mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	pr_xxx() functions usually have a newline at the end of the logging message. Here, this newline is added via the 'pr_fmt' macro. In order to be more consistent with other files, use a more standard convention and put these newlines back in the messages themselves and remove it from the pr_fmt macro. While at it, use __func__ instead of hardcoding a function name in the last message. Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20200409163234.22830-1-christophe.jaillet@wanadoo.fr Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			316 lines
		
	
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			316 lines
		
	
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
#define pr_fmt(fmt) "prime numbers: " fmt
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/prime_numbers.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
 | 
						|
 | 
						|
struct primes {
 | 
						|
	struct rcu_head rcu;
 | 
						|
	unsigned long last, sz;
 | 
						|
	unsigned long primes[];
 | 
						|
};
 | 
						|
 | 
						|
#if BITS_PER_LONG == 64
 | 
						|
static const struct primes small_primes = {
 | 
						|
	.last = 61,
 | 
						|
	.sz = 64,
 | 
						|
	.primes = {
 | 
						|
		BIT(2) |
 | 
						|
		BIT(3) |
 | 
						|
		BIT(5) |
 | 
						|
		BIT(7) |
 | 
						|
		BIT(11) |
 | 
						|
		BIT(13) |
 | 
						|
		BIT(17) |
 | 
						|
		BIT(19) |
 | 
						|
		BIT(23) |
 | 
						|
		BIT(29) |
 | 
						|
		BIT(31) |
 | 
						|
		BIT(37) |
 | 
						|
		BIT(41) |
 | 
						|
		BIT(43) |
 | 
						|
		BIT(47) |
 | 
						|
		BIT(53) |
 | 
						|
		BIT(59) |
 | 
						|
		BIT(61)
 | 
						|
	}
 | 
						|
};
 | 
						|
#elif BITS_PER_LONG == 32
 | 
						|
static const struct primes small_primes = {
 | 
						|
	.last = 31,
 | 
						|
	.sz = 32,
 | 
						|
	.primes = {
 | 
						|
		BIT(2) |
 | 
						|
		BIT(3) |
 | 
						|
		BIT(5) |
 | 
						|
		BIT(7) |
 | 
						|
		BIT(11) |
 | 
						|
		BIT(13) |
 | 
						|
		BIT(17) |
 | 
						|
		BIT(19) |
 | 
						|
		BIT(23) |
 | 
						|
		BIT(29) |
 | 
						|
		BIT(31)
 | 
						|
	}
 | 
						|
};
 | 
						|
#else
 | 
						|
#error "unhandled BITS_PER_LONG"
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_MUTEX(lock);
 | 
						|
static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
 | 
						|
 | 
						|
static unsigned long selftest_max;
 | 
						|
 | 
						|
static bool slow_is_prime_number(unsigned long x)
 | 
						|
{
 | 
						|
	unsigned long y = int_sqrt(x);
 | 
						|
 | 
						|
	while (y > 1) {
 | 
						|
		if ((x % y) == 0)
 | 
						|
			break;
 | 
						|
		y--;
 | 
						|
	}
 | 
						|
 | 
						|
	return y == 1;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long slow_next_prime_number(unsigned long x)
 | 
						|
{
 | 
						|
	while (x < ULONG_MAX && !slow_is_prime_number(++x))
 | 
						|
		;
 | 
						|
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long clear_multiples(unsigned long x,
 | 
						|
				     unsigned long *p,
 | 
						|
				     unsigned long start,
 | 
						|
				     unsigned long end)
 | 
						|
{
 | 
						|
	unsigned long m;
 | 
						|
 | 
						|
	m = 2 * x;
 | 
						|
	if (m < start)
 | 
						|
		m = roundup(start, x);
 | 
						|
 | 
						|
	while (m < end) {
 | 
						|
		__clear_bit(m, p);
 | 
						|
		m += x;
 | 
						|
	}
 | 
						|
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
static bool expand_to_next_prime(unsigned long x)
 | 
						|
{
 | 
						|
	const struct primes *p;
 | 
						|
	struct primes *new;
 | 
						|
	unsigned long sz, y;
 | 
						|
 | 
						|
	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
 | 
						|
	 * there is always at least one prime p between n and 2n - 2.
 | 
						|
	 * Equivalently, if n > 1, then there is always at least one prime p
 | 
						|
	 * such that n < p < 2n.
 | 
						|
	 *
 | 
						|
	 * http://mathworld.wolfram.com/BertrandsPostulate.html
 | 
						|
	 * https://en.wikipedia.org/wiki/Bertrand's_postulate
 | 
						|
	 */
 | 
						|
	sz = 2 * x;
 | 
						|
	if (sz < x)
 | 
						|
		return false;
 | 
						|
 | 
						|
	sz = round_up(sz, BITS_PER_LONG);
 | 
						|
	new = kmalloc(sizeof(*new) + bitmap_size(sz),
 | 
						|
		      GFP_KERNEL | __GFP_NOWARN);
 | 
						|
	if (!new)
 | 
						|
		return false;
 | 
						|
 | 
						|
	mutex_lock(&lock);
 | 
						|
	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
 | 
						|
	if (x < p->last) {
 | 
						|
		kfree(new);
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Where memory permits, track the primes using the
 | 
						|
	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
 | 
						|
	 * primes from the set, what remains in the set is therefore prime.
 | 
						|
	 */
 | 
						|
	bitmap_fill(new->primes, sz);
 | 
						|
	bitmap_copy(new->primes, p->primes, p->sz);
 | 
						|
	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
 | 
						|
		new->last = clear_multiples(y, new->primes, p->sz, sz);
 | 
						|
	new->sz = sz;
 | 
						|
 | 
						|
	BUG_ON(new->last <= x);
 | 
						|
 | 
						|
	rcu_assign_pointer(primes, new);
 | 
						|
	if (p != &small_primes)
 | 
						|
		kfree_rcu((struct primes *)p, rcu);
 | 
						|
 | 
						|
unlock:
 | 
						|
	mutex_unlock(&lock);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void free_primes(void)
 | 
						|
{
 | 
						|
	const struct primes *p;
 | 
						|
 | 
						|
	mutex_lock(&lock);
 | 
						|
	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
 | 
						|
	if (p != &small_primes) {
 | 
						|
		rcu_assign_pointer(primes, &small_primes);
 | 
						|
		kfree_rcu((struct primes *)p, rcu);
 | 
						|
	}
 | 
						|
	mutex_unlock(&lock);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * next_prime_number - return the next prime number
 | 
						|
 * @x: the starting point for searching to test
 | 
						|
 *
 | 
						|
 * A prime number is an integer greater than 1 that is only divisible by
 | 
						|
 * itself and 1.  The set of prime numbers is computed using the Sieve of
 | 
						|
 * Eratoshenes (on finding a prime, all multiples of that prime are removed
 | 
						|
 * from the set) enabling a fast lookup of the next prime number larger than
 | 
						|
 * @x. If the sieve fails (memory limitation), the search falls back to using
 | 
						|
 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
 | 
						|
 * final prime as a sentinel).
 | 
						|
 *
 | 
						|
 * Returns: the next prime number larger than @x
 | 
						|
 */
 | 
						|
unsigned long next_prime_number(unsigned long x)
 | 
						|
{
 | 
						|
	const struct primes *p;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = rcu_dereference(primes);
 | 
						|
	while (x >= p->last) {
 | 
						|
		rcu_read_unlock();
 | 
						|
 | 
						|
		if (!expand_to_next_prime(x))
 | 
						|
			return slow_next_prime_number(x);
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		p = rcu_dereference(primes);
 | 
						|
	}
 | 
						|
	x = find_next_bit(p->primes, p->last, x + 1);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return x;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(next_prime_number);
 | 
						|
 | 
						|
/**
 | 
						|
 * is_prime_number - test whether the given number is prime
 | 
						|
 * @x: the number to test
 | 
						|
 *
 | 
						|
 * A prime number is an integer greater than 1 that is only divisible by
 | 
						|
 * itself and 1. Internally a cache of prime numbers is kept (to speed up
 | 
						|
 * searching for sequential primes, see next_prime_number()), but if the number
 | 
						|
 * falls outside of that cache, its primality is tested using trial-divison.
 | 
						|
 *
 | 
						|
 * Returns: true if @x is prime, false for composite numbers.
 | 
						|
 */
 | 
						|
bool is_prime_number(unsigned long x)
 | 
						|
{
 | 
						|
	const struct primes *p;
 | 
						|
	bool result;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = rcu_dereference(primes);
 | 
						|
	while (x >= p->sz) {
 | 
						|
		rcu_read_unlock();
 | 
						|
 | 
						|
		if (!expand_to_next_prime(x))
 | 
						|
			return slow_is_prime_number(x);
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		p = rcu_dereference(primes);
 | 
						|
	}
 | 
						|
	result = test_bit(x, p->primes);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(is_prime_number);
 | 
						|
 | 
						|
static void dump_primes(void)
 | 
						|
{
 | 
						|
	const struct primes *p;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = rcu_dereference(primes);
 | 
						|
 | 
						|
	if (buf)
 | 
						|
		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
 | 
						|
	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
 | 
						|
		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	kfree(buf);
 | 
						|
}
 | 
						|
 | 
						|
static int selftest(unsigned long max)
 | 
						|
{
 | 
						|
	unsigned long x, last;
 | 
						|
 | 
						|
	if (!max)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (last = 0, x = 2; x < max; x++) {
 | 
						|
		bool slow = slow_is_prime_number(x);
 | 
						|
		bool fast = is_prime_number(x);
 | 
						|
 | 
						|
		if (slow != fast) {
 | 
						|
			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
 | 
						|
			       x, slow ? "yes" : "no", fast ? "yes" : "no");
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!slow)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (next_prime_number(last) != x) {
 | 
						|
			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
 | 
						|
			       last, x, next_prime_number(last));
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
		last = x;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	dump_primes();
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int __init primes_init(void)
 | 
						|
{
 | 
						|
	return selftest(selftest_max);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit primes_exit(void)
 | 
						|
{
 | 
						|
	free_primes();
 | 
						|
}
 | 
						|
 | 
						|
module_init(primes_init);
 | 
						|
module_exit(primes_exit);
 | 
						|
 | 
						|
module_param_named(selftest, selftest_max, ulong, 0400);
 | 
						|
 | 
						|
MODULE_AUTHOR("Intel Corporation");
 | 
						|
MODULE_LICENSE("GPL");
 |