linux/kernel/unwind/deferred.c
Steven Rostedt 858fa8a3b0 unwind: Add USED bit to only have one conditional on way back to user space
On the way back to user space, the function unwind_reset_info() is called
unconditionally (but always inlined). It currently has two conditionals.
One that checks the unwind_mask which is set whenever a deferred trace is
called and is used to know that the mask needs to be cleared. The other
checks if the cache has been allocated, and if so, it resets the
nr_entries so that the unwinder knows it needs to do the work to get a new
user space stack trace again (it only does it once per entering the
kernel).

Use one of the bits in the unwind mask as a "USED" bit that gets set
whenever a trace is created. This will make it possible to only check the
unwind_mask in the unwind_reset_info() to know if it needs to do work or
not and eliminates a conditional that happens every time the task goes
back to user space.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Indu Bhagat <indu.bhagat@oracle.com>
Cc: "Jose E. Marchesi" <jemarch@gnu.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Jens Remus <jremus@linux.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Sam James <sam@gentoo.org>
Link: https://lore.kernel.org/20250729182406.155422551@kernel.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-07-31 10:20:11 -04:00

330 lines
9.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Deferred user space unwinding
*/
#include <linux/sched/task_stack.h>
#include <linux/unwind_deferred.h>
#include <linux/sched/clock.h>
#include <linux/task_work.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/mm.h>
/*
* For requesting a deferred user space stack trace from NMI context
* the architecture must support a safe cmpxchg in NMI context.
* For those architectures that do not have that, then it cannot ask
* for a deferred user space stack trace from an NMI context. If it
* does, then it will get -EINVAL.
*/
#if defined(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG)
# define CAN_USE_IN_NMI 1
static inline bool try_assign_cnt(struct unwind_task_info *info, u32 cnt)
{
u32 old = 0;
return try_cmpxchg(&info->id.cnt, &old, cnt);
}
#else
# define CAN_USE_IN_NMI 0
/* When NMIs are not allowed, this always succeeds */
static inline bool try_assign_cnt(struct unwind_task_info *info, u32 cnt)
{
info->id.cnt = cnt;
return true;
}
#endif
/* Make the cache fit in a 4K page */
#define UNWIND_MAX_ENTRIES \
((SZ_4K - sizeof(struct unwind_cache)) / sizeof(long))
/* Guards adding to and reading the list of callbacks */
static DEFINE_MUTEX(callback_mutex);
static LIST_HEAD(callbacks);
#define RESERVED_BITS (UNWIND_PENDING | UNWIND_USED)
/* Zero'd bits are available for assigning callback users */
static unsigned long unwind_mask = RESERVED_BITS;
static inline bool unwind_pending(struct unwind_task_info *info)
{
return test_bit(UNWIND_PENDING_BIT, &info->unwind_mask);
}
/*
* This is a unique percpu identifier for a given task entry context.
* Conceptually, it's incremented every time the CPU enters the kernel from
* user space, so that each "entry context" on the CPU gets a unique ID. In
* reality, as an optimization, it's only incremented on demand for the first
* deferred unwind request after a given entry-from-user.
*
* It's combined with the CPU id to make a systemwide-unique "context cookie".
*/
static DEFINE_PER_CPU(u32, unwind_ctx_ctr);
/*
* The context cookie is a unique identifier that is assigned to a user
* space stacktrace. As the user space stacktrace remains the same while
* the task is in the kernel, the cookie is an identifier for the stacktrace.
* Although it is possible for the stacktrace to get another cookie if another
* request is made after the cookie was cleared and before reentering user
* space.
*/
static u64 get_cookie(struct unwind_task_info *info)
{
u32 cnt = 1;
if (info->id.cpu)
return info->id.id;
/* LSB is always set to ensure 0 is an invalid value */
cnt |= __this_cpu_read(unwind_ctx_ctr) + 2;
if (try_assign_cnt(info, cnt)) {
/* Update the per cpu counter */
__this_cpu_write(unwind_ctx_ctr, cnt);
}
/* Interrupts are disabled, the CPU will always be same */
info->id.cpu = smp_processor_id() + 1; /* Must be non zero */
return info->id.id;
}
/**
* unwind_user_faultable - Produce a user stacktrace in faultable context
* @trace: The descriptor that will store the user stacktrace
*
* This must be called in a known faultable context (usually when entering
* or exiting user space). Depending on the available implementations
* the @trace will be loaded with the addresses of the user space stacktrace
* if it can be found.
*
* Return: 0 on success and negative on error
* On success @trace will contain the user space stacktrace
*/
int unwind_user_faultable(struct unwind_stacktrace *trace)
{
struct unwind_task_info *info = &current->unwind_info;
struct unwind_cache *cache;
/* Should always be called from faultable context */
might_fault();
if (current->flags & PF_EXITING)
return -EINVAL;
if (!info->cache) {
info->cache = kzalloc(struct_size(cache, entries, UNWIND_MAX_ENTRIES),
GFP_KERNEL);
if (!info->cache)
return -ENOMEM;
}
cache = info->cache;
trace->entries = cache->entries;
if (cache->nr_entries) {
/*
* The user stack has already been previously unwound in this
* entry context. Skip the unwind and use the cache.
*/
trace->nr = cache->nr_entries;
return 0;
}
trace->nr = 0;
unwind_user(trace, UNWIND_MAX_ENTRIES);
cache->nr_entries = trace->nr;
/* Clear nr_entries on way back to user space */
set_bit(UNWIND_USED_BIT, &info->unwind_mask);
return 0;
}
static void unwind_deferred_task_work(struct callback_head *head)
{
struct unwind_task_info *info = container_of(head, struct unwind_task_info, work);
struct unwind_stacktrace trace;
struct unwind_work *work;
unsigned long bits;
u64 cookie;
if (WARN_ON_ONCE(!unwind_pending(info)))
return;
/* Clear pending bit but make sure to have the current bits */
bits = atomic_long_fetch_andnot(UNWIND_PENDING,
(atomic_long_t *)&info->unwind_mask);
/*
* From here on out, the callback must always be called, even if it's
* just an empty trace.
*/
trace.nr = 0;
trace.entries = NULL;
unwind_user_faultable(&trace);
if (info->cache)
bits &= ~(info->cache->unwind_completed);
cookie = info->id.id;
guard(mutex)(&callback_mutex);
list_for_each_entry(work, &callbacks, list) {
if (test_bit(work->bit, &bits)) {
work->func(work, &trace, cookie);
if (info->cache)
info->cache->unwind_completed |= BIT(work->bit);
}
}
}
/**
* unwind_deferred_request - Request a user stacktrace on task kernel exit
* @work: Unwind descriptor requesting the trace
* @cookie: The cookie of the first request made for this task
*
* Schedule a user space unwind to be done in task work before exiting the
* kernel.
*
* The returned @cookie output is the generated cookie of the very first
* request for a user space stacktrace for this task since it entered the
* kernel. It can be from a request by any caller of this infrastructure.
* Its value will also be passed to the callback function. It can be
* used to stitch kernel and user stack traces together in post-processing.
*
* It's valid to call this function multiple times for the same @work within
* the same task entry context. Each call will return the same cookie
* while the task hasn't left the kernel. If the callback is not pending
* because it has already been previously called for the same entry context,
* it will be called again with the same stack trace and cookie.
*
* Return: 0 if the callback successfully was queued.
* 1 if the callback is pending or was already executed.
* Negative if there's an error.
* @cookie holds the cookie of the first request by any user
*/
int unwind_deferred_request(struct unwind_work *work, u64 *cookie)
{
struct unwind_task_info *info = &current->unwind_info;
unsigned long old, bits;
unsigned long bit = BIT(work->bit);
int ret;
*cookie = 0;
if ((current->flags & (PF_KTHREAD | PF_EXITING)) ||
!user_mode(task_pt_regs(current)))
return -EINVAL;
/*
* NMI requires having safe cmpxchg operations.
* Trigger a warning to make it obvious that an architecture
* is using this in NMI when it should not be.
*/
if (WARN_ON_ONCE(!CAN_USE_IN_NMI && in_nmi()))
return -EINVAL;
guard(irqsave)();
*cookie = get_cookie(info);
old = READ_ONCE(info->unwind_mask);
/* Is this already queued or executed */
if (old & bit)
return 1;
/*
* This work's bit hasn't been set yet. Now set it with the PENDING
* bit and fetch the current value of unwind_mask. If ether the
* work's bit or PENDING was already set, then this is already queued
* to have a callback.
*/
bits = UNWIND_PENDING | bit;
old = atomic_long_fetch_or(bits, (atomic_long_t *)&info->unwind_mask);
if (old & bits) {
/*
* If the work's bit was set, whatever set it had better
* have also set pending and queued a callback.
*/
WARN_ON_ONCE(!(old & UNWIND_PENDING));
return old & bit;
}
/* The work has been claimed, now schedule it. */
ret = task_work_add(current, &info->work, TWA_RESUME);
if (WARN_ON_ONCE(ret))
WRITE_ONCE(info->unwind_mask, 0);
return ret;
}
void unwind_deferred_cancel(struct unwind_work *work)
{
struct task_struct *g, *t;
int bit;
if (!work)
return;
bit = work->bit;
/* No work should be using a reserved bit */
if (WARN_ON_ONCE(BIT(bit) & RESERVED_BITS))
return;
guard(mutex)(&callback_mutex);
list_del(&work->list);
__clear_bit(bit, &unwind_mask);
guard(rcu)();
/* Clear this bit from all threads */
for_each_process_thread(g, t) {
clear_bit(bit, &t->unwind_info.unwind_mask);
if (t->unwind_info.cache)
clear_bit(bit, &t->unwind_info.cache->unwind_completed);
}
}
int unwind_deferred_init(struct unwind_work *work, unwind_callback_t func)
{
memset(work, 0, sizeof(*work));
guard(mutex)(&callback_mutex);
/* See if there's a bit in the mask available */
if (unwind_mask == ~0UL)
return -EBUSY;
work->bit = ffz(unwind_mask);
__set_bit(work->bit, &unwind_mask);
list_add(&work->list, &callbacks);
work->func = func;
return 0;
}
void unwind_task_init(struct task_struct *task)
{
struct unwind_task_info *info = &task->unwind_info;
memset(info, 0, sizeof(*info));
init_task_work(&info->work, unwind_deferred_task_work);
info->unwind_mask = 0;
}
void unwind_task_free(struct task_struct *task)
{
struct unwind_task_info *info = &task->unwind_info;
kfree(info->cache);
task_work_cancel(task, &info->work);
}