 | |
|  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
 | |
|  * exhaustion).
 | |
|  */
 | |
| static void touch_core_sched(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	/*
 | |
| 	 * It's okay to update the timestamp spuriously. Use
 | |
| 	 * sched_core_disabled() which is cheaper than enabled().
 | |
| 	 *
 | |
| 	 * As this is used to determine ordering between tasks of sibling CPUs,
 | |
| 	 * it may be better to use per-core dispatch sequence instead.
 | |
| 	 */
 | |
| 	if (!sched_core_disabled())
 | |
| 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
 | |
|  * @rq: rq to read clock from, must be locked
 | |
|  * @p: task being dispatched
 | |
|  *
 | |
|  * If the BPF scheduler implements custom core-sched ordering via
 | |
|  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
 | |
|  * ordering within each local DSQ. This function is called from dispatch paths
 | |
|  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
 | |
|  */
 | |
| static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	if (SCX_HAS_OP(core_sched_before))
 | |
| 		touch_core_sched(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void update_curr_scx(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	s64 delta_exec;
 | |
| 
 | |
| 	delta_exec = update_curr_common(rq);
 | |
| 	if (unlikely(delta_exec <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (curr->scx.slice != SCX_SLICE_INF) {
 | |
| 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
 | |
| 		if (!curr->scx.slice)
 | |
| 			touch_core_sched(rq, curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool scx_dsq_priq_less(struct rb_node *node_a,
 | |
| 			      const struct rb_node *node_b)
 | |
| {
 | |
| 	const struct task_struct *a =
 | |
| 		container_of(node_a, struct task_struct, scx.dsq_priq);
 | |
| 	const struct task_struct *b =
 | |
| 		container_of(node_b, struct task_struct, scx.dsq_priq);
 | |
| 
 | |
| 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
 | |
| }
 | |
| 
 | |
| static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
 | |
| {
 | |
| 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
 | |
| 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
 | |
| }
 | |
| 
 | |
| static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
 | |
| 			     u64 enq_flags)
 | |
| {
 | |
| 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
 | |
| 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
 | |
| 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
 | |
| 
 | |
| 	if (!is_local) {
 | |
| 		raw_spin_lock(&dsq->lock);
 | |
| 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
 | |
| 			scx_ops_error("attempting to dispatch to a destroyed dsq");
 | |
| 			/* fall back to the global dsq */
 | |
| 			raw_spin_unlock(&dsq->lock);
 | |
| 			dsq = find_global_dsq(p);
 | |
| 			raw_spin_lock(&dsq->lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
 | |
| 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
 | |
| 		/*
 | |
| 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
 | |
| 		 * their FIFO queues. To avoid confusion and accidentally
 | |
| 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
 | |
| 		 * disallow any internal DSQ from doing vtime ordering of
 | |
| 		 * tasks.
 | |
| 		 */
 | |
| 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
 | |
| 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
 | |
| 	}
 | |
| 
 | |
| 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
 | |
| 		struct rb_node *rbp;
 | |
| 
 | |
| 		/*
 | |
| 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
 | |
| 		 * linked to both the rbtree and list on PRIQs, this can only be
 | |
| 		 * tested easily when adding the first task.
 | |
| 		 */
 | |
| 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
 | |
| 			     nldsq_next_task(dsq, NULL, false)))
 | |
| 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
 | |
| 				      dsq->id);
 | |
| 
 | |
| 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
 | |
| 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
 | |
| 
 | |
| 		/*
 | |
| 		 * Find the previous task and insert after it on the list so
 | |
| 		 * that @dsq->list is vtime ordered.
 | |
| 		 */
 | |
| 		rbp = rb_prev(&p->scx.dsq_priq);
 | |
| 		if (rbp) {
 | |
| 			struct task_struct *prev =
 | |
| 				container_of(rbp, struct task_struct,
 | |
| 					     scx.dsq_priq);
 | |
| 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
 | |
| 		} else {
 | |
| 			list_add(&p->scx.dsq_list.node, &dsq->list);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
 | |
| 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
 | |
| 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
 | |
| 				      dsq->id);
 | |
| 
 | |
| 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
 | |
| 			list_add(&p->scx.dsq_list.node, &dsq->list);
 | |
| 		else
 | |
| 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
 | |
| 	}
 | |
| 
 | |
| 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
 | |
| 	dsq->seq++;
 | |
| 	p->scx.dsq_seq = dsq->seq;
 | |
| 
 | |
| 	dsq_mod_nr(dsq, 1);
 | |
| 	p->scx.dsq = dsq;
 | |
| 
 | |
| 	/*
 | |
| 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
 | |
| 	 * direct dispatch path, but we clear them here because the direct
 | |
| 	 * dispatch verdict may be overridden on the enqueue path during e.g.
 | |
| 	 * bypass.
 | |
| 	 */
 | |
| 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
 | |
| 	p->scx.ddsp_enq_flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
 | |
| 	 * match waiters' load_acquire.
 | |
| 	 */
 | |
| 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
 | |
| 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 | |
| 
 | |
| 	if (is_local) {
 | |
| 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
 | |
| 		bool preempt = false;
 | |
| 
 | |
| 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
 | |
| 		    rq->curr->sched_class == &ext_sched_class) {
 | |
| 			rq->curr->scx.slice = 0;
 | |
| 			preempt = true;
 | |
| 		}
 | |
| 
 | |
| 		if (preempt || sched_class_above(&ext_sched_class,
 | |
| 						 rq->curr->sched_class))
 | |
| 			resched_curr(rq);
 | |
| 	} else {
 | |
| 		raw_spin_unlock(&dsq->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void task_unlink_from_dsq(struct task_struct *p,
 | |
| 				 struct scx_dispatch_q *dsq)
 | |
| {
 | |
| 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
 | |
| 
 | |
| 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
 | |
| 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
 | |
| 		RB_CLEAR_NODE(&p->scx.dsq_priq);
 | |
| 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
 | |
| 	}
 | |
| 
 | |
| 	list_del_init(&p->scx.dsq_list.node);
 | |
| 	dsq_mod_nr(dsq, -1);
 | |
| }
 | |
| 
 | |
| static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq = p->scx.dsq;
 | |
| 	bool is_local = dsq == &rq->scx.local_dsq;
 | |
| 
 | |
| 	if (!dsq) {
 | |
| 		/*
 | |
| 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
 | |
| 		 * Unlinking is all that's needed to cancel.
 | |
| 		 */
 | |
| 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
 | |
| 			list_del_init(&p->scx.dsq_list.node);
 | |
| 
 | |
| 		/*
 | |
| 		 * When dispatching directly from the BPF scheduler to a local
 | |
| 		 * DSQ, the task isn't associated with any DSQ but
 | |
| 		 * @p->scx.holding_cpu may be set under the protection of
 | |
| 		 * %SCX_OPSS_DISPATCHING.
 | |
| 		 */
 | |
| 		if (p->scx.holding_cpu >= 0)
 | |
| 			p->scx.holding_cpu = -1;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_local)
 | |
| 		raw_spin_lock(&dsq->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
 | |
| 	 * change underneath us.
 | |
| 	*/
 | |
| 	if (p->scx.holding_cpu < 0) {
 | |
| 		/* @p must still be on @dsq, dequeue */
 | |
| 		task_unlink_from_dsq(p, dsq);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We're racing against dispatch_to_local_dsq() which already
 | |
| 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
 | |
| 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
 | |
| 		 * the race.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
 | |
| 		p->scx.holding_cpu = -1;
 | |
| 	}
 | |
| 	p->scx.dsq = NULL;
 | |
| 
 | |
| 	if (!is_local)
 | |
| 		raw_spin_unlock(&dsq->lock);
 | |
| }
 | |
| 
 | |
| static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
 | |
| 						    struct task_struct *p)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 
 | |
| 	if (dsq_id == SCX_DSQ_LOCAL)
 | |
| 		return &rq->scx.local_dsq;
 | |
| 
 | |
| 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
 | |
| 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
 | |
| 
 | |
| 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
 | |
| 			return find_global_dsq(p);
 | |
| 
 | |
| 		return &cpu_rq(cpu)->scx.local_dsq;
 | |
| 	}
 | |
| 
 | |
| 	if (dsq_id == SCX_DSQ_GLOBAL)
 | |
| 		dsq = find_global_dsq(p);
 | |
| 	else
 | |
| 		dsq = find_user_dsq(dsq_id);
 | |
| 
 | |
| 	if (unlikely(!dsq)) {
 | |
| 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
 | |
| 			      dsq_id, p->comm, p->pid);
 | |
| 		return find_global_dsq(p);
 | |
| 	}
 | |
| 
 | |
| 	return dsq;
 | |
| }
 | |
| 
 | |
| static void mark_direct_dispatch(struct task_struct *ddsp_task,
 | |
| 				 struct task_struct *p, u64 dsq_id,
 | |
| 				 u64 enq_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Mark that dispatch already happened from ops.select_cpu() or
 | |
| 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
 | |
| 	 * which can never match a valid task pointer.
 | |
| 	 */
 | |
| 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
 | |
| 
 | |
| 	/* @p must match the task on the enqueue path */
 | |
| 	if (unlikely(p != ddsp_task)) {
 | |
| 		if (IS_ERR(ddsp_task))
 | |
| 			scx_ops_error("%s[%d] already direct-dispatched",
 | |
| 				      p->comm, p->pid);
 | |
| 		else
 | |
| 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
 | |
| 				      ddsp_task->comm, ddsp_task->pid,
 | |
| 				      p->comm, p->pid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
 | |
| 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
 | |
| 
 | |
| 	p->scx.ddsp_dsq_id = dsq_id;
 | |
| 	p->scx.ddsp_enq_flags = enq_flags;
 | |
| }
 | |
| 
 | |
| static void direct_dispatch(struct task_struct *p, u64 enq_flags)
 | |
| {
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 	struct scx_dispatch_q *dsq =
 | |
| 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
 | |
| 
 | |
| 	touch_core_sched_dispatch(rq, p);
 | |
| 
 | |
| 	p->scx.ddsp_enq_flags |= enq_flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
 | |
| 	 * double lock a remote rq and enqueue to its local DSQ. For
 | |
| 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
 | |
| 	 * the enqueue so that it's executed when @rq can be unlocked.
 | |
| 	 */
 | |
| 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
 | |
| 		unsigned long opss;
 | |
| 
 | |
| 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
 | |
| 
 | |
| 		switch (opss & SCX_OPSS_STATE_MASK) {
 | |
| 		case SCX_OPSS_NONE:
 | |
| 			break;
 | |
| 		case SCX_OPSS_QUEUEING:
 | |
| 			/*
 | |
| 			 * As @p was never passed to the BPF side, _release is
 | |
| 			 * not strictly necessary. Still do it for consistency.
 | |
| 			 */
 | |
| 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
 | |
| 				  p->comm, p->pid, opss);
 | |
| 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
 | |
| 		list_add_tail(&p->scx.dsq_list.node,
 | |
| 			      &rq->scx.ddsp_deferred_locals);
 | |
| 		schedule_deferred(rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
 | |
| }
 | |
| 
 | |
| static bool scx_rq_online(struct rq *rq)
 | |
| {
 | |
| 	/*
 | |
| 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
 | |
| 	 * the online state as seen from the BPF scheduler. cpu_active() test
 | |
| 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
 | |
| 	 * stay set until the current scheduling operation is complete even if
 | |
| 	 * we aren't locking @rq.
 | |
| 	 */
 | |
| 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
 | |
| }
 | |
| 
 | |
| static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
 | |
| 			    int sticky_cpu)
 | |
| {
 | |
| 	bool bypassing = scx_rq_bypassing(rq);
 | |
| 	struct task_struct **ddsp_taskp;
 | |
| 	unsigned long qseq;
 | |
| 
 | |
| 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
 | |
| 
 | |
| 	/* rq migration */
 | |
| 	if (sticky_cpu == cpu_of(rq))
 | |
| 		goto local_norefill;
 | |
| 
 | |
| 	/*
 | |
| 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
 | |
| 	 * is offline and are just running the hotplug path. Don't bother the
 | |
| 	 * BPF scheduler.
 | |
| 	 */
 | |
| 	if (!scx_rq_online(rq))
 | |
| 		goto local;
 | |
| 
 | |
| 	if (bypassing)
 | |
| 		goto global;
 | |
| 
 | |
| 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
 | |
| 		goto direct;
 | |
| 
 | |
| 	/* see %SCX_OPS_ENQ_EXITING */
 | |
| 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
 | |
| 	    unlikely(p->flags & PF_EXITING))
 | |
| 		goto local;
 | |
| 
 | |
| 	if (!SCX_HAS_OP(enqueue))
 | |
| 		goto global;
 | |
| 
 | |
| 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
 | |
| 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
 | |
| 
 | |
| 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
 | |
| 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
 | |
| 
 | |
| 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
 | |
| 	WARN_ON_ONCE(*ddsp_taskp);
 | |
| 	*ddsp_taskp = p;
 | |
| 
 | |
| 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
 | |
| 
 | |
| 	*ddsp_taskp = NULL;
 | |
| 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
 | |
| 		goto direct;
 | |
| 
 | |
| 	/*
 | |
| 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
 | |
| 	 * dequeue may be waiting. The store_release matches their load_acquire.
 | |
| 	 */
 | |
| 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
 | |
| 	return;
 | |
| 
 | |
| direct:
 | |
| 	direct_dispatch(p, enq_flags);
 | |
| 	return;
 | |
| 
 | |
| local:
 | |
| 	/*
 | |
| 	 * For task-ordering, slice refill must be treated as implying the end
 | |
| 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
 | |
| 	 * higher priority it becomes from scx_prio_less()'s POV.
 | |
| 	 */
 | |
| 	touch_core_sched(rq, p);
 | |
| 	p->scx.slice = SCX_SLICE_DFL;
 | |
| local_norefill:
 | |
| 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
 | |
| 	return;
 | |
| 
 | |
| global:
 | |
| 	touch_core_sched(rq, p);	/* see the comment in local: */
 | |
| 	p->scx.slice = bypassing ? SCX_SLICE_BYPASS : SCX_SLICE_DFL;
 | |
| 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
 | |
| }
 | |
| 
 | |
| static bool task_runnable(const struct task_struct *p)
 | |
| {
 | |
| 	return !list_empty(&p->scx.runnable_node);
 | |
| }
 | |
| 
 | |
| static void set_task_runnable(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
 | |
| 		p->scx.runnable_at = jiffies;
 | |
| 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
 | |
| 	 * appened to the runnable_list.
 | |
| 	 */
 | |
| 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
 | |
| }
 | |
| 
 | |
| static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
 | |
| {
 | |
| 	list_del_init(&p->scx.runnable_node);
 | |
| 	if (reset_runnable_at)
 | |
| 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
 | |
| }
 | |
| 
 | |
| static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
 | |
| {
 | |
| 	int sticky_cpu = p->scx.sticky_cpu;
 | |
| 
 | |
| 	if (enq_flags & ENQUEUE_WAKEUP)
 | |
| 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
 | |
| 
 | |
| 	enq_flags |= rq->scx.extra_enq_flags;
 | |
| 
 | |
| 	if (sticky_cpu >= 0)
 | |
| 		p->scx.sticky_cpu = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restoring a running task will be immediately followed by
 | |
| 	 * set_next_task_scx() which expects the task to not be on the BPF
 | |
| 	 * scheduler as tasks can only start running through local DSQs. Force
 | |
| 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
 | |
| 	 */
 | |
| 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
 | |
| 		sticky_cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (p->scx.flags & SCX_TASK_QUEUED) {
 | |
| 		WARN_ON_ONCE(!task_runnable(p));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	set_task_runnable(rq, p);
 | |
| 	p->scx.flags |= SCX_TASK_QUEUED;
 | |
| 	rq->scx.nr_running++;
 | |
| 	add_nr_running(rq, 1);
 | |
| 
 | |
| 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
 | |
| 
 | |
| 	if (enq_flags & SCX_ENQ_WAKEUP)
 | |
| 		touch_core_sched(rq, p);
 | |
| 
 | |
| 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
 | |
| out:
 | |
| 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
 | |
| }
 | |
| 
 | |
| static void ops_dequeue(struct task_struct *p, u64 deq_flags)
 | |
| {
 | |
| 	unsigned long opss;
 | |
| 
 | |
| 	/* dequeue is always temporary, don't reset runnable_at */
 | |
| 	clr_task_runnable(p, false);
 | |
| 
 | |
| 	/* acquire ensures that we see the preceding updates on QUEUED */
 | |
| 	opss = atomic_long_read_acquire(&p->scx.ops_state);
 | |
| 
 | |
| 	switch (opss & SCX_OPSS_STATE_MASK) {
 | |
| 	case SCX_OPSS_NONE:
 | |
| 		break;
 | |
| 	case SCX_OPSS_QUEUEING:
 | |
| 		/*
 | |
| 		 * QUEUEING is started and finished while holding @p's rq lock.
 | |
| 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	case SCX_OPSS_QUEUED:
 | |
| 		if (SCX_HAS_OP(dequeue))
 | |
| 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
 | |
| 
 | |
| 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
 | |
| 					    SCX_OPSS_NONE))
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case SCX_OPSS_DISPATCHING:
 | |
| 		/*
 | |
| 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
 | |
| 		 * wait for the transfer to complete so that @p doesn't get
 | |
| 		 * added to its DSQ after dequeueing is complete.
 | |
| 		 *
 | |
| 		 * As we're waiting on DISPATCHING with the rq locked, the
 | |
| 		 * dispatching side shouldn't try to lock the rq while
 | |
| 		 * DISPATCHING is set. See dispatch_to_local_dsq().
 | |
| 		 *
 | |
| 		 * DISPATCHING shouldn't have qseq set and control can reach
 | |
| 		 * here with NONE @opss from the above QUEUED case block.
 | |
| 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
 | |
| 		 */
 | |
| 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
 | |
| 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
 | |
| {
 | |
| 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
 | |
| 		WARN_ON_ONCE(task_runnable(p));
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	ops_dequeue(p, deq_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * A currently running task which is going off @rq first gets dequeued
 | |
| 	 * and then stops running. As we want running <-> stopping transitions
 | |
| 	 * to be contained within runnable <-> quiescent transitions, trigger
 | |
| 	 * ->stopping() early here instead of in put_prev_task_scx().
 | |
| 	 *
 | |
| 	 * @p may go through multiple stopping <-> running transitions between
 | |
| 	 * here and put_prev_task_scx() if task attribute changes occur while
 | |
| 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
 | |
| 	 * information meaningful to the BPF scheduler and can be suppressed by
 | |
| 	 * skipping the callbacks if the task is !QUEUED.
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
 | |
| 		update_curr_scx(rq);
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
 | |
| 	}
 | |
| 
 | |
| 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
 | |
| 
 | |
| 	if (deq_flags & SCX_DEQ_SLEEP)
 | |
| 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
 | |
| 	else
 | |
| 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
 | |
| 
 | |
| 	p->scx.flags &= ~SCX_TASK_QUEUED;
 | |
| 	rq->scx.nr_running--;
 | |
| 	sub_nr_running(rq, 1);
 | |
| 
 | |
| 	dispatch_dequeue(rq, p);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void yield_task_scx(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	if (SCX_HAS_OP(yield))
 | |
| 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
 | |
| 	else
 | |
| 		p->scx.slice = 0;
 | |
| }
 | |
| 
 | |
| static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
 | |
| {
 | |
| 	struct task_struct *from = rq->curr;
 | |
| 
 | |
| 	if (SCX_HAS_OP(yield))
 | |
| 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
 | |
| 					 struct scx_dispatch_q *src_dsq,
 | |
| 					 struct rq *dst_rq)
 | |
| {
 | |
| 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
 | |
| 
 | |
| 	/* @dsq is locked and @p is on @dst_rq */
 | |
| 	lockdep_assert_held(&src_dsq->lock);
 | |
| 	lockdep_assert_rq_held(dst_rq);
 | |
| 
 | |
| 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
 | |
| 
 | |
| 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
 | |
| 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
 | |
| 	else
 | |
| 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
 | |
| 
 | |
| 	dsq_mod_nr(dst_dsq, 1);
 | |
| 	p->scx.dsq = dst_dsq;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**
 | |
|  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
 | |
|  * @p: task to move
 | |
|  * @enq_flags: %SCX_ENQ_*
 | |
|  * @src_rq: rq to move the task from, locked on entry, released on return
 | |
|  * @dst_rq: rq to move the task into, locked on return
 | |
|  *
 | |
|  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
 | |
|  */
 | |
| static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
 | |
| 					  struct rq *src_rq, struct rq *dst_rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(src_rq);
 | |
| 
 | |
| 	/* the following marks @p MIGRATING which excludes dequeue */
 | |
| 	deactivate_task(src_rq, p, 0);
 | |
| 	set_task_cpu(p, cpu_of(dst_rq));
 | |
| 	p->scx.sticky_cpu = cpu_of(dst_rq);
 | |
| 
 | |
| 	raw_spin_rq_unlock(src_rq);
 | |
| 	raw_spin_rq_lock(dst_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to pass scx-specific enq_flags but activate_task() will
 | |
| 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
 | |
| 	 * @rq->scx.extra_enq_flags instead.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
 | |
| 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
 | |
| 	dst_rq->scx.extra_enq_flags = enq_flags;
 | |
| 	activate_task(dst_rq, p, 0);
 | |
| 	dst_rq->scx.extra_enq_flags = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
 | |
|  * differences:
 | |
|  *
 | |
|  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
 | |
|  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
 | |
|  *   this CPU?".
 | |
|  *
 | |
|  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
 | |
|  *   must be allowed to finish on the CPU that it's currently on regardless of
 | |
|  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
 | |
|  *   BPF scheduler shouldn't attempt to migrate a task which has migration
 | |
|  *   disabled.
 | |
|  *
 | |
|  * - The BPF scheduler is bypassed while the rq is offline and we can always say
 | |
|  *   no to the BPF scheduler initiated migrations while offline.
 | |
|  */
 | |
| static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
 | |
| 				      bool trigger_error)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't require the BPF scheduler to avoid dispatching to offline
 | |
| 	 * CPUs mostly for convenience but also because CPUs can go offline
 | |
| 	 * between scx_bpf_dispatch() calls and here. Trigger error iff the
 | |
| 	 * picked CPU is outside the allowed mask.
 | |
| 	 */
 | |
| 	if (!task_allowed_on_cpu(p, cpu)) {
 | |
| 		if (trigger_error)
 | |
| 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
 | |
| 				      cpu_of(rq), p->comm, p->pid);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(is_migration_disabled(p)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!scx_rq_online(rq))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
 | |
|  * @p: target task
 | |
|  * @dsq: locked DSQ @p is currently on
 | |
|  * @src_rq: rq @p is currently on, stable with @dsq locked
 | |
|  *
 | |
|  * Called with @dsq locked but no rq's locked. We want to move @p to a different
 | |
|  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
 | |
|  * required when transferring into a local DSQ. Even when transferring into a
 | |
|  * non-local DSQ, it's better to use the same mechanism to protect against
 | |
|  * dequeues and maintain the invariant that @p->scx.dsq can only change while
 | |
|  * @src_rq is locked, which e.g. scx_dump_task() depends on.
 | |
|  *
 | |
|  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
 | |
|  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
 | |
|  * this may race with dequeue, which can't drop the rq lock or fail, do a little
 | |
|  * dancing from our side.
 | |
|  *
 | |
|  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
 | |
|  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
 | |
|  * would be cleared to -1. While other cpus may have updated it to different
 | |
|  * values afterwards, as this operation can't be preempted or recurse, the
 | |
|  * holding_cpu can never become this CPU again before we're done. Thus, we can
 | |
|  * tell whether we lost to dequeue by testing whether the holding_cpu still
 | |
|  * points to this CPU. See dispatch_dequeue() for the counterpart.
 | |
|  *
 | |
|  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
 | |
|  * still valid. %false if lost to dequeue.
 | |
|  */
 | |
| static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
 | |
| 				       struct scx_dispatch_q *dsq,
 | |
| 				       struct rq *src_rq)
 | |
| {
 | |
| 	s32 cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	lockdep_assert_held(&dsq->lock);
 | |
| 
 | |
| 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
 | |
| 	task_unlink_from_dsq(p, dsq);
 | |
| 	p->scx.holding_cpu = cpu;
 | |
| 
 | |
| 	raw_spin_unlock(&dsq->lock);
 | |
| 	raw_spin_rq_lock(src_rq);
 | |
| 
 | |
| 	/* task_rq couldn't have changed if we're still the holding cpu */
 | |
| 	return likely(p->scx.holding_cpu == cpu) &&
 | |
| 		!WARN_ON_ONCE(src_rq != task_rq(p));
 | |
| }
 | |
| 
 | |
| static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
 | |
| 				struct scx_dispatch_q *dsq, struct rq *src_rq)
 | |
| {
 | |
| 	raw_spin_rq_unlock(this_rq);
 | |
| 
 | |
| 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
 | |
| 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		raw_spin_rq_unlock(src_rq);
 | |
| 		raw_spin_rq_lock(this_rq);
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| #else	/* CONFIG_SMP */
 | |
| static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
 | |
| static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
 | |
| static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| /**
 | |
|  * move_task_between_dsqs() - Move a task from one DSQ to another
 | |
|  * @p: target task
 | |
|  * @enq_flags: %SCX_ENQ_*
 | |
|  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
 | |
|  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
 | |
|  *
 | |
|  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
 | |
|  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
 | |
|  * will change. As @p's task_rq is locked, this function doesn't need to use the
 | |
|  * holding_cpu mechanism.
 | |
|  *
 | |
|  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
 | |
|  * return value, is locked.
 | |
|  */
 | |
| static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
 | |
| 					 struct scx_dispatch_q *src_dsq,
 | |
| 					 struct scx_dispatch_q *dst_dsq)
 | |
| {
 | |
| 	struct rq *src_rq = task_rq(p), *dst_rq;
 | |
| 
 | |
| 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
 | |
| 	lockdep_assert_held(&src_dsq->lock);
 | |
| 	lockdep_assert_rq_held(src_rq);
 | |
| 
 | |
| 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
 | |
| 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
 | |
| 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
 | |
| 			dst_dsq = find_global_dsq(p);
 | |
| 			dst_rq = src_rq;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* no need to migrate if destination is a non-local DSQ */
 | |
| 		dst_rq = src_rq;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
 | |
| 	 * CPU, @p will be migrated.
 | |
| 	 */
 | |
| 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
 | |
| 		/* @p is going from a non-local DSQ to a local DSQ */
 | |
| 		if (src_rq == dst_rq) {
 | |
| 			task_unlink_from_dsq(p, src_dsq);
 | |
| 			move_local_task_to_local_dsq(p, enq_flags,
 | |
| 						     src_dsq, dst_rq);
 | |
| 			raw_spin_unlock(&src_dsq->lock);
 | |
| 		} else {
 | |
| 			raw_spin_unlock(&src_dsq->lock);
 | |
| 			move_remote_task_to_local_dsq(p, enq_flags,
 | |
| 						      src_rq, dst_rq);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * @p is going from a non-local DSQ to a non-local DSQ. As
 | |
| 		 * $src_dsq is already locked, do an abbreviated dequeue.
 | |
| 		 */
 | |
| 		task_unlink_from_dsq(p, src_dsq);
 | |
| 		p->scx.dsq = NULL;
 | |
| 		raw_spin_unlock(&src_dsq->lock);
 | |
| 
 | |
| 		dispatch_enqueue(dst_dsq, p, enq_flags);
 | |
| 	}
 | |
| 
 | |
| 	return dst_rq;
 | |
| }
 | |
| 
 | |
| static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| retry:
 | |
| 	/*
 | |
| 	 * The caller can't expect to successfully consume a task if the task's
 | |
| 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
 | |
| 	 * @dsq->list without locking and skip if it seems empty.
 | |
| 	 */
 | |
| 	if (list_empty(&dsq->list))
 | |
| 		return false;
 | |
| 
 | |
| 	raw_spin_lock(&dsq->lock);
 | |
| 
 | |
| 	nldsq_for_each_task(p, dsq) {
 | |
| 		struct rq *task_rq = task_rq(p);
 | |
| 
 | |
| 		if (rq == task_rq) {
 | |
| 			task_unlink_from_dsq(p, dsq);
 | |
| 			move_local_task_to_local_dsq(p, 0, dsq, rq);
 | |
| 			raw_spin_unlock(&dsq->lock);
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		if (task_can_run_on_remote_rq(p, rq, false)) {
 | |
| 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
 | |
| 				return true;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&dsq->lock);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool consume_global_dsq(struct rq *rq)
 | |
| {
 | |
| 	int node = cpu_to_node(cpu_of(rq));
 | |
| 
 | |
| 	return consume_dispatch_q(rq, global_dsqs[node]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dispatch_to_local_dsq - Dispatch a task to a local dsq
 | |
|  * @rq: current rq which is locked
 | |
|  * @dst_dsq: destination DSQ
 | |
|  * @p: task to dispatch
 | |
|  * @enq_flags: %SCX_ENQ_*
 | |
|  *
 | |
|  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
 | |
|  * DSQ. This function performs all the synchronization dancing needed because
 | |
|  * local DSQs are protected with rq locks.
 | |
|  *
 | |
|  * The caller must have exclusive ownership of @p (e.g. through
 | |
|  * %SCX_OPSS_DISPATCHING).
 | |
|  */
 | |
| static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
 | |
| 				  struct task_struct *p, u64 enq_flags)
 | |
| {
 | |
| 	struct rq *src_rq = task_rq(p);
 | |
| 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
 | |
| 	 * be dequeued, its task_rq and cpus_allowed are stable too.
 | |
| 	 *
 | |
| 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
 | |
| 	 */
 | |
| 	if (rq == src_rq && rq == dst_rq) {
 | |
| 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
 | |
| 		dispatch_enqueue(find_global_dsq(p), p,
 | |
| 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * @p is on a possibly remote @src_rq which we need to lock to move the
 | |
| 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
 | |
| 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
 | |
| 	 * DISPATCHING.
 | |
| 	 *
 | |
| 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
 | |
| 	 * we're moving from a DSQ and use the same mechanism - mark the task
 | |
| 	 * under transfer with holding_cpu, release DISPATCHING and then follow
 | |
| 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
 | |
| 	 */
 | |
| 	p->scx.holding_cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	/* store_release ensures that dequeue sees the above */
 | |
| 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 | |
| 
 | |
| 	/* switch to @src_rq lock */
 | |
| 	if (rq != src_rq) {
 | |
| 		raw_spin_rq_unlock(rq);
 | |
| 		raw_spin_rq_lock(src_rq);
 | |
| 	}
 | |
| 
 | |
| 	/* task_rq couldn't have changed if we're still the holding cpu */
 | |
| 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
 | |
| 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
 | |
| 		/*
 | |
| 		 * If @p is staying on the same rq, there's no need to go
 | |
| 		 * through the full deactivate/activate cycle. Optimize by
 | |
| 		 * abbreviating move_remote_task_to_local_dsq().
 | |
| 		 */
 | |
| 		if (src_rq == dst_rq) {
 | |
| 			p->scx.holding_cpu = -1;
 | |
| 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
 | |
| 		} else {
 | |
| 			move_remote_task_to_local_dsq(p, enq_flags,
 | |
| 						      src_rq, dst_rq);
 | |
| 		}
 | |
| 
 | |
| 		/* if the destination CPU is idle, wake it up */
 | |
| 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
 | |
| 			resched_curr(dst_rq);
 | |
| 	}
 | |
| 
 | |
| 	/* switch back to @rq lock */
 | |
| 	if (rq != dst_rq) {
 | |
| 		raw_spin_rq_unlock(dst_rq);
 | |
| 		raw_spin_rq_lock(rq);
 | |
| 	}
 | |
| #else	/* CONFIG_SMP */
 | |
| 	BUG();	/* control can not reach here on UP */
 | |
| #endif	/* CONFIG_SMP */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * finish_dispatch - Asynchronously finish dispatching a task
 | |
|  * @rq: current rq which is locked
 | |
|  * @p: task to finish dispatching
 | |
|  * @qseq_at_dispatch: qseq when @p started getting dispatched
 | |
|  * @dsq_id: destination DSQ ID
 | |
|  * @enq_flags: %SCX_ENQ_*
 | |
|  *
 | |
|  * Dispatching to local DSQs may need to wait for queueing to complete or
 | |
|  * require rq lock dancing. As we don't wanna do either while inside
 | |
|  * ops.dispatch() to avoid locking order inversion, we split dispatching into
 | |
|  * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
 | |
|  * task and its qseq. Once ops.dispatch() returns, this function is called to
 | |
|  * finish up.
 | |
|  *
 | |
|  * There is no guarantee that @p is still valid for dispatching or even that it
 | |
|  * was valid in the first place. Make sure that the task is still owned by the
 | |
|  * BPF scheduler and claim the ownership before dispatching.
 | |
|  */
 | |
| static void finish_dispatch(struct rq *rq, struct task_struct *p,
 | |
| 			    unsigned long qseq_at_dispatch,
 | |
| 			    u64 dsq_id, u64 enq_flags)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 	unsigned long opss;
 | |
| 
 | |
| 	touch_core_sched_dispatch(rq, p);
 | |
| retry:
 | |
| 	/*
 | |
| 	 * No need for _acquire here. @p is accessed only after a successful
 | |
| 	 * try_cmpxchg to DISPATCHING.
 | |
| 	 */
 | |
| 	opss = atomic_long_read(&p->scx.ops_state);
 | |
| 
 | |
| 	switch (opss & SCX_OPSS_STATE_MASK) {
 | |
| 	case SCX_OPSS_DISPATCHING:
 | |
| 	case SCX_OPSS_NONE:
 | |
| 		/* someone else already got to it */
 | |
| 		return;
 | |
| 	case SCX_OPSS_QUEUED:
 | |
| 		/*
 | |
| 		 * If qseq doesn't match, @p has gone through at least one
 | |
| 		 * dispatch/dequeue and re-enqueue cycle between
 | |
| 		 * scx_bpf_dispatch() and here and we have no claim on it.
 | |
| 		 */
 | |
| 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * While we know @p is accessible, we don't yet have a claim on
 | |
| 		 * it - the BPF scheduler is allowed to dispatch tasks
 | |
| 		 * spuriously and there can be a racing dequeue attempt. Let's
 | |
| 		 * claim @p by atomically transitioning it from QUEUED to
 | |
| 		 * DISPATCHING.
 | |
| 		 */
 | |
| 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
 | |
| 						   SCX_OPSS_DISPATCHING)))
 | |
| 			break;
 | |
| 		goto retry;
 | |
| 	case SCX_OPSS_QUEUEING:
 | |
| 		/*
 | |
| 		 * do_enqueue_task() is in the process of transferring the task
 | |
| 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
 | |
| 		 * holding any kernel or BPF resource that the enqueue path may
 | |
| 		 * depend upon, it's safe to wait.
 | |
| 		 */
 | |
| 		wait_ops_state(p, opss);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
 | |
| 
 | |
| 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
 | |
| 
 | |
| 	if (dsq->id == SCX_DSQ_LOCAL)
 | |
| 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
 | |
| 	else
 | |
| 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
 | |
| }
 | |
| 
 | |
| static void flush_dispatch_buf(struct rq *rq)
 | |
| {
 | |
| 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 | |
| 	u32 u;
 | |
| 
 | |
| 	for (u = 0; u < dspc->cursor; u++) {
 | |
| 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
 | |
| 
 | |
| 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
 | |
| 				ent->enq_flags);
 | |
| 	}
 | |
| 
 | |
| 	dspc->nr_tasks += dspc->cursor;
 | |
| 	dspc->cursor = 0;
 | |
| }
 | |
| 
 | |
| static int balance_one(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 | |
| 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
 | |
| 	int nr_loops = SCX_DSP_MAX_LOOPS;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
 | |
| 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
 | |
| 
 | |
| 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
 | |
| 	    unlikely(rq->scx.cpu_released)) {
 | |
| 		/*
 | |
| 		 * If the previous sched_class for the current CPU was not SCX,
 | |
| 		 * notify the BPF scheduler that it again has control of the
 | |
| 		 * core. This callback complements ->cpu_release(), which is
 | |
| 		 * emitted in scx_next_task_picked().
 | |
| 		 */
 | |
| 		if (SCX_HAS_OP(cpu_acquire))
 | |
| 			SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
 | |
| 		rq->scx.cpu_released = false;
 | |
| 	}
 | |
| 
 | |
| 	if (prev_on_scx) {
 | |
| 		update_curr_scx(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If @prev is runnable & has slice left, it has priority and
 | |
| 		 * fetching more just increases latency for the fetched tasks.
 | |
| 		 * Tell pick_task_scx() to keep running @prev. If the BPF
 | |
| 		 * scheduler wants to handle this explicitly, it should
 | |
| 		 * implement ->cpu_release().
 | |
| 		 *
 | |
| 		 * See scx_ops_disable_workfn() for the explanation on the
 | |
| 		 * bypassing test.
 | |
| 		 */
 | |
| 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
 | |
| 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
 | |
| 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
 | |
| 			goto has_tasks;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if there already are tasks to run, nothing to do */
 | |
| 	if (rq->scx.local_dsq.nr)
 | |
| 		goto has_tasks;
 | |
| 
 | |
| 	if (consume_global_dsq(rq))
 | |
| 		goto has_tasks;
 | |
| 
 | |
| 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
 | |
| 		goto no_tasks;
 | |
| 
 | |
| 	dspc->rq = rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
 | |
| 	 * the local DSQ might still end up empty after a successful
 | |
| 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
 | |
| 	 * produced some tasks, retry. The BPF scheduler may depend on this
 | |
| 	 * looping behavior to simplify its implementation.
 | |
| 	 */
 | |
| 	do {
 | |
| 		dspc->nr_tasks = 0;
 | |
| 
 | |
| 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
 | |
| 			    prev_on_scx ? prev : NULL);
 | |
| 
 | |
| 		flush_dispatch_buf(rq);
 | |
| 
 | |
| 		if (rq->scx.local_dsq.nr)
 | |
| 			goto has_tasks;
 | |
| 		if (consume_global_dsq(rq))
 | |
| 			goto has_tasks;
 | |
| 
 | |
| 		/*
 | |
| 		 * ops.dispatch() can trap us in this loop by repeatedly
 | |
| 		 * dispatching ineligible tasks. Break out once in a while to
 | |
| 		 * allow the watchdog to run. As IRQ can't be enabled in
 | |
| 		 * balance(), we want to complete this scheduling cycle and then
 | |
| 		 * start a new one. IOW, we want to call resched_curr() on the
 | |
| 		 * next, most likely idle, task, not the current one. Use
 | |
| 		 * scx_bpf_kick_cpu() for deferred kicking.
 | |
| 		 */
 | |
| 		if (unlikely(!--nr_loops)) {
 | |
| 			scx_bpf_kick_cpu(cpu_of(rq), 0);
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (dspc->nr_tasks);
 | |
| 
 | |
| no_tasks:
 | |
| 	/*
 | |
| 	 * Didn't find another task to run. Keep running @prev unless
 | |
| 	 * %SCX_OPS_ENQ_LAST is in effect.
 | |
| 	 */
 | |
| 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
 | |
| 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
 | |
| 	     scx_rq_bypassing(rq))) {
 | |
| 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
 | |
| 		goto has_tasks;
 | |
| 	}
 | |
| 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
 | |
| 	return false;
 | |
| 
 | |
| has_tasks:
 | |
| 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int balance_scx(struct rq *rq, struct task_struct *prev,
 | |
| 		       struct rq_flags *rf)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 
 | |
| 	ret = balance_one(rq, prev);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	/*
 | |
| 	 * When core-sched is enabled, this ops.balance() call will be followed
 | |
| 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
 | |
| 	 * siblings too.
 | |
| 	 */
 | |
| 	if (sched_core_enabled(rq)) {
 | |
| 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
 | |
| 		int scpu;
 | |
| 
 | |
| 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
 | |
| 			struct rq *srq = cpu_rq(scpu);
 | |
| 			struct task_struct *sprev = srq->curr;
 | |
| 
 | |
| 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
 | |
| 			update_rq_clock(srq);
 | |
| 			balance_one(srq, sprev);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	rq_repin_lock(rq, rf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void process_ddsp_deferred_locals(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
 | |
| 	 * tasks directly dispatched to the local DSQs of other CPUs. See
 | |
| 	 * direct_dispatch(). Keep popping from the head instead of using
 | |
| 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
 | |
| 	 * temporarily.
 | |
| 	 */
 | |
| 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
 | |
| 				struct task_struct, scx.dsq_list.node))) {
 | |
| 		struct scx_dispatch_q *dsq;
 | |
| 
 | |
| 		list_del_init(&p->scx.dsq_list.node);
 | |
| 
 | |
| 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
 | |
| 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
 | |
| 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
 | |
| {
 | |
| 	if (p->scx.flags & SCX_TASK_QUEUED) {
 | |
| 		/*
 | |
| 		 * Core-sched might decide to execute @p before it is
 | |
| 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
 | |
| 		 */
 | |
| 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
 | |
| 		dispatch_dequeue(rq, p);
 | |
| 	}
 | |
| 
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 
 | |
| 	/* see dequeue_task_scx() on why we skip when !QUEUED */
 | |
| 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
 | |
| 
 | |
| 	clr_task_runnable(p, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * @p is getting newly scheduled or got kicked after someone updated its
 | |
| 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
 | |
| 	 */
 | |
| 	if ((p->scx.slice == SCX_SLICE_INF) !=
 | |
| 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
 | |
| 		if (p->scx.slice == SCX_SLICE_INF)
 | |
| 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
 | |
| 		else
 | |
| 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
 | |
| 
 | |
| 		sched_update_tick_dependency(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * For now, let's refresh the load_avgs just when transitioning
 | |
| 		 * in and out of nohz. In the future, we might want to add a
 | |
| 		 * mechanism which calls the following periodically on
 | |
| 		 * tick-stopped CPUs.
 | |
| 		 */
 | |
| 		update_other_load_avgs(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum scx_cpu_preempt_reason
 | |
| preempt_reason_from_class(const struct sched_class *class)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (class == &stop_sched_class)
 | |
| 		return SCX_CPU_PREEMPT_STOP;
 | |
| #endif
 | |
| 	if (class == &dl_sched_class)
 | |
| 		return SCX_CPU_PREEMPT_DL;
 | |
| 	if (class == &rt_sched_class)
 | |
| 		return SCX_CPU_PREEMPT_RT;
 | |
| 	return SCX_CPU_PREEMPT_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static void switch_class(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| 	const struct sched_class *next_class = next->sched_class;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Pairs with the smp_load_acquire() issued by a CPU in
 | |
| 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
 | |
| 	 * resched.
 | |
| 	 */
 | |
| 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
 | |
| #endif
 | |
| 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The callback is conceptually meant to convey that the CPU is no
 | |
| 	 * longer under the control of SCX. Therefore, don't invoke the callback
 | |
| 	 * if the next class is below SCX (in which case the BPF scheduler has
 | |
| 	 * actively decided not to schedule any tasks on the CPU).
 | |
| 	 */
 | |
| 	if (sched_class_above(&ext_sched_class, next_class))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we know that SCX was preempted by a higher priority
 | |
| 	 * sched_class, so invoke the ->cpu_release() callback if we have not
 | |
| 	 * done so already. We only send the callback once between SCX being
 | |
| 	 * preempted, and it regaining control of the CPU.
 | |
| 	 *
 | |
| 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
 | |
| 	 *  next time that balance_scx() is invoked.
 | |
| 	 */
 | |
| 	if (!rq->scx.cpu_released) {
 | |
| 		if (SCX_HAS_OP(cpu_release)) {
 | |
| 			struct scx_cpu_release_args args = {
 | |
| 				.reason = preempt_reason_from_class(next_class),
 | |
| 				.task = next,
 | |
| 			};
 | |
| 
 | |
| 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
 | |
| 				    cpu_release, cpu_of(rq), &args);
 | |
| 		}
 | |
| 		rq->scx.cpu_released = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
 | |
| 			      struct task_struct *next)
 | |
| {
 | |
| 	update_curr_scx(rq);
 | |
| 
 | |
| 	/* see dequeue_task_scx() on why we skip when !QUEUED */
 | |
| 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
 | |
| 
 | |
| 	if (p->scx.flags & SCX_TASK_QUEUED) {
 | |
| 		set_task_runnable(rq, p);
 | |
| 
 | |
| 		/*
 | |
| 		 * If @p has slice left and is being put, @p is getting
 | |
| 		 * preempted by a higher priority scheduler class or core-sched
 | |
| 		 * forcing a different task. Leave it at the head of the local
 | |
| 		 * DSQ.
 | |
| 		 */
 | |
| 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
 | |
| 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If @p is runnable but we're about to enter a lower
 | |
| 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
 | |
| 		 * ops.enqueue() that @p is the only one available for this cpu,
 | |
| 		 * which should trigger an explicit follow-up scheduling event.
 | |
| 		 */
 | |
| 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
 | |
| 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
 | |
| 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
 | |
| 		} else {
 | |
| 			do_enqueue_task(rq, p, 0, -1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (next && next->sched_class != &ext_sched_class)
 | |
| 		switch_class(rq, next);
 | |
| }
 | |
| 
 | |
| static struct task_struct *first_local_task(struct rq *rq)
 | |
| {
 | |
| 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
 | |
| 					struct task_struct, scx.dsq_list.node);
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_task_scx(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *prev = rq->curr;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * If balance_scx() is telling us to keep running @prev, replenish slice
 | |
| 	 * if necessary and keep running @prev. Otherwise, pop the first one
 | |
| 	 * from the local DSQ.
 | |
| 	 *
 | |
| 	 * WORKAROUND:
 | |
| 	 *
 | |
| 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
 | |
| 	 * have gone through balance_scx(). Unfortunately, there currently is a
 | |
| 	 * bug where fair could say yes on balance() but no on pick_task(),
 | |
| 	 * which then ends up calling pick_task_scx() without preceding
 | |
| 	 * balance_scx().
 | |
| 	 *
 | |
| 	 * For now, ignore cases where $prev is not on SCX. This isn't great and
 | |
| 	 * can theoretically lead to stalls. However, for switch_all cases, this
 | |
| 	 * happens only while a BPF scheduler is being loaded or unloaded, and,
 | |
| 	 * for partial cases, fair will likely keep triggering this CPU.
 | |
| 	 *
 | |
| 	 * Once fair is fixed, restore WARN_ON_ONCE().
 | |
| 	 */
 | |
| 	if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
 | |
| 	    prev->sched_class == &ext_sched_class) {
 | |
| 		p = prev;
 | |
| 		if (!p->scx.slice)
 | |
| 			p->scx.slice = SCX_SLICE_DFL;
 | |
| 	} else {
 | |
| 		p = first_local_task(rq);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (unlikely(!p->scx.slice)) {
 | |
| 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
 | |
| 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
 | |
| 						p->comm, p->pid);
 | |
| 				scx_warned_zero_slice = true;
 | |
| 			}
 | |
| 			p->scx.slice = SCX_SLICE_DFL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| /**
 | |
|  * scx_prio_less - Task ordering for core-sched
 | |
|  * @a: task A
 | |
|  * @b: task B
 | |
|  *
 | |
|  * Core-sched is implemented as an additional scheduling layer on top of the
 | |
|  * usual sched_class'es and needs to find out the expected task ordering. For
 | |
|  * SCX, core-sched calls this function to interrogate the task ordering.
 | |
|  *
 | |
|  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
 | |
|  * to implement the default task ordering. The older the timestamp, the higher
 | |
|  * prority the task - the global FIFO ordering matching the default scheduling
 | |
|  * behavior.
 | |
|  *
 | |
|  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
 | |
|  * implement FIFO ordering within each local DSQ. See pick_task_scx().
 | |
|  */
 | |
| bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
 | |
| 		   bool in_fi)
 | |
| {
 | |
| 	/*
 | |
| 	 * The const qualifiers are dropped from task_struct pointers when
 | |
| 	 * calling ops.core_sched_before(). Accesses are controlled by the
 | |
| 	 * verifier.
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
 | |
| 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
 | |
| 					      (struct task_struct *)a,
 | |
| 					      (struct task_struct *)b);
 | |
| 	else
 | |
| 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
 | |
| }
 | |
| #endif	/* CONFIG_SCHED_CORE */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static bool test_and_clear_cpu_idle(int cpu)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	/*
 | |
| 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
 | |
| 	 * cluster is not wholly idle either way. This also prevents
 | |
| 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
 | |
| 	 */
 | |
| 	if (sched_smt_active()) {
 | |
| 		const struct cpumask *smt = cpu_smt_mask(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * If offline, @cpu is not its own sibling and
 | |
| 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
 | |
| 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
 | |
| 		 * is eventually cleared.
 | |
| 		 */
 | |
| 		if (cpumask_intersects(smt, idle_masks.smt))
 | |
| 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
 | |
| 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
 | |
| 			__cpumask_clear_cpu(cpu, idle_masks.smt);
 | |
| 	}
 | |
| #endif
 | |
| 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
 | |
| }
 | |
| 
 | |
| static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| retry:
 | |
| 	if (sched_smt_active()) {
 | |
| 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
 | |
| 		if (cpu < nr_cpu_ids)
 | |
| 			goto found;
 | |
| 
 | |
| 		if (flags & SCX_PICK_IDLE_CORE)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
 | |
| 	if (cpu >= nr_cpu_ids)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| found:
 | |
| 	if (test_and_clear_cpu_idle(cpu))
 | |
| 		return cpu;
 | |
| 	else
 | |
| 		goto retry;
 | |
| }
 | |
| 
 | |
| static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
 | |
| 			      u64 wake_flags, bool *found)
 | |
| {
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	*found = false;
 | |
| 
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		scx_ops_error("built-in idle tracking is disabled");
 | |
| 		return prev_cpu;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
 | |
| 	 * under utilized, wake up @p to the local DSQ of the waker. Checking
 | |
| 	 * only for an empty local DSQ is insufficient as it could give the
 | |
| 	 * wakee an unfair advantage when the system is oversaturated.
 | |
| 	 * Checking only for the presence of idle CPUs is also insufficient as
 | |
| 	 * the local DSQ of the waker could have tasks piled up on it even if
 | |
| 	 * there is an idle core elsewhere on the system.
 | |
| 	 */
 | |
| 	cpu = smp_processor_id();
 | |
| 	if ((wake_flags & SCX_WAKE_SYNC) &&
 | |
| 	    !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
 | |
| 	    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
 | |
| 		if (cpumask_test_cpu(cpu, p->cpus_ptr))
 | |
| 			goto cpu_found;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
 | |
| 	 * partially idle @prev_cpu.
 | |
| 	 */
 | |
| 	if (sched_smt_active()) {
 | |
| 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
 | |
| 		    test_and_clear_cpu_idle(prev_cpu)) {
 | |
| 			cpu = prev_cpu;
 | |
| 			goto cpu_found;
 | |
| 		}
 | |
| 
 | |
| 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
 | |
| 		if (cpu >= 0)
 | |
| 			goto cpu_found;
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_cpu_idle(prev_cpu)) {
 | |
| 		cpu = prev_cpu;
 | |
| 		goto cpu_found;
 | |
| 	}
 | |
| 
 | |
| 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
 | |
| 	if (cpu >= 0)
 | |
| 		goto cpu_found;
 | |
| 
 | |
| 	return prev_cpu;
 | |
| 
 | |
| cpu_found:
 | |
| 	*found = true;
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
 | |
| 	 * can be a good migration opportunity with low cache and memory
 | |
| 	 * footprint. Returning a CPU different than @prev_cpu triggers
 | |
| 	 * immediate rq migration. However, for SCX, as the current rq
 | |
| 	 * association doesn't dictate where the task is going to run, this
 | |
| 	 * doesn't fit well. If necessary, we can later add a dedicated method
 | |
| 	 * which can decide to preempt self to force it through the regular
 | |
| 	 * scheduling path.
 | |
| 	 */
 | |
| 	if (unlikely(wake_flags & WF_EXEC))
 | |
| 		return prev_cpu;
 | |
| 
 | |
| 	if (SCX_HAS_OP(select_cpu)) {
 | |
| 		s32 cpu;
 | |
| 		struct task_struct **ddsp_taskp;
 | |
| 
 | |
| 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
 | |
| 		WARN_ON_ONCE(*ddsp_taskp);
 | |
| 		*ddsp_taskp = p;
 | |
| 
 | |
| 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
 | |
| 					   select_cpu, p, prev_cpu, wake_flags);
 | |
| 		*ddsp_taskp = NULL;
 | |
| 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
 | |
| 			return cpu;
 | |
| 		else
 | |
| 			return prev_cpu;
 | |
| 	} else {
 | |
| 		bool found;
 | |
| 		s32 cpu;
 | |
| 
 | |
| 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
 | |
| 		if (found) {
 | |
| 			p->scx.slice = SCX_SLICE_DFL;
 | |
| 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
 | |
| 		}
 | |
| 		return cpu;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void task_woken_scx(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	run_deferred(rq);
 | |
| }
 | |
| 
 | |
| static void set_cpus_allowed_scx(struct task_struct *p,
 | |
| 				 struct affinity_context *ac)
 | |
| {
 | |
| 	set_cpus_allowed_common(p, ac);
 | |
| 
 | |
| 	/*
 | |
| 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
 | |
| 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
 | |
| 	 * scheduler the effective one.
 | |
| 	 *
 | |
| 	 * Fine-grained memory write control is enforced by BPF making the const
 | |
| 	 * designation pointless. Cast it away when calling the operation.
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(set_cpumask))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
 | |
| 				 (struct cpumask *)p->cpus_ptr);
 | |
| }
 | |
| 
 | |
| static void reset_idle_masks(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Consider all online cpus idle. Should converge to the actual state
 | |
| 	 * quickly.
 | |
| 	 */
 | |
| 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
 | |
| 	cpumask_copy(idle_masks.smt, cpu_online_mask);
 | |
| }
 | |
| 
 | |
| void __scx_update_idle(struct rq *rq, bool idle)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (SCX_HAS_OP(update_idle)) {
 | |
| 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
 | |
| 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (idle)
 | |
| 		cpumask_set_cpu(cpu, idle_masks.cpu);
 | |
| 	else
 | |
| 		cpumask_clear_cpu(cpu, idle_masks.cpu);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	if (sched_smt_active()) {
 | |
| 		const struct cpumask *smt = cpu_smt_mask(cpu);
 | |
| 
 | |
| 		if (idle) {
 | |
| 			/*
 | |
| 			 * idle_masks.smt handling is racy but that's fine as
 | |
| 			 * it's only for optimization and self-correcting.
 | |
| 			 */
 | |
| 			for_each_cpu(cpu, smt) {
 | |
| 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
 | |
| 					return;
 | |
| 			}
 | |
| 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
 | |
| 		} else {
 | |
| 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void handle_hotplug(struct rq *rq, bool online)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	atomic_long_inc(&scx_hotplug_seq);
 | |
| 
 | |
| 	if (online && SCX_HAS_OP(cpu_online))
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
 | |
| 	else if (!online && SCX_HAS_OP(cpu_offline))
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
 | |
| 	else
 | |
| 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
 | |
| 			     "cpu %d going %s, exiting scheduler", cpu,
 | |
| 			     online ? "online" : "offline");
 | |
| }
 | |
| 
 | |
| void scx_rq_activate(struct rq *rq)
 | |
| {
 | |
| 	handle_hotplug(rq, true);
 | |
| }
 | |
| 
 | |
| void scx_rq_deactivate(struct rq *rq)
 | |
| {
 | |
| 	handle_hotplug(rq, false);
 | |
| }
 | |
| 
 | |
| static void rq_online_scx(struct rq *rq)
 | |
| {
 | |
| 	rq->scx.flags |= SCX_RQ_ONLINE;
 | |
| }
 | |
| 
 | |
| static void rq_offline_scx(struct rq *rq)
 | |
| {
 | |
| 	rq->scx.flags &= ~SCX_RQ_ONLINE;
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_SMP */
 | |
| 
 | |
| static bool test_and_clear_cpu_idle(int cpu) { return false; }
 | |
| static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
 | |
| static void reset_idle_masks(void) {}
 | |
| 
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| static bool check_rq_for_timeouts(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct rq_flags rf;
 | |
| 	bool timed_out = false;
 | |
| 
 | |
| 	rq_lock_irqsave(rq, &rf);
 | |
| 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
 | |
| 		unsigned long last_runnable = p->scx.runnable_at;
 | |
| 
 | |
| 		if (unlikely(time_after(jiffies,
 | |
| 					last_runnable + scx_watchdog_timeout))) {
 | |
| 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
 | |
| 
 | |
| 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
 | |
| 					   "%s[%d] failed to run for %u.%03us",
 | |
| 					   p->comm, p->pid,
 | |
| 					   dur_ms / 1000, dur_ms % 1000);
 | |
| 			timed_out = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rq_unlock_irqrestore(rq, &rf);
 | |
| 
 | |
| 	return timed_out;
 | |
| }
 | |
| 
 | |
| static void scx_watchdog_workfn(struct work_struct *work)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
 | |
| 			   scx_watchdog_timeout / 2);
 | |
| }
 | |
| 
 | |
| void scx_tick(struct rq *rq)
 | |
| {
 | |
| 	unsigned long last_check;
 | |
| 
 | |
| 	if (!scx_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	last_check = READ_ONCE(scx_watchdog_timestamp);
 | |
| 	if (unlikely(time_after(jiffies,
 | |
| 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
 | |
| 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
 | |
| 
 | |
| 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
 | |
| 				   "watchdog failed to check in for %u.%03us",
 | |
| 				   dur_ms / 1000, dur_ms % 1000);
 | |
| 	}
 | |
| 
 | |
| 	update_other_load_avgs(rq);
 | |
| }
 | |
| 
 | |
| static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
 | |
| {
 | |
| 	update_curr_scx(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * While disabling, always resched and refresh core-sched timestamp as
 | |
| 	 * we can't trust the slice management or ops.core_sched_before().
 | |
| 	 */
 | |
| 	if (scx_rq_bypassing(rq)) {
 | |
| 		curr->scx.slice = 0;
 | |
| 		touch_core_sched(rq, curr);
 | |
| 	} else if (SCX_HAS_OP(tick)) {
 | |
| 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
 | |
| 	}
 | |
| 
 | |
| 	if (!curr->scx.slice)
 | |
| 		resched_curr(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| static struct cgroup *tg_cgrp(struct task_group *tg)
 | |
| {
 | |
| 	/*
 | |
| 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
 | |
| 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
 | |
| 	 * root cgroup.
 | |
| 	 */
 | |
| 	if (tg && tg->css.cgroup)
 | |
| 		return tg->css.cgroup;
 | |
| 	else
 | |
| 		return &cgrp_dfl_root.cgrp;
 | |
| }
 | |
| 
 | |
| #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
 | |
| 
 | |
| #else	/* CONFIG_EXT_GROUP_SCHED */
 | |
| 
 | |
| #define SCX_INIT_TASK_ARGS_CGROUP(tg)
 | |
| 
 | |
| #endif	/* CONFIG_EXT_GROUP_SCHED */
 | |
| 
 | |
| static enum scx_task_state scx_get_task_state(const struct task_struct *p)
 | |
| {
 | |
| 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
 | |
| }
 | |
| 
 | |
| static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
 | |
| {
 | |
| 	enum scx_task_state prev_state = scx_get_task_state(p);
 | |
| 	bool warn = false;
 | |
| 
 | |
| 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case SCX_TASK_NONE:
 | |
| 		break;
 | |
| 	case SCX_TASK_INIT:
 | |
| 		warn = prev_state != SCX_TASK_NONE;
 | |
| 		break;
 | |
| 	case SCX_TASK_READY:
 | |
| 		warn = prev_state == SCX_TASK_NONE;
 | |
| 		break;
 | |
| 	case SCX_TASK_ENABLED:
 | |
| 		warn = prev_state != SCX_TASK_READY;
 | |
| 		break;
 | |
| 	default:
 | |
| 		warn = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
 | |
| 		  prev_state, state, p->comm, p->pid);
 | |
| 
 | |
| 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
 | |
| 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
 | |
| }
 | |
| 
 | |
| static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	p->scx.disallow = false;
 | |
| 
 | |
| 	if (SCX_HAS_OP(init_task)) {
 | |
| 		struct scx_init_task_args args = {
 | |
| 			SCX_INIT_TASK_ARGS_CGROUP(tg)
 | |
| 			.fork = fork,
 | |
| 		};
 | |
| 
 | |
| 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
 | |
| 		if (unlikely(ret)) {
 | |
| 			ret = ops_sanitize_err("init_task", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	scx_set_task_state(p, SCX_TASK_INIT);
 | |
| 
 | |
| 	if (p->scx.disallow) {
 | |
| 		if (!fork) {
 | |
| 			struct rq *rq;
 | |
| 			struct rq_flags rf;
 | |
| 
 | |
| 			rq = task_rq_lock(p, &rf);
 | |
| 
 | |
| 			/*
 | |
| 			 * We're in the load path and @p->policy will be applied
 | |
| 			 * right after. Reverting @p->policy here and rejecting
 | |
| 			 * %SCHED_EXT transitions from scx_check_setscheduler()
 | |
| 			 * guarantees that if ops.init_task() sets @p->disallow,
 | |
| 			 * @p can never be in SCX.
 | |
| 			 */
 | |
| 			if (p->policy == SCHED_EXT) {
 | |
| 				p->policy = SCHED_NORMAL;
 | |
| 				atomic_long_inc(&scx_nr_rejected);
 | |
| 			}
 | |
| 
 | |
| 			task_rq_unlock(rq, p, &rf);
 | |
| 		} else if (p->policy == SCHED_EXT) {
 | |
| 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
 | |
| 				      p->comm, p->pid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scx_ops_enable_task(struct task_struct *p)
 | |
| {
 | |
| 	u32 weight;
 | |
| 
 | |
| 	lockdep_assert_rq_held(task_rq(p));
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the weight before calling ops.enable() so that the scheduler
 | |
| 	 * doesn't see a stale value if they inspect the task struct.
 | |
| 	 */
 | |
| 	if (task_has_idle_policy(p))
 | |
| 		weight = WEIGHT_IDLEPRIO;
 | |
| 	else
 | |
| 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
 | |
| 
 | |
| 	p->scx.weight = sched_weight_to_cgroup(weight);
 | |
| 
 | |
| 	if (SCX_HAS_OP(enable))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
 | |
| 	scx_set_task_state(p, SCX_TASK_ENABLED);
 | |
| 
 | |
| 	if (SCX_HAS_OP(set_weight))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
 | |
| }
 | |
| 
 | |
| static void scx_ops_disable_task(struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_rq_held(task_rq(p));
 | |
| 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
 | |
| 
 | |
| 	if (SCX_HAS_OP(disable))
 | |
| 		SCX_CALL_OP(SCX_KF_REST, disable, p);
 | |
| 	scx_set_task_state(p, SCX_TASK_READY);
 | |
| }
 | |
| 
 | |
| static void scx_ops_exit_task(struct task_struct *p)
 | |
| {
 | |
| 	struct scx_exit_task_args args = {
 | |
| 		.cancelled = false,
 | |
| 	};
 | |
| 
 | |
| 	lockdep_assert_rq_held(task_rq(p));
 | |
| 
 | |
| 	switch (scx_get_task_state(p)) {
 | |
| 	case SCX_TASK_NONE:
 | |
| 		return;
 | |
| 	case SCX_TASK_INIT:
 | |
| 		args.cancelled = true;
 | |
| 		break;
 | |
| 	case SCX_TASK_READY:
 | |
| 		break;
 | |
| 	case SCX_TASK_ENABLED:
 | |
| 		scx_ops_disable_task(p);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(true);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (SCX_HAS_OP(exit_task))
 | |
| 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
 | |
| 	scx_set_task_state(p, SCX_TASK_NONE);
 | |
| }
 | |
| 
 | |
| void init_scx_entity(struct sched_ext_entity *scx)
 | |
| {
 | |
| 	/*
 | |
| 	 * init_idle() calls this function again after fork sequence is
 | |
| 	 * complete. Don't touch ->tasks_node as it's already linked.
 | |
| 	 */
 | |
| 	memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
 | |
| 
 | |
| 	INIT_LIST_HEAD(&scx->dsq_list.node);
 | |
| 	RB_CLEAR_NODE(&scx->dsq_priq);
 | |
| 	scx->sticky_cpu = -1;
 | |
| 	scx->holding_cpu = -1;
 | |
| 	INIT_LIST_HEAD(&scx->runnable_node);
 | |
| 	scx->runnable_at = jiffies;
 | |
| 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
 | |
| 	scx->slice = SCX_SLICE_DFL;
 | |
| }
 | |
| 
 | |
| void scx_pre_fork(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * BPF scheduler enable/disable paths want to be able to iterate and
 | |
| 	 * update all tasks which can become complex when racing forks. As
 | |
| 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
 | |
| 	 * exclude forks.
 | |
| 	 */
 | |
| 	percpu_down_read(&scx_fork_rwsem);
 | |
| }
 | |
| 
 | |
| int scx_fork(struct task_struct *p)
 | |
| {
 | |
| 	percpu_rwsem_assert_held(&scx_fork_rwsem);
 | |
| 
 | |
| 	if (scx_ops_init_task_enabled)
 | |
| 		return scx_ops_init_task(p, task_group(p), true);
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| void scx_post_fork(struct task_struct *p)
 | |
| {
 | |
| 	if (scx_ops_init_task_enabled) {
 | |
| 		scx_set_task_state(p, SCX_TASK_READY);
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable the task immediately if it's running on sched_ext.
 | |
| 		 * Otherwise, it'll be enabled in switching_to_scx() if and
 | |
| 		 * when it's ever configured to run with a SCHED_EXT policy.
 | |
| 		 */
 | |
| 		if (p->sched_class == &ext_sched_class) {
 | |
| 			struct rq_flags rf;
 | |
| 			struct rq *rq;
 | |
| 
 | |
| 			rq = task_rq_lock(p, &rf);
 | |
| 			scx_ops_enable_task(p);
 | |
| 			task_rq_unlock(rq, p, &rf);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&scx_tasks_lock);
 | |
| 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
 | |
| 	spin_unlock_irq(&scx_tasks_lock);
 | |
| 
 | |
| 	percpu_up_read(&scx_fork_rwsem);
 | |
| }
 | |
| 
 | |
| void scx_cancel_fork(struct task_struct *p)
 | |
| {
 | |
| 	if (scx_enabled()) {
 | |
| 		struct rq *rq;
 | |
| 		struct rq_flags rf;
 | |
| 
 | |
| 		rq = task_rq_lock(p, &rf);
 | |
| 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
 | |
| 		scx_ops_exit_task(p);
 | |
| 		task_rq_unlock(rq, p, &rf);
 | |
| 	}
 | |
| 
 | |
| 	percpu_up_read(&scx_fork_rwsem);
 | |
| }
 | |
| 
 | |
| void sched_ext_free(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&scx_tasks_lock, flags);
 | |
| 	list_del_init(&p->scx.tasks_node);
 | |
| 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
 | |
| 	 * ENABLED transitions can't race us. Disable ops for @p.
 | |
| 	 */
 | |
| 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
 | |
| 		struct rq_flags rf;
 | |
| 		struct rq *rq;
 | |
| 
 | |
| 		rq = task_rq_lock(p, &rf);
 | |
| 		scx_ops_exit_task(p);
 | |
| 		task_rq_unlock(rq, p, &rf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reweight_task_scx(struct rq *rq, struct task_struct *p,
 | |
| 			      const struct load_weight *lw)
 | |
| {
 | |
| 	lockdep_assert_rq_held(task_rq(p));
 | |
| 
 | |
| 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
 | |
| 	if (SCX_HAS_OP(set_weight))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
 | |
| }
 | |
| 
 | |
| static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void switching_to_scx(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	scx_ops_enable_task(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * set_cpus_allowed_scx() is not called while @p is associated with a
 | |
| 	 * different scheduler class. Keep the BPF scheduler up-to-date.
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(set_cpumask))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
 | |
| 				 (struct cpumask *)p->cpus_ptr);
 | |
| }
 | |
| 
 | |
| static void switched_from_scx(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	scx_ops_disable_task(p);
 | |
| }
 | |
| 
 | |
| static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
 | |
| static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
 | |
| 
 | |
| int scx_check_setscheduler(struct task_struct *p, int policy)
 | |
| {
 | |
| 	lockdep_assert_rq_held(task_rq(p));
 | |
| 
 | |
| 	/* if disallow, reject transitioning into SCX */
 | |
| 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
 | |
| 	    p->policy != policy && policy == SCHED_EXT)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| bool scx_can_stop_tick(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	if (scx_rq_bypassing(rq))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->sched_class != &ext_sched_class)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * @rq can dispatch from different DSQs, so we can't tell whether it
 | |
| 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
 | |
| 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
 | |
| 	 */
 | |
| 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| 
 | |
| DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
 | |
| static bool scx_cgroup_enabled;
 | |
| static bool cgroup_warned_missing_weight;
 | |
| static bool cgroup_warned_missing_idle;
 | |
| 
 | |
| static void scx_cgroup_warn_missing_weight(struct task_group *tg)
 | |
| {
 | |
| 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
 | |
| 	    cgroup_warned_missing_weight)
 | |
| 		return;
 | |
| 
 | |
| 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
 | |
| 		scx_ops.name);
 | |
| 	cgroup_warned_missing_weight = true;
 | |
| }
 | |
| 
 | |
| static void scx_cgroup_warn_missing_idle(struct task_group *tg)
 | |
| {
 | |
| 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
 | |
| 		return;
 | |
| 
 | |
| 	if (!tg->idle)
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
 | |
| 		scx_ops.name);
 | |
| 	cgroup_warned_missing_idle = true;
 | |
| }
 | |
| 
 | |
| int scx_tg_online(struct task_group *tg)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
 | |
| 
 | |
| 	percpu_down_read(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	scx_cgroup_warn_missing_weight(tg);
 | |
| 
 | |
| 	if (scx_cgroup_enabled) {
 | |
| 		if (SCX_HAS_OP(cgroup_init)) {
 | |
| 			struct scx_cgroup_init_args args =
 | |
| 				{ .weight = tg->scx_weight };
 | |
| 
 | |
| 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
 | |
| 					      tg->css.cgroup, &args);
 | |
| 			if (ret)
 | |
| 				ret = ops_sanitize_err("cgroup_init", ret);
 | |
| 		}
 | |
| 		if (ret == 0)
 | |
| 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
 | |
| 	} else {
 | |
| 		tg->scx_flags |= SCX_TG_ONLINE;
 | |
| 	}
 | |
| 
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void scx_tg_offline(struct task_group *tg)
 | |
| {
 | |
| 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
 | |
| 
 | |
| 	percpu_down_read(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
 | |
| 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
 | |
| 
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| int scx_cgroup_can_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct task_struct *p;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* released in scx_finish/cancel_attach() */
 | |
| 	percpu_down_read(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	if (!scx_cgroup_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	cgroup_taskset_for_each(p, css, tset) {
 | |
| 		struct cgroup *from = tg_cgrp(task_group(p));
 | |
| 		struct cgroup *to = tg_cgrp(css_tg(css));
 | |
| 
 | |
| 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
 | |
| 
 | |
| 		/*
 | |
| 		 * sched_move_task() omits identity migrations. Let's match the
 | |
| 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
 | |
| 		 * always match one-to-one.
 | |
| 		 */
 | |
| 		if (from == to)
 | |
| 			continue;
 | |
| 
 | |
| 		if (SCX_HAS_OP(cgroup_prep_move)) {
 | |
| 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
 | |
| 					      p, from, css->cgroup);
 | |
| 			if (ret)
 | |
| 				goto err;
 | |
| 		}
 | |
| 
 | |
| 		p->scx.cgrp_moving_from = from;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	cgroup_taskset_for_each(p, css, tset) {
 | |
| 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
 | |
| 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
 | |
| 				    p->scx.cgrp_moving_from, css->cgroup);
 | |
| 		p->scx.cgrp_moving_from = NULL;
 | |
| 	}
 | |
| 
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| 	return ops_sanitize_err("cgroup_prep_move", ret);
 | |
| }
 | |
| 
 | |
| void scx_move_task(struct task_struct *p)
 | |
| {
 | |
| 	if (!scx_cgroup_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're called from sched_move_task() which handles both cgroup and
 | |
| 	 * autogroup moves. Ignore the latter.
 | |
| 	 *
 | |
| 	 * Also ignore exiting tasks, because in the exit path tasks transition
 | |
| 	 * from the autogroup to the root group, so task_group_is_autogroup()
 | |
| 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
 | |
| 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
 | |
| 	 * tasks.
 | |
| 	 */
 | |
| 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * @p must have ops.cgroup_prep_move() called on it and thus
 | |
| 	 * cgrp_moving_from set.
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
 | |
| 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
 | |
| 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
 | |
| 	p->scx.cgrp_moving_from = NULL;
 | |
| }
 | |
| 
 | |
| void scx_cgroup_finish_attach(void)
 | |
| {
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!scx_cgroup_enabled)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cgroup_taskset_for_each(p, css, tset) {
 | |
| 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
 | |
| 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
 | |
| 				    p->scx.cgrp_moving_from, css->cgroup);
 | |
| 		p->scx.cgrp_moving_from = NULL;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| void scx_group_set_weight(struct task_group *tg, unsigned long weight)
 | |
| {
 | |
| 	percpu_down_read(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
 | |
| 		if (SCX_HAS_OP(cgroup_set_weight))
 | |
| 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
 | |
| 				    tg_cgrp(tg), weight);
 | |
| 		tg->scx_weight = weight;
 | |
| 	}
 | |
| 
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| void scx_group_set_idle(struct task_group *tg, bool idle)
 | |
| {
 | |
| 	percpu_down_read(&scx_cgroup_rwsem);
 | |
| 	scx_cgroup_warn_missing_idle(tg);
 | |
| 	percpu_up_read(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| static void scx_cgroup_lock(void)
 | |
| {
 | |
| 	percpu_down_write(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| static void scx_cgroup_unlock(void)
 | |
| {
 | |
| 	percpu_up_write(&scx_cgroup_rwsem);
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_EXT_GROUP_SCHED */
 | |
| 
 | |
| static inline void scx_cgroup_lock(void) {}
 | |
| static inline void scx_cgroup_unlock(void) {}
 | |
| 
 | |
| #endif	/* CONFIG_EXT_GROUP_SCHED */
 | |
| 
 | |
| /*
 | |
|  * Omitted operations:
 | |
|  *
 | |
|  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
 | |
|  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
 | |
|  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
 | |
|  *
 | |
|  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
 | |
|  *
 | |
|  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
 | |
|  *   their current sched_class. Call them directly from sched core instead.
 | |
|  */
 | |
| DEFINE_SCHED_CLASS(ext) = {
 | |
| 	.enqueue_task		= enqueue_task_scx,
 | |
| 	.dequeue_task		= dequeue_task_scx,
 | |
| 	.yield_task		= yield_task_scx,
 | |
| 	.yield_to_task		= yield_to_task_scx,
 | |
| 
 | |
| 	.wakeup_preempt		= wakeup_preempt_scx,
 | |
| 
 | |
| 	.balance		= balance_scx,
 | |
| 	.pick_task		= pick_task_scx,
 | |
| 
 | |
| 	.put_prev_task		= put_prev_task_scx,
 | |
| 	.set_next_task		= set_next_task_scx,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_scx,
 | |
| 	.task_woken		= task_woken_scx,
 | |
| 	.set_cpus_allowed	= set_cpus_allowed_scx,
 | |
| 
 | |
| 	.rq_online		= rq_online_scx,
 | |
| 	.rq_offline		= rq_offline_scx,
 | |
| #endif
 | |
| 
 | |
| 	.task_tick		= task_tick_scx,
 | |
| 
 | |
| 	.switching_to		= switching_to_scx,
 | |
| 	.switched_from		= switched_from_scx,
 | |
| 	.switched_to		= switched_to_scx,
 | |
| 	.reweight_task		= reweight_task_scx,
 | |
| 	.prio_changed		= prio_changed_scx,
 | |
| 
 | |
| 	.update_curr		= update_curr_scx,
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 	.uclamp_enabled		= 1,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
 | |
| {
 | |
| 	memset(dsq, 0, sizeof(*dsq));
 | |
| 
 | |
| 	raw_spin_lock_init(&dsq->lock);
 | |
| 	INIT_LIST_HEAD(&dsq->list);
 | |
| 	dsq->id = dsq_id;
 | |
| }
 | |
| 
 | |
| static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
 | |
| 	if (!dsq)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	init_dsq(dsq, dsq_id);
 | |
| 
 | |
| 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
 | |
| 				     dsq_hash_params);
 | |
| 	if (ret) {
 | |
| 		kfree(dsq);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 	return dsq;
 | |
| }
 | |
| 
 | |
| static void free_dsq_irq_workfn(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
 | |
| 	struct scx_dispatch_q *dsq, *tmp_dsq;
 | |
| 
 | |
| 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
 | |
| 		kfree_rcu(dsq, rcu);
 | |
| }
 | |
| 
 | |
| static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
 | |
| 
 | |
| static void destroy_dsq(u64 dsq_id)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	dsq = find_user_dsq(dsq_id);
 | |
| 	if (!dsq)
 | |
| 		goto out_unlock_rcu;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&dsq->lock, flags);
 | |
| 
 | |
| 	if (dsq->nr) {
 | |
| 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
 | |
| 			      dsq->id, dsq->nr);
 | |
| 		goto out_unlock_dsq;
 | |
| 	}
 | |
| 
 | |
| 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
 | |
| 		goto out_unlock_dsq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
 | |
| 	 * queueing more tasks. As this function can be called from anywhere,
 | |
| 	 * freeing is bounced through an irq work to avoid nesting RCU
 | |
| 	 * operations inside scheduler locks.
 | |
| 	 */
 | |
| 	dsq->id = SCX_DSQ_INVALID;
 | |
| 	llist_add(&dsq->free_node, &dsqs_to_free);
 | |
| 	irq_work_queue(&free_dsq_irq_work);
 | |
| 
 | |
| out_unlock_dsq:
 | |
| 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
 | |
| out_unlock_rcu:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| static void scx_cgroup_exit(void)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	WARN_ON_ONCE(!scx_cgroup_enabled);
 | |
| 	scx_cgroup_enabled = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
 | |
| 	 * cgroups and exit all the inited ones, all online cgroups are exited.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	css_for_each_descendant_post(css, &root_task_group.css) {
 | |
| 		struct task_group *tg = css_tg(css);
 | |
| 
 | |
| 		if (!(tg->scx_flags & SCX_TG_INITED))
 | |
| 			continue;
 | |
| 		tg->scx_flags &= ~SCX_TG_INITED;
 | |
| 
 | |
| 		if (!scx_ops.cgroup_exit)
 | |
| 			continue;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!css_tryget(css)))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int scx_cgroup_init(void)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int ret;
 | |
| 
 | |
| 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
 | |
| 
 | |
| 	cgroup_warned_missing_weight = false;
 | |
| 	cgroup_warned_missing_idle = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
 | |
| 	 * cgroups and init, all online cgroups are initialized.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	css_for_each_descendant_pre(css, &root_task_group.css) {
 | |
| 		struct task_group *tg = css_tg(css);
 | |
| 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
 | |
| 
 | |
| 		scx_cgroup_warn_missing_weight(tg);
 | |
| 		scx_cgroup_warn_missing_idle(tg);
 | |
| 
 | |
| 		if ((tg->scx_flags &
 | |
| 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!scx_ops.cgroup_init) {
 | |
| 			tg->scx_flags |= SCX_TG_INITED;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!css_tryget(css)))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
 | |
| 				      css->cgroup, &args);
 | |
| 		if (ret) {
 | |
| 			css_put(css);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		tg->scx_flags |= SCX_TG_INITED;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	WARN_ON_ONCE(scx_cgroup_enabled);
 | |
| 	scx_cgroup_enabled = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static void scx_cgroup_exit(void) {}
 | |
| static int scx_cgroup_init(void) { return 0; }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /********************************************************************************
 | |
|  * Sysfs interface and ops enable/disable.
 | |
|  */
 | |
| 
 | |
| #define SCX_ATTR(_name)								\
 | |
| 	static struct kobj_attribute scx_attr_##_name = {			\
 | |
| 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
 | |
| 		.show = scx_attr_##_name##_show,				\
 | |
| 	}
 | |
| 
 | |
| static ssize_t scx_attr_state_show(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%s\n",
 | |
| 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
 | |
| }
 | |
| SCX_ATTR(state);
 | |
| 
 | |
| static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
 | |
| }
 | |
| SCX_ATTR(switch_all);
 | |
| 
 | |
| static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
 | |
| 					 struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
 | |
| }
 | |
| SCX_ATTR(nr_rejected);
 | |
| 
 | |
| static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
 | |
| 					 struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
 | |
| }
 | |
| SCX_ATTR(hotplug_seq);
 | |
| 
 | |
| static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
 | |
| }
 | |
| SCX_ATTR(enable_seq);
 | |
| 
 | |
| static struct attribute *scx_global_attrs[] = {
 | |
| 	&scx_attr_state.attr,
 | |
| 	&scx_attr_switch_all.attr,
 | |
| 	&scx_attr_nr_rejected.attr,
 | |
| 	&scx_attr_hotplug_seq.attr,
 | |
| 	&scx_attr_enable_seq.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group scx_global_attr_group = {
 | |
| 	.attrs = scx_global_attrs,
 | |
| };
 | |
| 
 | |
| static void scx_kobj_release(struct kobject *kobj)
 | |
| {
 | |
| 	kfree(kobj);
 | |
| }
 | |
| 
 | |
| static ssize_t scx_attr_ops_show(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *ka, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%s\n", scx_ops.name);
 | |
| }
 | |
| SCX_ATTR(ops);
 | |
| 
 | |
| static struct attribute *scx_sched_attrs[] = {
 | |
| 	&scx_attr_ops.attr,
 | |
| 	NULL,
 | |
| };
 | |
| ATTRIBUTE_GROUPS(scx_sched);
 | |
| 
 | |
| static const struct kobj_type scx_ktype = {
 | |
| 	.release = scx_kobj_release,
 | |
| 	.sysfs_ops = &kobj_sysfs_ops,
 | |
| 	.default_groups = scx_sched_groups,
 | |
| };
 | |
| 
 | |
| static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
 | |
| {
 | |
| 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
 | |
| }
 | |
| 
 | |
| static const struct kset_uevent_ops scx_uevent_ops = {
 | |
| 	.uevent = scx_uevent,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Used by sched_fork() and __setscheduler_prio() to pick the matching
 | |
|  * sched_class. dl/rt are already handled.
 | |
|  */
 | |
| bool task_should_scx(struct task_struct *p)
 | |
| {
 | |
| 	if (!scx_enabled() ||
 | |
| 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
 | |
| 		return false;
 | |
| 	if (READ_ONCE(scx_switching_all))
 | |
| 		return true;
 | |
| 	return p->policy == SCHED_EXT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
 | |
|  *
 | |
|  * Bypassing guarantees that all runnable tasks make forward progress without
 | |
|  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
 | |
|  * be held by tasks that the BPF scheduler is forgetting to run, which
 | |
|  * unfortunately also excludes toggling the static branches.
 | |
|  *
 | |
|  * Let's work around by overriding a couple ops and modifying behaviors based on
 | |
|  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
 | |
|  * to force global FIFO scheduling.
 | |
|  *
 | |
|  * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
 | |
|  *    %SCX_OPS_ENQ_LAST is also ignored.
 | |
|  *
 | |
|  * b. ops.dispatch() is ignored.
 | |
|  *
 | |
|  * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
 | |
|  *    can't be trusted. Whenever a tick triggers, the running task is rotated to
 | |
|  *    the tail of the queue with core_sched_at touched.
 | |
|  *
 | |
|  * d. pick_next_task() suppresses zero slice warning.
 | |
|  *
 | |
|  * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
 | |
|  *    operations.
 | |
|  *
 | |
|  * f. scx_prio_less() reverts to the default core_sched_at order.
 | |
|  */
 | |
| static void scx_ops_bypass(bool bypass)
 | |
| {
 | |
| 	int depth, cpu;
 | |
| 
 | |
| 	if (bypass) {
 | |
| 		depth = atomic_inc_return(&scx_ops_bypass_depth);
 | |
| 		WARN_ON_ONCE(depth <= 0);
 | |
| 		if (depth != 1)
 | |
| 			return;
 | |
| 	} else {
 | |
| 		depth = atomic_dec_return(&scx_ops_bypass_depth);
 | |
| 		WARN_ON_ONCE(depth < 0);
 | |
| 		if (depth != 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No task property is changing. We just need to make sure all currently
 | |
| 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
 | |
| 	 * state. As an optimization, walk each rq's runnable_list instead of
 | |
| 	 * the scx_tasks list.
 | |
| 	 *
 | |
| 	 * This function can't trust the scheduler and thus can't use
 | |
| 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 		struct rq_flags rf;
 | |
| 		struct task_struct *p, *n;
 | |
| 
 | |
| 		rq_lock_irqsave(rq, &rf);
 | |
| 
 | |
| 		if (bypass) {
 | |
| 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
 | |
| 			rq->scx.flags |= SCX_RQ_BYPASSING;
 | |
| 		} else {
 | |
| 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
 | |
| 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to guarantee that no tasks are on the BPF scheduler
 | |
| 		 * while bypassing. Either we see enabled or the enable path
 | |
| 		 * sees scx_rq_bypassing() before moving tasks to SCX.
 | |
| 		 */
 | |
| 		if (!scx_enabled()) {
 | |
| 			rq_unlock_irqrestore(rq, &rf);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The use of list_for_each_entry_safe_reverse() is required
 | |
| 		 * because each task is going to be removed from and added back
 | |
| 		 * to the runnable_list during iteration. Because they're added
 | |
| 		 * to the tail of the list, safe reverse iteration can still
 | |
| 		 * visit all nodes.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
 | |
| 						 scx.runnable_node) {
 | |
| 			struct sched_enq_and_set_ctx ctx;
 | |
| 
 | |
| 			/* cycling deq/enq is enough, see the function comment */
 | |
| 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
 | |
| 			sched_enq_and_set_task(&ctx);
 | |
| 		}
 | |
| 
 | |
| 		rq_unlock_irqrestore(rq, &rf);
 | |
| 
 | |
| 		/* kick to restore ticks */
 | |
| 		resched_cpu(cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_exit_info(struct scx_exit_info *ei)
 | |
| {
 | |
| 	kfree(ei->dump);
 | |
| 	kfree(ei->msg);
 | |
| 	kfree(ei->bt);
 | |
| 	kfree(ei);
 | |
| }
 | |
| 
 | |
| static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
 | |
| {
 | |
| 	struct scx_exit_info *ei;
 | |
| 
 | |
| 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
 | |
| 	if (!ei)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
 | |
| 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
 | |
| 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
 | |
| 
 | |
| 	if (!ei->bt || !ei->msg || !ei->dump) {
 | |
| 		free_exit_info(ei);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return ei;
 | |
| }
 | |
| 
 | |
| static const char *scx_exit_reason(enum scx_exit_kind kind)
 | |
| {
 | |
| 	switch (kind) {
 | |
| 	case SCX_EXIT_UNREG:
 | |
| 		return "unregistered from user space";
 | |
| 	case SCX_EXIT_UNREG_BPF:
 | |
| 		return "unregistered from BPF";
 | |
| 	case SCX_EXIT_UNREG_KERN:
 | |
| 		return "unregistered from the main kernel";
 | |
| 	case SCX_EXIT_SYSRQ:
 | |
| 		return "disabled by sysrq-S";
 | |
| 	case SCX_EXIT_ERROR:
 | |
| 		return "runtime error";
 | |
| 	case SCX_EXIT_ERROR_BPF:
 | |
| 		return "scx_bpf_error";
 | |
| 	case SCX_EXIT_ERROR_STALL:
 | |
| 		return "runnable task stall";
 | |
| 	default:
 | |
| 		return "<UNKNOWN>";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scx_ops_disable_workfn(struct kthread_work *work)
 | |
| {
 | |
| 	struct scx_exit_info *ei = scx_exit_info;
 | |
| 	struct scx_task_iter sti;
 | |
| 	struct task_struct *p;
 | |
| 	struct rhashtable_iter rht_iter;
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 	int i, kind;
 | |
| 
 | |
| 	kind = atomic_read(&scx_exit_kind);
 | |
| 	while (true) {
 | |
| 		/*
 | |
| 		 * NONE indicates that a new scx_ops has been registered since
 | |
| 		 * disable was scheduled - don't kill the new ops. DONE
 | |
| 		 * indicates that the ops has already been disabled.
 | |
| 		 */
 | |
| 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
 | |
| 			return;
 | |
| 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
 | |
| 			break;
 | |
| 	}
 | |
| 	ei->kind = kind;
 | |
| 	ei->reason = scx_exit_reason(ei->kind);
 | |
| 
 | |
| 	/* guarantee forward progress by bypassing scx_ops */
 | |
| 	scx_ops_bypass(true);
 | |
| 
 | |
| 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
 | |
| 	case SCX_OPS_DISABLING:
 | |
| 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
 | |
| 		break;
 | |
| 	case SCX_OPS_DISABLED:
 | |
| 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
 | |
| 			scx_exit_info->msg);
 | |
| 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
 | |
| 			     SCX_OPS_DISABLING);
 | |
| 		goto done;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here, every runnable task is guaranteed to make forward progress and
 | |
| 	 * we can safely use blocking synchronization constructs. Actually
 | |
| 	 * disable ops.
 | |
| 	 */
 | |
| 	mutex_lock(&scx_ops_enable_mutex);
 | |
| 
 | |
| 	static_branch_disable(&__scx_switched_all);
 | |
| 	WRITE_ONCE(scx_switching_all, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * Shut down cgroup support before tasks so that the cgroup attach path
 | |
| 	 * doesn't race against scx_ops_exit_task().
 | |
| 	 */
 | |
| 	scx_cgroup_lock();
 | |
| 	scx_cgroup_exit();
 | |
| 	scx_cgroup_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
 | |
| 	 * must be switched out and exited synchronously.
 | |
| 	 */
 | |
| 	percpu_down_write(&scx_fork_rwsem);
 | |
| 
 | |
| 	scx_ops_init_task_enabled = false;
 | |
| 
 | |
| 	spin_lock_irq(&scx_tasks_lock);
 | |
| 	scx_task_iter_init(&sti);
 | |
| 	while ((p = scx_task_iter_next_locked(&sti))) {
 | |
| 		const struct sched_class *old_class = p->sched_class;
 | |
| 		struct sched_enq_and_set_ctx ctx;
 | |
| 
 | |
| 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
 | |
| 
 | |
| 		p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
 | |
| 		__setscheduler_prio(p, p->prio);
 | |
| 		check_class_changing(task_rq(p), p, old_class);
 | |
| 
 | |
| 		sched_enq_and_set_task(&ctx);
 | |
| 
 | |
| 		check_class_changed(task_rq(p), p, old_class, p->prio);
 | |
| 		scx_ops_exit_task(p);
 | |
| 	}
 | |
| 	scx_task_iter_exit(&sti);
 | |
| 	spin_unlock_irq(&scx_tasks_lock);
 | |
| 	percpu_up_write(&scx_fork_rwsem);
 | |
| 
 | |
| 	/* no task is on scx, turn off all the switches and flush in-progress calls */
 | |
| 	static_branch_disable(&__scx_ops_enabled);
 | |
| 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
 | |
| 		static_branch_disable(&scx_has_op[i]);
 | |
| 	static_branch_disable(&scx_ops_enq_last);
 | |
| 	static_branch_disable(&scx_ops_enq_exiting);
 | |
| 	static_branch_disable(&scx_ops_cpu_preempt);
 | |
| 	static_branch_disable(&scx_builtin_idle_enabled);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	if (ei->kind >= SCX_EXIT_ERROR) {
 | |
| 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
 | |
| 		       scx_ops.name, ei->reason);
 | |
| 
 | |
| 		if (ei->msg[0] != '\0')
 | |
| 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 		stack_trace_print(ei->bt, ei->bt_len, 2);
 | |
| #endif
 | |
| 	} else {
 | |
| 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
 | |
| 			scx_ops.name, ei->reason);
 | |
| 	}
 | |
| 
 | |
| 	if (scx_ops.exit)
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
 | |
| 
 | |
| 	cancel_delayed_work_sync(&scx_watchdog_work);
 | |
| 
 | |
| 	/*
 | |
| 	 * Delete the kobject from the hierarchy eagerly in addition to just
 | |
| 	 * dropping a reference. Otherwise, if the object is deleted
 | |
| 	 * asynchronously, sysfs could observe an object of the same name still
 | |
| 	 * in the hierarchy when another scheduler is loaded.
 | |
| 	 */
 | |
| 	kobject_del(scx_root_kobj);
 | |
| 	kobject_put(scx_root_kobj);
 | |
| 	scx_root_kobj = NULL;
 | |
| 
 | |
| 	memset(&scx_ops, 0, sizeof(scx_ops));
 | |
| 
 | |
| 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
 | |
| 	do {
 | |
| 		rhashtable_walk_start(&rht_iter);
 | |
| 
 | |
| 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
 | |
| 			destroy_dsq(dsq->id);
 | |
| 
 | |
| 		rhashtable_walk_stop(&rht_iter);
 | |
| 	} while (dsq == ERR_PTR(-EAGAIN));
 | |
| 	rhashtable_walk_exit(&rht_iter);
 | |
| 
 | |
| 	free_percpu(scx_dsp_ctx);
 | |
| 	scx_dsp_ctx = NULL;
 | |
| 	scx_dsp_max_batch = 0;
 | |
| 
 | |
| 	free_exit_info(scx_exit_info);
 | |
| 	scx_exit_info = NULL;
 | |
| 
 | |
| 	mutex_unlock(&scx_ops_enable_mutex);
 | |
| 
 | |
| 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
 | |
| 		     SCX_OPS_DISABLING);
 | |
| done:
 | |
| 	scx_ops_bypass(false);
 | |
| }
 | |
| 
 | |
| static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
 | |
| 
 | |
| static void schedule_scx_ops_disable_work(void)
 | |
| {
 | |
| 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
 | |
| 	 * scx_ops_helper isn't set up yet, there's nothing to do.
 | |
| 	 */
 | |
| 	if (helper)
 | |
| 		kthread_queue_work(helper, &scx_ops_disable_work);
 | |
| }
 | |
| 
 | |
| static void scx_ops_disable(enum scx_exit_kind kind)
 | |
| {
 | |
| 	int none = SCX_EXIT_NONE;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
 | |
| 		kind = SCX_EXIT_ERROR;
 | |
| 
 | |
| 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
 | |
| 
 | |
| 	schedule_scx_ops_disable_work();
 | |
| }
 | |
| 
 | |
| static void dump_newline(struct seq_buf *s)
 | |
| {
 | |
| 	trace_sched_ext_dump("");
 | |
| 
 | |
| 	/* @s may be zero sized and seq_buf triggers WARN if so */
 | |
| 	if (s->size)
 | |
| 		seq_buf_putc(s, '\n');
 | |
| }
 | |
| 
 | |
| static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| #ifdef CONFIG_TRACEPOINTS
 | |
| 	if (trace_sched_ext_dump_enabled()) {
 | |
| 		/* protected by scx_dump_state()::dump_lock */
 | |
| 		static char line_buf[SCX_EXIT_MSG_LEN];
 | |
| 
 | |
| 		va_start(args, fmt);
 | |
| 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
 | |
| 		va_end(args);
 | |
| 
 | |
| 		trace_sched_ext_dump(line_buf);
 | |
| 	}
 | |
| #endif
 | |
| 	/* @s may be zero sized and seq_buf triggers WARN if so */
 | |
| 	if (s->size) {
 | |
| 		va_start(args, fmt);
 | |
| 		seq_buf_vprintf(s, fmt, args);
 | |
| 		va_end(args);
 | |
| 
 | |
| 		seq_buf_putc(s, '\n');
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dump_stack_trace(struct seq_buf *s, const char *prefix,
 | |
| 			     const unsigned long *bt, unsigned int len)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
 | |
| }
 | |
| 
 | |
| static void ops_dump_init(struct seq_buf *s, const char *prefix)
 | |
| {
 | |
| 	struct scx_dump_data *dd = &scx_dump_data;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
 | |
| 	dd->first = true;
 | |
| 	dd->cursor = 0;
 | |
| 	dd->s = s;
 | |
| 	dd->prefix = prefix;
 | |
| }
 | |
| 
 | |
| static void ops_dump_flush(void)
 | |
| {
 | |
| 	struct scx_dump_data *dd = &scx_dump_data;
 | |
| 	char *line = dd->buf.line;
 | |
| 
 | |
| 	if (!dd->cursor)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's something to flush and this is the first line. Insert a blank
 | |
| 	 * line to distinguish ops dump.
 | |
| 	 */
 | |
| 	if (dd->first) {
 | |
| 		dump_newline(dd->s);
 | |
| 		dd->first = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be multiple lines in $line. Scan and emit each line
 | |
| 	 * separately.
 | |
| 	 */
 | |
| 	while (true) {
 | |
| 		char *end = line;
 | |
| 		char c;
 | |
| 
 | |
| 		while (*end != '\n' && *end != '\0')
 | |
| 			end++;
 | |
| 
 | |
| 		/*
 | |
| 		 * If $line overflowed, it may not have newline at the end.
 | |
| 		 * Always emit with a newline.
 | |
| 		 */
 | |
| 		c = *end;
 | |
| 		*end = '\0';
 | |
| 		dump_line(dd->s, "%s%s", dd->prefix, line);
 | |
| 		if (c == '\0')
 | |
| 			break;
 | |
| 
 | |
| 		/* move to the next line */
 | |
| 		end++;
 | |
| 		if (*end == '\0')
 | |
| 			break;
 | |
| 		line = end;
 | |
| 	}
 | |
| 
 | |
| 	dd->cursor = 0;
 | |
| }
 | |
| 
 | |
| static void ops_dump_exit(void)
 | |
| {
 | |
| 	ops_dump_flush();
 | |
| 	scx_dump_data.cpu = -1;
 | |
| }
 | |
| 
 | |
| static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
 | |
| 			  struct task_struct *p, char marker)
 | |
| {
 | |
| 	static unsigned long bt[SCX_EXIT_BT_LEN];
 | |
| 	char dsq_id_buf[19] = "(n/a)";
 | |
| 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
 | |
| 	unsigned int bt_len = 0;
 | |
| 
 | |
| 	if (p->scx.dsq)
 | |
| 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
 | |
| 			  (unsigned long long)p->scx.dsq->id);
 | |
| 
 | |
| 	dump_newline(s);
 | |
| 	dump_line(s, " %c%c %s[%d] %+ldms",
 | |
| 		  marker, task_state_to_char(p), p->comm, p->pid,
 | |
| 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
 | |
| 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
 | |
| 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
 | |
| 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
 | |
| 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
 | |
| 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
 | |
| 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
 | |
| 		  p->scx.dsq_vtime);
 | |
| 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
 | |
| 
 | |
| 	if (SCX_HAS_OP(dump_task)) {
 | |
| 		ops_dump_init(s, "    ");
 | |
| 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
 | |
| 		ops_dump_exit();
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
 | |
| #endif
 | |
| 	if (bt_len) {
 | |
| 		dump_newline(s);
 | |
| 		dump_stack_trace(s, "    ", bt, bt_len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(dump_lock);
 | |
| 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
 | |
| 	struct scx_dump_ctx dctx = {
 | |
| 		.kind = ei->kind,
 | |
| 		.exit_code = ei->exit_code,
 | |
| 		.reason = ei->reason,
 | |
| 		.at_ns = ktime_get_ns(),
 | |
| 		.at_jiffies = jiffies,
 | |
| 	};
 | |
| 	struct seq_buf s;
 | |
| 	unsigned long flags;
 | |
| 	char *buf;
 | |
| 	int cpu;
 | |
| 
 | |
| 	spin_lock_irqsave(&dump_lock, flags);
 | |
| 
 | |
| 	seq_buf_init(&s, ei->dump, dump_len);
 | |
| 
 | |
| 	if (ei->kind == SCX_EXIT_NONE) {
 | |
| 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
 | |
| 	} else {
 | |
| 		dump_line(&s, "%s[%d] triggered exit kind %d:",
 | |
| 			  current->comm, current->pid, ei->kind);
 | |
| 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
 | |
| 		dump_newline(&s);
 | |
| 		dump_line(&s, "Backtrace:");
 | |
| 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
 | |
| 	}
 | |
| 
 | |
| 	if (SCX_HAS_OP(dump)) {
 | |
| 		ops_dump_init(&s, "");
 | |
| 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
 | |
| 		ops_dump_exit();
 | |
| 	}
 | |
| 
 | |
| 	dump_newline(&s);
 | |
| 	dump_line(&s, "CPU states");
 | |
| 	dump_line(&s, "----------");
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 		struct rq_flags rf;
 | |
| 		struct task_struct *p;
 | |
| 		struct seq_buf ns;
 | |
| 		size_t avail, used;
 | |
| 		bool idle;
 | |
| 
 | |
| 		rq_lock(rq, &rf);
 | |
| 
 | |
| 		idle = list_empty(&rq->scx.runnable_list) &&
 | |
| 			rq->curr->sched_class == &idle_sched_class;
 | |
| 
 | |
| 		if (idle && !SCX_HAS_OP(dump_cpu))
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't yet know whether ops.dump_cpu() will produce output
 | |
| 		 * and we may want to skip the default CPU dump if it doesn't.
 | |
| 		 * Use a nested seq_buf to generate the standard dump so that we
 | |
| 		 * can decide whether to commit later.
 | |
| 		 */
 | |
| 		avail = seq_buf_get_buf(&s, &buf);
 | |
| 		seq_buf_init(&ns, buf, avail);
 | |
| 
 | |
| 		dump_newline(&ns);
 | |
| 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
 | |
| 			  cpu, rq->scx.nr_running, rq->scx.flags,
 | |
| 			  rq->scx.cpu_released, rq->scx.ops_qseq,
 | |
| 			  rq->scx.pnt_seq);
 | |
| 		dump_line(&ns, "          curr=%s[%d] class=%ps",
 | |
| 			  rq->curr->comm, rq->curr->pid,
 | |
| 			  rq->curr->sched_class);
 | |
| 		if (!cpumask_empty(rq->scx.cpus_to_kick))
 | |
| 			dump_line(&ns, "  cpus_to_kick   : %*pb",
 | |
| 				  cpumask_pr_args(rq->scx.cpus_to_kick));
 | |
| 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
 | |
| 			dump_line(&ns, "  idle_to_kick   : %*pb",
 | |
| 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
 | |
| 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
 | |
| 			dump_line(&ns, "  cpus_to_preempt: %*pb",
 | |
| 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
 | |
| 		if (!cpumask_empty(rq->scx.cpus_to_wait))
 | |
| 			dump_line(&ns, "  cpus_to_wait   : %*pb",
 | |
| 				  cpumask_pr_args(rq->scx.cpus_to_wait));
 | |
| 
 | |
| 		used = seq_buf_used(&ns);
 | |
| 		if (SCX_HAS_OP(dump_cpu)) {
 | |
| 			ops_dump_init(&ns, "  ");
 | |
| 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
 | |
| 			ops_dump_exit();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If idle && nothing generated by ops.dump_cpu(), there's
 | |
| 		 * nothing interesting. Skip.
 | |
| 		 */
 | |
| 		if (idle && used == seq_buf_used(&ns))
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * $s may already have overflowed when $ns was created. If so,
 | |
| 		 * calling commit on it will trigger BUG.
 | |
| 		 */
 | |
| 		if (avail) {
 | |
| 			seq_buf_commit(&s, seq_buf_used(&ns));
 | |
| 			if (seq_buf_has_overflowed(&ns))
 | |
| 				seq_buf_set_overflow(&s);
 | |
| 		}
 | |
| 
 | |
| 		if (rq->curr->sched_class == &ext_sched_class)
 | |
| 			scx_dump_task(&s, &dctx, rq->curr, '*');
 | |
| 
 | |
| 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
 | |
| 			scx_dump_task(&s, &dctx, p, ' ');
 | |
| 	next:
 | |
| 		rq_unlock(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
 | |
| 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
 | |
| 		       trunc_marker, sizeof(trunc_marker));
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dump_lock, flags);
 | |
| }
 | |
| 
 | |
| static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct scx_exit_info *ei = scx_exit_info;
 | |
| 
 | |
| 	if (ei->kind >= SCX_EXIT_ERROR)
 | |
| 		scx_dump_state(ei, scx_ops.exit_dump_len);
 | |
| 
 | |
| 	schedule_scx_ops_disable_work();
 | |
| }
 | |
| 
 | |
| static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
 | |
| 
 | |
| static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
 | |
| 					     s64 exit_code,
 | |
| 					     const char *fmt, ...)
 | |
| {
 | |
| 	struct scx_exit_info *ei = scx_exit_info;
 | |
| 	int none = SCX_EXIT_NONE;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
 | |
| 		return;
 | |
| 
 | |
| 	ei->exit_code = exit_code;
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 	if (kind >= SCX_EXIT_ERROR)
 | |
| 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
 | |
| #endif
 | |
| 	va_start(args, fmt);
 | |
| 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
 | |
| 	va_end(args);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
 | |
| 	 * in scx_ops_disable_workfn().
 | |
| 	 */
 | |
| 	ei->kind = kind;
 | |
| 	ei->reason = scx_exit_reason(ei->kind);
 | |
| 
 | |
| 	irq_work_queue(&scx_ops_error_irq_work);
 | |
| }
 | |
| 
 | |
| static struct kthread_worker *scx_create_rt_helper(const char *name)
 | |
| {
 | |
| 	struct kthread_worker *helper;
 | |
| 
 | |
| 	helper = kthread_create_worker(0, name);
 | |
| 	if (helper)
 | |
| 		sched_set_fifo(helper->task);
 | |
| 	return helper;
 | |
| }
 | |
| 
 | |
| static void check_hotplug_seq(const struct sched_ext_ops *ops)
 | |
| {
 | |
| 	unsigned long long global_hotplug_seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a hotplug event has occurred between when a scheduler was
 | |
| 	 * initialized, and when we were able to attach, exit and notify user
 | |
| 	 * space about it.
 | |
| 	 */
 | |
| 	if (ops->hotplug_seq) {
 | |
| 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
 | |
| 		if (ops->hotplug_seq != global_hotplug_seq) {
 | |
| 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
 | |
| 				     "expected hotplug seq %llu did not match actual %llu",
 | |
| 				     ops->hotplug_seq, global_hotplug_seq);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int validate_ops(const struct sched_ext_ops *ops)
 | |
| {
 | |
| 	/*
 | |
| 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
 | |
| 	 * ops.enqueue() callback isn't implemented.
 | |
| 	 */
 | |
| 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
 | |
| 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
 | |
| {
 | |
| 	struct scx_task_iter sti;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long timeout;
 | |
| 	int i, cpu, node, ret;
 | |
| 
 | |
| 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
 | |
| 			   cpu_possible_mask)) {
 | |
| 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&scx_ops_enable_mutex);
 | |
| 
 | |
| 	if (!scx_ops_helper) {
 | |
| 		WRITE_ONCE(scx_ops_helper,
 | |
| 			   scx_create_rt_helper("sched_ext_ops_helper"));
 | |
| 		if (!scx_ops_helper) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!global_dsqs) {
 | |
| 		struct scx_dispatch_q **dsqs;
 | |
| 
 | |
| 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
 | |
| 		if (!dsqs) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_unlock;
 | |
| 		}
 | |
| 
 | |
| 		for_each_node_state(node, N_POSSIBLE) {
 | |
| 			struct scx_dispatch_q *dsq;
 | |
| 
 | |
| 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
 | |
| 			if (!dsq) {
 | |
| 				for_each_node_state(node, N_POSSIBLE)
 | |
| 					kfree(dsqs[node]);
 | |
| 				kfree(dsqs);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto err_unlock;
 | |
| 			}
 | |
| 
 | |
| 			init_dsq(dsq, SCX_DSQ_GLOBAL);
 | |
| 			dsqs[node] = dsq;
 | |
| 		}
 | |
| 
 | |
| 		global_dsqs = dsqs;
 | |
| 	}
 | |
| 
 | |
| 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
 | |
| 	if (!scx_root_kobj) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	scx_root_kobj->kset = scx_kset;
 | |
| 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
 | |
| 	if (!scx_exit_info) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_del;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
 | |
| 	 * disable path. Failure triggers full disabling from here on.
 | |
| 	 */
 | |
| 	scx_ops = *ops;
 | |
| 
 | |
| 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
 | |
| 		     SCX_OPS_DISABLED);
 | |
| 
 | |
| 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
 | |
| 	scx_warned_zero_slice = false;
 | |
| 
 | |
| 	atomic_long_set(&scx_nr_rejected, 0);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep CPUs stable during enable so that the BPF scheduler can track
 | |
| 	 * online CPUs by watching ->on/offline_cpu() after ->init().
 | |
| 	 */
 | |
| 	cpus_read_lock();
 | |
| 
 | |
| 	if (scx_ops.init) {
 | |
| 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
 | |
| 		if (ret) {
 | |
| 			ret = ops_sanitize_err("init", ret);
 | |
| 			cpus_read_unlock();
 | |
| 			goto err_disable;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
 | |
| 		if (((void (**)(void))ops)[i])
 | |
| 			static_branch_enable_cpuslocked(&scx_has_op[i]);
 | |
| 
 | |
| 	check_hotplug_seq(ops);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	ret = validate_ops(ops);
 | |
| 	if (ret)
 | |
| 		goto err_disable;
 | |
| 
 | |
| 	WARN_ON_ONCE(scx_dsp_ctx);
 | |
| 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
 | |
| 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
 | |
| 						   scx_dsp_max_batch),
 | |
| 				     __alignof__(struct scx_dsp_ctx));
 | |
| 	if (!scx_dsp_ctx) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (ops->timeout_ms)
 | |
| 		timeout = msecs_to_jiffies(ops->timeout_ms);
 | |
| 	else
 | |
| 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
 | |
| 
 | |
| 	WRITE_ONCE(scx_watchdog_timeout, timeout);
 | |
| 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
 | |
| 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
 | |
| 			   scx_watchdog_timeout / 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
 | |
| 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
 | |
| 	 * userspace scheduling) may not function correctly before all tasks are
 | |
| 	 * switched. Init in bypass mode to guarantee forward progress.
 | |
| 	 */
 | |
| 	scx_ops_bypass(true);
 | |
| 
 | |
| 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
 | |
| 		if (((void (**)(void))ops)[i])
 | |
| 			static_branch_enable(&scx_has_op[i]);
 | |
| 
 | |
| 	if (ops->flags & SCX_OPS_ENQ_LAST)
 | |
| 		static_branch_enable(&scx_ops_enq_last);
 | |
| 
 | |
| 	if (ops->flags & SCX_OPS_ENQ_EXITING)
 | |
| 		static_branch_enable(&scx_ops_enq_exiting);
 | |
| 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
 | |
| 		static_branch_enable(&scx_ops_cpu_preempt);
 | |
| 
 | |
| 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
 | |
| 		reset_idle_masks();
 | |
| 		static_branch_enable(&scx_builtin_idle_enabled);
 | |
| 	} else {
 | |
| 		static_branch_disable(&scx_builtin_idle_enabled);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock out forks, cgroup on/offlining and moves before opening the
 | |
| 	 * floodgate so that they don't wander into the operations prematurely.
 | |
| 	 */
 | |
| 	percpu_down_write(&scx_fork_rwsem);
 | |
| 
 | |
| 	WARN_ON_ONCE(scx_ops_init_task_enabled);
 | |
| 	scx_ops_init_task_enabled = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
 | |
| 	 * preventing new tasks from being added. No need to exclude tasks
 | |
| 	 * leaving as sched_ext_free() can handle both prepped and enabled
 | |
| 	 * tasks. Prep all tasks first and then enable them with preemption
 | |
| 	 * disabled.
 | |
| 	 *
 | |
| 	 * All cgroups should be initialized before scx_ops_init_task() so that
 | |
| 	 * the BPF scheduler can reliably track each task's cgroup membership
 | |
| 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
 | |
| 	 * migrations while tasks are being initialized so that
 | |
| 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
 | |
| 	 */
 | |
| 	scx_cgroup_lock();
 | |
| 	ret = scx_cgroup_init();
 | |
| 	if (ret)
 | |
| 		goto err_disable_unlock_all;
 | |
| 
 | |
| 	spin_lock_irq(&scx_tasks_lock);
 | |
| 	scx_task_iter_init(&sti);
 | |
| 	while ((p = scx_task_iter_next_locked(&sti))) {
 | |
| 		/*
 | |
| 		 * @p may already be dead, have lost all its usages counts and
 | |
| 		 * be waiting for RCU grace period before being freed. @p can't
 | |
| 		 * be initialized for SCX in such cases and should be ignored.
 | |
| 		 */
 | |
| 		if (!tryget_task_struct(p))
 | |
| 			continue;
 | |
| 
 | |
| 		scx_task_iter_rq_unlock(&sti);
 | |
| 		spin_unlock_irq(&scx_tasks_lock);
 | |
| 
 | |
| 		ret = scx_ops_init_task(p, task_group(p), false);
 | |
| 		if (ret) {
 | |
| 			put_task_struct(p);
 | |
| 			spin_lock_irq(&scx_tasks_lock);
 | |
| 			scx_task_iter_exit(&sti);
 | |
| 			spin_unlock_irq(&scx_tasks_lock);
 | |
| 			pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
 | |
| 			       ret, p->comm, p->pid);
 | |
| 			goto err_disable_unlock_all;
 | |
| 		}
 | |
| 
 | |
| 		scx_set_task_state(p, SCX_TASK_READY);
 | |
| 
 | |
| 		put_task_struct(p);
 | |
| 		spin_lock_irq(&scx_tasks_lock);
 | |
| 	}
 | |
| 	scx_task_iter_exit(&sti);
 | |
| 	spin_unlock_irq(&scx_tasks_lock);
 | |
| 	scx_cgroup_unlock();
 | |
| 	percpu_up_write(&scx_fork_rwsem);
 | |
| 
 | |
| 	/*
 | |
| 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
 | |
| 	 * all eligible tasks.
 | |
| 	 */
 | |
| 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
 | |
| 	static_branch_enable(&__scx_ops_enabled);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're fully committed and can't fail. The task READY -> ENABLED
 | |
| 	 * transitions here are synchronized against sched_ext_free() through
 | |
| 	 * scx_tasks_lock.
 | |
| 	 */
 | |
| 	percpu_down_write(&scx_fork_rwsem);
 | |
| 	spin_lock_irq(&scx_tasks_lock);
 | |
| 	scx_task_iter_init(&sti);
 | |
| 	while ((p = scx_task_iter_next_locked(&sti))) {
 | |
| 		const struct sched_class *old_class = p->sched_class;
 | |
| 		struct sched_enq_and_set_ctx ctx;
 | |
| 
 | |
| 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
 | |
| 
 | |
| 		__setscheduler_prio(p, p->prio);
 | |
| 		check_class_changing(task_rq(p), p, old_class);
 | |
| 
 | |
| 		sched_enq_and_set_task(&ctx);
 | |
| 
 | |
| 		check_class_changed(task_rq(p), p, old_class, p->prio);
 | |
| 	}
 | |
| 	scx_task_iter_exit(&sti);
 | |
| 	spin_unlock_irq(&scx_tasks_lock);
 | |
| 	percpu_up_write(&scx_fork_rwsem);
 | |
| 
 | |
| 	scx_ops_bypass(false);
 | |
| 
 | |
| 	/*
 | |
| 	 * Returning an error code here would lose the recorded error
 | |
| 	 * information. Exit indicating success so that the error is notified
 | |
| 	 * through ops.exit() with all the details.
 | |
| 	 */
 | |
| 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
 | |
| 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
 | |
| 		ret = 0;
 | |
| 		goto err_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
 | |
| 		static_branch_enable(&__scx_switched_all);
 | |
| 
 | |
| 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
 | |
| 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
 | |
| 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
 | |
| 	mutex_unlock(&scx_ops_enable_mutex);
 | |
| 
 | |
| 	atomic_long_inc(&scx_enable_seq);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_del:
 | |
| 	kobject_del(scx_root_kobj);
 | |
| err:
 | |
| 	kobject_put(scx_root_kobj);
 | |
| 	scx_root_kobj = NULL;
 | |
| 	if (scx_exit_info) {
 | |
| 		free_exit_info(scx_exit_info);
 | |
| 		scx_exit_info = NULL;
 | |
| 	}
 | |
| err_unlock:
 | |
| 	mutex_unlock(&scx_ops_enable_mutex);
 | |
| 	return ret;
 | |
| 
 | |
| err_disable_unlock_all:
 | |
| 	scx_cgroup_unlock();
 | |
| 	percpu_up_write(&scx_fork_rwsem);
 | |
| 	scx_ops_bypass(false);
 | |
| err_disable:
 | |
| 	mutex_unlock(&scx_ops_enable_mutex);
 | |
| 	/* must be fully disabled before returning */
 | |
| 	scx_ops_disable(SCX_EXIT_ERROR);
 | |
| 	kthread_flush_work(&scx_ops_disable_work);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************************************
 | |
|  * bpf_struct_ops plumbing.
 | |
|  */
 | |
| #include <linux/bpf_verifier.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/btf.h>
 | |
| 
 | |
| extern struct btf *btf_vmlinux;
 | |
| static const struct btf_type *task_struct_type;
 | |
| static u32 task_struct_type_id;
 | |
| 
 | |
| static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
 | |
| 			       enum bpf_access_type type,
 | |
| 			       const struct bpf_prog *prog,
 | |
| 			       struct bpf_insn_access_aux *info)
 | |
| {
 | |
| 	struct btf *btf = bpf_get_btf_vmlinux();
 | |
| 	const struct bpf_struct_ops_desc *st_ops_desc;
 | |
| 	const struct btf_member *member;
 | |
| 	const struct btf_type *t;
 | |
| 	u32 btf_id, member_idx;
 | |
| 	const char *mname;
 | |
| 
 | |
| 	/* struct_ops op args are all sequential, 64-bit numbers */
 | |
| 	if (off != arg_n * sizeof(__u64))
 | |
| 		return false;
 | |
| 
 | |
| 	/* btf_id should be the type id of struct sched_ext_ops */
 | |
| 	btf_id = prog->aux->attach_btf_id;
 | |
| 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
 | |
| 	if (!st_ops_desc)
 | |
| 		return false;
 | |
| 
 | |
| 	/* BTF type of struct sched_ext_ops */
 | |
| 	t = st_ops_desc->type;
 | |
| 
 | |
| 	member_idx = prog->expected_attach_type;
 | |
| 	if (member_idx >= btf_type_vlen(t))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the member name of this struct_ops program, which corresponds to
 | |
| 	 * a field in struct sched_ext_ops. For example, the member name of the
 | |
| 	 * dispatch struct_ops program (callback) is "dispatch".
 | |
| 	 */
 | |
| 	member = &btf_type_member(t)[member_idx];
 | |
| 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
 | |
| 
 | |
| 	if (!strcmp(mname, op)) {
 | |
| 		/*
 | |
| 		 * The value is a pointer to a type (struct task_struct) given
 | |
| 		 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
 | |
| 		 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
 | |
| 		 * should check the pointer to make sure it is not NULL before
 | |
| 		 * using it, or the verifier will reject the program.
 | |
| 		 *
 | |
| 		 * Longer term, this is something that should be addressed by
 | |
| 		 * BTF, and be fully contained within the verifier.
 | |
| 		 */
 | |
| 		info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
 | |
| 		info->btf = btf_vmlinux;
 | |
| 		info->btf_id = task_struct_type_id;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool bpf_scx_is_valid_access(int off, int size,
 | |
| 				    enum bpf_access_type type,
 | |
| 				    const struct bpf_prog *prog,
 | |
| 				    struct bpf_insn_access_aux *info)
 | |
| {
 | |
| 	if (type != BPF_READ)
 | |
| 		return false;
 | |
| 	if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
 | |
| 	    set_arg_maybe_null("yield", 1, off, size, type, prog, info))
 | |
| 		return true;
 | |
| 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
 | |
| 		return false;
 | |
| 	if (off % size != 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return btf_ctx_access(off, size, type, prog, info);
 | |
| }
 | |
| 
 | |
| static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
 | |
| 				     const struct bpf_reg_state *reg, int off,
 | |
| 				     int size)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 
 | |
| 	t = btf_type_by_id(reg->btf, reg->btf_id);
 | |
| 	if (t == task_struct_type) {
 | |
| 		if (off >= offsetof(struct task_struct, scx.slice) &&
 | |
| 		    off + size <= offsetofend(struct task_struct, scx.slice))
 | |
| 			return SCALAR_VALUE;
 | |
| 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
 | |
| 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
 | |
| 			return SCALAR_VALUE;
 | |
| 		if (off >= offsetof(struct task_struct, scx.disallow) &&
 | |
| 		    off + size <= offsetofend(struct task_struct, scx.disallow))
 | |
| 			return SCALAR_VALUE;
 | |
| 	}
 | |
| 
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static const struct bpf_func_proto *
 | |
| bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 | |
| {
 | |
| 	switch (func_id) {
 | |
| 	case BPF_FUNC_task_storage_get:
 | |
| 		return &bpf_task_storage_get_proto;
 | |
| 	case BPF_FUNC_task_storage_delete:
 | |
| 		return &bpf_task_storage_delete_proto;
 | |
| 	default:
 | |
| 		return bpf_base_func_proto(func_id, prog);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
 | |
| 	.get_func_proto = bpf_scx_get_func_proto,
 | |
| 	.is_valid_access = bpf_scx_is_valid_access,
 | |
| 	.btf_struct_access = bpf_scx_btf_struct_access,
 | |
| };
 | |
| 
 | |
| static int bpf_scx_init_member(const struct btf_type *t,
 | |
| 			       const struct btf_member *member,
 | |
| 			       void *kdata, const void *udata)
 | |
| {
 | |
| 	const struct sched_ext_ops *uops = udata;
 | |
| 	struct sched_ext_ops *ops = kdata;
 | |
| 	u32 moff = __btf_member_bit_offset(t, member) / 8;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (moff) {
 | |
| 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
 | |
| 		if (*(u32 *)(udata + moff) > INT_MAX)
 | |
| 			return -E2BIG;
 | |
| 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
 | |
| 		return 1;
 | |
| 	case offsetof(struct sched_ext_ops, flags):
 | |
| 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
 | |
| 			return -EINVAL;
 | |
| 		ops->flags = *(u64 *)(udata + moff);
 | |
| 		return 1;
 | |
| 	case offsetof(struct sched_ext_ops, name):
 | |
| 		ret = bpf_obj_name_cpy(ops->name, uops->name,
 | |
| 				       sizeof(ops->name));
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret == 0)
 | |
| 			return -EINVAL;
 | |
| 		return 1;
 | |
| 	case offsetof(struct sched_ext_ops, timeout_ms):
 | |
| 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
 | |
| 		    SCX_WATCHDOG_MAX_TIMEOUT)
 | |
| 			return -E2BIG;
 | |
| 		ops->timeout_ms = *(u32 *)(udata + moff);
 | |
| 		return 1;
 | |
| 	case offsetof(struct sched_ext_ops, exit_dump_len):
 | |
| 		ops->exit_dump_len =
 | |
| 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
 | |
| 		return 1;
 | |
| 	case offsetof(struct sched_ext_ops, hotplug_seq):
 | |
| 		ops->hotplug_seq = *(u64 *)(udata + moff);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bpf_scx_check_member(const struct btf_type *t,
 | |
| 				const struct btf_member *member,
 | |
| 				const struct bpf_prog *prog)
 | |
| {
 | |
| 	u32 moff = __btf_member_bit_offset(t, member) / 8;
 | |
| 
 | |
| 	switch (moff) {
 | |
| 	case offsetof(struct sched_ext_ops, init_task):
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| 	case offsetof(struct sched_ext_ops, cgroup_init):
 | |
| 	case offsetof(struct sched_ext_ops, cgroup_exit):
 | |
| 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
 | |
| #endif
 | |
| 	case offsetof(struct sched_ext_ops, cpu_online):
 | |
| 	case offsetof(struct sched_ext_ops, cpu_offline):
 | |
| 	case offsetof(struct sched_ext_ops, init):
 | |
| 	case offsetof(struct sched_ext_ops, exit):
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (prog->sleepable)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bpf_scx_reg(void *kdata, struct bpf_link *link)
 | |
| {
 | |
| 	return scx_ops_enable(kdata, link);
 | |
| }
 | |
| 
 | |
| static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
 | |
| {
 | |
| 	scx_ops_disable(SCX_EXIT_UNREG);
 | |
| 	kthread_flush_work(&scx_ops_disable_work);
 | |
| }
 | |
| 
 | |
| static int bpf_scx_init(struct btf *btf)
 | |
| {
 | |
| 	s32 type_id;
 | |
| 
 | |
| 	type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
 | |
| 	if (type_id < 0)
 | |
| 		return -EINVAL;
 | |
| 	task_struct_type = btf_type_by_id(btf, type_id);
 | |
| 	task_struct_type_id = type_id;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
 | |
| {
 | |
| 	/*
 | |
| 	 * sched_ext does not support updating the actively-loaded BPF
 | |
| 	 * scheduler, as registering a BPF scheduler can always fail if the
 | |
| 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
 | |
| 	 * etc. Similarly, we can always race with unregistration happening
 | |
| 	 * elsewhere, such as with sysrq.
 | |
| 	 */
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static int bpf_scx_validate(void *kdata)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
 | |
| static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
 | |
| static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
 | |
| static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
 | |
| static void tick_stub(struct task_struct *p) {}
 | |
| static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
 | |
| static void running_stub(struct task_struct *p) {}
 | |
| static void stopping_stub(struct task_struct *p, bool runnable) {}
 | |
| static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
 | |
| static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
 | |
| static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
 | |
| static void set_weight_stub(struct task_struct *p, u32 weight) {}
 | |
| static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
 | |
| static void update_idle_stub(s32 cpu, bool idle) {}
 | |
| static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
 | |
| static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
 | |
| static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
 | |
| static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
 | |
| static void enable_stub(struct task_struct *p) {}
 | |
| static void disable_stub(struct task_struct *p) {}
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
 | |
| static void cgroup_exit_stub(struct cgroup *cgrp) {}
 | |
| static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
 | |
| static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
 | |
| static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
 | |
| static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
 | |
| #endif
 | |
| static void cpu_online_stub(s32 cpu) {}
 | |
| static void cpu_offline_stub(s32 cpu) {}
 | |
| static s32 init_stub(void) { return -EINVAL; }
 | |
| static void exit_stub(struct scx_exit_info *info) {}
 | |
| static void dump_stub(struct scx_dump_ctx *ctx) {}
 | |
| static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
 | |
| static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
 | |
| 
 | |
| static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
 | |
| 	.select_cpu = select_cpu_stub,
 | |
| 	.enqueue = enqueue_stub,
 | |
| 	.dequeue = dequeue_stub,
 | |
| 	.dispatch = dispatch_stub,
 | |
| 	.tick = tick_stub,
 | |
| 	.runnable = runnable_stub,
 | |
| 	.running = running_stub,
 | |
| 	.stopping = stopping_stub,
 | |
| 	.quiescent = quiescent_stub,
 | |
| 	.yield = yield_stub,
 | |
| 	.core_sched_before = core_sched_before_stub,
 | |
| 	.set_weight = set_weight_stub,
 | |
| 	.set_cpumask = set_cpumask_stub,
 | |
| 	.update_idle = update_idle_stub,
 | |
| 	.cpu_acquire = cpu_acquire_stub,
 | |
| 	.cpu_release = cpu_release_stub,
 | |
| 	.init_task = init_task_stub,
 | |
| 	.exit_task = exit_task_stub,
 | |
| 	.enable = enable_stub,
 | |
| 	.disable = disable_stub,
 | |
| #ifdef CONFIG_EXT_GROUP_SCHED
 | |
| 	.cgroup_init = cgroup_init_stub,
 | |
| 	.cgroup_exit = cgroup_exit_stub,
 | |
| 	.cgroup_prep_move = cgroup_prep_move_stub,
 | |
| 	.cgroup_move = cgroup_move_stub,
 | |
| 	.cgroup_cancel_move = cgroup_cancel_move_stub,
 | |
| 	.cgroup_set_weight = cgroup_set_weight_stub,
 | |
| #endif
 | |
| 	.cpu_online = cpu_online_stub,
 | |
| 	.cpu_offline = cpu_offline_stub,
 | |
| 	.init = init_stub,
 | |
| 	.exit = exit_stub,
 | |
| 	.dump = dump_stub,
 | |
| 	.dump_cpu = dump_cpu_stub,
 | |
| 	.dump_task = dump_task_stub,
 | |
| };
 | |
| 
 | |
| static struct bpf_struct_ops bpf_sched_ext_ops = {
 | |
| 	.verifier_ops = &bpf_scx_verifier_ops,
 | |
| 	.reg = bpf_scx_reg,
 | |
| 	.unreg = bpf_scx_unreg,
 | |
| 	.check_member = bpf_scx_check_member,
 | |
| 	.init_member = bpf_scx_init_member,
 | |
| 	.init = bpf_scx_init,
 | |
| 	.update = bpf_scx_update,
 | |
| 	.validate = bpf_scx_validate,
 | |
| 	.name = "sched_ext_ops",
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.cfi_stubs = &__bpf_ops_sched_ext_ops
 | |
| };
 | |
| 
 | |
| 
 | |
| /********************************************************************************
 | |
|  * System integration and init.
 | |
|  */
 | |
| 
 | |
| static void sysrq_handle_sched_ext_reset(u8 key)
 | |
| {
 | |
| 	if (scx_ops_helper)
 | |
| 		scx_ops_disable(SCX_EXIT_SYSRQ);
 | |
| 	else
 | |
| 		pr_info("sched_ext: BPF scheduler not yet used\n");
 | |
| }
 | |
| 
 | |
| static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
 | |
| 	.handler	= sysrq_handle_sched_ext_reset,
 | |
| 	.help_msg	= "reset-sched-ext(S)",
 | |
| 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
 | |
| 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
 | |
| };
 | |
| 
 | |
| static void sysrq_handle_sched_ext_dump(u8 key)
 | |
| {
 | |
| 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
 | |
| 
 | |
| 	if (scx_enabled())
 | |
| 		scx_dump_state(&ei, 0);
 | |
| }
 | |
| 
 | |
| static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
 | |
| 	.handler	= sysrq_handle_sched_ext_dump,
 | |
| 	.help_msg	= "dump-sched-ext(D)",
 | |
| 	.action_msg	= "Trigger sched_ext debug dump",
 | |
| 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
 | |
| };
 | |
| 
 | |
| static bool can_skip_idle_kick(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can skip idle kicking if @rq is going to go through at least one
 | |
| 	 * full SCX scheduling cycle before going idle. Just checking whether
 | |
| 	 * curr is not idle is insufficient because we could be racing
 | |
| 	 * balance_one() trying to pull the next task from a remote rq, which
 | |
| 	 * may fail, and @rq may become idle afterwards.
 | |
| 	 *
 | |
| 	 * The race window is small and we don't and can't guarantee that @rq is
 | |
| 	 * only kicked while idle anyway. Skip only when sure.
 | |
| 	 */
 | |
| 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
 | |
| }
 | |
| 
 | |
| static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct scx_rq *this_scx = &this_rq->scx;
 | |
| 	bool should_wait = false;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_rq_lock_irqsave(rq, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * During CPU hotplug, a CPU may depend on kicking itself to make
 | |
| 	 * forward progress. Allow kicking self regardless of online state.
 | |
| 	 */
 | |
| 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
 | |
| 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
 | |
| 			if (rq->curr->sched_class == &ext_sched_class)
 | |
| 				rq->curr->scx.slice = 0;
 | |
| 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
 | |
| 		}
 | |
| 
 | |
| 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
 | |
| 			pseqs[cpu] = rq->scx.pnt_seq;
 | |
| 			should_wait = true;
 | |
| 		}
 | |
| 
 | |
| 		resched_curr(rq);
 | |
| 	} else {
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_rq_unlock_irqrestore(rq, flags);
 | |
| 
 | |
| 	return should_wait;
 | |
| }
 | |
| 
 | |
| static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_rq_lock_irqsave(rq, flags);
 | |
| 
 | |
| 	if (!can_skip_idle_kick(rq) &&
 | |
| 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
 | |
| 		resched_curr(rq);
 | |
| 
 | |
| 	raw_spin_rq_unlock_irqrestore(rq, flags);
 | |
| }
 | |
| 
 | |
| static void kick_cpus_irq_workfn(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct rq *this_rq = this_rq();
 | |
| 	struct scx_rq *this_scx = &this_rq->scx;
 | |
| 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
 | |
| 	bool should_wait = false;
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
 | |
| 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
 | |
| 		kick_one_cpu_if_idle(cpu, this_rq);
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
 | |
| 	}
 | |
| 
 | |
| 	if (!should_wait)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
 | |
| 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
 | |
| 
 | |
| 		if (cpu != cpu_of(this_rq)) {
 | |
| 			/*
 | |
| 			 * Pairs with smp_store_release() issued by this CPU in
 | |
| 			 * scx_next_task_picked() on the resched path.
 | |
| 			 *
 | |
| 			 * We busy-wait here to guarantee that no other task can
 | |
| 			 * be scheduled on our core before the target CPU has
 | |
| 			 * entered the resched path.
 | |
| 			 */
 | |
| 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
 | |
| 				cpu_relax();
 | |
| 		}
 | |
| 
 | |
| 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * print_scx_info - print out sched_ext scheduler state
 | |
|  * @log_lvl: the log level to use when printing
 | |
|  * @p: target task
 | |
|  *
 | |
|  * If a sched_ext scheduler is enabled, print the name and state of the
 | |
|  * scheduler. If @p is on sched_ext, print further information about the task.
 | |
|  *
 | |
|  * This function can be safely called on any task as long as the task_struct
 | |
|  * itself is accessible. While safe, this function isn't synchronized and may
 | |
|  * print out mixups or garbages of limited length.
 | |
|  */
 | |
| void print_scx_info(const char *log_lvl, struct task_struct *p)
 | |
| {
 | |
| 	enum scx_ops_enable_state state = scx_ops_enable_state();
 | |
| 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
 | |
| 	char runnable_at_buf[22] = "?";
 | |
| 	struct sched_class *class;
 | |
| 	unsigned long runnable_at;
 | |
| 
 | |
| 	if (state == SCX_OPS_DISABLED)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Carefully check if the task was running on sched_ext, and then
 | |
| 	 * carefully copy the time it's been runnable, and its state.
 | |
| 	 */
 | |
| 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
 | |
| 	    class != &ext_sched_class) {
 | |
| 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
 | |
| 		       scx_ops_enable_state_str[state], all);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
 | |
| 				      sizeof(runnable_at)))
 | |
| 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
 | |
| 			  jiffies_delta_msecs(runnable_at, jiffies));
 | |
| 
 | |
| 	/* print everything onto one line to conserve console space */
 | |
| 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
 | |
| 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
 | |
| 	       runnable_at_buf);
 | |
| }
 | |
| 
 | |
| static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
 | |
| {
 | |
| 	/*
 | |
| 	 * SCX schedulers often have userspace components which are sometimes
 | |
| 	 * involved in critial scheduling paths. PM operations involve freezing
 | |
| 	 * userspace which can lead to scheduling misbehaviors including stalls.
 | |
| 	 * Let's bypass while PM operations are in progress.
 | |
| 	 */
 | |
| 	switch (event) {
 | |
| 	case PM_HIBERNATION_PREPARE:
 | |
| 	case PM_SUSPEND_PREPARE:
 | |
| 	case PM_RESTORE_PREPARE:
 | |
| 		scx_ops_bypass(true);
 | |
| 		break;
 | |
| 	case PM_POST_HIBERNATION:
 | |
| 	case PM_POST_SUSPEND:
 | |
| 	case PM_POST_RESTORE:
 | |
| 		scx_ops_bypass(false);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block scx_pm_notifier = {
 | |
| 	.notifier_call = scx_pm_handler,
 | |
| };
 | |
| 
 | |
| void __init init_sched_ext_class(void)
 | |
| {
 | |
| 	s32 cpu, v;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following is to prevent the compiler from optimizing out the enum
 | |
| 	 * definitions so that BPF scheduler implementations can use them
 | |
| 	 * through the generated vmlinux.h.
 | |
| 	 */
 | |
| 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
 | |
| 		   SCX_TG_ONLINE);
 | |
| 
 | |
| 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
 | |
| #ifdef CONFIG_SMP
 | |
| 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
 | |
| 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
 | |
| #endif
 | |
| 	scx_kick_cpus_pnt_seqs =
 | |
| 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
 | |
| 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
 | |
| 	BUG_ON(!scx_kick_cpus_pnt_seqs);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
 | |
| 		INIT_LIST_HEAD(&rq->scx.runnable_list);
 | |
| 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
 | |
| 
 | |
| 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
 | |
| 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
 | |
| 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
 | |
| 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
 | |
| 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
 | |
| 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
 | |
| 
 | |
| 		if (cpu_online(cpu))
 | |
| 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
 | |
| 	}
 | |
| 
 | |
| 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
 | |
| 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
 | |
| 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************************************
 | |
|  * Helpers that can be called from the BPF scheduler.
 | |
|  */
 | |
| #include <linux/btf_ids.h>
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
 | |
|  * @p: task_struct to select a CPU for
 | |
|  * @prev_cpu: CPU @p was on previously
 | |
|  * @wake_flags: %SCX_WAKE_* flags
 | |
|  * @is_idle: out parameter indicating whether the returned CPU is idle
 | |
|  *
 | |
|  * Can only be called from ops.select_cpu() if the built-in CPU selection is
 | |
|  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
 | |
|  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
 | |
|  *
 | |
|  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
 | |
|  * currently idle and thus a good candidate for direct dispatching.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
 | |
| 				       u64 wake_flags, bool *is_idle)
 | |
| {
 | |
| 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
 | |
| 		*is_idle = false;
 | |
| 		return prev_cpu;
 | |
| 	}
 | |
| #ifdef CONFIG_SMP
 | |
| 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
 | |
| #else
 | |
| 	*is_idle = false;
 | |
| 	return prev_cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
 | |
| BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_select_cpu,
 | |
| };
 | |
| 
 | |
| static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
 | |
| {
 | |
| 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
 | |
| 		return false;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	if (unlikely(!p)) {
 | |
| 		scx_ops_error("called with NULL task");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
 | |
| 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
 | |
| {
 | |
| 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 | |
| 	struct task_struct *ddsp_task;
 | |
| 
 | |
| 	ddsp_task = __this_cpu_read(direct_dispatch_task);
 | |
| 	if (ddsp_task) {
 | |
| 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
 | |
| 		scx_ops_error("dispatch buffer overflow");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
 | |
| 		.task = p,
 | |
| 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
 | |
| 		.dsq_id = dsq_id,
 | |
| 		.enq_flags = enq_flags,
 | |
| 	};
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
 | |
|  * @p: task_struct to dispatch
 | |
|  * @dsq_id: DSQ to dispatch to
 | |
|  * @slice: duration @p can run for in nsecs, 0 to keep the current value
 | |
|  * @enq_flags: SCX_ENQ_*
 | |
|  *
 | |
|  * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
 | |
|  * to call this function spuriously. Can be called from ops.enqueue(),
 | |
|  * ops.select_cpu(), and ops.dispatch().
 | |
|  *
 | |
|  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
 | |
|  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
 | |
|  * used to target the local DSQ of a CPU other than the enqueueing one. Use
 | |
|  * ops.select_cpu() to be on the target CPU in the first place.
 | |
|  *
 | |
|  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
 | |
|  * will be directly dispatched to the corresponding dispatch queue after
 | |
|  * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
 | |
|  * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
 | |
|  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
 | |
|  * task is dispatched.
 | |
|  *
 | |
|  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
 | |
|  * and this function can be called upto ops.dispatch_max_batch times to dispatch
 | |
|  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
 | |
|  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
 | |
|  *
 | |
|  * This function doesn't have any locking restrictions and may be called under
 | |
|  * BPF locks (in the future when BPF introduces more flexible locking).
 | |
|  *
 | |
|  * @p is allowed to run for @slice. The scheduling path is triggered on slice
 | |
|  * exhaustion. If zero, the current residual slice is maintained. If
 | |
|  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
 | |
|  * scx_bpf_kick_cpu() to trigger scheduling.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
 | |
| 				  u64 enq_flags)
 | |
| {
 | |
| 	if (!scx_dispatch_preamble(p, enq_flags))
 | |
| 		return;
 | |
| 
 | |
| 	if (slice)
 | |
| 		p->scx.slice = slice;
 | |
| 	else
 | |
| 		p->scx.slice = p->scx.slice ?: 1;
 | |
| 
 | |
| 	scx_dispatch_commit(p, dsq_id, enq_flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
 | |
|  * @p: task_struct to dispatch
 | |
|  * @dsq_id: DSQ to dispatch to
 | |
|  * @slice: duration @p can run for in nsecs, 0 to keep the current value
 | |
|  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
 | |
|  * @enq_flags: SCX_ENQ_*
 | |
|  *
 | |
|  * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
 | |
|  * Tasks queued into the priority queue are ordered by @vtime and always
 | |
|  * consumed after the tasks in the FIFO queue. All other aspects are identical
 | |
|  * to scx_bpf_dispatch().
 | |
|  *
 | |
|  * @vtime ordering is according to time_before64() which considers wrapping. A
 | |
|  * numerically larger vtime may indicate an earlier position in the ordering and
 | |
|  * vice-versa.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
 | |
| 					u64 slice, u64 vtime, u64 enq_flags)
 | |
| {
 | |
| 	if (!scx_dispatch_preamble(p, enq_flags))
 | |
| 		return;
 | |
| 
 | |
| 	if (slice)
 | |
| 		p->scx.slice = slice;
 | |
| 	else
 | |
| 		p->scx.slice = p->scx.slice ?: 1;
 | |
| 
 | |
| 	p->scx.dsq_vtime = vtime;
 | |
| 
 | |
| 	scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_enqueue_dispatch,
 | |
| };
 | |
| 
 | |
| static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
 | |
| 				  struct task_struct *p, u64 dsq_id,
 | |
| 				  u64 enq_flags)
 | |
| {
 | |
| 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
 | |
| 	struct rq *this_rq, *src_rq, *locked_rq;
 | |
| 	bool dispatched = false;
 | |
| 	bool in_balance;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can be called from either ops.dispatch() locking this_rq() or any
 | |
| 	 * context where no rq lock is held. If latter, lock @p's task_rq which
 | |
| 	 * we'll likely need anyway.
 | |
| 	 */
 | |
| 	src_rq = task_rq(p);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	this_rq = this_rq();
 | |
| 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
 | |
| 
 | |
| 	if (in_balance) {
 | |
| 		if (this_rq != src_rq) {
 | |
| 			raw_spin_rq_unlock(this_rq);
 | |
| 			raw_spin_rq_lock(src_rq);
 | |
| 		}
 | |
| 	} else {
 | |
| 		raw_spin_rq_lock(src_rq);
 | |
| 	}
 | |
| 
 | |
| 	locked_rq = src_rq;
 | |
| 	raw_spin_lock(&src_dsq->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Did someone else get to it? @p could have already left $src_dsq, got
 | |
| 	 * re-enqueud, or be in the process of being consumed by someone else.
 | |
| 	 */
 | |
| 	if (unlikely(p->scx.dsq != src_dsq ||
 | |
| 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
 | |
| 		     p->scx.holding_cpu >= 0) ||
 | |
| 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
 | |
| 		raw_spin_unlock(&src_dsq->lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* @p is still on $src_dsq and stable, determine the destination */
 | |
| 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Apply vtime and slice updates before moving so that the new time is
 | |
| 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
 | |
| 	 * this is safe as we're locking it.
 | |
| 	 */
 | |
| 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
 | |
| 		p->scx.dsq_vtime = kit->vtime;
 | |
| 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
 | |
| 		p->scx.slice = kit->slice;
 | |
| 
 | |
| 	/* execute move */
 | |
| 	locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
 | |
| 	dispatched = true;
 | |
| out:
 | |
| 	if (in_balance) {
 | |
| 		if (this_rq != locked_rq) {
 | |
| 			raw_spin_rq_unlock(locked_rq);
 | |
| 			raw_spin_rq_lock(this_rq);
 | |
| 		}
 | |
| 	} else {
 | |
| 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
 | |
| 	}
 | |
| 
 | |
| 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
 | |
| 			       __SCX_DSQ_ITER_HAS_VTIME);
 | |
| 	return dispatched;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
 | |
|  *
 | |
|  * Can only be called from ops.dispatch().
 | |
|  */
 | |
| __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
 | |
| {
 | |
| 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
 | |
| 		return 0;
 | |
| 
 | |
| 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
 | |
|  *
 | |
|  * Cancel the latest dispatch. Can be called multiple times to cancel further
 | |
|  * dispatches. Can only be called from ops.dispatch().
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dispatch_cancel(void)
 | |
| {
 | |
| 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 | |
| 
 | |
| 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
 | |
| 		return;
 | |
| 
 | |
| 	if (dspc->cursor > 0)
 | |
| 		dspc->cursor--;
 | |
| 	else
 | |
| 		scx_ops_error("dispatch buffer underflow");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
 | |
|  * @dsq_id: DSQ to consume
 | |
|  *
 | |
|  * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
 | |
|  * to the current CPU's local DSQ for execution. Can only be called from
 | |
|  * ops.dispatch().
 | |
|  *
 | |
|  * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
 | |
|  * trying to consume the specified DSQ. It may also grab rq locks and thus can't
 | |
|  * be called under any BPF locks.
 | |
|  *
 | |
|  * Returns %true if a task has been consumed, %false if there isn't any task to
 | |
|  * consume.
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
 | |
| {
 | |
| 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 
 | |
| 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
 | |
| 		return false;
 | |
| 
 | |
| 	flush_dispatch_buf(dspc->rq);
 | |
| 
 | |
| 	dsq = find_user_dsq(dsq_id);
 | |
| 	if (unlikely(!dsq)) {
 | |
| 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (consume_dispatch_q(dspc->rq, dsq)) {
 | |
| 		/*
 | |
| 		 * A successfully consumed task can be dequeued before it starts
 | |
| 		 * running while the CPU is trying to migrate other dispatched
 | |
| 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
 | |
| 		 * local DSQ.
 | |
| 		 */
 | |
| 		dspc->nr_tasks++;
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
 | |
|  * @it__iter: DSQ iterator in progress
 | |
|  * @slice: duration the dispatched task can run for in nsecs
 | |
|  *
 | |
|  * Override the slice of the next task that will be dispatched from @it__iter
 | |
|  * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
 | |
|  * the previous slice duration is kept.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
 | |
| 				struct bpf_iter_scx_dsq *it__iter, u64 slice)
 | |
| {
 | |
| 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
 | |
| 
 | |
| 	kit->slice = slice;
 | |
| 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
 | |
|  * @it__iter: DSQ iterator in progress
 | |
|  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
 | |
|  *
 | |
|  * Override the vtime of the next task that will be dispatched from @it__iter
 | |
|  * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
 | |
|  * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
 | |
|  * dispatch the next task, the override is ignored and cleared.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
 | |
| 				struct bpf_iter_scx_dsq *it__iter, u64 vtime)
 | |
| {
 | |
| 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
 | |
| 
 | |
| 	kit->vtime = vtime;
 | |
| 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
 | |
|  * @it__iter: DSQ iterator in progress
 | |
|  * @p: task to transfer
 | |
|  * @dsq_id: DSQ to move @p to
 | |
|  * @enq_flags: SCX_ENQ_*
 | |
|  *
 | |
|  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
 | |
|  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
 | |
|  * be the destination.
 | |
|  *
 | |
|  * For the transfer to be successful, @p must still be on the DSQ and have been
 | |
|  * queued before the DSQ iteration started. This function doesn't care whether
 | |
|  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
 | |
|  * been queued before the iteration started.
 | |
|  *
 | |
|  * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
 | |
|  * update.
 | |
|  *
 | |
|  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
 | |
|  * lock (e.g. BPF timers or SYSCALL programs).
 | |
|  *
 | |
|  * Returns %true if @p has been consumed, %false if @p had already been consumed
 | |
|  * or dequeued.
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
 | |
| 					   struct task_struct *p, u64 dsq_id,
 | |
| 					   u64 enq_flags)
 | |
| {
 | |
| 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
 | |
| 				     p, dsq_id, enq_flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
 | |
|  * @it__iter: DSQ iterator in progress
 | |
|  * @p: task to transfer
 | |
|  * @dsq_id: DSQ to move @p to
 | |
|  * @enq_flags: SCX_ENQ_*
 | |
|  *
 | |
|  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
 | |
|  * priority queue of the DSQ specified by @dsq_id. The destination must be a
 | |
|  * user DSQ as only user DSQs support priority queue.
 | |
|  *
 | |
|  * @p's slice and vtime are kept by default. Use
 | |
|  * scx_bpf_dispatch_from_dsq_set_slice() and
 | |
|  * scx_bpf_dispatch_from_dsq_set_vtime() to update.
 | |
|  *
 | |
|  * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
 | |
|  * scx_bpf_dispatch_vtime() for more information on @vtime.
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
 | |
| 						 struct task_struct *p, u64 dsq_id,
 | |
| 						 u64 enq_flags)
 | |
| {
 | |
| 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
 | |
| 				     p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
 | |
| BTF_ID_FLAGS(func, scx_bpf_consume)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_dispatch,
 | |
| };
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
 | |
|  *
 | |
|  * Iterate over all of the tasks currently enqueued on the local DSQ of the
 | |
|  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
 | |
|  * processed tasks. Can only be called from ops.cpu_release().
 | |
|  */
 | |
| __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
 | |
| {
 | |
| 	LIST_HEAD(tasks);
 | |
| 	u32 nr_enqueued = 0;
 | |
| 	struct rq *rq;
 | |
| 	struct task_struct *p, *n;
 | |
| 
 | |
| 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
 | |
| 		return 0;
 | |
| 
 | |
| 	rq = cpu_rq(smp_processor_id());
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * The BPF scheduler may choose to dispatch tasks back to
 | |
| 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
 | |
| 	 * first to avoid processing the same tasks repeatedly.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
 | |
| 				 scx.dsq_list.node) {
 | |
| 		/*
 | |
| 		 * If @p is being migrated, @p's current CPU may not agree with
 | |
| 		 * its allowed CPUs and the migration_cpu_stop is about to
 | |
| 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
 | |
| 		 *
 | |
| 		 * While racing sched property changes may also dequeue and
 | |
| 		 * re-enqueue a migrating task while its current CPU and allowed
 | |
| 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
 | |
| 		 * the current local DSQ for running tasks and thus are not
 | |
| 		 * visible to the BPF scheduler.
 | |
| 		 */
 | |
| 		if (p->migration_pending)
 | |
| 			continue;
 | |
| 
 | |
| 		dispatch_dequeue(rq, p);
 | |
| 		list_add_tail(&p->scx.dsq_list.node, &tasks);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
 | |
| 		list_del_init(&p->scx.dsq_list.node);
 | |
| 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
 | |
| 		nr_enqueued++;
 | |
| 	}
 | |
| 
 | |
| 	return nr_enqueued;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
 | |
| BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_cpu_release,
 | |
| };
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_create_dsq - Create a custom DSQ
 | |
|  * @dsq_id: DSQ to create
 | |
|  * @node: NUMA node to allocate from
 | |
|  *
 | |
|  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
 | |
|  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
 | |
| {
 | |
| 	if (unlikely(node >= (int)nr_node_ids ||
 | |
| 		     (node < 0 && node != NUMA_NO_NODE)))
 | |
| 		return -EINVAL;
 | |
| 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
 | |
| BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_unlocked,
 | |
| };
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
 | |
|  * @cpu: cpu to kick
 | |
|  * @flags: %SCX_KICK_* flags
 | |
|  *
 | |
|  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
 | |
|  * trigger rescheduling on a busy CPU. This can be called from any online
 | |
|  * scx_ops operation and the actual kicking is performed asynchronously through
 | |
|  * an irq work.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
 | |
| {
 | |
| 	struct rq *this_rq;
 | |
| 	unsigned long irq_flags;
 | |
| 
 | |
| 	if (!ops_cpu_valid(cpu, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(irq_flags);
 | |
| 
 | |
| 	this_rq = this_rq();
 | |
| 
 | |
| 	/*
 | |
| 	 * While bypassing for PM ops, IRQ handling may not be online which can
 | |
| 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
 | |
| 	 * IRQ status update. Suppress kicking.
 | |
| 	 */
 | |
| 	if (scx_rq_bypassing(this_rq))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
 | |
| 	 * rq locks. We can probably be smarter and avoid bouncing if called
 | |
| 	 * from ops which don't hold a rq lock.
 | |
| 	 */
 | |
| 	if (flags & SCX_KICK_IDLE) {
 | |
| 		struct rq *target_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
 | |
| 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
 | |
| 
 | |
| 		if (raw_spin_rq_trylock(target_rq)) {
 | |
| 			if (can_skip_idle_kick(target_rq)) {
 | |
| 				raw_spin_rq_unlock(target_rq);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			raw_spin_rq_unlock(target_rq);
 | |
| 		}
 | |
| 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
 | |
| 	} else {
 | |
| 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
 | |
| 
 | |
| 		if (flags & SCX_KICK_PREEMPT)
 | |
| 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
 | |
| 		if (flags & SCX_KICK_WAIT)
 | |
| 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
 | |
| 	}
 | |
| 
 | |
| 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
 | |
| out:
 | |
| 	local_irq_restore(irq_flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
 | |
|  * @dsq_id: id of the DSQ
 | |
|  *
 | |
|  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
 | |
|  * -%ENOENT is returned.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
 | |
| {
 | |
| 	struct scx_dispatch_q *dsq;
 | |
| 	s32 ret;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (dsq_id == SCX_DSQ_LOCAL) {
 | |
| 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
 | |
| 		goto out;
 | |
| 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
 | |
| 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
 | |
| 
 | |
| 		if (ops_cpu_valid(cpu, NULL)) {
 | |
| 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		dsq = find_user_dsq(dsq_id);
 | |
| 		if (dsq) {
 | |
| 			ret = READ_ONCE(dsq->nr);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = -ENOENT;
 | |
| out:
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_destroy_dsq - Destroy a custom DSQ
 | |
|  * @dsq_id: DSQ to destroy
 | |
|  *
 | |
|  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
 | |
|  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
 | |
|  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
 | |
|  * which doesn't exist. Can be called from any online scx_ops operations.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
 | |
| {
 | |
| 	destroy_dsq(dsq_id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bpf_iter_scx_dsq_new - Create a DSQ iterator
 | |
|  * @it: iterator to initialize
 | |
|  * @dsq_id: DSQ to iterate
 | |
|  * @flags: %SCX_DSQ_ITER_*
 | |
|  *
 | |
|  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
 | |
|  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
 | |
|  * tasks which are already queued when this function is invoked.
 | |
|  */
 | |
| __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
 | |
| 				     u64 flags)
 | |
| {
 | |
| 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
 | |
| 		     sizeof(struct bpf_iter_scx_dsq));
 | |
| 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
 | |
| 		     __alignof__(struct bpf_iter_scx_dsq));
 | |
| 
 | |
| 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	kit->dsq = find_user_dsq(dsq_id);
 | |
| 	if (!kit->dsq)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&kit->cursor.node);
 | |
| 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
 | |
| 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
 | |
|  * @it: iterator to progress
 | |
|  *
 | |
|  * Return the next task. See bpf_iter_scx_dsq_new().
 | |
|  */
 | |
| __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
 | |
| {
 | |
| 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 | |
| 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!kit->dsq)
 | |
| 		return NULL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
 | |
| 
 | |
| 	if (list_empty(&kit->cursor.node))
 | |
| 		p = NULL;
 | |
| 	else
 | |
| 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only tasks which were queued before the iteration started are
 | |
| 	 * visible. This bounds BPF iterations and guarantees that vtime never
 | |
| 	 * jumps in the other direction while iterating.
 | |
| 	 */
 | |
| 	do {
 | |
| 		p = nldsq_next_task(kit->dsq, p, rev);
 | |
| 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
 | |
| 
 | |
| 	if (p) {
 | |
| 		if (rev)
 | |
| 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
 | |
| 		else
 | |
| 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
 | |
| 	} else {
 | |
| 		list_del_init(&kit->cursor.node);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
 | |
|  * @it: iterator to destroy
 | |
|  *
 | |
|  * Undo scx_iter_scx_dsq_new().
 | |
|  */
 | |
| __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
 | |
| {
 | |
| 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 | |
| 
 | |
| 	if (!kit->dsq)
 | |
| 		return;
 | |
| 
 | |
| 	if (!list_empty(&kit->cursor.node)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
 | |
| 		list_del_init(&kit->cursor.node);
 | |
| 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
 | |
| 	}
 | |
| 	kit->dsq = NULL;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
 | |
| 			 char *fmt, unsigned long long *data, u32 data__sz)
 | |
| {
 | |
| 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
 | |
| 	s32 ret;
 | |
| 
 | |
| 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
 | |
| 	    (data__sz && !data)) {
 | |
| 		scx_ops_error("invalid data=%p and data__sz=%u",
 | |
| 			      (void *)data, data__sz);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
 | |
| 	if (ret < 0) {
 | |
| 		scx_ops_error("failed to read data fields (%d)", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
 | |
| 				  &bprintf_data);
 | |
| 	if (ret < 0) {
 | |
| 		scx_ops_error("format preparation failed (%d)", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = bstr_printf(line_buf, line_size, fmt,
 | |
| 			  bprintf_data.bin_args);
 | |
| 	bpf_bprintf_cleanup(&bprintf_data);
 | |
| 	if (ret < 0) {
 | |
| 		scx_ops_error("(\"%s\", %p, %u) failed to format",
 | |
| 			      fmt, data, data__sz);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static s32 bstr_format(struct scx_bstr_buf *buf,
 | |
| 		       char *fmt, unsigned long long *data, u32 data__sz)
 | |
| {
 | |
| 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
 | |
| 			     fmt, data, data__sz);
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
 | |
|  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
 | |
|  * @fmt: error message format string
 | |
|  * @data: format string parameters packaged using ___bpf_fill() macro
 | |
|  * @data__sz: @data len, must end in '__sz' for the verifier
 | |
|  *
 | |
|  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
 | |
|  * disabling.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
 | |
| 				   unsigned long long *data, u32 data__sz)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
 | |
| 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
 | |
| 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
 | |
| 				  scx_exit_bstr_buf.line);
 | |
| 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_error_bstr - Indicate fatal error
 | |
|  * @fmt: error message format string
 | |
|  * @data: format string parameters packaged using ___bpf_fill() macro
 | |
|  * @data__sz: @data len, must end in '__sz' for the verifier
 | |
|  *
 | |
|  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
 | |
|  * disabling.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
 | |
| 				    u32 data__sz)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
 | |
| 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
 | |
| 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
 | |
| 				  scx_exit_bstr_buf.line);
 | |
| 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
 | |
|  * @fmt: format string
 | |
|  * @data: format string parameters packaged using ___bpf_fill() macro
 | |
|  * @data__sz: @data len, must end in '__sz' for the verifier
 | |
|  *
 | |
|  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
 | |
|  * dump_task() to generate extra debug dump specific to the BPF scheduler.
 | |
|  *
 | |
|  * The extra dump may be multiple lines. A single line may be split over
 | |
|  * multiple calls. The last line is automatically terminated.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
 | |
| 				   u32 data__sz)
 | |
| {
 | |
| 	struct scx_dump_data *dd = &scx_dump_data;
 | |
| 	struct scx_bstr_buf *buf = &dd->buf;
 | |
| 	s32 ret;
 | |
| 
 | |
| 	if (raw_smp_processor_id() != dd->cpu) {
 | |
| 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* append the formatted string to the line buf */
 | |
| 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
 | |
| 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
 | |
| 	if (ret < 0) {
 | |
| 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
 | |
| 			  dd->prefix, fmt, data, data__sz, ret);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dd->cursor += ret;
 | |
| 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
 | |
| 
 | |
| 	if (!dd->cursor)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the line buf overflowed or ends in a newline, flush it into the
 | |
| 	 * dump. This is to allow the caller to generate a single line over
 | |
| 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
 | |
| 	 * the line buf, the only case which can lead to an unexpected
 | |
| 	 * truncation is when the caller keeps generating newlines in the middle
 | |
| 	 * instead of the end consecutively. Don't do that.
 | |
| 	 */
 | |
| 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
 | |
| 		ops_dump_flush();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
 | |
|  * @cpu: CPU of interest
 | |
|  *
 | |
|  * Return the maximum relative capacity of @cpu in relation to the most
 | |
|  * performant CPU in the system. The return value is in the range [1,
 | |
|  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
 | |
|  */
 | |
| __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
 | |
| {
 | |
| 	if (ops_cpu_valid(cpu, NULL))
 | |
| 		return arch_scale_cpu_capacity(cpu);
 | |
| 	else
 | |
| 		return SCX_CPUPERF_ONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
 | |
|  * @cpu: CPU of interest
 | |
|  *
 | |
|  * Return the current relative performance of @cpu in relation to its maximum.
 | |
|  * The return value is in the range [1, %SCX_CPUPERF_ONE].
 | |
|  *
 | |
|  * The current performance level of a CPU in relation to the maximum performance
 | |
|  * available in the system can be calculated as follows:
 | |
|  *
 | |
|  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
 | |
|  *
 | |
|  * The result is in the range [1, %SCX_CPUPERF_ONE].
 | |
|  */
 | |
| __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
 | |
| {
 | |
| 	if (ops_cpu_valid(cpu, NULL))
 | |
| 		return arch_scale_freq_capacity(cpu);
 | |
| 	else
 | |
| 		return SCX_CPUPERF_ONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
 | |
|  * @cpu: CPU of interest
 | |
|  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
 | |
|  * @flags: %SCX_CPUPERF_* flags
 | |
|  *
 | |
|  * Set the target performance level of @cpu to @perf. @perf is in linear
 | |
|  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
 | |
|  * schedutil cpufreq governor chooses the target frequency.
 | |
|  *
 | |
|  * The actual performance level chosen, CPU grouping, and the overhead and
 | |
|  * latency of the operations are dependent on the hardware and cpufreq driver in
 | |
|  * use. Consult hardware and cpufreq documentation for more information. The
 | |
|  * current performance level can be monitored using scx_bpf_cpuperf_cur().
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
 | |
| {
 | |
| 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
 | |
| 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ops_cpu_valid(cpu, NULL)) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 		rq->scx.cpuperf_target = perf;
 | |
| 
 | |
| 		rcu_read_lock_sched_notrace();
 | |
| 		cpufreq_update_util(cpu_rq(cpu), 0);
 | |
| 		rcu_read_unlock_sched_notrace();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
 | |
|  *
 | |
|  * All valid CPU IDs in the system are smaller than the returned value.
 | |
|  */
 | |
| __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
 | |
| {
 | |
| 	return nr_cpu_ids;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
 | |
| {
 | |
| 	return cpu_possible_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
 | |
| {
 | |
| 	return cpu_online_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_put_cpumask - Release a possible/online cpumask
 | |
|  * @cpumask: cpumask to release
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Empty function body because we aren't actually acquiring or releasing
 | |
| 	 * a reference to a global cpumask, which is read-only in the caller and
 | |
| 	 * is never released. The acquire / release semantics here are just used
 | |
| 	 * to make the cpumask is a trusted pointer in the caller.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
 | |
|  * per-CPU cpumask.
 | |
|  *
 | |
|  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
 | |
| {
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		scx_ops_error("built-in idle tracking is disabled");
 | |
| 		return cpu_none_mask;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	return idle_masks.cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
 | |
|  * per-physical-core cpumask. Can be used to determine if an entire physical
 | |
|  * core is free.
 | |
|  *
 | |
|  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
 | |
| {
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		scx_ops_error("built-in idle tracking is disabled");
 | |
| 		return cpu_none_mask;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (sched_smt_active())
 | |
| 		return idle_masks.smt;
 | |
| 	else
 | |
| 		return idle_masks.cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
 | |
|  * either the percpu, or SMT idle-tracking cpumask.
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Empty function body because we aren't actually acquiring or releasing
 | |
| 	 * a reference to a global idle cpumask, which is read-only in the
 | |
| 	 * caller and is never released. The acquire / release semantics here
 | |
| 	 * are just used to make the cpumask a trusted pointer in the caller.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
 | |
|  * @cpu: cpu to test and clear idle for
 | |
|  *
 | |
|  * Returns %true if @cpu was idle and its idle state was successfully cleared.
 | |
|  * %false otherwise.
 | |
|  *
 | |
|  * Unavailable if ops.update_idle() is implemented and
 | |
|  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
 | |
| {
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		scx_ops_error("built-in idle tracking is disabled");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (ops_cpu_valid(cpu, NULL))
 | |
| 		return test_and_clear_cpu_idle(cpu);
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @flags: %SCX_PICK_IDLE_CPU_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
 | |
|  * number on success. -%EBUSY if no matching cpu was found.
 | |
|  *
 | |
|  * Idle CPU tracking may race against CPU scheduling state transitions. For
 | |
|  * example, this function may return -%EBUSY as CPUs are transitioning into the
 | |
|  * idle state. If the caller then assumes that there will be dispatch events on
 | |
|  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
 | |
|  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
 | |
|  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
 | |
|  * event in the near future.
 | |
|  *
 | |
|  * Unavailable if ops.update_idle() is implemented and
 | |
|  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
 | |
| 				      u64 flags)
 | |
| {
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		scx_ops_error("built-in idle tracking is disabled");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return scx_pick_idle_cpu(cpus_allowed, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @flags: %SCX_PICK_IDLE_CPU_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
 | |
|  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
 | |
|  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
 | |
|  * empty.
 | |
|  *
 | |
|  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
 | |
|  * set, this function can't tell which CPUs are idle and will always pick any
 | |
|  * CPU.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
 | |
| 				     u64 flags)
 | |
| {
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
 | |
| 		if (cpu >= 0)
 | |
| 			return cpu;
 | |
| 	}
 | |
| 
 | |
| 	cpu = cpumask_any_distribute(cpus_allowed);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 	else
 | |
| 		return -EBUSY;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_task_running - Is task currently running?
 | |
|  * @p: task of interest
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
 | |
| {
 | |
| 	return task_rq(p)->curr == p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_task_cpu - CPU a task is currently associated with
 | |
|  * @p: task of interest
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
 | |
| {
 | |
| 	return task_cpu(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_cpu_rq - Fetch the rq of a CPU
 | |
|  * @cpu: CPU of the rq
 | |
|  */
 | |
| __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
 | |
| {
 | |
| 	if (!ops_cpu_valid(cpu, NULL))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return cpu_rq(cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_task_cgroup - Return the sched cgroup of a task
 | |
|  * @p: task of interest
 | |
|  *
 | |
|  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
 | |
|  * from the scheduler's POV. SCX operations should use this function to
 | |
|  * determine @p's current cgroup as, unlike following @p->cgroups,
 | |
|  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
 | |
|  * rq-locked operations. Can be called on the parameter tasks of rq-locked
 | |
|  * operations. The restriction guarantees that @p's rq is locked by the caller.
 | |
|  */
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
 | |
| {
 | |
| 	struct task_group *tg = p->sched_task_group;
 | |
| 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
 | |
| 
 | |
| 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * A task_group may either be a cgroup or an autogroup. In the latter
 | |
| 	 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
 | |
| 	 * kind once created.
 | |
| 	 */
 | |
| 	if (tg && tg->css.cgroup)
 | |
| 		cgrp = tg->css.cgroup;
 | |
| 	else
 | |
| 		cgrp = &cgrp_dfl_root.cgrp;
 | |
| out:
 | |
| 	cgroup_get(cgrp);
 | |
| 	return cgrp;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_any)
 | |
| BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
 | |
| BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
 | |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
 | |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
 | |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
 | |
| BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
 | |
| BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
 | |
| BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
 | |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
 | |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
 | |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
 | |
| BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
 | |
| #endif
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_any)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_any = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_any,
 | |
| };
 | |
| 
 | |
| static int __init scx_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * kfunc registration can't be done from init_sched_ext_class() as
 | |
| 	 * register_btf_kfunc_id_set() needs most of the system to be up.
 | |
| 	 *
 | |
| 	 * Some kfuncs are context-sensitive and can only be called from
 | |
| 	 * specific SCX ops. They are grouped into BTF sets accordingly.
 | |
| 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
 | |
| 	 * restrictions. Eventually, the verifier should be able to enforce
 | |
| 	 * them. For now, register them the same and make each kfunc explicitly
 | |
| 	 * check using scx_kf_allowed().
 | |
| 	 */
 | |
| 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_select_cpu)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_enqueue_dispatch)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_dispatch)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_cpu_release)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_unlocked)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
 | |
| 					     &scx_kfunc_set_unlocked)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 | |
| 					     &scx_kfunc_set_any)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
 | |
| 					     &scx_kfunc_set_any)) ||
 | |
| 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
 | |
| 					     &scx_kfunc_set_any))) {
 | |
| 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
 | |
| 	if (ret) {
 | |
| 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = register_pm_notifier(&scx_pm_notifier);
 | |
| 	if (ret) {
 | |
| 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
 | |
| 	if (!scx_kset) {
 | |
| 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("sched_ext: Failed to add global attributes\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(scx_init);
 | 
