mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Emit tnum representation as just a constant if all bits are known. Use decimal-vs-hex logic to determine exact format of emitted constant value, just like it's done for register range values. For that move tnum_strn() to kernel/bpf/log.c to reuse decimal-vs-hex determination logic and constants. Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231202175705.885270-12-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
		
			
				
	
	
		
			213 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/* tnum: tracked (or tristate) numbers
 | 
						|
 *
 | 
						|
 * A tnum tracks knowledge about the bits of a value.  Each bit can be either
 | 
						|
 * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
 | 
						|
 * propagate the unknown bits such that the tnum result represents all the
 | 
						|
 * possible results for possible values of the operands.
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/tnum.h>
 | 
						|
 | 
						|
#define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
 | 
						|
/* A completely unknown value */
 | 
						|
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
 | 
						|
 | 
						|
struct tnum tnum_const(u64 value)
 | 
						|
{
 | 
						|
	return TNUM(value, 0);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_range(u64 min, u64 max)
 | 
						|
{
 | 
						|
	u64 chi = min ^ max, delta;
 | 
						|
	u8 bits = fls64(chi);
 | 
						|
 | 
						|
	/* special case, needed because 1ULL << 64 is undefined */
 | 
						|
	if (bits > 63)
 | 
						|
		return tnum_unknown;
 | 
						|
	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
 | 
						|
	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
 | 
						|
	 *  constant min (since min == max).
 | 
						|
	 */
 | 
						|
	delta = (1ULL << bits) - 1;
 | 
						|
	return TNUM(min & ~delta, delta);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_lshift(struct tnum a, u8 shift)
 | 
						|
{
 | 
						|
	return TNUM(a.value << shift, a.mask << shift);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_rshift(struct tnum a, u8 shift)
 | 
						|
{
 | 
						|
	return TNUM(a.value >> shift, a.mask >> shift);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
 | 
						|
{
 | 
						|
	/* if a.value is negative, arithmetic shifting by minimum shift
 | 
						|
	 * will have larger negative offset compared to more shifting.
 | 
						|
	 * If a.value is nonnegative, arithmetic shifting by minimum shift
 | 
						|
	 * will have larger positive offset compare to more shifting.
 | 
						|
	 */
 | 
						|
	if (insn_bitness == 32)
 | 
						|
		return TNUM((u32)(((s32)a.value) >> min_shift),
 | 
						|
			    (u32)(((s32)a.mask)  >> min_shift));
 | 
						|
	else
 | 
						|
		return TNUM((s64)a.value >> min_shift,
 | 
						|
			    (s64)a.mask  >> min_shift);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_add(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 sm, sv, sigma, chi, mu;
 | 
						|
 | 
						|
	sm = a.mask + b.mask;
 | 
						|
	sv = a.value + b.value;
 | 
						|
	sigma = sm + sv;
 | 
						|
	chi = sigma ^ sv;
 | 
						|
	mu = chi | a.mask | b.mask;
 | 
						|
	return TNUM(sv & ~mu, mu);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_sub(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 dv, alpha, beta, chi, mu;
 | 
						|
 | 
						|
	dv = a.value - b.value;
 | 
						|
	alpha = dv + a.mask;
 | 
						|
	beta = dv - b.mask;
 | 
						|
	chi = alpha ^ beta;
 | 
						|
	mu = chi | a.mask | b.mask;
 | 
						|
	return TNUM(dv & ~mu, mu);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_and(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 alpha, beta, v;
 | 
						|
 | 
						|
	alpha = a.value | a.mask;
 | 
						|
	beta = b.value | b.mask;
 | 
						|
	v = a.value & b.value;
 | 
						|
	return TNUM(v, alpha & beta & ~v);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_or(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 v, mu;
 | 
						|
 | 
						|
	v = a.value | b.value;
 | 
						|
	mu = a.mask | b.mask;
 | 
						|
	return TNUM(v, mu & ~v);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_xor(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 v, mu;
 | 
						|
 | 
						|
	v = a.value ^ b.value;
 | 
						|
	mu = a.mask | b.mask;
 | 
						|
	return TNUM(v & ~mu, mu);
 | 
						|
}
 | 
						|
 | 
						|
/* Generate partial products by multiplying each bit in the multiplier (tnum a)
 | 
						|
 * with the multiplicand (tnum b), and add the partial products after
 | 
						|
 * appropriately bit-shifting them. Instead of directly performing tnum addition
 | 
						|
 * on the generated partial products, equivalenty, decompose each partial
 | 
						|
 * product into two tnums, consisting of the value-sum (acc_v) and the
 | 
						|
 * mask-sum (acc_m) and then perform tnum addition on them. The following paper
 | 
						|
 * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.
 | 
						|
 */
 | 
						|
struct tnum tnum_mul(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 acc_v = a.value * b.value;
 | 
						|
	struct tnum acc_m = TNUM(0, 0);
 | 
						|
 | 
						|
	while (a.value || a.mask) {
 | 
						|
		/* LSB of tnum a is a certain 1 */
 | 
						|
		if (a.value & 1)
 | 
						|
			acc_m = tnum_add(acc_m, TNUM(0, b.mask));
 | 
						|
		/* LSB of tnum a is uncertain */
 | 
						|
		else if (a.mask & 1)
 | 
						|
			acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask));
 | 
						|
		/* Note: no case for LSB is certain 0 */
 | 
						|
		a = tnum_rshift(a, 1);
 | 
						|
		b = tnum_lshift(b, 1);
 | 
						|
	}
 | 
						|
	return tnum_add(TNUM(acc_v, 0), acc_m);
 | 
						|
}
 | 
						|
 | 
						|
/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
 | 
						|
 * a 'known 0' - this will return a 'known 1' for that bit.
 | 
						|
 */
 | 
						|
struct tnum tnum_intersect(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	u64 v, mu;
 | 
						|
 | 
						|
	v = a.value | b.value;
 | 
						|
	mu = a.mask & b.mask;
 | 
						|
	return TNUM(v & ~mu, mu);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_cast(struct tnum a, u8 size)
 | 
						|
{
 | 
						|
	a.value &= (1ULL << (size * 8)) - 1;
 | 
						|
	a.mask &= (1ULL << (size * 8)) - 1;
 | 
						|
	return a;
 | 
						|
}
 | 
						|
 | 
						|
bool tnum_is_aligned(struct tnum a, u64 size)
 | 
						|
{
 | 
						|
	if (!size)
 | 
						|
		return true;
 | 
						|
	return !((a.value | a.mask) & (size - 1));
 | 
						|
}
 | 
						|
 | 
						|
bool tnum_in(struct tnum a, struct tnum b)
 | 
						|
{
 | 
						|
	if (b.mask & ~a.mask)
 | 
						|
		return false;
 | 
						|
	b.value &= ~a.mask;
 | 
						|
	return a.value == b.value;
 | 
						|
}
 | 
						|
 | 
						|
int tnum_sbin(char *str, size_t size, struct tnum a)
 | 
						|
{
 | 
						|
	size_t n;
 | 
						|
 | 
						|
	for (n = 64; n; n--) {
 | 
						|
		if (n < size) {
 | 
						|
			if (a.mask & 1)
 | 
						|
				str[n - 1] = 'x';
 | 
						|
			else if (a.value & 1)
 | 
						|
				str[n - 1] = '1';
 | 
						|
			else
 | 
						|
				str[n - 1] = '0';
 | 
						|
		}
 | 
						|
		a.mask >>= 1;
 | 
						|
		a.value >>= 1;
 | 
						|
	}
 | 
						|
	str[min(size - 1, (size_t)64)] = 0;
 | 
						|
	return 64;
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_subreg(struct tnum a)
 | 
						|
{
 | 
						|
	return tnum_cast(a, 4);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_clear_subreg(struct tnum a)
 | 
						|
{
 | 
						|
	return tnum_lshift(tnum_rshift(a, 32), 32);
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
 | 
						|
{
 | 
						|
	return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
 | 
						|
}
 | 
						|
 | 
						|
struct tnum tnum_const_subreg(struct tnum a, u32 value)
 | 
						|
{
 | 
						|
	return tnum_with_subreg(a, tnum_const(value));
 | 
						|
}
 |