mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	We are supposed to take one css reference per each memory page and per
each swap entry accounted to a memory cgroup.  However, during task
charges migration we take a reference to the destination cgroup twice
per each swap entry: first in mem_cgroup_do_precharge()->try_charge()
and then in mem_cgroup_move_swap_account(), permanently leaking the
destination cgroup.
The hunk taking the second reference seems to be a leftover from the
pre-00501b531c472 ("mm: memcontrol: rewrite charge API") era.  Remove it
to fix the leak.
Fixes: e8ea14cc6e (mm: memcontrol: take a css reference for each charged page)
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			5840 lines
		
	
	
	
		
			148 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5840 lines
		
	
	
	
		
			148 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* memcontrol.c - Memory Controller
 | 
						|
 *
 | 
						|
 * Copyright IBM Corporation, 2007
 | 
						|
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | 
						|
 *
 | 
						|
 * Copyright 2007 OpenVZ SWsoft Inc
 | 
						|
 * Author: Pavel Emelianov <xemul@openvz.org>
 | 
						|
 *
 | 
						|
 * Memory thresholds
 | 
						|
 * Copyright (C) 2009 Nokia Corporation
 | 
						|
 * Author: Kirill A. Shutemov
 | 
						|
 *
 | 
						|
 * Kernel Memory Controller
 | 
						|
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 | 
						|
 * Authors: Glauber Costa and Suleiman Souhlal
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/page_counter.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/cgroup.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/page-flags.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/bit_spinlock.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/limits.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/eventfd.h>
 | 
						|
#include <linux/poll.h>
 | 
						|
#include <linux/sort.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/vmpressure.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/swap_cgroup.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
#include <linux/lockdep.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include "internal.h"
 | 
						|
#include <net/sock.h>
 | 
						|
#include <net/ip.h>
 | 
						|
#include <net/tcp_memcontrol.h>
 | 
						|
#include "slab.h"
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
#include <trace/events/vmscan.h>
 | 
						|
 | 
						|
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
 | 
						|
EXPORT_SYMBOL(memory_cgrp_subsys);
 | 
						|
 | 
						|
#define MEM_CGROUP_RECLAIM_RETRIES	5
 | 
						|
static struct mem_cgroup *root_mem_cgroup __read_mostly;
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
 | 
						|
int do_swap_account __read_mostly;
 | 
						|
 | 
						|
/* for remember boot option*/
 | 
						|
#ifdef CONFIG_MEMCG_SWAP_ENABLED
 | 
						|
static int really_do_swap_account __initdata = 1;
 | 
						|
#else
 | 
						|
static int really_do_swap_account __initdata;
 | 
						|
#endif
 | 
						|
 | 
						|
#else
 | 
						|
#define do_swap_account		0
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static const char * const mem_cgroup_stat_names[] = {
 | 
						|
	"cache",
 | 
						|
	"rss",
 | 
						|
	"rss_huge",
 | 
						|
	"mapped_file",
 | 
						|
	"writeback",
 | 
						|
	"swap",
 | 
						|
};
 | 
						|
 | 
						|
enum mem_cgroup_events_index {
 | 
						|
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
 | 
						|
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
 | 
						|
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
 | 
						|
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
 | 
						|
	MEM_CGROUP_EVENTS_NSTATS,
 | 
						|
};
 | 
						|
 | 
						|
static const char * const mem_cgroup_events_names[] = {
 | 
						|
	"pgpgin",
 | 
						|
	"pgpgout",
 | 
						|
	"pgfault",
 | 
						|
	"pgmajfault",
 | 
						|
};
 | 
						|
 | 
						|
static const char * const mem_cgroup_lru_names[] = {
 | 
						|
	"inactive_anon",
 | 
						|
	"active_anon",
 | 
						|
	"inactive_file",
 | 
						|
	"active_file",
 | 
						|
	"unevictable",
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 | 
						|
 * it will be incremated by the number of pages. This counter is used for
 | 
						|
 * for trigger some periodic events. This is straightforward and better
 | 
						|
 * than using jiffies etc. to handle periodic memcg event.
 | 
						|
 */
 | 
						|
enum mem_cgroup_events_target {
 | 
						|
	MEM_CGROUP_TARGET_THRESH,
 | 
						|
	MEM_CGROUP_TARGET_SOFTLIMIT,
 | 
						|
	MEM_CGROUP_TARGET_NUMAINFO,
 | 
						|
	MEM_CGROUP_NTARGETS,
 | 
						|
};
 | 
						|
#define THRESHOLDS_EVENTS_TARGET 128
 | 
						|
#define SOFTLIMIT_EVENTS_TARGET 1024
 | 
						|
#define NUMAINFO_EVENTS_TARGET	1024
 | 
						|
 | 
						|
struct mem_cgroup_stat_cpu {
 | 
						|
	long count[MEM_CGROUP_STAT_NSTATS];
 | 
						|
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 | 
						|
	unsigned long nr_page_events;
 | 
						|
	unsigned long targets[MEM_CGROUP_NTARGETS];
 | 
						|
};
 | 
						|
 | 
						|
struct reclaim_iter {
 | 
						|
	struct mem_cgroup *position;
 | 
						|
	/* scan generation, increased every round-trip */
 | 
						|
	unsigned int generation;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * per-zone information in memory controller.
 | 
						|
 */
 | 
						|
struct mem_cgroup_per_zone {
 | 
						|
	struct lruvec		lruvec;
 | 
						|
	unsigned long		lru_size[NR_LRU_LISTS];
 | 
						|
 | 
						|
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
 | 
						|
 | 
						|
	struct rb_node		tree_node;	/* RB tree node */
 | 
						|
	unsigned long		usage_in_excess;/* Set to the value by which */
 | 
						|
						/* the soft limit is exceeded*/
 | 
						|
	bool			on_tree;
 | 
						|
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
 | 
						|
						/* use container_of	   */
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_per_node {
 | 
						|
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 | 
						|
 * their hierarchy representation
 | 
						|
 */
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_zone {
 | 
						|
	struct rb_root rb_root;
 | 
						|
	spinlock_t lock;
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_node {
 | 
						|
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree {
 | 
						|
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | 
						|
};
 | 
						|
 | 
						|
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | 
						|
 | 
						|
struct mem_cgroup_threshold {
 | 
						|
	struct eventfd_ctx *eventfd;
 | 
						|
	unsigned long threshold;
 | 
						|
};
 | 
						|
 | 
						|
/* For threshold */
 | 
						|
struct mem_cgroup_threshold_ary {
 | 
						|
	/* An array index points to threshold just below or equal to usage. */
 | 
						|
	int current_threshold;
 | 
						|
	/* Size of entries[] */
 | 
						|
	unsigned int size;
 | 
						|
	/* Array of thresholds */
 | 
						|
	struct mem_cgroup_threshold entries[0];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_thresholds {
 | 
						|
	/* Primary thresholds array */
 | 
						|
	struct mem_cgroup_threshold_ary *primary;
 | 
						|
	/*
 | 
						|
	 * Spare threshold array.
 | 
						|
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 | 
						|
	 * It must be able to store at least primary->size - 1 entries.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_threshold_ary *spare;
 | 
						|
};
 | 
						|
 | 
						|
/* for OOM */
 | 
						|
struct mem_cgroup_eventfd_list {
 | 
						|
	struct list_head list;
 | 
						|
	struct eventfd_ctx *eventfd;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * cgroup_event represents events which userspace want to receive.
 | 
						|
 */
 | 
						|
struct mem_cgroup_event {
 | 
						|
	/*
 | 
						|
	 * memcg which the event belongs to.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	/*
 | 
						|
	 * eventfd to signal userspace about the event.
 | 
						|
	 */
 | 
						|
	struct eventfd_ctx *eventfd;
 | 
						|
	/*
 | 
						|
	 * Each of these stored in a list by the cgroup.
 | 
						|
	 */
 | 
						|
	struct list_head list;
 | 
						|
	/*
 | 
						|
	 * register_event() callback will be used to add new userspace
 | 
						|
	 * waiter for changes related to this event.  Use eventfd_signal()
 | 
						|
	 * on eventfd to send notification to userspace.
 | 
						|
	 */
 | 
						|
	int (*register_event)(struct mem_cgroup *memcg,
 | 
						|
			      struct eventfd_ctx *eventfd, const char *args);
 | 
						|
	/*
 | 
						|
	 * unregister_event() callback will be called when userspace closes
 | 
						|
	 * the eventfd or on cgroup removing.  This callback must be set,
 | 
						|
	 * if you want provide notification functionality.
 | 
						|
	 */
 | 
						|
	void (*unregister_event)(struct mem_cgroup *memcg,
 | 
						|
				 struct eventfd_ctx *eventfd);
 | 
						|
	/*
 | 
						|
	 * All fields below needed to unregister event when
 | 
						|
	 * userspace closes eventfd.
 | 
						|
	 */
 | 
						|
	poll_table pt;
 | 
						|
	wait_queue_head_t *wqh;
 | 
						|
	wait_queue_t wait;
 | 
						|
	struct work_struct remove;
 | 
						|
};
 | 
						|
 | 
						|
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 | 
						|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 | 
						|
 | 
						|
/*
 | 
						|
 * The memory controller data structure. The memory controller controls both
 | 
						|
 * page cache and RSS per cgroup. We would eventually like to provide
 | 
						|
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | 
						|
 * to help the administrator determine what knobs to tune.
 | 
						|
 *
 | 
						|
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | 
						|
 * we hit the water mark. May be even add a low water mark, such that
 | 
						|
 * no reclaim occurs from a cgroup at it's low water mark, this is
 | 
						|
 * a feature that will be implemented much later in the future.
 | 
						|
 */
 | 
						|
struct mem_cgroup {
 | 
						|
	struct cgroup_subsys_state css;
 | 
						|
 | 
						|
	/* Accounted resources */
 | 
						|
	struct page_counter memory;
 | 
						|
	struct page_counter memsw;
 | 
						|
	struct page_counter kmem;
 | 
						|
 | 
						|
	unsigned long soft_limit;
 | 
						|
 | 
						|
	/* vmpressure notifications */
 | 
						|
	struct vmpressure vmpressure;
 | 
						|
 | 
						|
	/* css_online() has been completed */
 | 
						|
	int initialized;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Should the accounting and control be hierarchical, per subtree?
 | 
						|
	 */
 | 
						|
	bool use_hierarchy;
 | 
						|
 | 
						|
	bool		oom_lock;
 | 
						|
	atomic_t	under_oom;
 | 
						|
	atomic_t	oom_wakeups;
 | 
						|
 | 
						|
	int	swappiness;
 | 
						|
	/* OOM-Killer disable */
 | 
						|
	int		oom_kill_disable;
 | 
						|
 | 
						|
	/* protect arrays of thresholds */
 | 
						|
	struct mutex thresholds_lock;
 | 
						|
 | 
						|
	/* thresholds for memory usage. RCU-protected */
 | 
						|
	struct mem_cgroup_thresholds thresholds;
 | 
						|
 | 
						|
	/* thresholds for mem+swap usage. RCU-protected */
 | 
						|
	struct mem_cgroup_thresholds memsw_thresholds;
 | 
						|
 | 
						|
	/* For oom notifier event fd */
 | 
						|
	struct list_head oom_notify;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Should we move charges of a task when a task is moved into this
 | 
						|
	 * mem_cgroup ? And what type of charges should we move ?
 | 
						|
	 */
 | 
						|
	unsigned long move_charge_at_immigrate;
 | 
						|
	/*
 | 
						|
	 * set > 0 if pages under this cgroup are moving to other cgroup.
 | 
						|
	 */
 | 
						|
	atomic_t	moving_account;
 | 
						|
	/* taken only while moving_account > 0 */
 | 
						|
	spinlock_t	move_lock;
 | 
						|
	/*
 | 
						|
	 * percpu counter.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_stat_cpu __percpu *stat;
 | 
						|
	/*
 | 
						|
	 * used when a cpu is offlined or other synchronizations
 | 
						|
	 * See mem_cgroup_read_stat().
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_stat_cpu nocpu_base;
 | 
						|
	spinlock_t pcp_counter_lock;
 | 
						|
 | 
						|
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 | 
						|
	struct cg_proto tcp_mem;
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_MEMCG_KMEM)
 | 
						|
	/* analogous to slab_common's slab_caches list, but per-memcg;
 | 
						|
	 * protected by memcg_slab_mutex */
 | 
						|
	struct list_head memcg_slab_caches;
 | 
						|
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
 | 
						|
	int kmemcg_id;
 | 
						|
#endif
 | 
						|
 | 
						|
	int last_scanned_node;
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
	nodemask_t	scan_nodes;
 | 
						|
	atomic_t	numainfo_events;
 | 
						|
	atomic_t	numainfo_updating;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* List of events which userspace want to receive */
 | 
						|
	struct list_head event_list;
 | 
						|
	spinlock_t event_list_lock;
 | 
						|
 | 
						|
	struct mem_cgroup_per_node *nodeinfo[0];
 | 
						|
	/* WARNING: nodeinfo must be the last member here */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return memcg->kmemcg_id >= 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Stuffs for move charges at task migration. */
 | 
						|
/*
 | 
						|
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 | 
						|
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
 | 
						|
 */
 | 
						|
enum move_type {
 | 
						|
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 | 
						|
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 | 
						|
	NR_MOVE_TYPE,
 | 
						|
};
 | 
						|
 | 
						|
/* "mc" and its members are protected by cgroup_mutex */
 | 
						|
static struct move_charge_struct {
 | 
						|
	spinlock_t	  lock; /* for from, to */
 | 
						|
	struct mem_cgroup *from;
 | 
						|
	struct mem_cgroup *to;
 | 
						|
	unsigned long immigrate_flags;
 | 
						|
	unsigned long precharge;
 | 
						|
	unsigned long moved_charge;
 | 
						|
	unsigned long moved_swap;
 | 
						|
	struct task_struct *moving_task;	/* a task moving charges */
 | 
						|
	wait_queue_head_t waitq;		/* a waitq for other context */
 | 
						|
} mc = {
 | 
						|
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 | 
						|
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 | 
						|
};
 | 
						|
 | 
						|
static bool move_anon(void)
 | 
						|
{
 | 
						|
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
 | 
						|
}
 | 
						|
 | 
						|
static bool move_file(void)
 | 
						|
{
 | 
						|
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 | 
						|
 * limit reclaim to prevent infinite loops, if they ever occur.
 | 
						|
 */
 | 
						|
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 | 
						|
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 | 
						|
 | 
						|
enum charge_type {
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_ANON,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 | 
						|
	NR_CHARGE_TYPE,
 | 
						|
};
 | 
						|
 | 
						|
/* for encoding cft->private value on file */
 | 
						|
enum res_type {
 | 
						|
	_MEM,
 | 
						|
	_MEMSWAP,
 | 
						|
	_OOM_TYPE,
 | 
						|
	_KMEM,
 | 
						|
};
 | 
						|
 | 
						|
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 | 
						|
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 | 
						|
#define MEMFILE_ATTR(val)	((val) & 0xffff)
 | 
						|
/* Used for OOM nofiier */
 | 
						|
#define OOM_CONTROL		(0)
 | 
						|
 | 
						|
/*
 | 
						|
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 | 
						|
 * As a consequence, any change that needs to protect against new child cgroups
 | 
						|
 * appearing has to hold it as well.
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(memcg_create_mutex);
 | 
						|
 | 
						|
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 | 
						|
{
 | 
						|
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Some nice accessors for the vmpressure. */
 | 
						|
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg)
 | 
						|
		memcg = root_mem_cgroup;
 | 
						|
	return &memcg->vmpressure;
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 | 
						|
{
 | 
						|
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return (memcg == root_mem_cgroup);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We restrict the id in the range of [1, 65535], so it can fit into
 | 
						|
 * an unsigned short.
 | 
						|
 */
 | 
						|
#define MEM_CGROUP_ID_MAX	USHRT_MAX
 | 
						|
 | 
						|
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return memcg->css.id;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 | 
						|
{
 | 
						|
	struct cgroup_subsys_state *css;
 | 
						|
 | 
						|
	css = css_from_id(id, &memory_cgrp_subsys);
 | 
						|
	return mem_cgroup_from_css(css);
 | 
						|
}
 | 
						|
 | 
						|
/* Writing them here to avoid exposing memcg's inner layout */
 | 
						|
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 | 
						|
 | 
						|
void sock_update_memcg(struct sock *sk)
 | 
						|
{
 | 
						|
	if (mem_cgroup_sockets_enabled) {
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
		struct cg_proto *cg_proto;
 | 
						|
 | 
						|
		BUG_ON(!sk->sk_prot->proto_cgroup);
 | 
						|
 | 
						|
		/* Socket cloning can throw us here with sk_cgrp already
 | 
						|
		 * filled. It won't however, necessarily happen from
 | 
						|
		 * process context. So the test for root memcg given
 | 
						|
		 * the current task's memcg won't help us in this case.
 | 
						|
		 *
 | 
						|
		 * Respecting the original socket's memcg is a better
 | 
						|
		 * decision in this case.
 | 
						|
		 */
 | 
						|
		if (sk->sk_cgrp) {
 | 
						|
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 | 
						|
			css_get(&sk->sk_cgrp->memcg->css);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		memcg = mem_cgroup_from_task(current);
 | 
						|
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
 | 
						|
		if (!mem_cgroup_is_root(memcg) &&
 | 
						|
		    memcg_proto_active(cg_proto) &&
 | 
						|
		    css_tryget_online(&memcg->css)) {
 | 
						|
			sk->sk_cgrp = cg_proto;
 | 
						|
		}
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sock_update_memcg);
 | 
						|
 | 
						|
void sock_release_memcg(struct sock *sk)
 | 
						|
{
 | 
						|
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
		WARN_ON(!sk->sk_cgrp->memcg);
 | 
						|
		memcg = sk->sk_cgrp->memcg;
 | 
						|
		css_put(&sk->sk_cgrp->memcg->css);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg || mem_cgroup_is_root(memcg))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return &memcg->tcp_mem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(tcp_proto_cgroup);
 | 
						|
 | 
						|
static void disarm_sock_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg_proto_activated(&memcg->tcp_mem))
 | 
						|
		return;
 | 
						|
	static_key_slow_dec(&memcg_socket_limit_enabled);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void disarm_sock_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
/*
 | 
						|
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 | 
						|
 * The main reason for not using cgroup id for this:
 | 
						|
 *  this works better in sparse environments, where we have a lot of memcgs,
 | 
						|
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 | 
						|
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 | 
						|
 *  200 entry array for that.
 | 
						|
 *
 | 
						|
 * The current size of the caches array is stored in
 | 
						|
 * memcg_limited_groups_array_size.  It will double each time we have to
 | 
						|
 * increase it.
 | 
						|
 */
 | 
						|
static DEFINE_IDA(kmem_limited_groups);
 | 
						|
int memcg_limited_groups_array_size;
 | 
						|
 | 
						|
/*
 | 
						|
 * MIN_SIZE is different than 1, because we would like to avoid going through
 | 
						|
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 | 
						|
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 | 
						|
 * tunable, but that is strictly not necessary.
 | 
						|
 *
 | 
						|
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 | 
						|
 * this constant directly from cgroup, but it is understandable that this is
 | 
						|
 * better kept as an internal representation in cgroup.c. In any case, the
 | 
						|
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 | 
						|
 * increase ours as well if it increases.
 | 
						|
 */
 | 
						|
#define MEMCG_CACHES_MIN_SIZE 4
 | 
						|
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 | 
						|
 | 
						|
/*
 | 
						|
 * A lot of the calls to the cache allocation functions are expected to be
 | 
						|
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 | 
						|
 * conditional to this static branch, we'll have to allow modules that does
 | 
						|
 * kmem_cache_alloc and the such to see this symbol as well
 | 
						|
 */
 | 
						|
struct static_key memcg_kmem_enabled_key;
 | 
						|
EXPORT_SYMBOL(memcg_kmem_enabled_key);
 | 
						|
 | 
						|
static void memcg_free_cache_id(int id);
 | 
						|
 | 
						|
static void disarm_kmem_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (memcg_kmem_is_active(memcg)) {
 | 
						|
		static_key_slow_dec(&memcg_kmem_enabled_key);
 | 
						|
		memcg_free_cache_id(memcg->kmemcg_id);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * This check can't live in kmem destruction function,
 | 
						|
	 * since the charges will outlive the cgroup
 | 
						|
	 */
 | 
						|
	WARN_ON(page_counter_read(&memcg->kmem));
 | 
						|
}
 | 
						|
#else
 | 
						|
static void disarm_kmem_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
static void disarm_static_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	disarm_sock_keys(memcg);
 | 
						|
	disarm_kmem_keys(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 | 
						|
{
 | 
						|
	int nid = zone_to_nid(zone);
 | 
						|
	int zid = zone_idx(zone);
 | 
						|
 | 
						|
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return &memcg->css;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
 | 
						|
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_node_zone(int nid, int zid)
 | 
						|
{
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_from_page(struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 | 
						|
					 struct mem_cgroup_tree_per_zone *mctz,
 | 
						|
					 unsigned long new_usage_in_excess)
 | 
						|
{
 | 
						|
	struct rb_node **p = &mctz->rb_root.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz_node;
 | 
						|
 | 
						|
	if (mz->on_tree)
 | 
						|
		return;
 | 
						|
 | 
						|
	mz->usage_in_excess = new_usage_in_excess;
 | 
						|
	if (!mz->usage_in_excess)
 | 
						|
		return;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 | 
						|
					tree_node);
 | 
						|
		if (mz->usage_in_excess < mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		/*
 | 
						|
		 * We can't avoid mem cgroups that are over their soft
 | 
						|
		 * limit by the same amount
 | 
						|
		 */
 | 
						|
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
	}
 | 
						|
	rb_link_node(&mz->tree_node, parent, p);
 | 
						|
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = true;
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 | 
						|
					 struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	if (!mz->on_tree)
 | 
						|
		return;
 | 
						|
	rb_erase(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = false;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 | 
						|
				       struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&mctz->lock, flags);
 | 
						|
	__mem_cgroup_remove_exceeded(mz, mctz);
 | 
						|
	spin_unlock_irqrestore(&mctz->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long nr_pages = page_counter_read(&memcg->memory);
 | 
						|
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
 | 
						|
	unsigned long excess = 0;
 | 
						|
 | 
						|
	if (nr_pages > soft_limit)
 | 
						|
		excess = nr_pages - soft_limit;
 | 
						|
 | 
						|
	return excess;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	unsigned long excess;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
 | 
						|
	mctz = soft_limit_tree_from_page(page);
 | 
						|
	/*
 | 
						|
	 * Necessary to update all ancestors when hierarchy is used.
 | 
						|
	 * because their event counter is not touched.
 | 
						|
	 */
 | 
						|
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | 
						|
		mz = mem_cgroup_page_zoneinfo(memcg, page);
 | 
						|
		excess = soft_limit_excess(memcg);
 | 
						|
		/*
 | 
						|
		 * We have to update the tree if mz is on RB-tree or
 | 
						|
		 * mem is over its softlimit.
 | 
						|
		 */
 | 
						|
		if (excess || mz->on_tree) {
 | 
						|
			unsigned long flags;
 | 
						|
 | 
						|
			spin_lock_irqsave(&mctz->lock, flags);
 | 
						|
			/* if on-tree, remove it */
 | 
						|
			if (mz->on_tree)
 | 
						|
				__mem_cgroup_remove_exceeded(mz, mctz);
 | 
						|
			/*
 | 
						|
			 * Insert again. mz->usage_in_excess will be updated.
 | 
						|
			 * If excess is 0, no tree ops.
 | 
						|
			 */
 | 
						|
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | 
						|
			spin_unlock_irqrestore(&mctz->lock, flags);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	int nid, zid;
 | 
						|
 | 
						|
	for_each_node(nid) {
 | 
						|
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
			mctz = soft_limit_tree_node_zone(nid, zid);
 | 
						|
			mem_cgroup_remove_exceeded(mz, mctz);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct rb_node *rightmost = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
retry:
 | 
						|
	mz = NULL;
 | 
						|
	rightmost = rb_last(&mctz->rb_root);
 | 
						|
	if (!rightmost)
 | 
						|
		goto done;		/* Nothing to reclaim from */
 | 
						|
 | 
						|
	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 | 
						|
	/*
 | 
						|
	 * Remove the node now but someone else can add it back,
 | 
						|
	 * we will to add it back at the end of reclaim to its correct
 | 
						|
	 * position in the tree.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_remove_exceeded(mz, mctz);
 | 
						|
	if (!soft_limit_excess(mz->memcg) ||
 | 
						|
	    !css_tryget_online(&mz->memcg->css))
 | 
						|
		goto retry;
 | 
						|
done:
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	spin_lock_irq(&mctz->lock);
 | 
						|
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
	spin_unlock_irq(&mctz->lock);
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implementation Note: reading percpu statistics for memcg.
 | 
						|
 *
 | 
						|
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 | 
						|
 * synchronization to implement "quick" read. There are trade-off between
 | 
						|
 * reading cost and precision of value. Then, we may have a chance to implement
 | 
						|
 * a periodic synchronizion of counter in memcg's counter.
 | 
						|
 *
 | 
						|
 * But this _read() function is used for user interface now. The user accounts
 | 
						|
 * memory usage by memory cgroup and he _always_ requires exact value because
 | 
						|
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 | 
						|
 * have to visit all online cpus and make sum. So, for now, unnecessary
 | 
						|
 * synchronization is not implemented. (just implemented for cpu hotplug)
 | 
						|
 *
 | 
						|
 * If there are kernel internal actions which can make use of some not-exact
 | 
						|
 * value, and reading all cpu value can be performance bottleneck in some
 | 
						|
 * common workload, threashold and synchonization as vmstat[] should be
 | 
						|
 * implemented.
 | 
						|
 */
 | 
						|
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 | 
						|
				 enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	long val = 0;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		val += per_cpu(memcg->stat->count[idx], cpu);
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	val += memcg->nocpu_base.count[idx];
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
#endif
 | 
						|
	put_online_cpus();
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 | 
						|
					    enum mem_cgroup_events_index idx)
 | 
						|
{
 | 
						|
	unsigned long val = 0;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		val += per_cpu(memcg->stat->events[idx], cpu);
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	val += memcg->nocpu_base.events[idx];
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
#endif
 | 
						|
	put_online_cpus();
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 | 
						|
					 struct page *page,
 | 
						|
					 int nr_pages)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 | 
						|
	 * counted as CACHE even if it's on ANON LRU.
 | 
						|
	 */
 | 
						|
	if (PageAnon(page))
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 | 
						|
				nr_pages);
 | 
						|
	else
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 | 
						|
				nr_pages);
 | 
						|
 | 
						|
	if (PageTransHuge(page))
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 | 
						|
				nr_pages);
 | 
						|
 | 
						|
	/* pagein of a big page is an event. So, ignore page size */
 | 
						|
	if (nr_pages > 0)
 | 
						|
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 | 
						|
	else {
 | 
						|
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 | 
						|
		nr_pages = -nr_pages; /* for event */
 | 
						|
	}
 | 
						|
 | 
						|
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 | 
						|
	return mz->lru_size[lru];
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 | 
						|
						  int nid,
 | 
						|
						  unsigned int lru_mask)
 | 
						|
{
 | 
						|
	unsigned long nr = 0;
 | 
						|
	int zid;
 | 
						|
 | 
						|
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 | 
						|
 | 
						|
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
		struct mem_cgroup_per_zone *mz;
 | 
						|
		enum lru_list lru;
 | 
						|
 | 
						|
		for_each_lru(lru) {
 | 
						|
			if (!(BIT(lru) & lru_mask))
 | 
						|
				continue;
 | 
						|
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
			nr += mz->lru_size[lru];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 | 
						|
			unsigned int lru_mask)
 | 
						|
{
 | 
						|
	unsigned long nr = 0;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY)
 | 
						|
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 | 
						|
				       enum mem_cgroup_events_target target)
 | 
						|
{
 | 
						|
	unsigned long val, next;
 | 
						|
 | 
						|
	val = __this_cpu_read(memcg->stat->nr_page_events);
 | 
						|
	next = __this_cpu_read(memcg->stat->targets[target]);
 | 
						|
	/* from time_after() in jiffies.h */
 | 
						|
	if ((long)next - (long)val < 0) {
 | 
						|
		switch (target) {
 | 
						|
		case MEM_CGROUP_TARGET_THRESH:
 | 
						|
			next = val + THRESHOLDS_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		case MEM_CGROUP_TARGET_SOFTLIMIT:
 | 
						|
			next = val + SOFTLIMIT_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		case MEM_CGROUP_TARGET_NUMAINFO:
 | 
						|
			next = val + NUMAINFO_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		__this_cpu_write(memcg->stat->targets[target], next);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check events in order.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	/* threshold event is triggered in finer grain than soft limit */
 | 
						|
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_THRESH))) {
 | 
						|
		bool do_softlimit;
 | 
						|
		bool do_numainfo __maybe_unused;
 | 
						|
 | 
						|
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_SOFTLIMIT);
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_NUMAINFO);
 | 
						|
#endif
 | 
						|
		mem_cgroup_threshold(memcg);
 | 
						|
		if (unlikely(do_softlimit))
 | 
						|
			mem_cgroup_update_tree(memcg, page);
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
		if (unlikely(do_numainfo))
 | 
						|
			atomic_inc(&memcg->numainfo_events);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * mm_update_next_owner() may clear mm->owner to NULL
 | 
						|
	 * if it races with swapoff, page migration, etc.
 | 
						|
	 * So this can be called with p == NULL.
 | 
						|
	 */
 | 
						|
	if (unlikely(!p))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * Page cache insertions can happen withou an
 | 
						|
		 * actual mm context, e.g. during disk probing
 | 
						|
		 * on boot, loopback IO, acct() writes etc.
 | 
						|
		 */
 | 
						|
		if (unlikely(!mm))
 | 
						|
			memcg = root_mem_cgroup;
 | 
						|
		else {
 | 
						|
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
			if (unlikely(!memcg))
 | 
						|
				memcg = root_mem_cgroup;
 | 
						|
		}
 | 
						|
	} while (!css_tryget_online(&memcg->css));
 | 
						|
	rcu_read_unlock();
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 | 
						|
 * @root: hierarchy root
 | 
						|
 * @prev: previously returned memcg, NULL on first invocation
 | 
						|
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 | 
						|
 *
 | 
						|
 * Returns references to children of the hierarchy below @root, or
 | 
						|
 * @root itself, or %NULL after a full round-trip.
 | 
						|
 *
 | 
						|
 * Caller must pass the return value in @prev on subsequent
 | 
						|
 * invocations for reference counting, or use mem_cgroup_iter_break()
 | 
						|
 * to cancel a hierarchy walk before the round-trip is complete.
 | 
						|
 *
 | 
						|
 * Reclaimers can specify a zone and a priority level in @reclaim to
 | 
						|
 * divide up the memcgs in the hierarchy among all concurrent
 | 
						|
 * reclaimers operating on the same zone and priority.
 | 
						|
 */
 | 
						|
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 | 
						|
				   struct mem_cgroup *prev,
 | 
						|
				   struct mem_cgroup_reclaim_cookie *reclaim)
 | 
						|
{
 | 
						|
	struct reclaim_iter *uninitialized_var(iter);
 | 
						|
	struct cgroup_subsys_state *css = NULL;
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	struct mem_cgroup *pos = NULL;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!root)
 | 
						|
		root = root_mem_cgroup;
 | 
						|
 | 
						|
	if (prev && !reclaim)
 | 
						|
		pos = prev;
 | 
						|
 | 
						|
	if (!root->use_hierarchy && root != root_mem_cgroup) {
 | 
						|
		if (prev)
 | 
						|
			goto out;
 | 
						|
		return root;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	if (reclaim) {
 | 
						|
		struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
 | 
						|
		iter = &mz->iter[reclaim->priority];
 | 
						|
 | 
						|
		if (prev && reclaim->generation != iter->generation)
 | 
						|
			goto out_unlock;
 | 
						|
 | 
						|
		do {
 | 
						|
			pos = ACCESS_ONCE(iter->position);
 | 
						|
			/*
 | 
						|
			 * A racing update may change the position and
 | 
						|
			 * put the last reference, hence css_tryget(),
 | 
						|
			 * or retry to see the updated position.
 | 
						|
			 */
 | 
						|
		} while (pos && !css_tryget(&pos->css));
 | 
						|
	}
 | 
						|
 | 
						|
	if (pos)
 | 
						|
		css = &pos->css;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		css = css_next_descendant_pre(css, &root->css);
 | 
						|
		if (!css) {
 | 
						|
			/*
 | 
						|
			 * Reclaimers share the hierarchy walk, and a
 | 
						|
			 * new one might jump in right at the end of
 | 
						|
			 * the hierarchy - make sure they see at least
 | 
						|
			 * one group and restart from the beginning.
 | 
						|
			 */
 | 
						|
			if (!prev)
 | 
						|
				continue;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Verify the css and acquire a reference.  The root
 | 
						|
		 * is provided by the caller, so we know it's alive
 | 
						|
		 * and kicking, and don't take an extra reference.
 | 
						|
		 */
 | 
						|
		memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
		if (css == &root->css)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (css_tryget(css)) {
 | 
						|
			/*
 | 
						|
			 * Make sure the memcg is initialized:
 | 
						|
			 * mem_cgroup_css_online() orders the the
 | 
						|
			 * initialization against setting the flag.
 | 
						|
			 */
 | 
						|
			if (smp_load_acquire(&memcg->initialized))
 | 
						|
				break;
 | 
						|
 | 
						|
			css_put(css);
 | 
						|
		}
 | 
						|
 | 
						|
		memcg = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (reclaim) {
 | 
						|
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
 | 
						|
			if (memcg)
 | 
						|
				css_get(&memcg->css);
 | 
						|
			if (pos)
 | 
						|
				css_put(&pos->css);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * pairs with css_tryget when dereferencing iter->position
 | 
						|
		 * above.
 | 
						|
		 */
 | 
						|
		if (pos)
 | 
						|
			css_put(&pos->css);
 | 
						|
 | 
						|
		if (!memcg)
 | 
						|
			iter->generation++;
 | 
						|
		else if (!prev)
 | 
						|
			reclaim->generation = iter->generation;
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	rcu_read_unlock();
 | 
						|
out:
 | 
						|
	if (prev && prev != root)
 | 
						|
		css_put(&prev->css);
 | 
						|
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 | 
						|
 * @root: hierarchy root
 | 
						|
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 | 
						|
 */
 | 
						|
void mem_cgroup_iter_break(struct mem_cgroup *root,
 | 
						|
			   struct mem_cgroup *prev)
 | 
						|
{
 | 
						|
	if (!root)
 | 
						|
		root = root_mem_cgroup;
 | 
						|
	if (prev && prev != root)
 | 
						|
		css_put(&prev->css);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iteration constructs for visiting all cgroups (under a tree).  If
 | 
						|
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 | 
						|
 * be used for reference counting.
 | 
						|
 */
 | 
						|
#define for_each_mem_cgroup_tree(iter, root)		\
 | 
						|
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 | 
						|
	     iter != NULL;				\
 | 
						|
	     iter = mem_cgroup_iter(root, iter, NULL))
 | 
						|
 | 
						|
#define for_each_mem_cgroup(iter)			\
 | 
						|
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 | 
						|
	     iter != NULL;				\
 | 
						|
	     iter = mem_cgroup_iter(NULL, iter, NULL))
 | 
						|
 | 
						|
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
	if (unlikely(!memcg))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	switch (idx) {
 | 
						|
	case PGFAULT:
 | 
						|
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
 | 
						|
		break;
 | 
						|
	case PGMAJFAULT:
 | 
						|
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 | 
						|
 * @zone: zone of the wanted lruvec
 | 
						|
 * @memcg: memcg of the wanted lruvec
 | 
						|
 *
 | 
						|
 * Returns the lru list vector holding pages for the given @zone and
 | 
						|
 * @mem.  This can be the global zone lruvec, if the memory controller
 | 
						|
 * is disabled.
 | 
						|
 */
 | 
						|
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 | 
						|
				      struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct lruvec *lruvec;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled()) {
 | 
						|
		lruvec = &zone->lruvec;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
 | 
						|
	lruvec = &mz->lruvec;
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Since a node can be onlined after the mem_cgroup was created,
 | 
						|
	 * we have to be prepared to initialize lruvec->zone here;
 | 
						|
	 * and if offlined then reonlined, we need to reinitialize it.
 | 
						|
	 */
 | 
						|
	if (unlikely(lruvec->zone != zone))
 | 
						|
		lruvec->zone = zone;
 | 
						|
	return lruvec;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 | 
						|
 * @page: the page
 | 
						|
 * @zone: zone of the page
 | 
						|
 *
 | 
						|
 * This function is only safe when following the LRU page isolation
 | 
						|
 * and putback protocol: the LRU lock must be held, and the page must
 | 
						|
 * either be PageLRU() or the caller must have isolated/allocated it.
 | 
						|
 */
 | 
						|
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct lruvec *lruvec;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled()) {
 | 
						|
		lruvec = &zone->lruvec;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	memcg = page->mem_cgroup;
 | 
						|
	/*
 | 
						|
	 * Swapcache readahead pages are added to the LRU - and
 | 
						|
	 * possibly migrated - before they are charged.
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		memcg = root_mem_cgroup;
 | 
						|
 | 
						|
	mz = mem_cgroup_page_zoneinfo(memcg, page);
 | 
						|
	lruvec = &mz->lruvec;
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Since a node can be onlined after the mem_cgroup was created,
 | 
						|
	 * we have to be prepared to initialize lruvec->zone here;
 | 
						|
	 * and if offlined then reonlined, we need to reinitialize it.
 | 
						|
	 */
 | 
						|
	if (unlikely(lruvec->zone != zone))
 | 
						|
		lruvec->zone = zone;
 | 
						|
	return lruvec;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 | 
						|
 * @lruvec: mem_cgroup per zone lru vector
 | 
						|
 * @lru: index of lru list the page is sitting on
 | 
						|
 * @nr_pages: positive when adding or negative when removing
 | 
						|
 *
 | 
						|
 * This function must be called when a page is added to or removed from an
 | 
						|
 * lru list.
 | 
						|
 */
 | 
						|
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 | 
						|
				int nr_pages)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	unsigned long *lru_size;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 | 
						|
	lru_size = mz->lru_size + lru;
 | 
						|
	*lru_size += nr_pages;
 | 
						|
	VM_BUG_ON((long)(*lru_size) < 0);
 | 
						|
}
 | 
						|
 | 
						|
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
 | 
						|
{
 | 
						|
	if (root == memcg)
 | 
						|
		return true;
 | 
						|
	if (!root->use_hierarchy)
 | 
						|
		return false;
 | 
						|
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 | 
						|
}
 | 
						|
 | 
						|
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *task_memcg;
 | 
						|
	struct task_struct *p;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	p = find_lock_task_mm(task);
 | 
						|
	if (p) {
 | 
						|
		task_memcg = get_mem_cgroup_from_mm(p->mm);
 | 
						|
		task_unlock(p);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * All threads may have already detached their mm's, but the oom
 | 
						|
		 * killer still needs to detect if they have already been oom
 | 
						|
		 * killed to prevent needlessly killing additional tasks.
 | 
						|
		 */
 | 
						|
		rcu_read_lock();
 | 
						|
		task_memcg = mem_cgroup_from_task(task);
 | 
						|
		css_get(&task_memcg->css);
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
 | 
						|
	css_put(&task_memcg->css);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
 | 
						|
{
 | 
						|
	unsigned long inactive_ratio;
 | 
						|
	unsigned long inactive;
 | 
						|
	unsigned long active;
 | 
						|
	unsigned long gb;
 | 
						|
 | 
						|
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
 | 
						|
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
 | 
						|
 | 
						|
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | 
						|
	if (gb)
 | 
						|
		inactive_ratio = int_sqrt(10 * gb);
 | 
						|
	else
 | 
						|
		inactive_ratio = 1;
 | 
						|
 | 
						|
	return inactive * inactive_ratio < active;
 | 
						|
}
 | 
						|
 | 
						|
#define mem_cgroup_from_counter(counter, member)	\
 | 
						|
	container_of(counter, struct mem_cgroup, member)
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 | 
						|
 * @memcg: the memory cgroup
 | 
						|
 *
 | 
						|
 * Returns the maximum amount of memory @mem can be charged with, in
 | 
						|
 * pages.
 | 
						|
 */
 | 
						|
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long margin = 0;
 | 
						|
	unsigned long count;
 | 
						|
	unsigned long limit;
 | 
						|
 | 
						|
	count = page_counter_read(&memcg->memory);
 | 
						|
	limit = ACCESS_ONCE(memcg->memory.limit);
 | 
						|
	if (count < limit)
 | 
						|
		margin = limit - count;
 | 
						|
 | 
						|
	if (do_swap_account) {
 | 
						|
		count = page_counter_read(&memcg->memsw);
 | 
						|
		limit = ACCESS_ONCE(memcg->memsw.limit);
 | 
						|
		if (count <= limit)
 | 
						|
			margin = min(margin, limit - count);
 | 
						|
	}
 | 
						|
 | 
						|
	return margin;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	/* root ? */
 | 
						|
	if (mem_cgroup_disabled() || !memcg->css.parent)
 | 
						|
		return vm_swappiness;
 | 
						|
 | 
						|
	return memcg->swappiness;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A routine for checking "mem" is under move_account() or not.
 | 
						|
 *
 | 
						|
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 | 
						|
 * moving cgroups. This is for waiting at high-memory pressure
 | 
						|
 * caused by "move".
 | 
						|
 */
 | 
						|
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *from;
 | 
						|
	struct mem_cgroup *to;
 | 
						|
	bool ret = false;
 | 
						|
	/*
 | 
						|
	 * Unlike task_move routines, we access mc.to, mc.from not under
 | 
						|
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 | 
						|
	 */
 | 
						|
	spin_lock(&mc.lock);
 | 
						|
	from = mc.from;
 | 
						|
	to = mc.to;
 | 
						|
	if (!from)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	ret = mem_cgroup_is_descendant(from, memcg) ||
 | 
						|
		mem_cgroup_is_descendant(to, memcg);
 | 
						|
unlock:
 | 
						|
	spin_unlock(&mc.lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (mc.moving_task && current != mc.moving_task) {
 | 
						|
		if (mem_cgroup_under_move(memcg)) {
 | 
						|
			DEFINE_WAIT(wait);
 | 
						|
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
 | 
						|
			/* moving charge context might have finished. */
 | 
						|
			if (mc.moving_task)
 | 
						|
				schedule();
 | 
						|
			finish_wait(&mc.waitq, &wait);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
#define K(x) ((x) << (PAGE_SHIFT-10))
 | 
						|
/**
 | 
						|
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
 | 
						|
 * @memcg: The memory cgroup that went over limit
 | 
						|
 * @p: Task that is going to be killed
 | 
						|
 *
 | 
						|
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | 
						|
 * enabled
 | 
						|
 */
 | 
						|
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 | 
						|
{
 | 
						|
	/* oom_info_lock ensures that parallel ooms do not interleave */
 | 
						|
	static DEFINE_MUTEX(oom_info_lock);
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (!p)
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&oom_info_lock);
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	pr_info("Task in ");
 | 
						|
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 | 
						|
	pr_info(" killed as a result of limit of ");
 | 
						|
	pr_cont_cgroup_path(memcg->css.cgroup);
 | 
						|
	pr_info("\n");
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
 | 
						|
		K((u64)page_counter_read(&memcg->memory)),
 | 
						|
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
 | 
						|
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
 | 
						|
		K((u64)page_counter_read(&memcg->memsw)),
 | 
						|
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
 | 
						|
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
 | 
						|
		K((u64)page_counter_read(&memcg->kmem)),
 | 
						|
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		pr_info("Memory cgroup stats for ");
 | 
						|
		pr_cont_cgroup_path(iter->css.cgroup);
 | 
						|
		pr_cont(":");
 | 
						|
 | 
						|
		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
				continue;
 | 
						|
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
 | 
						|
				K(mem_cgroup_read_stat(iter, i)));
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < NR_LRU_LISTS; i++)
 | 
						|
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
 | 
						|
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
 | 
						|
 | 
						|
		pr_cont("\n");
 | 
						|
	}
 | 
						|
	mutex_unlock(&oom_info_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns the number of memcg under hierarchy tree. Returns
 | 
						|
 * 1(self count) if no children.
 | 
						|
 */
 | 
						|
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int num = 0;
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		num++;
 | 
						|
	return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the memory (and swap, if configured) limit for a memcg.
 | 
						|
 */
 | 
						|
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long limit;
 | 
						|
 | 
						|
	limit = memcg->memory.limit;
 | 
						|
	if (mem_cgroup_swappiness(memcg)) {
 | 
						|
		unsigned long memsw_limit;
 | 
						|
 | 
						|
		memsw_limit = memcg->memsw.limit;
 | 
						|
		limit = min(limit + total_swap_pages, memsw_limit);
 | 
						|
	}
 | 
						|
	return limit;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | 
						|
				     int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	unsigned long chosen_points = 0;
 | 
						|
	unsigned long totalpages;
 | 
						|
	unsigned int points = 0;
 | 
						|
	struct task_struct *chosen = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If current has a pending SIGKILL or is exiting, then automatically
 | 
						|
	 * select it.  The goal is to allow it to allocate so that it may
 | 
						|
	 * quickly exit and free its memory.
 | 
						|
	 */
 | 
						|
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
 | 
						|
		set_thread_flag(TIF_MEMDIE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
 | 
						|
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		struct css_task_iter it;
 | 
						|
		struct task_struct *task;
 | 
						|
 | 
						|
		css_task_iter_start(&iter->css, &it);
 | 
						|
		while ((task = css_task_iter_next(&it))) {
 | 
						|
			switch (oom_scan_process_thread(task, totalpages, NULL,
 | 
						|
							false)) {
 | 
						|
			case OOM_SCAN_SELECT:
 | 
						|
				if (chosen)
 | 
						|
					put_task_struct(chosen);
 | 
						|
				chosen = task;
 | 
						|
				chosen_points = ULONG_MAX;
 | 
						|
				get_task_struct(chosen);
 | 
						|
				/* fall through */
 | 
						|
			case OOM_SCAN_CONTINUE:
 | 
						|
				continue;
 | 
						|
			case OOM_SCAN_ABORT:
 | 
						|
				css_task_iter_end(&it);
 | 
						|
				mem_cgroup_iter_break(memcg, iter);
 | 
						|
				if (chosen)
 | 
						|
					put_task_struct(chosen);
 | 
						|
				return;
 | 
						|
			case OOM_SCAN_OK:
 | 
						|
				break;
 | 
						|
			};
 | 
						|
			points = oom_badness(task, memcg, NULL, totalpages);
 | 
						|
			if (!points || points < chosen_points)
 | 
						|
				continue;
 | 
						|
			/* Prefer thread group leaders for display purposes */
 | 
						|
			if (points == chosen_points &&
 | 
						|
			    thread_group_leader(chosen))
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (chosen)
 | 
						|
				put_task_struct(chosen);
 | 
						|
			chosen = task;
 | 
						|
			chosen_points = points;
 | 
						|
			get_task_struct(chosen);
 | 
						|
		}
 | 
						|
		css_task_iter_end(&it);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!chosen)
 | 
						|
		return;
 | 
						|
	points = chosen_points * 1000 / totalpages;
 | 
						|
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
 | 
						|
			 NULL, "Memory cgroup out of memory");
 | 
						|
}
 | 
						|
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
 | 
						|
/**
 | 
						|
 * test_mem_cgroup_node_reclaimable
 | 
						|
 * @memcg: the target memcg
 | 
						|
 * @nid: the node ID to be checked.
 | 
						|
 * @noswap : specify true here if the user wants flle only information.
 | 
						|
 *
 | 
						|
 * This function returns whether the specified memcg contains any
 | 
						|
 * reclaimable pages on a node. Returns true if there are any reclaimable
 | 
						|
 * pages in the node.
 | 
						|
 */
 | 
						|
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
 | 
						|
		int nid, bool noswap)
 | 
						|
{
 | 
						|
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
 | 
						|
		return true;
 | 
						|
	if (noswap || !total_swap_pages)
 | 
						|
		return false;
 | 
						|
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Always updating the nodemask is not very good - even if we have an empty
 | 
						|
 * list or the wrong list here, we can start from some node and traverse all
 | 
						|
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	/*
 | 
						|
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
 | 
						|
	 * pagein/pageout changes since the last update.
 | 
						|
	 */
 | 
						|
	if (!atomic_read(&memcg->numainfo_events))
 | 
						|
		return;
 | 
						|
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* make a nodemask where this memcg uses memory from */
 | 
						|
	memcg->scan_nodes = node_states[N_MEMORY];
 | 
						|
 | 
						|
	for_each_node_mask(nid, node_states[N_MEMORY]) {
 | 
						|
 | 
						|
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
 | 
						|
			node_clear(nid, memcg->scan_nodes);
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_set(&memcg->numainfo_events, 0);
 | 
						|
	atomic_set(&memcg->numainfo_updating, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Selecting a node where we start reclaim from. Because what we need is just
 | 
						|
 * reducing usage counter, start from anywhere is O,K. Considering
 | 
						|
 * memory reclaim from current node, there are pros. and cons.
 | 
						|
 *
 | 
						|
 * Freeing memory from current node means freeing memory from a node which
 | 
						|
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 | 
						|
 * hit limits, it will see a contention on a node. But freeing from remote
 | 
						|
 * node means more costs for memory reclaim because of memory latency.
 | 
						|
 *
 | 
						|
 * Now, we use round-robin. Better algorithm is welcomed.
 | 
						|
 */
 | 
						|
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	mem_cgroup_may_update_nodemask(memcg);
 | 
						|
	node = memcg->last_scanned_node;
 | 
						|
 | 
						|
	node = next_node(node, memcg->scan_nodes);
 | 
						|
	if (node == MAX_NUMNODES)
 | 
						|
		node = first_node(memcg->scan_nodes);
 | 
						|
	/*
 | 
						|
	 * We call this when we hit limit, not when pages are added to LRU.
 | 
						|
	 * No LRU may hold pages because all pages are UNEVICTABLE or
 | 
						|
	 * memcg is too small and all pages are not on LRU. In that case,
 | 
						|
	 * we use curret node.
 | 
						|
	 */
 | 
						|
	if (unlikely(node == MAX_NUMNODES))
 | 
						|
		node = numa_node_id();
 | 
						|
 | 
						|
	memcg->last_scanned_node = node;
 | 
						|
	return node;
 | 
						|
}
 | 
						|
#else
 | 
						|
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
 | 
						|
				   struct zone *zone,
 | 
						|
				   gfp_t gfp_mask,
 | 
						|
				   unsigned long *total_scanned)
 | 
						|
{
 | 
						|
	struct mem_cgroup *victim = NULL;
 | 
						|
	int total = 0;
 | 
						|
	int loop = 0;
 | 
						|
	unsigned long excess;
 | 
						|
	unsigned long nr_scanned;
 | 
						|
	struct mem_cgroup_reclaim_cookie reclaim = {
 | 
						|
		.zone = zone,
 | 
						|
		.priority = 0,
 | 
						|
	};
 | 
						|
 | 
						|
	excess = soft_limit_excess(root_memcg);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
 | 
						|
		if (!victim) {
 | 
						|
			loop++;
 | 
						|
			if (loop >= 2) {
 | 
						|
				/*
 | 
						|
				 * If we have not been able to reclaim
 | 
						|
				 * anything, it might because there are
 | 
						|
				 * no reclaimable pages under this hierarchy
 | 
						|
				 */
 | 
						|
				if (!total)
 | 
						|
					break;
 | 
						|
				/*
 | 
						|
				 * We want to do more targeted reclaim.
 | 
						|
				 * excess >> 2 is not to excessive so as to
 | 
						|
				 * reclaim too much, nor too less that we keep
 | 
						|
				 * coming back to reclaim from this cgroup
 | 
						|
				 */
 | 
						|
				if (total >= (excess >> 2) ||
 | 
						|
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
 | 
						|
						     zone, &nr_scanned);
 | 
						|
		*total_scanned += nr_scanned;
 | 
						|
		if (!soft_limit_excess(root_memcg))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mem_cgroup_iter_break(root_memcg, victim);
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_LOCKDEP
 | 
						|
static struct lockdep_map memcg_oom_lock_dep_map = {
 | 
						|
	.name = "memcg_oom_lock",
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_SPINLOCK(memcg_oom_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Check OOM-Killer is already running under our hierarchy.
 | 
						|
 * If someone is running, return false.
 | 
						|
 */
 | 
						|
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter, *failed = NULL;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		if (iter->oom_lock) {
 | 
						|
			/*
 | 
						|
			 * this subtree of our hierarchy is already locked
 | 
						|
			 * so we cannot give a lock.
 | 
						|
			 */
 | 
						|
			failed = iter;
 | 
						|
			mem_cgroup_iter_break(memcg, iter);
 | 
						|
			break;
 | 
						|
		} else
 | 
						|
			iter->oom_lock = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (failed) {
 | 
						|
		/*
 | 
						|
		 * OK, we failed to lock the whole subtree so we have
 | 
						|
		 * to clean up what we set up to the failing subtree
 | 
						|
		 */
 | 
						|
		for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
			if (iter == failed) {
 | 
						|
				mem_cgroup_iter_break(memcg, iter);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			iter->oom_lock = false;
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
 | 
						|
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
 | 
						|
	return !failed;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		iter->oom_lock = false;
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		atomic_inc(&iter->under_oom);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When a new child is created while the hierarchy is under oom,
 | 
						|
	 * mem_cgroup_oom_lock() may not be called. We have to use
 | 
						|
	 * atomic_add_unless() here.
 | 
						|
	 */
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		atomic_add_unless(&iter->under_oom, -1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 | 
						|
 | 
						|
struct oom_wait_info {
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	wait_queue_t	wait;
 | 
						|
};
 | 
						|
 | 
						|
static int memcg_oom_wake_function(wait_queue_t *wait,
 | 
						|
	unsigned mode, int sync, void *arg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
 | 
						|
	struct mem_cgroup *oom_wait_memcg;
 | 
						|
	struct oom_wait_info *oom_wait_info;
 | 
						|
 | 
						|
	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 | 
						|
	oom_wait_memcg = oom_wait_info->memcg;
 | 
						|
 | 
						|
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
 | 
						|
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 | 
						|
		return 0;
 | 
						|
	return autoremove_wake_function(wait, mode, sync, arg);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	atomic_inc(&memcg->oom_wakeups);
 | 
						|
	/* for filtering, pass "memcg" as argument. */
 | 
						|
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_oom_recover(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (memcg && atomic_read(&memcg->under_oom))
 | 
						|
		memcg_wakeup_oom(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 | 
						|
{
 | 
						|
	if (!current->memcg_oom.may_oom)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * We are in the middle of the charge context here, so we
 | 
						|
	 * don't want to block when potentially sitting on a callstack
 | 
						|
	 * that holds all kinds of filesystem and mm locks.
 | 
						|
	 *
 | 
						|
	 * Also, the caller may handle a failed allocation gracefully
 | 
						|
	 * (like optional page cache readahead) and so an OOM killer
 | 
						|
	 * invocation might not even be necessary.
 | 
						|
	 *
 | 
						|
	 * That's why we don't do anything here except remember the
 | 
						|
	 * OOM context and then deal with it at the end of the page
 | 
						|
	 * fault when the stack is unwound, the locks are released,
 | 
						|
	 * and when we know whether the fault was overall successful.
 | 
						|
	 */
 | 
						|
	css_get(&memcg->css);
 | 
						|
	current->memcg_oom.memcg = memcg;
 | 
						|
	current->memcg_oom.gfp_mask = mask;
 | 
						|
	current->memcg_oom.order = order;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 | 
						|
 * @handle: actually kill/wait or just clean up the OOM state
 | 
						|
 *
 | 
						|
 * This has to be called at the end of a page fault if the memcg OOM
 | 
						|
 * handler was enabled.
 | 
						|
 *
 | 
						|
 * Memcg supports userspace OOM handling where failed allocations must
 | 
						|
 * sleep on a waitqueue until the userspace task resolves the
 | 
						|
 * situation.  Sleeping directly in the charge context with all kinds
 | 
						|
 * of locks held is not a good idea, instead we remember an OOM state
 | 
						|
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 | 
						|
 * the end of the page fault to complete the OOM handling.
 | 
						|
 *
 | 
						|
 * Returns %true if an ongoing memcg OOM situation was detected and
 | 
						|
 * completed, %false otherwise.
 | 
						|
 */
 | 
						|
bool mem_cgroup_oom_synchronize(bool handle)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
 | 
						|
	struct oom_wait_info owait;
 | 
						|
	bool locked;
 | 
						|
 | 
						|
	/* OOM is global, do not handle */
 | 
						|
	if (!memcg)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!handle)
 | 
						|
		goto cleanup;
 | 
						|
 | 
						|
	owait.memcg = memcg;
 | 
						|
	owait.wait.flags = 0;
 | 
						|
	owait.wait.func = memcg_oom_wake_function;
 | 
						|
	owait.wait.private = current;
 | 
						|
	INIT_LIST_HEAD(&owait.wait.task_list);
 | 
						|
 | 
						|
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 | 
						|
	mem_cgroup_mark_under_oom(memcg);
 | 
						|
 | 
						|
	locked = mem_cgroup_oom_trylock(memcg);
 | 
						|
 | 
						|
	if (locked)
 | 
						|
		mem_cgroup_oom_notify(memcg);
 | 
						|
 | 
						|
	if (locked && !memcg->oom_kill_disable) {
 | 
						|
		mem_cgroup_unmark_under_oom(memcg);
 | 
						|
		finish_wait(&memcg_oom_waitq, &owait.wait);
 | 
						|
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
 | 
						|
					 current->memcg_oom.order);
 | 
						|
	} else {
 | 
						|
		schedule();
 | 
						|
		mem_cgroup_unmark_under_oom(memcg);
 | 
						|
		finish_wait(&memcg_oom_waitq, &owait.wait);
 | 
						|
	}
 | 
						|
 | 
						|
	if (locked) {
 | 
						|
		mem_cgroup_oom_unlock(memcg);
 | 
						|
		/*
 | 
						|
		 * There is no guarantee that an OOM-lock contender
 | 
						|
		 * sees the wakeups triggered by the OOM kill
 | 
						|
		 * uncharges.  Wake any sleepers explicitely.
 | 
						|
		 */
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
	}
 | 
						|
cleanup:
 | 
						|
	current->memcg_oom.memcg = NULL;
 | 
						|
	css_put(&memcg->css);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 | 
						|
 * @page: page that is going to change accounted state
 | 
						|
 * @locked: &memcg->move_lock slowpath was taken
 | 
						|
 * @flags: IRQ-state flags for &memcg->move_lock
 | 
						|
 *
 | 
						|
 * This function must mark the beginning of an accounted page state
 | 
						|
 * change to prevent double accounting when the page is concurrently
 | 
						|
 * being moved to another memcg:
 | 
						|
 *
 | 
						|
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 | 
						|
 *   if (TestClearPageState(page))
 | 
						|
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 | 
						|
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
 | 
						|
 *
 | 
						|
 * The RCU lock is held throughout the transaction.  The fast path can
 | 
						|
 * get away without acquiring the memcg->move_lock (@locked is false)
 | 
						|
 * because page moving starts with an RCU grace period.
 | 
						|
 *
 | 
						|
 * The RCU lock also protects the memcg from being freed when the page
 | 
						|
 * state that is going to change is the only thing preventing the page
 | 
						|
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 | 
						|
 * which allows migration to go ahead and uncharge the page before the
 | 
						|
 * account transaction might be complete.
 | 
						|
 */
 | 
						|
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
 | 
						|
					      bool *locked,
 | 
						|
					      unsigned long *flags)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
again:
 | 
						|
	memcg = page->mem_cgroup;
 | 
						|
	if (unlikely(!memcg))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	*locked = false;
 | 
						|
	if (atomic_read(&memcg->moving_account) <= 0)
 | 
						|
		return memcg;
 | 
						|
 | 
						|
	spin_lock_irqsave(&memcg->move_lock, *flags);
 | 
						|
	if (memcg != page->mem_cgroup) {
 | 
						|
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	*locked = true;
 | 
						|
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 | 
						|
 * @memcg: the memcg that was accounted against
 | 
						|
 * @locked: value received from mem_cgroup_begin_page_stat()
 | 
						|
 * @flags: value received from mem_cgroup_begin_page_stat()
 | 
						|
 */
 | 
						|
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
 | 
						|
			      unsigned long *flags)
 | 
						|
{
 | 
						|
	if (memcg && *locked)
 | 
						|
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_update_page_stat - update page state statistics
 | 
						|
 * @memcg: memcg to account against
 | 
						|
 * @idx: page state item to account
 | 
						|
 * @val: number of pages (positive or negative)
 | 
						|
 *
 | 
						|
 * See mem_cgroup_begin_page_stat() for locking requirements.
 | 
						|
 */
 | 
						|
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
 | 
						|
				 enum mem_cgroup_stat_index idx, int val)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!rcu_read_lock_held());
 | 
						|
 | 
						|
	if (memcg)
 | 
						|
		this_cpu_add(memcg->stat->count[idx], val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 | 
						|
 * TODO: maybe necessary to use big numbers in big irons.
 | 
						|
 */
 | 
						|
#define CHARGE_BATCH	32U
 | 
						|
struct memcg_stock_pcp {
 | 
						|
	struct mem_cgroup *cached; /* this never be root cgroup */
 | 
						|
	unsigned int nr_pages;
 | 
						|
	struct work_struct work;
 | 
						|
	unsigned long flags;
 | 
						|
#define FLUSHING_CACHED_CHARGE	0
 | 
						|
};
 | 
						|
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 | 
						|
static DEFINE_MUTEX(percpu_charge_mutex);
 | 
						|
 | 
						|
/**
 | 
						|
 * consume_stock: Try to consume stocked charge on this cpu.
 | 
						|
 * @memcg: memcg to consume from.
 | 
						|
 * @nr_pages: how many pages to charge.
 | 
						|
 *
 | 
						|
 * The charges will only happen if @memcg matches the current cpu's memcg
 | 
						|
 * stock, and at least @nr_pages are available in that stock.  Failure to
 | 
						|
 * service an allocation will refill the stock.
 | 
						|
 *
 | 
						|
 * returns true if successful, false otherwise.
 | 
						|
 */
 | 
						|
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	if (nr_pages > CHARGE_BATCH)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	stock = &get_cpu_var(memcg_stock);
 | 
						|
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
 | 
						|
		stock->nr_pages -= nr_pages;
 | 
						|
		ret = true;
 | 
						|
	}
 | 
						|
	put_cpu_var(memcg_stock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns stocks cached in percpu and reset cached information.
 | 
						|
 */
 | 
						|
static void drain_stock(struct memcg_stock_pcp *stock)
 | 
						|
{
 | 
						|
	struct mem_cgroup *old = stock->cached;
 | 
						|
 | 
						|
	if (stock->nr_pages) {
 | 
						|
		page_counter_uncharge(&old->memory, stock->nr_pages);
 | 
						|
		if (do_swap_account)
 | 
						|
			page_counter_uncharge(&old->memsw, stock->nr_pages);
 | 
						|
		css_put_many(&old->css, stock->nr_pages);
 | 
						|
		stock->nr_pages = 0;
 | 
						|
	}
 | 
						|
	stock->cached = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be called under preempt disabled or must be called by
 | 
						|
 * a thread which is pinned to local cpu.
 | 
						|
 */
 | 
						|
static void drain_local_stock(struct work_struct *dummy)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
 | 
						|
	drain_stock(stock);
 | 
						|
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 | 
						|
}
 | 
						|
 | 
						|
static void __init memcg_stock_init(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct memcg_stock_pcp *stock =
 | 
						|
					&per_cpu(memcg_stock, cpu);
 | 
						|
		INIT_WORK(&stock->work, drain_local_stock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cache charges(val) to local per_cpu area.
 | 
						|
 * This will be consumed by consume_stock() function, later.
 | 
						|
 */
 | 
						|
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 | 
						|
 | 
						|
	if (stock->cached != memcg) { /* reset if necessary */
 | 
						|
		drain_stock(stock);
 | 
						|
		stock->cached = memcg;
 | 
						|
	}
 | 
						|
	stock->nr_pages += nr_pages;
 | 
						|
	put_cpu_var(memcg_stock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
 | 
						|
 * of the hierarchy under it.
 | 
						|
 */
 | 
						|
static void drain_all_stock(struct mem_cgroup *root_memcg)
 | 
						|
{
 | 
						|
	int cpu, curcpu;
 | 
						|
 | 
						|
	/* If someone's already draining, avoid adding running more workers. */
 | 
						|
	if (!mutex_trylock(&percpu_charge_mutex))
 | 
						|
		return;
 | 
						|
	/* Notify other cpus that system-wide "drain" is running */
 | 
						|
	get_online_cpus();
 | 
						|
	curcpu = get_cpu();
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
 | 
						|
		memcg = stock->cached;
 | 
						|
		if (!memcg || !stock->nr_pages)
 | 
						|
			continue;
 | 
						|
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
 | 
						|
			continue;
 | 
						|
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 | 
						|
			if (cpu == curcpu)
 | 
						|
				drain_local_stock(&stock->work);
 | 
						|
			else
 | 
						|
				schedule_work_on(cpu, &stock->work);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	put_cpu();
 | 
						|
	put_online_cpus();
 | 
						|
	mutex_unlock(&percpu_charge_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function drains percpu counter value from DEAD cpu and
 | 
						|
 * move it to local cpu. Note that this function can be preempted.
 | 
						|
 */
 | 
						|
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		long x = per_cpu(memcg->stat->count[i], cpu);
 | 
						|
 | 
						|
		per_cpu(memcg->stat->count[i], cpu) = 0;
 | 
						|
		memcg->nocpu_base.count[i] += x;
 | 
						|
	}
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 | 
						|
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
 | 
						|
 | 
						|
		per_cpu(memcg->stat->events[i], cpu) = 0;
 | 
						|
		memcg->nocpu_base.events[i] += x;
 | 
						|
	}
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
 | 
						|
					unsigned long action,
 | 
						|
					void *hcpu)
 | 
						|
{
 | 
						|
	int cpu = (unsigned long)hcpu;
 | 
						|
	struct memcg_stock_pcp *stock;
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	if (action == CPU_ONLINE)
 | 
						|
		return NOTIFY_OK;
 | 
						|
 | 
						|
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
 | 
						|
		return NOTIFY_OK;
 | 
						|
 | 
						|
	for_each_mem_cgroup(iter)
 | 
						|
		mem_cgroup_drain_pcp_counter(iter, cpu);
 | 
						|
 | 
						|
	stock = &per_cpu(memcg_stock, cpu);
 | 
						|
	drain_stock(stock);
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | 
						|
		      unsigned int nr_pages)
 | 
						|
{
 | 
						|
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
 | 
						|
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	struct mem_cgroup *mem_over_limit;
 | 
						|
	struct page_counter *counter;
 | 
						|
	unsigned long nr_reclaimed;
 | 
						|
	bool may_swap = true;
 | 
						|
	bool drained = false;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg))
 | 
						|
		goto done;
 | 
						|
retry:
 | 
						|
	if (consume_stock(memcg, nr_pages))
 | 
						|
		goto done;
 | 
						|
 | 
						|
	if (!do_swap_account ||
 | 
						|
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
 | 
						|
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
 | 
						|
			goto done_restock;
 | 
						|
		if (do_swap_account)
 | 
						|
			page_counter_uncharge(&memcg->memsw, batch);
 | 
						|
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
 | 
						|
	} else {
 | 
						|
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
 | 
						|
		may_swap = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (batch > nr_pages) {
 | 
						|
		batch = nr_pages;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unlike in global OOM situations, memcg is not in a physical
 | 
						|
	 * memory shortage.  Allow dying and OOM-killed tasks to
 | 
						|
	 * bypass the last charges so that they can exit quickly and
 | 
						|
	 * free their memory.
 | 
						|
	 */
 | 
						|
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
 | 
						|
		     fatal_signal_pending(current) ||
 | 
						|
		     current->flags & PF_EXITING))
 | 
						|
		goto bypass;
 | 
						|
 | 
						|
	if (unlikely(task_in_memcg_oom(current)))
 | 
						|
		goto nomem;
 | 
						|
 | 
						|
	if (!(gfp_mask & __GFP_WAIT))
 | 
						|
		goto nomem;
 | 
						|
 | 
						|
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
 | 
						|
						    gfp_mask, may_swap);
 | 
						|
 | 
						|
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
 | 
						|
		goto retry;
 | 
						|
 | 
						|
	if (!drained) {
 | 
						|
		drain_all_stock(mem_over_limit);
 | 
						|
		drained = true;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	if (gfp_mask & __GFP_NORETRY)
 | 
						|
		goto nomem;
 | 
						|
	/*
 | 
						|
	 * Even though the limit is exceeded at this point, reclaim
 | 
						|
	 * may have been able to free some pages.  Retry the charge
 | 
						|
	 * before killing the task.
 | 
						|
	 *
 | 
						|
	 * Only for regular pages, though: huge pages are rather
 | 
						|
	 * unlikely to succeed so close to the limit, and we fall back
 | 
						|
	 * to regular pages anyway in case of failure.
 | 
						|
	 */
 | 
						|
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
 | 
						|
		goto retry;
 | 
						|
	/*
 | 
						|
	 * At task move, charge accounts can be doubly counted. So, it's
 | 
						|
	 * better to wait until the end of task_move if something is going on.
 | 
						|
	 */
 | 
						|
	if (mem_cgroup_wait_acct_move(mem_over_limit))
 | 
						|
		goto retry;
 | 
						|
 | 
						|
	if (nr_retries--)
 | 
						|
		goto retry;
 | 
						|
 | 
						|
	if (gfp_mask & __GFP_NOFAIL)
 | 
						|
		goto bypass;
 | 
						|
 | 
						|
	if (fatal_signal_pending(current))
 | 
						|
		goto bypass;
 | 
						|
 | 
						|
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
 | 
						|
nomem:
 | 
						|
	if (!(gfp_mask & __GFP_NOFAIL))
 | 
						|
		return -ENOMEM;
 | 
						|
bypass:
 | 
						|
	return -EINTR;
 | 
						|
 | 
						|
done_restock:
 | 
						|
	css_get_many(&memcg->css, batch);
 | 
						|
	if (batch > nr_pages)
 | 
						|
		refill_stock(memcg, batch - nr_pages);
 | 
						|
done:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 | 
						|
{
 | 
						|
	if (mem_cgroup_is_root(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	page_counter_uncharge(&memcg->memory, nr_pages);
 | 
						|
	if (do_swap_account)
 | 
						|
		page_counter_uncharge(&memcg->memsw, nr_pages);
 | 
						|
 | 
						|
	css_put_many(&memcg->css, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A helper function to get mem_cgroup from ID. must be called under
 | 
						|
 * rcu_read_lock().  The caller is responsible for calling
 | 
						|
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 | 
						|
 * refcnt from swap can be called against removed memcg.)
 | 
						|
 */
 | 
						|
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
 | 
						|
{
 | 
						|
	/* ID 0 is unused ID */
 | 
						|
	if (!id)
 | 
						|
		return NULL;
 | 
						|
	return mem_cgroup_from_id(id);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * try_get_mem_cgroup_from_page - look up page's memcg association
 | 
						|
 * @page: the page
 | 
						|
 *
 | 
						|
 * Look up, get a css reference, and return the memcg that owns @page.
 | 
						|
 *
 | 
						|
 * The page must be locked to prevent racing with swap-in and page
 | 
						|
 * cache charges.  If coming from an unlocked page table, the caller
 | 
						|
 * must ensure the page is on the LRU or this can race with charging.
 | 
						|
 */
 | 
						|
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned short id;
 | 
						|
	swp_entry_t ent;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
 | 
						|
	memcg = page->mem_cgroup;
 | 
						|
	if (memcg) {
 | 
						|
		if (!css_tryget_online(&memcg->css))
 | 
						|
			memcg = NULL;
 | 
						|
	} else if (PageSwapCache(page)) {
 | 
						|
		ent.val = page_private(page);
 | 
						|
		id = lookup_swap_cgroup_id(ent);
 | 
						|
		rcu_read_lock();
 | 
						|
		memcg = mem_cgroup_lookup(id);
 | 
						|
		if (memcg && !css_tryget_online(&memcg->css))
 | 
						|
			memcg = NULL;
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
static void lock_page_lru(struct page *page, int *isolated)
 | 
						|
{
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
 | 
						|
	spin_lock_irq(&zone->lru_lock);
 | 
						|
	if (PageLRU(page)) {
 | 
						|
		struct lruvec *lruvec;
 | 
						|
 | 
						|
		lruvec = mem_cgroup_page_lruvec(page, zone);
 | 
						|
		ClearPageLRU(page);
 | 
						|
		del_page_from_lru_list(page, lruvec, page_lru(page));
 | 
						|
		*isolated = 1;
 | 
						|
	} else
 | 
						|
		*isolated = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void unlock_page_lru(struct page *page, int isolated)
 | 
						|
{
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
 | 
						|
	if (isolated) {
 | 
						|
		struct lruvec *lruvec;
 | 
						|
 | 
						|
		lruvec = mem_cgroup_page_lruvec(page, zone);
 | 
						|
		VM_BUG_ON_PAGE(PageLRU(page), page);
 | 
						|
		SetPageLRU(page);
 | 
						|
		add_page_to_lru_list(page, lruvec, page_lru(page));
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&zone->lru_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
 | 
						|
			  bool lrucare)
 | 
						|
{
 | 
						|
	int isolated;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
 | 
						|
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 | 
						|
	 */
 | 
						|
	if (lrucare)
 | 
						|
		lock_page_lru(page, &isolated);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Nobody should be changing or seriously looking at
 | 
						|
	 * page->mem_cgroup at this point:
 | 
						|
	 *
 | 
						|
	 * - the page is uncharged
 | 
						|
	 *
 | 
						|
	 * - the page is off-LRU
 | 
						|
	 *
 | 
						|
	 * - an anonymous fault has exclusive page access, except for
 | 
						|
	 *   a locked page table
 | 
						|
	 *
 | 
						|
	 * - a page cache insertion, a swapin fault, or a migration
 | 
						|
	 *   have the page locked
 | 
						|
	 */
 | 
						|
	page->mem_cgroup = memcg;
 | 
						|
 | 
						|
	if (lrucare)
 | 
						|
		unlock_page_lru(page, isolated);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
/*
 | 
						|
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 | 
						|
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(memcg_slab_mutex);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 | 
						|
 * in the memcg_cache_params struct.
 | 
						|
 */
 | 
						|
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
 | 
						|
	VM_BUG_ON(p->is_root_cache);
 | 
						|
	cachep = p->root_cache;
 | 
						|
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
 | 
						|
			     unsigned long nr_pages)
 | 
						|
{
 | 
						|
	struct page_counter *counter;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = try_charge(memcg, gfp, nr_pages);
 | 
						|
	if (ret == -EINTR)  {
 | 
						|
		/*
 | 
						|
		 * try_charge() chose to bypass to root due to OOM kill or
 | 
						|
		 * fatal signal.  Since our only options are to either fail
 | 
						|
		 * the allocation or charge it to this cgroup, do it as a
 | 
						|
		 * temporary condition. But we can't fail. From a kmem/slab
 | 
						|
		 * perspective, the cache has already been selected, by
 | 
						|
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
 | 
						|
		 * our minds.
 | 
						|
		 *
 | 
						|
		 * This condition will only trigger if the task entered
 | 
						|
		 * memcg_charge_kmem in a sane state, but was OOM-killed
 | 
						|
		 * during try_charge() above. Tasks that were already dying
 | 
						|
		 * when the allocation triggers should have been already
 | 
						|
		 * directed to the root cgroup in memcontrol.h
 | 
						|
		 */
 | 
						|
		page_counter_charge(&memcg->memory, nr_pages);
 | 
						|
		if (do_swap_account)
 | 
						|
			page_counter_charge(&memcg->memsw, nr_pages);
 | 
						|
		css_get_many(&memcg->css, nr_pages);
 | 
						|
		ret = 0;
 | 
						|
	} else if (ret)
 | 
						|
		page_counter_uncharge(&memcg->kmem, nr_pages);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
 | 
						|
				unsigned long nr_pages)
 | 
						|
{
 | 
						|
	page_counter_uncharge(&memcg->memory, nr_pages);
 | 
						|
	if (do_swap_account)
 | 
						|
		page_counter_uncharge(&memcg->memsw, nr_pages);
 | 
						|
 | 
						|
	page_counter_uncharge(&memcg->kmem, nr_pages);
 | 
						|
 | 
						|
	css_put_many(&memcg->css, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper for acessing a memcg's index. It will be used as an index in the
 | 
						|
 * child cache array in kmem_cache, and also to derive its name. This function
 | 
						|
 * will return -1 when this is not a kmem-limited memcg.
 | 
						|
 */
 | 
						|
int memcg_cache_id(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return memcg ? memcg->kmemcg_id : -1;
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_alloc_cache_id(void)
 | 
						|
{
 | 
						|
	int id, size;
 | 
						|
	int err;
 | 
						|
 | 
						|
	id = ida_simple_get(&kmem_limited_groups,
 | 
						|
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
 | 
						|
	if (id < 0)
 | 
						|
		return id;
 | 
						|
 | 
						|
	if (id < memcg_limited_groups_array_size)
 | 
						|
		return id;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There's no space for the new id in memcg_caches arrays,
 | 
						|
	 * so we have to grow them.
 | 
						|
	 */
 | 
						|
 | 
						|
	size = 2 * (id + 1);
 | 
						|
	if (size < MEMCG_CACHES_MIN_SIZE)
 | 
						|
		size = MEMCG_CACHES_MIN_SIZE;
 | 
						|
	else if (size > MEMCG_CACHES_MAX_SIZE)
 | 
						|
		size = MEMCG_CACHES_MAX_SIZE;
 | 
						|
 | 
						|
	mutex_lock(&memcg_slab_mutex);
 | 
						|
	err = memcg_update_all_caches(size);
 | 
						|
	mutex_unlock(&memcg_slab_mutex);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		ida_simple_remove(&kmem_limited_groups, id);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	return id;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_free_cache_id(int id)
 | 
						|
{
 | 
						|
	ida_simple_remove(&kmem_limited_groups, id);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We should update the current array size iff all caches updates succeed. This
 | 
						|
 * can only be done from the slab side. The slab mutex needs to be held when
 | 
						|
 * calling this.
 | 
						|
 */
 | 
						|
void memcg_update_array_size(int num)
 | 
						|
{
 | 
						|
	memcg_limited_groups_array_size = num;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_register_cache(struct mem_cgroup *memcg,
 | 
						|
				 struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
 | 
						|
						     memcg_slab_mutex */
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	int id;
 | 
						|
 | 
						|
	lockdep_assert_held(&memcg_slab_mutex);
 | 
						|
 | 
						|
	id = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since per-memcg caches are created asynchronously on first
 | 
						|
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 | 
						|
	 * create the same cache, but only one of them may succeed.
 | 
						|
	 */
 | 
						|
	if (cache_from_memcg_idx(root_cache, id))
 | 
						|
		return;
 | 
						|
 | 
						|
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
 | 
						|
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
 | 
						|
	/*
 | 
						|
	 * If we could not create a memcg cache, do not complain, because
 | 
						|
	 * that's not critical at all as we can always proceed with the root
 | 
						|
	 * cache.
 | 
						|
	 */
 | 
						|
	if (!cachep)
 | 
						|
		return;
 | 
						|
 | 
						|
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
 | 
						|
	 * barrier here to ensure nobody will see the kmem_cache partially
 | 
						|
	 * initialized.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
 | 
						|
	root_cache->memcg_params->memcg_caches[id] = cachep;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_unregister_cache(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	struct kmem_cache *root_cache;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int id;
 | 
						|
 | 
						|
	lockdep_assert_held(&memcg_slab_mutex);
 | 
						|
 | 
						|
	BUG_ON(is_root_cache(cachep));
 | 
						|
 | 
						|
	root_cache = cachep->memcg_params->root_cache;
 | 
						|
	memcg = cachep->memcg_params->memcg;
 | 
						|
	id = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
 | 
						|
	root_cache->memcg_params->memcg_caches[id] = NULL;
 | 
						|
 | 
						|
	list_del(&cachep->memcg_params->list);
 | 
						|
 | 
						|
	kmem_cache_destroy(cachep);
 | 
						|
}
 | 
						|
 | 
						|
int __memcg_cleanup_cache_params(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	struct kmem_cache *c;
 | 
						|
	int i, failed = 0;
 | 
						|
 | 
						|
	mutex_lock(&memcg_slab_mutex);
 | 
						|
	for_each_memcg_cache_index(i) {
 | 
						|
		c = cache_from_memcg_idx(s, i);
 | 
						|
		if (!c)
 | 
						|
			continue;
 | 
						|
 | 
						|
		memcg_unregister_cache(c);
 | 
						|
 | 
						|
		if (cache_from_memcg_idx(s, i))
 | 
						|
			failed++;
 | 
						|
	}
 | 
						|
	mutex_unlock(&memcg_slab_mutex);
 | 
						|
	return failed;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	struct memcg_cache_params *params, *tmp;
 | 
						|
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&memcg_slab_mutex);
 | 
						|
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
 | 
						|
		cachep = memcg_params_to_cache(params);
 | 
						|
		memcg_unregister_cache(cachep);
 | 
						|
	}
 | 
						|
	mutex_unlock(&memcg_slab_mutex);
 | 
						|
}
 | 
						|
 | 
						|
struct memcg_register_cache_work {
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	struct work_struct work;
 | 
						|
};
 | 
						|
 | 
						|
static void memcg_register_cache_func(struct work_struct *w)
 | 
						|
{
 | 
						|
	struct memcg_register_cache_work *cw =
 | 
						|
		container_of(w, struct memcg_register_cache_work, work);
 | 
						|
	struct mem_cgroup *memcg = cw->memcg;
 | 
						|
	struct kmem_cache *cachep = cw->cachep;
 | 
						|
 | 
						|
	mutex_lock(&memcg_slab_mutex);
 | 
						|
	memcg_register_cache(memcg, cachep);
 | 
						|
	mutex_unlock(&memcg_slab_mutex);
 | 
						|
 | 
						|
	css_put(&memcg->css);
 | 
						|
	kfree(cw);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enqueue the creation of a per-memcg kmem_cache.
 | 
						|
 */
 | 
						|
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
 | 
						|
					    struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	struct memcg_register_cache_work *cw;
 | 
						|
 | 
						|
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
 | 
						|
	if (!cw)
 | 
						|
		return;
 | 
						|
 | 
						|
	css_get(&memcg->css);
 | 
						|
 | 
						|
	cw->memcg = memcg;
 | 
						|
	cw->cachep = cachep;
 | 
						|
 | 
						|
	INIT_WORK(&cw->work, memcg_register_cache_func);
 | 
						|
	schedule_work(&cw->work);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
 | 
						|
					  struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We need to stop accounting when we kmalloc, because if the
 | 
						|
	 * corresponding kmalloc cache is not yet created, the first allocation
 | 
						|
	 * in __memcg_schedule_register_cache will recurse.
 | 
						|
	 *
 | 
						|
	 * However, it is better to enclose the whole function. Depending on
 | 
						|
	 * the debugging options enabled, INIT_WORK(), for instance, can
 | 
						|
	 * trigger an allocation. This too, will make us recurse. Because at
 | 
						|
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
 | 
						|
	 * the safest choice is to do it like this, wrapping the whole function.
 | 
						|
	 */
 | 
						|
	current->memcg_kmem_skip_account = 1;
 | 
						|
	__memcg_schedule_register_cache(memcg, cachep);
 | 
						|
	current->memcg_kmem_skip_account = 0;
 | 
						|
}
 | 
						|
 | 
						|
int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
 | 
						|
{
 | 
						|
	unsigned int nr_pages = 1 << order;
 | 
						|
 | 
						|
	return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
 | 
						|
{
 | 
						|
	unsigned int nr_pages = 1 << order;
 | 
						|
 | 
						|
	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the kmem_cache we're supposed to use for a slab allocation.
 | 
						|
 * We try to use the current memcg's version of the cache.
 | 
						|
 *
 | 
						|
 * If the cache does not exist yet, if we are the first user of it,
 | 
						|
 * we either create it immediately, if possible, or create it asynchronously
 | 
						|
 * in a workqueue.
 | 
						|
 * In the latter case, we will let the current allocation go through with
 | 
						|
 * the original cache.
 | 
						|
 *
 | 
						|
 * Can't be called in interrupt context or from kernel threads.
 | 
						|
 * This function needs to be called with rcu_read_lock() held.
 | 
						|
 */
 | 
						|
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct kmem_cache *memcg_cachep;
 | 
						|
 | 
						|
	VM_BUG_ON(!cachep->memcg_params);
 | 
						|
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
 | 
						|
 | 
						|
	if (current->memcg_kmem_skip_account)
 | 
						|
		return cachep;
 | 
						|
 | 
						|
	memcg = get_mem_cgroup_from_mm(current->mm);
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
 | 
						|
	if (likely(memcg_cachep))
 | 
						|
		return memcg_cachep;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are in a safe context (can wait, and not in interrupt
 | 
						|
	 * context), we could be be predictable and return right away.
 | 
						|
	 * This would guarantee that the allocation being performed
 | 
						|
	 * already belongs in the new cache.
 | 
						|
	 *
 | 
						|
	 * However, there are some clashes that can arrive from locking.
 | 
						|
	 * For instance, because we acquire the slab_mutex while doing
 | 
						|
	 * memcg_create_kmem_cache, this means no further allocation
 | 
						|
	 * could happen with the slab_mutex held. So it's better to
 | 
						|
	 * defer everything.
 | 
						|
	 */
 | 
						|
	memcg_schedule_register_cache(memcg, cachep);
 | 
						|
out:
 | 
						|
	css_put(&memcg->css);
 | 
						|
	return cachep;
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	if (!is_root_cache(cachep))
 | 
						|
		css_put(&cachep->memcg_params->memcg->css);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to verify if the allocation against current->mm->owner's memcg is
 | 
						|
 * possible for the given order. But the page is not allocated yet, so we'll
 | 
						|
 * need a further commit step to do the final arrangements.
 | 
						|
 *
 | 
						|
 * It is possible for the task to switch cgroups in this mean time, so at
 | 
						|
 * commit time, we can't rely on task conversion any longer.  We'll then use
 | 
						|
 * the handle argument to return to the caller which cgroup we should commit
 | 
						|
 * against. We could also return the memcg directly and avoid the pointer
 | 
						|
 * passing, but a boolean return value gives better semantics considering
 | 
						|
 * the compiled-out case as well.
 | 
						|
 *
 | 
						|
 * Returning true means the allocation is possible.
 | 
						|
 */
 | 
						|
bool
 | 
						|
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	*_memcg = NULL;
 | 
						|
 | 
						|
	memcg = get_mem_cgroup_from_mm(current->mm);
 | 
						|
 | 
						|
	if (!memcg_kmem_is_active(memcg)) {
 | 
						|
		css_put(&memcg->css);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
 | 
						|
	if (!ret)
 | 
						|
		*_memcg = memcg;
 | 
						|
 | 
						|
	css_put(&memcg->css);
 | 
						|
	return (ret == 0);
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
 | 
						|
			      int order)
 | 
						|
{
 | 
						|
	VM_BUG_ON(mem_cgroup_is_root(memcg));
 | 
						|
 | 
						|
	/* The page allocation failed. Revert */
 | 
						|
	if (!page) {
 | 
						|
		memcg_uncharge_kmem(memcg, 1 << order);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	page->mem_cgroup = memcg;
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_kmem_uncharge_pages(struct page *page, int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = page->mem_cgroup;
 | 
						|
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
 | 
						|
 | 
						|
	memcg_uncharge_kmem(memcg, 1 << order);
 | 
						|
	page->mem_cgroup = NULL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
 | 
						|
/*
 | 
						|
 * Because tail pages are not marked as "used", set it. We're under
 | 
						|
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 | 
						|
 * charge/uncharge will be never happen and move_account() is done under
 | 
						|
 * compound_lock(), so we don't have to take care of races.
 | 
						|
 */
 | 
						|
void mem_cgroup_split_huge_fixup(struct page *head)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 1; i < HPAGE_PMD_NR; i++)
 | 
						|
		head[i].mem_cgroup = head->mem_cgroup;
 | 
						|
 | 
						|
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 | 
						|
		       HPAGE_PMD_NR);
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_account - move account of the page
 | 
						|
 * @page: the page
 | 
						|
 * @nr_pages: number of regular pages (>1 for huge pages)
 | 
						|
 * @from: mem_cgroup which the page is moved from.
 | 
						|
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 | 
						|
 *
 | 
						|
 * The caller must confirm following.
 | 
						|
 * - page is not on LRU (isolate_page() is useful.)
 | 
						|
 * - compound_lock is held when nr_pages > 1
 | 
						|
 *
 | 
						|
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 | 
						|
 * from old cgroup.
 | 
						|
 */
 | 
						|
static int mem_cgroup_move_account(struct page *page,
 | 
						|
				   unsigned int nr_pages,
 | 
						|
				   struct mem_cgroup *from,
 | 
						|
				   struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	VM_BUG_ON(from == to);
 | 
						|
	VM_BUG_ON_PAGE(PageLRU(page), page);
 | 
						|
	/*
 | 
						|
	 * The page is isolated from LRU. So, collapse function
 | 
						|
	 * will not handle this page. But page splitting can happen.
 | 
						|
	 * Do this check under compound_page_lock(). The caller should
 | 
						|
	 * hold it.
 | 
						|
	 */
 | 
						|
	ret = -EBUSY;
 | 
						|
	if (nr_pages > 1 && !PageTransHuge(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
 | 
						|
	 * of its source page while we change it: page migration takes
 | 
						|
	 * both pages off the LRU, but page cache replacement doesn't.
 | 
						|
	 */
 | 
						|
	if (!trylock_page(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = -EINVAL;
 | 
						|
	if (page->mem_cgroup != from)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	spin_lock_irqsave(&from->move_lock, flags);
 | 
						|
 | 
						|
	if (!PageAnon(page) && page_mapped(page)) {
 | 
						|
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
 | 
						|
			       nr_pages);
 | 
						|
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
 | 
						|
			       nr_pages);
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageWriteback(page)) {
 | 
						|
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
 | 
						|
			       nr_pages);
 | 
						|
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
 | 
						|
			       nr_pages);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is safe to change page->mem_cgroup here because the page
 | 
						|
	 * is referenced, charged, and isolated - we can't race with
 | 
						|
	 * uncharging, charging, migration, or LRU putback.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* caller should have done css_get */
 | 
						|
	page->mem_cgroup = to;
 | 
						|
	spin_unlock_irqrestore(&from->move_lock, flags);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	mem_cgroup_charge_statistics(to, page, nr_pages);
 | 
						|
	memcg_check_events(to, page);
 | 
						|
	mem_cgroup_charge_statistics(from, page, -nr_pages);
 | 
						|
	memcg_check_events(from, page);
 | 
						|
	local_irq_enable();
 | 
						|
out_unlock:
 | 
						|
	unlock_page(page);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 | 
						|
					 bool charge)
 | 
						|
{
 | 
						|
	int val = (charge) ? 1 : -1;
 | 
						|
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 | 
						|
 * @entry: swap entry to be moved
 | 
						|
 * @from:  mem_cgroup which the entry is moved from
 | 
						|
 * @to:  mem_cgroup which the entry is moved to
 | 
						|
 *
 | 
						|
 * It succeeds only when the swap_cgroup's record for this entry is the same
 | 
						|
 * as the mem_cgroup's id of @from.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -EINVAL on failure.
 | 
						|
 *
 | 
						|
 * The caller must have charged to @to, IOW, called page_counter_charge() about
 | 
						|
 * both res and memsw, and called css_get().
 | 
						|
 */
 | 
						|
static int mem_cgroup_move_swap_account(swp_entry_t entry,
 | 
						|
				struct mem_cgroup *from, struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	unsigned short old_id, new_id;
 | 
						|
 | 
						|
	old_id = mem_cgroup_id(from);
 | 
						|
	new_id = mem_cgroup_id(to);
 | 
						|
 | 
						|
	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
 | 
						|
		mem_cgroup_swap_statistics(from, false);
 | 
						|
		mem_cgroup_swap_statistics(to, true);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
 | 
						|
				struct mem_cgroup *from, struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_MUTEX(memcg_limit_mutex);
 | 
						|
 | 
						|
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 | 
						|
				   unsigned long limit)
 | 
						|
{
 | 
						|
	unsigned long curusage;
 | 
						|
	unsigned long oldusage;
 | 
						|
	bool enlarge = false;
 | 
						|
	int retry_count;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For keeping hierarchical_reclaim simple, how long we should retry
 | 
						|
	 * is depends on callers. We set our retry-count to be function
 | 
						|
	 * of # of children which we should visit in this loop.
 | 
						|
	 */
 | 
						|
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
 | 
						|
		      mem_cgroup_count_children(memcg);
 | 
						|
 | 
						|
	oldusage = page_counter_read(&memcg->memory);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		mutex_lock(&memcg_limit_mutex);
 | 
						|
		if (limit > memcg->memsw.limit) {
 | 
						|
			mutex_unlock(&memcg_limit_mutex);
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (limit > memcg->memory.limit)
 | 
						|
			enlarge = true;
 | 
						|
		ret = page_counter_limit(&memcg->memory, limit);
 | 
						|
		mutex_unlock(&memcg_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
 | 
						|
 | 
						|
		curusage = page_counter_read(&memcg->memory);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	} while (retry_count);
 | 
						|
 | 
						|
	if (!ret && enlarge)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 | 
						|
					 unsigned long limit)
 | 
						|
{
 | 
						|
	unsigned long curusage;
 | 
						|
	unsigned long oldusage;
 | 
						|
	bool enlarge = false;
 | 
						|
	int retry_count;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* see mem_cgroup_resize_res_limit */
 | 
						|
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
 | 
						|
		      mem_cgroup_count_children(memcg);
 | 
						|
 | 
						|
	oldusage = page_counter_read(&memcg->memsw);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		mutex_lock(&memcg_limit_mutex);
 | 
						|
		if (limit < memcg->memory.limit) {
 | 
						|
			mutex_unlock(&memcg_limit_mutex);
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (limit > memcg->memsw.limit)
 | 
						|
			enlarge = true;
 | 
						|
		ret = page_counter_limit(&memcg->memsw, limit);
 | 
						|
		mutex_unlock(&memcg_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
 | 
						|
 | 
						|
		curusage = page_counter_read(&memcg->memsw);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	} while (retry_count);
 | 
						|
 | 
						|
	if (!ret && enlarge)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
 | 
						|
					    gfp_t gfp_mask,
 | 
						|
					    unsigned long *total_scanned)
 | 
						|
{
 | 
						|
	unsigned long nr_reclaimed = 0;
 | 
						|
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
 | 
						|
	unsigned long reclaimed;
 | 
						|
	int loop = 0;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	unsigned long excess;
 | 
						|
	unsigned long nr_scanned;
 | 
						|
 | 
						|
	if (order > 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 | 
						|
	/*
 | 
						|
	 * This loop can run a while, specially if mem_cgroup's continuously
 | 
						|
	 * keep exceeding their soft limit and putting the system under
 | 
						|
	 * pressure
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		if (next_mz)
 | 
						|
			mz = next_mz;
 | 
						|
		else
 | 
						|
			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
		if (!mz)
 | 
						|
			break;
 | 
						|
 | 
						|
		nr_scanned = 0;
 | 
						|
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
 | 
						|
						    gfp_mask, &nr_scanned);
 | 
						|
		nr_reclaimed += reclaimed;
 | 
						|
		*total_scanned += nr_scanned;
 | 
						|
		spin_lock_irq(&mctz->lock);
 | 
						|
		__mem_cgroup_remove_exceeded(mz, mctz);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we failed to reclaim anything from this memory cgroup
 | 
						|
		 * it is time to move on to the next cgroup
 | 
						|
		 */
 | 
						|
		next_mz = NULL;
 | 
						|
		if (!reclaimed)
 | 
						|
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
 | 
						|
		excess = soft_limit_excess(mz->memcg);
 | 
						|
		/*
 | 
						|
		 * One school of thought says that we should not add
 | 
						|
		 * back the node to the tree if reclaim returns 0.
 | 
						|
		 * But our reclaim could return 0, simply because due
 | 
						|
		 * to priority we are exposing a smaller subset of
 | 
						|
		 * memory to reclaim from. Consider this as a longer
 | 
						|
		 * term TODO.
 | 
						|
		 */
 | 
						|
		/* If excess == 0, no tree ops */
 | 
						|
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | 
						|
		spin_unlock_irq(&mctz->lock);
 | 
						|
		css_put(&mz->memcg->css);
 | 
						|
		loop++;
 | 
						|
		/*
 | 
						|
		 * Could not reclaim anything and there are no more
 | 
						|
		 * mem cgroups to try or we seem to be looping without
 | 
						|
		 * reclaiming anything.
 | 
						|
		 */
 | 
						|
		if (!nr_reclaimed &&
 | 
						|
			(next_mz == NULL ||
 | 
						|
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | 
						|
			break;
 | 
						|
	} while (!nr_reclaimed);
 | 
						|
	if (next_mz)
 | 
						|
		css_put(&next_mz->memcg->css);
 | 
						|
	return nr_reclaimed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Test whether @memcg has children, dead or alive.  Note that this
 | 
						|
 * function doesn't care whether @memcg has use_hierarchy enabled and
 | 
						|
 * returns %true if there are child csses according to the cgroup
 | 
						|
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 | 
						|
 */
 | 
						|
static inline bool memcg_has_children(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The lock does not prevent addition or deletion of children, but
 | 
						|
	 * it prevents a new child from being initialized based on this
 | 
						|
	 * parent in css_online(), so it's enough to decide whether
 | 
						|
	 * hierarchically inherited attributes can still be changed or not.
 | 
						|
	 */
 | 
						|
	lockdep_assert_held(&memcg_create_mutex);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = css_next_child(NULL, &memcg->css);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reclaims as many pages from the given memcg as possible and moves
 | 
						|
 * the rest to the parent.
 | 
						|
 *
 | 
						|
 * Caller is responsible for holding css reference for memcg.
 | 
						|
 */
 | 
						|
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
 | 
						|
	/* we call try-to-free pages for make this cgroup empty */
 | 
						|
	lru_add_drain_all();
 | 
						|
	/* try to free all pages in this cgroup */
 | 
						|
	while (nr_retries && page_counter_read(&memcg->memory)) {
 | 
						|
		int progress;
 | 
						|
 | 
						|
		if (signal_pending(current))
 | 
						|
			return -EINTR;
 | 
						|
 | 
						|
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
 | 
						|
							GFP_KERNEL, true);
 | 
						|
		if (!progress) {
 | 
						|
			nr_retries--;
 | 
						|
			/* maybe some writeback is necessary */
 | 
						|
			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
 | 
						|
					    char *buf, size_t nbytes,
 | 
						|
					    loff_t off)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg))
 | 
						|
		return -EINVAL;
 | 
						|
	return mem_cgroup_force_empty(memcg) ?: nbytes;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
 | 
						|
				     struct cftype *cft)
 | 
						|
{
 | 
						|
	return mem_cgroup_from_css(css)->use_hierarchy;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
 | 
						|
				      struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	int retval = 0;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
 | 
						|
	if (memcg->use_hierarchy == val)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If parent's use_hierarchy is set, we can't make any modifications
 | 
						|
	 * in the child subtrees. If it is unset, then the change can
 | 
						|
	 * occur, provided the current cgroup has no children.
 | 
						|
	 *
 | 
						|
	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | 
						|
	 * set if there are no children.
 | 
						|
	 */
 | 
						|
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
 | 
						|
				(val == 1 || val == 0)) {
 | 
						|
		if (!memcg_has_children(memcg))
 | 
						|
			memcg->use_hierarchy = val;
 | 
						|
		else
 | 
						|
			retval = -EBUSY;
 | 
						|
	} else
 | 
						|
		retval = -EINVAL;
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long tree_stat(struct mem_cgroup *memcg,
 | 
						|
			       enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	long val = 0;
 | 
						|
 | 
						|
	/* Per-cpu values can be negative, use a signed accumulator */
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		val += mem_cgroup_read_stat(iter, idx);
 | 
						|
 | 
						|
	if (val < 0) /* race ? */
 | 
						|
		val = 0;
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 | 
						|
{
 | 
						|
	u64 val;
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg)) {
 | 
						|
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
 | 
						|
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
 | 
						|
		if (swap)
 | 
						|
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
 | 
						|
	} else {
 | 
						|
		if (!swap)
 | 
						|
			val = page_counter_read(&memcg->memory);
 | 
						|
		else
 | 
						|
			val = page_counter_read(&memcg->memsw);
 | 
						|
	}
 | 
						|
	return val << PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
enum {
 | 
						|
	RES_USAGE,
 | 
						|
	RES_LIMIT,
 | 
						|
	RES_MAX_USAGE,
 | 
						|
	RES_FAILCNT,
 | 
						|
	RES_SOFT_LIMIT,
 | 
						|
};
 | 
						|
 | 
						|
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
 | 
						|
			       struct cftype *cft)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct page_counter *counter;
 | 
						|
 | 
						|
	switch (MEMFILE_TYPE(cft->private)) {
 | 
						|
	case _MEM:
 | 
						|
		counter = &memcg->memory;
 | 
						|
		break;
 | 
						|
	case _MEMSWAP:
 | 
						|
		counter = &memcg->memsw;
 | 
						|
		break;
 | 
						|
	case _KMEM:
 | 
						|
		counter = &memcg->kmem;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	switch (MEMFILE_ATTR(cft->private)) {
 | 
						|
	case RES_USAGE:
 | 
						|
		if (counter == &memcg->memory)
 | 
						|
			return mem_cgroup_usage(memcg, false);
 | 
						|
		if (counter == &memcg->memsw)
 | 
						|
			return mem_cgroup_usage(memcg, true);
 | 
						|
		return (u64)page_counter_read(counter) * PAGE_SIZE;
 | 
						|
	case RES_LIMIT:
 | 
						|
		return (u64)counter->limit * PAGE_SIZE;
 | 
						|
	case RES_MAX_USAGE:
 | 
						|
		return (u64)counter->watermark * PAGE_SIZE;
 | 
						|
	case RES_FAILCNT:
 | 
						|
		return counter->failcnt;
 | 
						|
	case RES_SOFT_LIMIT:
 | 
						|
		return (u64)memcg->soft_limit * PAGE_SIZE;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static int memcg_activate_kmem(struct mem_cgroup *memcg,
 | 
						|
			       unsigned long nr_pages)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	int memcg_id;
 | 
						|
 | 
						|
	if (memcg_kmem_is_active(memcg))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For simplicity, we won't allow this to be disabled.  It also can't
 | 
						|
	 * be changed if the cgroup has children already, or if tasks had
 | 
						|
	 * already joined.
 | 
						|
	 *
 | 
						|
	 * If tasks join before we set the limit, a person looking at
 | 
						|
	 * kmem.usage_in_bytes will have no way to determine when it took
 | 
						|
	 * place, which makes the value quite meaningless.
 | 
						|
	 *
 | 
						|
	 * After it first became limited, changes in the value of the limit are
 | 
						|
	 * of course permitted.
 | 
						|
	 */
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
	if (cgroup_has_tasks(memcg->css.cgroup) ||
 | 
						|
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
 | 
						|
		err = -EBUSY;
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	memcg_id = memcg_alloc_cache_id();
 | 
						|
	if (memcg_id < 0) {
 | 
						|
		err = memcg_id;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We couldn't have accounted to this cgroup, because it hasn't got
 | 
						|
	 * activated yet, so this should succeed.
 | 
						|
	 */
 | 
						|
	err = page_counter_limit(&memcg->kmem, nr_pages);
 | 
						|
	VM_BUG_ON(err);
 | 
						|
 | 
						|
	static_key_slow_inc(&memcg_kmem_enabled_key);
 | 
						|
	/*
 | 
						|
	 * A memory cgroup is considered kmem-active as soon as it gets
 | 
						|
	 * kmemcg_id. Setting the id after enabling static branching will
 | 
						|
	 * guarantee no one starts accounting before all call sites are
 | 
						|
	 * patched.
 | 
						|
	 */
 | 
						|
	memcg->kmemcg_id = memcg_id;
 | 
						|
out:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
 | 
						|
				   unsigned long limit)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	mutex_lock(&memcg_limit_mutex);
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		ret = memcg_activate_kmem(memcg, limit);
 | 
						|
	else
 | 
						|
		ret = page_counter_limit(&memcg->kmem, limit);
 | 
						|
	mutex_unlock(&memcg_limit_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
 | 
						|
 | 
						|
	if (!parent)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&memcg_limit_mutex);
 | 
						|
	/*
 | 
						|
	 * If the parent cgroup is not kmem-active now, it cannot be activated
 | 
						|
	 * after this point, because it has at least one child already.
 | 
						|
	 */
 | 
						|
	if (memcg_kmem_is_active(parent))
 | 
						|
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
 | 
						|
	mutex_unlock(&memcg_limit_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
 | 
						|
				   unsigned long limit)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
/*
 | 
						|
 * The user of this function is...
 | 
						|
 * RES_LIMIT.
 | 
						|
 */
 | 
						|
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
 | 
						|
				char *buf, size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | 
						|
	unsigned long nr_pages;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	buf = strstrip(buf);
 | 
						|
	ret = page_counter_memparse(buf, &nr_pages);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | 
						|
	case RES_LIMIT:
 | 
						|
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | 
						|
		case _MEM:
 | 
						|
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
 | 
						|
			break;
 | 
						|
		case _MEMSWAP:
 | 
						|
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
 | 
						|
			break;
 | 
						|
		case _KMEM:
 | 
						|
			ret = memcg_update_kmem_limit(memcg, nr_pages);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case RES_SOFT_LIMIT:
 | 
						|
		memcg->soft_limit = nr_pages;
 | 
						|
		ret = 0;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return ret ?: nbytes;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
 | 
						|
				size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | 
						|
	struct page_counter *counter;
 | 
						|
 | 
						|
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | 
						|
	case _MEM:
 | 
						|
		counter = &memcg->memory;
 | 
						|
		break;
 | 
						|
	case _MEMSWAP:
 | 
						|
		counter = &memcg->memsw;
 | 
						|
		break;
 | 
						|
	case _KMEM:
 | 
						|
		counter = &memcg->kmem;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | 
						|
	case RES_MAX_USAGE:
 | 
						|
		page_counter_reset_watermark(counter);
 | 
						|
		break;
 | 
						|
	case RES_FAILCNT:
 | 
						|
		counter->failcnt = 0;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	return nbytes;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft)
 | 
						|
{
 | 
						|
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	if (val >= (1 << NR_MOVE_TYPE))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No kind of locking is needed in here, because ->can_attach() will
 | 
						|
	 * check this value once in the beginning of the process, and then carry
 | 
						|
	 * on with stale data. This means that changes to this value will only
 | 
						|
	 * affect task migrations starting after the change.
 | 
						|
	 */
 | 
						|
	memcg->move_charge_at_immigrate = val;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static int memcg_numa_stat_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	struct numa_stat {
 | 
						|
		const char *name;
 | 
						|
		unsigned int lru_mask;
 | 
						|
	};
 | 
						|
 | 
						|
	static const struct numa_stat stats[] = {
 | 
						|
		{ "total", LRU_ALL },
 | 
						|
		{ "file", LRU_ALL_FILE },
 | 
						|
		{ "anon", LRU_ALL_ANON },
 | 
						|
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
 | 
						|
	};
 | 
						|
	const struct numa_stat *stat;
 | 
						|
	int nid;
 | 
						|
	unsigned long nr;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 | 
						|
 | 
						|
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | 
						|
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
 | 
						|
		seq_printf(m, "%s=%lu", stat->name, nr);
 | 
						|
		for_each_node_state(nid, N_MEMORY) {
 | 
						|
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 | 
						|
							  stat->lru_mask);
 | 
						|
			seq_printf(m, " N%d=%lu", nid, nr);
 | 
						|
		}
 | 
						|
		seq_putc(m, '\n');
 | 
						|
	}
 | 
						|
 | 
						|
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | 
						|
		struct mem_cgroup *iter;
 | 
						|
 | 
						|
		nr = 0;
 | 
						|
		for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
 | 
						|
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
 | 
						|
		for_each_node_state(nid, N_MEMORY) {
 | 
						|
			nr = 0;
 | 
						|
			for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
				nr += mem_cgroup_node_nr_lru_pages(
 | 
						|
					iter, nid, stat->lru_mask);
 | 
						|
			seq_printf(m, " N%d=%lu", nid, nr);
 | 
						|
		}
 | 
						|
		seq_putc(m, '\n');
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
static int memcg_stat_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 | 
						|
	unsigned long memory, memsw;
 | 
						|
	struct mem_cgroup *mi;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
 | 
						|
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
 | 
						|
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
 | 
						|
			   mem_cgroup_read_events(memcg, i));
 | 
						|
 | 
						|
	for (i = 0; i < NR_LRU_LISTS; i++)
 | 
						|
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
 | 
						|
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 | 
						|
 | 
						|
	/* Hierarchical information */
 | 
						|
	memory = memsw = PAGE_COUNTER_MAX;
 | 
						|
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
 | 
						|
		memory = min(memory, mi->memory.limit);
 | 
						|
		memsw = min(memsw, mi->memsw.limit);
 | 
						|
	}
 | 
						|
	seq_printf(m, "hierarchical_memory_limit %llu\n",
 | 
						|
		   (u64)memory * PAGE_SIZE);
 | 
						|
	if (do_swap_account)
 | 
						|
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
 | 
						|
			   (u64)memsw * PAGE_SIZE);
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		long long val = 0;
 | 
						|
 | 
						|
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
 | 
						|
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 | 
						|
		unsigned long long val = 0;
 | 
						|
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_read_events(mi, i);
 | 
						|
		seq_printf(m, "total_%s %llu\n",
 | 
						|
			   mem_cgroup_events_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < NR_LRU_LISTS; i++) {
 | 
						|
		unsigned long long val = 0;
 | 
						|
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
 | 
						|
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	{
 | 
						|
		int nid, zid;
 | 
						|
		struct mem_cgroup_per_zone *mz;
 | 
						|
		struct zone_reclaim_stat *rstat;
 | 
						|
		unsigned long recent_rotated[2] = {0, 0};
 | 
						|
		unsigned long recent_scanned[2] = {0, 0};
 | 
						|
 | 
						|
		for_each_online_node(nid)
 | 
						|
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
				rstat = &mz->lruvec.reclaim_stat;
 | 
						|
 | 
						|
				recent_rotated[0] += rstat->recent_rotated[0];
 | 
						|
				recent_rotated[1] += rstat->recent_rotated[1];
 | 
						|
				recent_scanned[0] += rstat->recent_scanned[0];
 | 
						|
				recent_scanned[1] += rstat->recent_scanned[1];
 | 
						|
			}
 | 
						|
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
 | 
						|
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
 | 
						|
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
 | 
						|
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
 | 
						|
				      struct cftype *cft)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	return mem_cgroup_swappiness(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
 | 
						|
				       struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	if (val > 100)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (css->parent)
 | 
						|
		memcg->swappiness = val;
 | 
						|
	else
 | 
						|
		vm_swappiness = val;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 | 
						|
{
 | 
						|
	struct mem_cgroup_threshold_ary *t;
 | 
						|
	unsigned long usage;
 | 
						|
	int i;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	if (!swap)
 | 
						|
		t = rcu_dereference(memcg->thresholds.primary);
 | 
						|
	else
 | 
						|
		t = rcu_dereference(memcg->memsw_thresholds.primary);
 | 
						|
 | 
						|
	if (!t)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	usage = mem_cgroup_usage(memcg, swap);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * current_threshold points to threshold just below or equal to usage.
 | 
						|
	 * If it's not true, a threshold was crossed after last
 | 
						|
	 * call of __mem_cgroup_threshold().
 | 
						|
	 */
 | 
						|
	i = t->current_threshold;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate backward over array of thresholds starting from
 | 
						|
	 * current_threshold and check if a threshold is crossed.
 | 
						|
	 * If none of thresholds below usage is crossed, we read
 | 
						|
	 * only one element of the array here.
 | 
						|
	 */
 | 
						|
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 | 
						|
		eventfd_signal(t->entries[i].eventfd, 1);
 | 
						|
 | 
						|
	/* i = current_threshold + 1 */
 | 
						|
	i++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate forward over array of thresholds starting from
 | 
						|
	 * current_threshold+1 and check if a threshold is crossed.
 | 
						|
	 * If none of thresholds above usage is crossed, we read
 | 
						|
	 * only one element of the array here.
 | 
						|
	 */
 | 
						|
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 | 
						|
		eventfd_signal(t->entries[i].eventfd, 1);
 | 
						|
 | 
						|
	/* Update current_threshold */
 | 
						|
	t->current_threshold = i - 1;
 | 
						|
unlock:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	while (memcg) {
 | 
						|
		__mem_cgroup_threshold(memcg, false);
 | 
						|
		if (do_swap_account)
 | 
						|
			__mem_cgroup_threshold(memcg, true);
 | 
						|
 | 
						|
		memcg = parent_mem_cgroup(memcg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int compare_thresholds(const void *a, const void *b)
 | 
						|
{
 | 
						|
	const struct mem_cgroup_threshold *_a = a;
 | 
						|
	const struct mem_cgroup_threshold *_b = b;
 | 
						|
 | 
						|
	if (_a->threshold > _b->threshold)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (_a->threshold < _b->threshold)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup_eventfd_list *ev;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	list_for_each_entry(ev, &memcg->oom_notify, list)
 | 
						|
		eventfd_signal(ev->eventfd, 1);
 | 
						|
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		mem_cgroup_oom_notify_cb(iter);
 | 
						|
}
 | 
						|
 | 
						|
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
 | 
						|
{
 | 
						|
	struct mem_cgroup_thresholds *thresholds;
 | 
						|
	struct mem_cgroup_threshold_ary *new;
 | 
						|
	unsigned long threshold;
 | 
						|
	unsigned long usage;
 | 
						|
	int i, size, ret;
 | 
						|
 | 
						|
	ret = page_counter_memparse(args, &threshold);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	mutex_lock(&memcg->thresholds_lock);
 | 
						|
 | 
						|
	if (type == _MEM) {
 | 
						|
		thresholds = &memcg->thresholds;
 | 
						|
		usage = mem_cgroup_usage(memcg, false);
 | 
						|
	} else if (type == _MEMSWAP) {
 | 
						|
		thresholds = &memcg->memsw_thresholds;
 | 
						|
		usage = mem_cgroup_usage(memcg, true);
 | 
						|
	} else
 | 
						|
		BUG();
 | 
						|
 | 
						|
	/* Check if a threshold crossed before adding a new one */
 | 
						|
	if (thresholds->primary)
 | 
						|
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 | 
						|
 | 
						|
	/* Allocate memory for new array of thresholds */
 | 
						|
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
 | 
						|
			GFP_KERNEL);
 | 
						|
	if (!new) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
	new->size = size;
 | 
						|
 | 
						|
	/* Copy thresholds (if any) to new array */
 | 
						|
	if (thresholds->primary) {
 | 
						|
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
 | 
						|
				sizeof(struct mem_cgroup_threshold));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add new threshold */
 | 
						|
	new->entries[size - 1].eventfd = eventfd;
 | 
						|
	new->entries[size - 1].threshold = threshold;
 | 
						|
 | 
						|
	/* Sort thresholds. Registering of new threshold isn't time-critical */
 | 
						|
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
 | 
						|
			compare_thresholds, NULL);
 | 
						|
 | 
						|
	/* Find current threshold */
 | 
						|
	new->current_threshold = -1;
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		if (new->entries[i].threshold <= usage) {
 | 
						|
			/*
 | 
						|
			 * new->current_threshold will not be used until
 | 
						|
			 * rcu_assign_pointer(), so it's safe to increment
 | 
						|
			 * it here.
 | 
						|
			 */
 | 
						|
			++new->current_threshold;
 | 
						|
		} else
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Free old spare buffer and save old primary buffer as spare */
 | 
						|
	kfree(thresholds->spare);
 | 
						|
	thresholds->spare = thresholds->primary;
 | 
						|
 | 
						|
	rcu_assign_pointer(thresholds->primary, new);
 | 
						|
 | 
						|
	/* To be sure that nobody uses thresholds */
 | 
						|
	synchronize_rcu();
 | 
						|
 | 
						|
unlock:
 | 
						|
	mutex_unlock(&memcg->thresholds_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd, const char *args)
 | 
						|
{
 | 
						|
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
 | 
						|
}
 | 
						|
 | 
						|
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd, const char *args)
 | 
						|
{
 | 
						|
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd, enum res_type type)
 | 
						|
{
 | 
						|
	struct mem_cgroup_thresholds *thresholds;
 | 
						|
	struct mem_cgroup_threshold_ary *new;
 | 
						|
	unsigned long usage;
 | 
						|
	int i, j, size;
 | 
						|
 | 
						|
	mutex_lock(&memcg->thresholds_lock);
 | 
						|
 | 
						|
	if (type == _MEM) {
 | 
						|
		thresholds = &memcg->thresholds;
 | 
						|
		usage = mem_cgroup_usage(memcg, false);
 | 
						|
	} else if (type == _MEMSWAP) {
 | 
						|
		thresholds = &memcg->memsw_thresholds;
 | 
						|
		usage = mem_cgroup_usage(memcg, true);
 | 
						|
	} else
 | 
						|
		BUG();
 | 
						|
 | 
						|
	if (!thresholds->primary)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	/* Check if a threshold crossed before removing */
 | 
						|
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	/* Calculate new number of threshold */
 | 
						|
	size = 0;
 | 
						|
	for (i = 0; i < thresholds->primary->size; i++) {
 | 
						|
		if (thresholds->primary->entries[i].eventfd != eventfd)
 | 
						|
			size++;
 | 
						|
	}
 | 
						|
 | 
						|
	new = thresholds->spare;
 | 
						|
 | 
						|
	/* Set thresholds array to NULL if we don't have thresholds */
 | 
						|
	if (!size) {
 | 
						|
		kfree(new);
 | 
						|
		new = NULL;
 | 
						|
		goto swap_buffers;
 | 
						|
	}
 | 
						|
 | 
						|
	new->size = size;
 | 
						|
 | 
						|
	/* Copy thresholds and find current threshold */
 | 
						|
	new->current_threshold = -1;
 | 
						|
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 | 
						|
		if (thresholds->primary->entries[i].eventfd == eventfd)
 | 
						|
			continue;
 | 
						|
 | 
						|
		new->entries[j] = thresholds->primary->entries[i];
 | 
						|
		if (new->entries[j].threshold <= usage) {
 | 
						|
			/*
 | 
						|
			 * new->current_threshold will not be used
 | 
						|
			 * until rcu_assign_pointer(), so it's safe to increment
 | 
						|
			 * it here.
 | 
						|
			 */
 | 
						|
			++new->current_threshold;
 | 
						|
		}
 | 
						|
		j++;
 | 
						|
	}
 | 
						|
 | 
						|
swap_buffers:
 | 
						|
	/* Swap primary and spare array */
 | 
						|
	thresholds->spare = thresholds->primary;
 | 
						|
	/* If all events are unregistered, free the spare array */
 | 
						|
	if (!new) {
 | 
						|
		kfree(thresholds->spare);
 | 
						|
		thresholds->spare = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_assign_pointer(thresholds->primary, new);
 | 
						|
 | 
						|
	/* To be sure that nobody uses thresholds */
 | 
						|
	synchronize_rcu();
 | 
						|
unlock:
 | 
						|
	mutex_unlock(&memcg->thresholds_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd)
 | 
						|
{
 | 
						|
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
 | 
						|
}
 | 
						|
 | 
						|
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd)
 | 
						|
{
 | 
						|
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd, const char *args)
 | 
						|
{
 | 
						|
	struct mem_cgroup_eventfd_list *event;
 | 
						|
 | 
						|
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
 | 
						|
	if (!event)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	event->eventfd = eventfd;
 | 
						|
	list_add(&event->list, &memcg->oom_notify);
 | 
						|
 | 
						|
	/* already in OOM ? */
 | 
						|
	if (atomic_read(&memcg->under_oom))
 | 
						|
		eventfd_signal(eventfd, 1);
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
 | 
						|
	struct eventfd_ctx *eventfd)
 | 
						|
{
 | 
						|
	struct mem_cgroup_eventfd_list *ev, *tmp;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
 | 
						|
		if (ev->eventfd == eventfd) {
 | 
						|
			list_del(&ev->list);
 | 
						|
			kfree(ev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 | 
						|
 | 
						|
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
 | 
						|
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	/* cannot set to root cgroup and only 0 and 1 are allowed */
 | 
						|
	if (!css->parent || !((val == 0) || (val == 1)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	memcg->oom_kill_disable = val;
 | 
						|
	if (!val)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = memcg_propagate_kmem(memcg);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return mem_cgroup_sockets_init(memcg, ss);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	memcg_unregister_all_caches(memcg);
 | 
						|
	mem_cgroup_sockets_destroy(memcg);
 | 
						|
}
 | 
						|
#else
 | 
						|
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * DO NOT USE IN NEW FILES.
 | 
						|
 *
 | 
						|
 * "cgroup.event_control" implementation.
 | 
						|
 *
 | 
						|
 * This is way over-engineered.  It tries to support fully configurable
 | 
						|
 * events for each user.  Such level of flexibility is completely
 | 
						|
 * unnecessary especially in the light of the planned unified hierarchy.
 | 
						|
 *
 | 
						|
 * Please deprecate this and replace with something simpler if at all
 | 
						|
 * possible.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Unregister event and free resources.
 | 
						|
 *
 | 
						|
 * Gets called from workqueue.
 | 
						|
 */
 | 
						|
static void memcg_event_remove(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct mem_cgroup_event *event =
 | 
						|
		container_of(work, struct mem_cgroup_event, remove);
 | 
						|
	struct mem_cgroup *memcg = event->memcg;
 | 
						|
 | 
						|
	remove_wait_queue(event->wqh, &event->wait);
 | 
						|
 | 
						|
	event->unregister_event(memcg, event->eventfd);
 | 
						|
 | 
						|
	/* Notify userspace the event is going away. */
 | 
						|
	eventfd_signal(event->eventfd, 1);
 | 
						|
 | 
						|
	eventfd_ctx_put(event->eventfd);
 | 
						|
	kfree(event);
 | 
						|
	css_put(&memcg->css);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Gets called on POLLHUP on eventfd when user closes it.
 | 
						|
 *
 | 
						|
 * Called with wqh->lock held and interrupts disabled.
 | 
						|
 */
 | 
						|
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
 | 
						|
			    int sync, void *key)
 | 
						|
{
 | 
						|
	struct mem_cgroup_event *event =
 | 
						|
		container_of(wait, struct mem_cgroup_event, wait);
 | 
						|
	struct mem_cgroup *memcg = event->memcg;
 | 
						|
	unsigned long flags = (unsigned long)key;
 | 
						|
 | 
						|
	if (flags & POLLHUP) {
 | 
						|
		/*
 | 
						|
		 * If the event has been detached at cgroup removal, we
 | 
						|
		 * can simply return knowing the other side will cleanup
 | 
						|
		 * for us.
 | 
						|
		 *
 | 
						|
		 * We can't race against event freeing since the other
 | 
						|
		 * side will require wqh->lock via remove_wait_queue(),
 | 
						|
		 * which we hold.
 | 
						|
		 */
 | 
						|
		spin_lock(&memcg->event_list_lock);
 | 
						|
		if (!list_empty(&event->list)) {
 | 
						|
			list_del_init(&event->list);
 | 
						|
			/*
 | 
						|
			 * We are in atomic context, but cgroup_event_remove()
 | 
						|
			 * may sleep, so we have to call it in workqueue.
 | 
						|
			 */
 | 
						|
			schedule_work(&event->remove);
 | 
						|
		}
 | 
						|
		spin_unlock(&memcg->event_list_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_event_ptable_queue_proc(struct file *file,
 | 
						|
		wait_queue_head_t *wqh, poll_table *pt)
 | 
						|
{
 | 
						|
	struct mem_cgroup_event *event =
 | 
						|
		container_of(pt, struct mem_cgroup_event, pt);
 | 
						|
 | 
						|
	event->wqh = wqh;
 | 
						|
	add_wait_queue(wqh, &event->wait);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * DO NOT USE IN NEW FILES.
 | 
						|
 *
 | 
						|
 * Parse input and register new cgroup event handler.
 | 
						|
 *
 | 
						|
 * Input must be in format '<event_fd> <control_fd> <args>'.
 | 
						|
 * Interpretation of args is defined by control file implementation.
 | 
						|
 */
 | 
						|
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
 | 
						|
					 char *buf, size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct cgroup_subsys_state *css = of_css(of);
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_event *event;
 | 
						|
	struct cgroup_subsys_state *cfile_css;
 | 
						|
	unsigned int efd, cfd;
 | 
						|
	struct fd efile;
 | 
						|
	struct fd cfile;
 | 
						|
	const char *name;
 | 
						|
	char *endp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	buf = strstrip(buf);
 | 
						|
 | 
						|
	efd = simple_strtoul(buf, &endp, 10);
 | 
						|
	if (*endp != ' ')
 | 
						|
		return -EINVAL;
 | 
						|
	buf = endp + 1;
 | 
						|
 | 
						|
	cfd = simple_strtoul(buf, &endp, 10);
 | 
						|
	if ((*endp != ' ') && (*endp != '\0'))
 | 
						|
		return -EINVAL;
 | 
						|
	buf = endp + 1;
 | 
						|
 | 
						|
	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | 
						|
	if (!event)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	event->memcg = memcg;
 | 
						|
	INIT_LIST_HEAD(&event->list);
 | 
						|
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
 | 
						|
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
 | 
						|
	INIT_WORK(&event->remove, memcg_event_remove);
 | 
						|
 | 
						|
	efile = fdget(efd);
 | 
						|
	if (!efile.file) {
 | 
						|
		ret = -EBADF;
 | 
						|
		goto out_kfree;
 | 
						|
	}
 | 
						|
 | 
						|
	event->eventfd = eventfd_ctx_fileget(efile.file);
 | 
						|
	if (IS_ERR(event->eventfd)) {
 | 
						|
		ret = PTR_ERR(event->eventfd);
 | 
						|
		goto out_put_efile;
 | 
						|
	}
 | 
						|
 | 
						|
	cfile = fdget(cfd);
 | 
						|
	if (!cfile.file) {
 | 
						|
		ret = -EBADF;
 | 
						|
		goto out_put_eventfd;
 | 
						|
	}
 | 
						|
 | 
						|
	/* the process need read permission on control file */
 | 
						|
	/* AV: shouldn't we check that it's been opened for read instead? */
 | 
						|
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out_put_cfile;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the event callbacks and set them in @event.  This used
 | 
						|
	 * to be done via struct cftype but cgroup core no longer knows
 | 
						|
	 * about these events.  The following is crude but the whole thing
 | 
						|
	 * is for compatibility anyway.
 | 
						|
	 *
 | 
						|
	 * DO NOT ADD NEW FILES.
 | 
						|
	 */
 | 
						|
	name = cfile.file->f_path.dentry->d_name.name;
 | 
						|
 | 
						|
	if (!strcmp(name, "memory.usage_in_bytes")) {
 | 
						|
		event->register_event = mem_cgroup_usage_register_event;
 | 
						|
		event->unregister_event = mem_cgroup_usage_unregister_event;
 | 
						|
	} else if (!strcmp(name, "memory.oom_control")) {
 | 
						|
		event->register_event = mem_cgroup_oom_register_event;
 | 
						|
		event->unregister_event = mem_cgroup_oom_unregister_event;
 | 
						|
	} else if (!strcmp(name, "memory.pressure_level")) {
 | 
						|
		event->register_event = vmpressure_register_event;
 | 
						|
		event->unregister_event = vmpressure_unregister_event;
 | 
						|
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
 | 
						|
		event->register_event = memsw_cgroup_usage_register_event;
 | 
						|
		event->unregister_event = memsw_cgroup_usage_unregister_event;
 | 
						|
	} else {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out_put_cfile;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify @cfile should belong to @css.  Also, remaining events are
 | 
						|
	 * automatically removed on cgroup destruction but the removal is
 | 
						|
	 * asynchronous, so take an extra ref on @css.
 | 
						|
	 */
 | 
						|
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
 | 
						|
					       &memory_cgrp_subsys);
 | 
						|
	ret = -EINVAL;
 | 
						|
	if (IS_ERR(cfile_css))
 | 
						|
		goto out_put_cfile;
 | 
						|
	if (cfile_css != css) {
 | 
						|
		css_put(cfile_css);
 | 
						|
		goto out_put_cfile;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = event->register_event(memcg, event->eventfd, buf);
 | 
						|
	if (ret)
 | 
						|
		goto out_put_css;
 | 
						|
 | 
						|
	efile.file->f_op->poll(efile.file, &event->pt);
 | 
						|
 | 
						|
	spin_lock(&memcg->event_list_lock);
 | 
						|
	list_add(&event->list, &memcg->event_list);
 | 
						|
	spin_unlock(&memcg->event_list_lock);
 | 
						|
 | 
						|
	fdput(cfile);
 | 
						|
	fdput(efile);
 | 
						|
 | 
						|
	return nbytes;
 | 
						|
 | 
						|
out_put_css:
 | 
						|
	css_put(css);
 | 
						|
out_put_cfile:
 | 
						|
	fdput(cfile);
 | 
						|
out_put_eventfd:
 | 
						|
	eventfd_ctx_put(event->eventfd);
 | 
						|
out_put_efile:
 | 
						|
	fdput(efile);
 | 
						|
out_kfree:
 | 
						|
	kfree(event);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct cftype mem_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | 
						|
		.write = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "soft_limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | 
						|
		.write = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "stat",
 | 
						|
		.seq_show = memcg_stat_show,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "force_empty",
 | 
						|
		.write = mem_cgroup_force_empty_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "use_hierarchy",
 | 
						|
		.write_u64 = mem_cgroup_hierarchy_write,
 | 
						|
		.read_u64 = mem_cgroup_hierarchy_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "cgroup.event_control",		/* XXX: for compat */
 | 
						|
		.write = memcg_write_event_control,
 | 
						|
		.flags = CFTYPE_NO_PREFIX,
 | 
						|
		.mode = S_IWUGO,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "swappiness",
 | 
						|
		.read_u64 = mem_cgroup_swappiness_read,
 | 
						|
		.write_u64 = mem_cgroup_swappiness_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "move_charge_at_immigrate",
 | 
						|
		.read_u64 = mem_cgroup_move_charge_read,
 | 
						|
		.write_u64 = mem_cgroup_move_charge_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "oom_control",
 | 
						|
		.seq_show = mem_cgroup_oom_control_read,
 | 
						|
		.write_u64 = mem_cgroup_oom_control_write,
 | 
						|
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "pressure_level",
 | 
						|
	},
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	{
 | 
						|
		.name = "numa_stat",
 | 
						|
		.seq_show = memcg_numa_stat_show,
 | 
						|
	},
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
	{
 | 
						|
		.name = "kmem.limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
 | 
						|
		.write = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
#ifdef CONFIG_SLABINFO
 | 
						|
	{
 | 
						|
		.name = "kmem.slabinfo",
 | 
						|
		.seq_start = slab_start,
 | 
						|
		.seq_next = slab_next,
 | 
						|
		.seq_stop = slab_stop,
 | 
						|
		.seq_show = memcg_slab_show,
 | 
						|
	},
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	{ },	/* terminate */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
static struct cftype memsw_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "memsw.usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | 
						|
		.write = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | 
						|
		.write = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read_u64,
 | 
						|
	},
 | 
						|
	{ },	/* terminate */
 | 
						|
};
 | 
						|
#endif
 | 
						|
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_node *pn;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	int zone, tmp = node;
 | 
						|
	/*
 | 
						|
	 * This routine is called against possible nodes.
 | 
						|
	 * But it's BUG to call kmalloc() against offline node.
 | 
						|
	 *
 | 
						|
	 * TODO: this routine can waste much memory for nodes which will
 | 
						|
	 *       never be onlined. It's better to use memory hotplug callback
 | 
						|
	 *       function.
 | 
						|
	 */
 | 
						|
	if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
		tmp = -1;
 | 
						|
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | 
						|
	if (!pn)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
		mz = &pn->zoneinfo[zone];
 | 
						|
		lruvec_init(&mz->lruvec);
 | 
						|
		mz->usage_in_excess = 0;
 | 
						|
		mz->on_tree = false;
 | 
						|
		mz->memcg = memcg;
 | 
						|
	}
 | 
						|
	memcg->nodeinfo[node] = pn;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 | 
						|
{
 | 
						|
	kfree(memcg->nodeinfo[node]);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *mem_cgroup_alloc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	size_t size;
 | 
						|
 | 
						|
	size = sizeof(struct mem_cgroup);
 | 
						|
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
 | 
						|
 | 
						|
	memcg = kzalloc(size, GFP_KERNEL);
 | 
						|
	if (!memcg)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
 | 
						|
	if (!memcg->stat)
 | 
						|
		goto out_free;
 | 
						|
	spin_lock_init(&memcg->pcp_counter_lock);
 | 
						|
	return memcg;
 | 
						|
 | 
						|
out_free:
 | 
						|
	kfree(memcg);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 | 
						|
 * (scanning all at force_empty is too costly...)
 | 
						|
 *
 | 
						|
 * Instead of clearing all references at force_empty, we remember
 | 
						|
 * the number of reference from swap_cgroup and free mem_cgroup when
 | 
						|
 * it goes down to 0.
 | 
						|
 *
 | 
						|
 * Removal of cgroup itself succeeds regardless of refs from swap.
 | 
						|
 */
 | 
						|
 | 
						|
static void __mem_cgroup_free(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	mem_cgroup_remove_from_trees(memcg);
 | 
						|
 | 
						|
	for_each_node(node)
 | 
						|
		free_mem_cgroup_per_zone_info(memcg, node);
 | 
						|
 | 
						|
	free_percpu(memcg->stat);
 | 
						|
 | 
						|
	disarm_static_keys(memcg);
 | 
						|
	kfree(memcg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 | 
						|
 */
 | 
						|
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg->memory.parent)
 | 
						|
		return NULL;
 | 
						|
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(parent_mem_cgroup);
 | 
						|
 | 
						|
static void __init mem_cgroup_soft_limit_tree_init(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup_tree_per_node *rtpn;
 | 
						|
	struct mem_cgroup_tree_per_zone *rtpz;
 | 
						|
	int tmp, node, zone;
 | 
						|
 | 
						|
	for_each_node(node) {
 | 
						|
		tmp = node;
 | 
						|
		if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
			tmp = -1;
 | 
						|
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
 | 
						|
		BUG_ON(!rtpn);
 | 
						|
 | 
						|
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | 
						|
 | 
						|
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
			rtpz = &rtpn->rb_tree_per_zone[zone];
 | 
						|
			rtpz->rb_root = RB_ROOT;
 | 
						|
			spin_lock_init(&rtpz->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct cgroup_subsys_state * __ref
 | 
						|
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	long error = -ENOMEM;
 | 
						|
	int node;
 | 
						|
 | 
						|
	memcg = mem_cgroup_alloc();
 | 
						|
	if (!memcg)
 | 
						|
		return ERR_PTR(error);
 | 
						|
 | 
						|
	for_each_node(node)
 | 
						|
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
 | 
						|
			goto free_out;
 | 
						|
 | 
						|
	/* root ? */
 | 
						|
	if (parent_css == NULL) {
 | 
						|
		root_mem_cgroup = memcg;
 | 
						|
		page_counter_init(&memcg->memory, NULL);
 | 
						|
		memcg->soft_limit = PAGE_COUNTER_MAX;
 | 
						|
		page_counter_init(&memcg->memsw, NULL);
 | 
						|
		page_counter_init(&memcg->kmem, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	memcg->last_scanned_node = MAX_NUMNODES;
 | 
						|
	INIT_LIST_HEAD(&memcg->oom_notify);
 | 
						|
	memcg->move_charge_at_immigrate = 0;
 | 
						|
	mutex_init(&memcg->thresholds_lock);
 | 
						|
	spin_lock_init(&memcg->move_lock);
 | 
						|
	vmpressure_init(&memcg->vmpressure);
 | 
						|
	INIT_LIST_HEAD(&memcg->event_list);
 | 
						|
	spin_lock_init(&memcg->event_list_lock);
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
	memcg->kmemcg_id = -1;
 | 
						|
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
 | 
						|
#endif
 | 
						|
 | 
						|
	return &memcg->css;
 | 
						|
 | 
						|
free_out:
 | 
						|
	__mem_cgroup_free(memcg);
 | 
						|
	return ERR_PTR(error);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mem_cgroup_css_online(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (css->id > MEM_CGROUP_ID_MAX)
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	if (!parent)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
 | 
						|
	memcg->use_hierarchy = parent->use_hierarchy;
 | 
						|
	memcg->oom_kill_disable = parent->oom_kill_disable;
 | 
						|
	memcg->swappiness = mem_cgroup_swappiness(parent);
 | 
						|
 | 
						|
	if (parent->use_hierarchy) {
 | 
						|
		page_counter_init(&memcg->memory, &parent->memory);
 | 
						|
		memcg->soft_limit = PAGE_COUNTER_MAX;
 | 
						|
		page_counter_init(&memcg->memsw, &parent->memsw);
 | 
						|
		page_counter_init(&memcg->kmem, &parent->kmem);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * No need to take a reference to the parent because cgroup
 | 
						|
		 * core guarantees its existence.
 | 
						|
		 */
 | 
						|
	} else {
 | 
						|
		page_counter_init(&memcg->memory, NULL);
 | 
						|
		memcg->soft_limit = PAGE_COUNTER_MAX;
 | 
						|
		page_counter_init(&memcg->memsw, NULL);
 | 
						|
		page_counter_init(&memcg->kmem, NULL);
 | 
						|
		/*
 | 
						|
		 * Deeper hierachy with use_hierarchy == false doesn't make
 | 
						|
		 * much sense so let cgroup subsystem know about this
 | 
						|
		 * unfortunate state in our controller.
 | 
						|
		 */
 | 
						|
		if (parent != root_mem_cgroup)
 | 
						|
			memory_cgrp_subsys.broken_hierarchy = true;
 | 
						|
	}
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
 | 
						|
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure the memcg is initialized: mem_cgroup_iter()
 | 
						|
	 * orders reading memcg->initialized against its callers
 | 
						|
	 * reading the memcg members.
 | 
						|
	 */
 | 
						|
	smp_store_release(&memcg->initialized, 1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_event *event, *tmp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unregister events and notify userspace.
 | 
						|
	 * Notify userspace about cgroup removing only after rmdir of cgroup
 | 
						|
	 * directory to avoid race between userspace and kernelspace.
 | 
						|
	 */
 | 
						|
	spin_lock(&memcg->event_list_lock);
 | 
						|
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
 | 
						|
		list_del_init(&event->list);
 | 
						|
		schedule_work(&event->remove);
 | 
						|
	}
 | 
						|
	spin_unlock(&memcg->event_list_lock);
 | 
						|
 | 
						|
	vmpressure_cleanup(&memcg->vmpressure);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	memcg_destroy_kmem(memcg);
 | 
						|
	__mem_cgroup_free(memcg);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 | 
						|
 * @css: the target css
 | 
						|
 *
 | 
						|
 * Reset the states of the mem_cgroup associated with @css.  This is
 | 
						|
 * invoked when the userland requests disabling on the default hierarchy
 | 
						|
 * but the memcg is pinned through dependency.  The memcg should stop
 | 
						|
 * applying policies and should revert to the vanilla state as it may be
 | 
						|
 * made visible again.
 | 
						|
 *
 | 
						|
 * The current implementation only resets the essential configurations.
 | 
						|
 * This needs to be expanded to cover all the visible parts.
 | 
						|
 */
 | 
						|
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
 | 
						|
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
 | 
						|
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
 | 
						|
	memcg->soft_limit = PAGE_COUNTER_MAX;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
/* Handlers for move charge at task migration. */
 | 
						|
static int mem_cgroup_do_precharge(unsigned long count)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Try a single bulk charge without reclaim first */
 | 
						|
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
 | 
						|
	if (!ret) {
 | 
						|
		mc.precharge += count;
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	if (ret == -EINTR) {
 | 
						|
		cancel_charge(root_mem_cgroup, count);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Try charges one by one with reclaim */
 | 
						|
	while (count--) {
 | 
						|
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
 | 
						|
		/*
 | 
						|
		 * In case of failure, any residual charges against
 | 
						|
		 * mc.to will be dropped by mem_cgroup_clear_mc()
 | 
						|
		 * later on.  However, cancel any charges that are
 | 
						|
		 * bypassed to root right away or they'll be lost.
 | 
						|
		 */
 | 
						|
		if (ret == -EINTR)
 | 
						|
			cancel_charge(root_mem_cgroup, 1);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		mc.precharge++;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_mctgt_type - get target type of moving charge
 | 
						|
 * @vma: the vma the pte to be checked belongs
 | 
						|
 * @addr: the address corresponding to the pte to be checked
 | 
						|
 * @ptent: the pte to be checked
 | 
						|
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 | 
						|
 *
 | 
						|
 * Returns
 | 
						|
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 | 
						|
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 | 
						|
 *     move charge. if @target is not NULL, the page is stored in target->page
 | 
						|
 *     with extra refcnt got(Callers should handle it).
 | 
						|
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 | 
						|
 *     target for charge migration. if @target is not NULL, the entry is stored
 | 
						|
 *     in target->ent.
 | 
						|
 *
 | 
						|
 * Called with pte lock held.
 | 
						|
 */
 | 
						|
union mc_target {
 | 
						|
	struct page	*page;
 | 
						|
	swp_entry_t	ent;
 | 
						|
};
 | 
						|
 | 
						|
enum mc_target_type {
 | 
						|
	MC_TARGET_NONE = 0,
 | 
						|
	MC_TARGET_PAGE,
 | 
						|
	MC_TARGET_SWAP,
 | 
						|
};
 | 
						|
 | 
						|
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
 | 
						|
						unsigned long addr, pte_t ptent)
 | 
						|
{
 | 
						|
	struct page *page = vm_normal_page(vma, addr, ptent);
 | 
						|
 | 
						|
	if (!page || !page_mapped(page))
 | 
						|
		return NULL;
 | 
						|
	if (PageAnon(page)) {
 | 
						|
		/* we don't move shared anon */
 | 
						|
		if (!move_anon())
 | 
						|
			return NULL;
 | 
						|
	} else if (!move_file())
 | 
						|
		/* we ignore mapcount for file pages */
 | 
						|
		return NULL;
 | 
						|
	if (!get_page_unless_zero(page))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	swp_entry_t ent = pte_to_swp_entry(ptent);
 | 
						|
 | 
						|
	if (!move_anon() || non_swap_entry(ent))
 | 
						|
		return NULL;
 | 
						|
	/*
 | 
						|
	 * Because lookup_swap_cache() updates some statistics counter,
 | 
						|
	 * we call find_get_page() with swapper_space directly.
 | 
						|
	 */
 | 
						|
	page = find_get_page(swap_address_space(ent), ent.val);
 | 
						|
	if (do_swap_account)
 | 
						|
		entry->val = ent.val;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
#else
 | 
						|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t pgoff;
 | 
						|
 | 
						|
	if (!vma->vm_file) /* anonymous vma */
 | 
						|
		return NULL;
 | 
						|
	if (!move_file())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	if (pte_none(ptent))
 | 
						|
		pgoff = linear_page_index(vma, addr);
 | 
						|
	else /* pte_file(ptent) is true */
 | 
						|
		pgoff = pte_to_pgoff(ptent);
 | 
						|
 | 
						|
	/* page is moved even if it's not RSS of this task(page-faulted). */
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
	/* shmem/tmpfs may report page out on swap: account for that too. */
 | 
						|
	if (shmem_mapping(mapping)) {
 | 
						|
		page = find_get_entry(mapping, pgoff);
 | 
						|
		if (radix_tree_exceptional_entry(page)) {
 | 
						|
			swp_entry_t swp = radix_to_swp_entry(page);
 | 
						|
			if (do_swap_account)
 | 
						|
				*entry = swp;
 | 
						|
			page = find_get_page(swap_address_space(swp), swp.val);
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		page = find_get_page(mapping, pgoff);
 | 
						|
#else
 | 
						|
	page = find_get_page(mapping, pgoff);
 | 
						|
#endif
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pte_t ptent, union mc_target *target)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	enum mc_target_type ret = MC_TARGET_NONE;
 | 
						|
	swp_entry_t ent = { .val = 0 };
 | 
						|
 | 
						|
	if (pte_present(ptent))
 | 
						|
		page = mc_handle_present_pte(vma, addr, ptent);
 | 
						|
	else if (is_swap_pte(ptent))
 | 
						|
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
 | 
						|
	else if (pte_none(ptent) || pte_file(ptent))
 | 
						|
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
 | 
						|
 | 
						|
	if (!page && !ent.val)
 | 
						|
		return ret;
 | 
						|
	if (page) {
 | 
						|
		/*
 | 
						|
		 * Do only loose check w/o serialization.
 | 
						|
		 * mem_cgroup_move_account() checks the page is valid or
 | 
						|
		 * not under LRU exclusion.
 | 
						|
		 */
 | 
						|
		if (page->mem_cgroup == mc.from) {
 | 
						|
			ret = MC_TARGET_PAGE;
 | 
						|
			if (target)
 | 
						|
				target->page = page;
 | 
						|
		}
 | 
						|
		if (!ret || !target)
 | 
						|
			put_page(page);
 | 
						|
	}
 | 
						|
	/* There is a swap entry and a page doesn't exist or isn't charged */
 | 
						|
	if (ent.val && !ret &&
 | 
						|
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
 | 
						|
		ret = MC_TARGET_SWAP;
 | 
						|
		if (target)
 | 
						|
			target->ent = ent;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
/*
 | 
						|
 * We don't consider swapping or file mapped pages because THP does not
 | 
						|
 * support them for now.
 | 
						|
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 | 
						|
 */
 | 
						|
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pmd_t pmd, union mc_target *target)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	enum mc_target_type ret = MC_TARGET_NONE;
 | 
						|
 | 
						|
	page = pmd_page(pmd);
 | 
						|
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
 | 
						|
	if (!move_anon())
 | 
						|
		return ret;
 | 
						|
	if (page->mem_cgroup == mc.from) {
 | 
						|
		ret = MC_TARGET_PAGE;
 | 
						|
		if (target) {
 | 
						|
			get_page(page);
 | 
						|
			target->page = page;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pmd_t pmd, union mc_target *target)
 | 
						|
{
 | 
						|
	return MC_TARGET_NONE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
 | 
						|
					unsigned long addr, unsigned long end,
 | 
						|
					struct mm_walk *walk)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = walk->private;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 | 
						|
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
 | 
						|
			mc.precharge += HPAGE_PMD_NR;
 | 
						|
		spin_unlock(ptl);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmd_trans_unstable(pmd))
 | 
						|
		return 0;
 | 
						|
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | 
						|
	for (; addr != end; pte++, addr += PAGE_SIZE)
 | 
						|
		if (get_mctgt_type(vma, addr, *pte, NULL))
 | 
						|
			mc.precharge++;	/* increment precharge temporarily */
 | 
						|
	pte_unmap_unlock(pte - 1, ptl);
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long precharge;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | 
						|
		struct mm_walk mem_cgroup_count_precharge_walk = {
 | 
						|
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
 | 
						|
			.mm = mm,
 | 
						|
			.private = vma,
 | 
						|
		};
 | 
						|
		if (is_vm_hugetlb_page(vma))
 | 
						|
			continue;
 | 
						|
		walk_page_range(vma->vm_start, vma->vm_end,
 | 
						|
					&mem_cgroup_count_precharge_walk);
 | 
						|
	}
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
 | 
						|
	precharge = mc.precharge;
 | 
						|
	mc.precharge = 0;
 | 
						|
 | 
						|
	return precharge;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long precharge = mem_cgroup_count_precharge(mm);
 | 
						|
 | 
						|
	VM_BUG_ON(mc.moving_task);
 | 
						|
	mc.moving_task = current;
 | 
						|
	return mem_cgroup_do_precharge(precharge);
 | 
						|
}
 | 
						|
 | 
						|
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
 | 
						|
static void __mem_cgroup_clear_mc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *from = mc.from;
 | 
						|
	struct mem_cgroup *to = mc.to;
 | 
						|
 | 
						|
	/* we must uncharge all the leftover precharges from mc.to */
 | 
						|
	if (mc.precharge) {
 | 
						|
		cancel_charge(mc.to, mc.precharge);
 | 
						|
		mc.precharge = 0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
 | 
						|
	 * we must uncharge here.
 | 
						|
	 */
 | 
						|
	if (mc.moved_charge) {
 | 
						|
		cancel_charge(mc.from, mc.moved_charge);
 | 
						|
		mc.moved_charge = 0;
 | 
						|
	}
 | 
						|
	/* we must fixup refcnts and charges */
 | 
						|
	if (mc.moved_swap) {
 | 
						|
		/* uncharge swap account from the old cgroup */
 | 
						|
		if (!mem_cgroup_is_root(mc.from))
 | 
						|
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we charged both to->memory and to->memsw, so we
 | 
						|
		 * should uncharge to->memory.
 | 
						|
		 */
 | 
						|
		if (!mem_cgroup_is_root(mc.to))
 | 
						|
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
 | 
						|
 | 
						|
		css_put_many(&mc.from->css, mc.moved_swap);
 | 
						|
 | 
						|
		/* we've already done css_get(mc.to) */
 | 
						|
		mc.moved_swap = 0;
 | 
						|
	}
 | 
						|
	memcg_oom_recover(from);
 | 
						|
	memcg_oom_recover(to);
 | 
						|
	wake_up_all(&mc.waitq);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_clear_mc(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * we must clear moving_task before waking up waiters at the end of
 | 
						|
	 * task migration.
 | 
						|
	 */
 | 
						|
	mc.moving_task = NULL;
 | 
						|
	__mem_cgroup_clear_mc();
 | 
						|
	spin_lock(&mc.lock);
 | 
						|
	mc.from = NULL;
 | 
						|
	mc.to = NULL;
 | 
						|
	spin_unlock(&mc.lock);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	struct task_struct *p = cgroup_taskset_first(tset);
 | 
						|
	int ret = 0;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	unsigned long move_charge_at_immigrate;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are now commited to this value whatever it is. Changes in this
 | 
						|
	 * tunable will only affect upcoming migrations, not the current one.
 | 
						|
	 * So we need to save it, and keep it going.
 | 
						|
	 */
 | 
						|
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
 | 
						|
	if (move_charge_at_immigrate) {
 | 
						|
		struct mm_struct *mm;
 | 
						|
		struct mem_cgroup *from = mem_cgroup_from_task(p);
 | 
						|
 | 
						|
		VM_BUG_ON(from == memcg);
 | 
						|
 | 
						|
		mm = get_task_mm(p);
 | 
						|
		if (!mm)
 | 
						|
			return 0;
 | 
						|
		/* We move charges only when we move a owner of the mm */
 | 
						|
		if (mm->owner == p) {
 | 
						|
			VM_BUG_ON(mc.from);
 | 
						|
			VM_BUG_ON(mc.to);
 | 
						|
			VM_BUG_ON(mc.precharge);
 | 
						|
			VM_BUG_ON(mc.moved_charge);
 | 
						|
			VM_BUG_ON(mc.moved_swap);
 | 
						|
 | 
						|
			spin_lock(&mc.lock);
 | 
						|
			mc.from = from;
 | 
						|
			mc.to = memcg;
 | 
						|
			mc.immigrate_flags = move_charge_at_immigrate;
 | 
						|
			spin_unlock(&mc.lock);
 | 
						|
			/* We set mc.moving_task later */
 | 
						|
 | 
						|
			ret = mem_cgroup_precharge_mc(mm);
 | 
						|
			if (ret)
 | 
						|
				mem_cgroup_clear_mc();
 | 
						|
		}
 | 
						|
		mmput(mm);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
 | 
						|
				     struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	if (mc.to)
 | 
						|
		mem_cgroup_clear_mc();
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
 | 
						|
				unsigned long addr, unsigned long end,
 | 
						|
				struct mm_walk *walk)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct vm_area_struct *vma = walk->private;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	enum mc_target_type target_type;
 | 
						|
	union mc_target target;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't take compound_lock() here but no race with splitting thp
 | 
						|
	 * happens because:
 | 
						|
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
 | 
						|
	 *    under splitting, which means there's no concurrent thp split,
 | 
						|
	 *  - if another thread runs into split_huge_page() just after we
 | 
						|
	 *    entered this if-block, the thread must wait for page table lock
 | 
						|
	 *    to be unlocked in __split_huge_page_splitting(), where the main
 | 
						|
	 *    part of thp split is not executed yet.
 | 
						|
	 */
 | 
						|
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 | 
						|
		if (mc.precharge < HPAGE_PMD_NR) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
 | 
						|
		if (target_type == MC_TARGET_PAGE) {
 | 
						|
			page = target.page;
 | 
						|
			if (!isolate_lru_page(page)) {
 | 
						|
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
 | 
						|
							     mc.from, mc.to)) {
 | 
						|
					mc.precharge -= HPAGE_PMD_NR;
 | 
						|
					mc.moved_charge += HPAGE_PMD_NR;
 | 
						|
				}
 | 
						|
				putback_lru_page(page);
 | 
						|
			}
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmd_trans_unstable(pmd))
 | 
						|
		return 0;
 | 
						|
retry:
 | 
						|
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | 
						|
	for (; addr != end; addr += PAGE_SIZE) {
 | 
						|
		pte_t ptent = *(pte++);
 | 
						|
		swp_entry_t ent;
 | 
						|
 | 
						|
		if (!mc.precharge)
 | 
						|
			break;
 | 
						|
 | 
						|
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 | 
						|
		case MC_TARGET_PAGE:
 | 
						|
			page = target.page;
 | 
						|
			if (isolate_lru_page(page))
 | 
						|
				goto put;
 | 
						|
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
 | 
						|
				mc.precharge--;
 | 
						|
				/* we uncharge from mc.from later. */
 | 
						|
				mc.moved_charge++;
 | 
						|
			}
 | 
						|
			putback_lru_page(page);
 | 
						|
put:			/* get_mctgt_type() gets the page */
 | 
						|
			put_page(page);
 | 
						|
			break;
 | 
						|
		case MC_TARGET_SWAP:
 | 
						|
			ent = target.ent;
 | 
						|
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 | 
						|
				mc.precharge--;
 | 
						|
				/* we fixup refcnts and charges later. */
 | 
						|
				mc.moved_swap++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pte_unmap_unlock(pte - 1, ptl);
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	if (addr != end) {
 | 
						|
		/*
 | 
						|
		 * We have consumed all precharges we got in can_attach().
 | 
						|
		 * We try charge one by one, but don't do any additional
 | 
						|
		 * charges to mc.to if we have failed in charge once in attach()
 | 
						|
		 * phase.
 | 
						|
		 */
 | 
						|
		ret = mem_cgroup_do_precharge(1);
 | 
						|
		if (!ret)
 | 
						|
			goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_move_charge(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	lru_add_drain_all();
 | 
						|
	/*
 | 
						|
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
 | 
						|
	 * move_lock while we're moving its pages to another memcg.
 | 
						|
	 * Then wait for already started RCU-only updates to finish.
 | 
						|
	 */
 | 
						|
	atomic_inc(&mc.from->moving_account);
 | 
						|
	synchronize_rcu();
 | 
						|
retry:
 | 
						|
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 | 
						|
		/*
 | 
						|
		 * Someone who are holding the mmap_sem might be waiting in
 | 
						|
		 * waitq. So we cancel all extra charges, wake up all waiters,
 | 
						|
		 * and retry. Because we cancel precharges, we might not be able
 | 
						|
		 * to move enough charges, but moving charge is a best-effort
 | 
						|
		 * feature anyway, so it wouldn't be a big problem.
 | 
						|
		 */
 | 
						|
		__mem_cgroup_clear_mc();
 | 
						|
		cond_resched();
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | 
						|
		int ret;
 | 
						|
		struct mm_walk mem_cgroup_move_charge_walk = {
 | 
						|
			.pmd_entry = mem_cgroup_move_charge_pte_range,
 | 
						|
			.mm = mm,
 | 
						|
			.private = vma,
 | 
						|
		};
 | 
						|
		if (is_vm_hugetlb_page(vma))
 | 
						|
			continue;
 | 
						|
		ret = walk_page_range(vma->vm_start, vma->vm_end,
 | 
						|
						&mem_cgroup_move_charge_walk);
 | 
						|
		if (ret)
 | 
						|
			/*
 | 
						|
			 * means we have consumed all precharges and failed in
 | 
						|
			 * doing additional charge. Just abandon here.
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
	atomic_dec(&mc.from->moving_account);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	struct task_struct *p = cgroup_taskset_first(tset);
 | 
						|
	struct mm_struct *mm = get_task_mm(p);
 | 
						|
 | 
						|
	if (mm) {
 | 
						|
		if (mc.to)
 | 
						|
			mem_cgroup_move_charge(mm);
 | 
						|
		mmput(mm);
 | 
						|
	}
 | 
						|
	if (mc.to)
 | 
						|
		mem_cgroup_clear_mc();
 | 
						|
}
 | 
						|
#else	/* !CONFIG_MMU */
 | 
						|
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
 | 
						|
				     struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
}
 | 
						|
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 | 
						|
 * to verify whether we're attached to the default hierarchy on each mount
 | 
						|
 * attempt.
 | 
						|
 */
 | 
						|
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
 | 
						|
	 * guarantees that @root doesn't have any children, so turning it
 | 
						|
	 * on for the root memcg is enough.
 | 
						|
	 */
 | 
						|
	if (cgroup_on_dfl(root_css->cgroup))
 | 
						|
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys memory_cgrp_subsys = {
 | 
						|
	.css_alloc = mem_cgroup_css_alloc,
 | 
						|
	.css_online = mem_cgroup_css_online,
 | 
						|
	.css_offline = mem_cgroup_css_offline,
 | 
						|
	.css_free = mem_cgroup_css_free,
 | 
						|
	.css_reset = mem_cgroup_css_reset,
 | 
						|
	.can_attach = mem_cgroup_can_attach,
 | 
						|
	.cancel_attach = mem_cgroup_cancel_attach,
 | 
						|
	.attach = mem_cgroup_move_task,
 | 
						|
	.bind = mem_cgroup_bind,
 | 
						|
	.legacy_cftypes = mem_cgroup_files,
 | 
						|
	.early_init = 0,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
static int __init enable_swap_account(char *s)
 | 
						|
{
 | 
						|
	if (!strcmp(s, "1"))
 | 
						|
		really_do_swap_account = 1;
 | 
						|
	else if (!strcmp(s, "0"))
 | 
						|
		really_do_swap_account = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("swapaccount=", enable_swap_account);
 | 
						|
 | 
						|
static void __init memsw_file_init(void)
 | 
						|
{
 | 
						|
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
 | 
						|
					  memsw_cgroup_files));
 | 
						|
}
 | 
						|
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
	if (!mem_cgroup_disabled() && really_do_swap_account) {
 | 
						|
		do_swap_account = 1;
 | 
						|
		memsw_file_init();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
/**
 | 
						|
 * mem_cgroup_swapout - transfer a memsw charge to swap
 | 
						|
 * @page: page whose memsw charge to transfer
 | 
						|
 * @entry: swap entry to move the charge to
 | 
						|
 *
 | 
						|
 * Transfer the memsw charge of @page to @entry.
 | 
						|
 */
 | 
						|
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned short oldid;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageLRU(page), page);
 | 
						|
	VM_BUG_ON_PAGE(page_count(page), page);
 | 
						|
 | 
						|
	if (!do_swap_account)
 | 
						|
		return;
 | 
						|
 | 
						|
	memcg = page->mem_cgroup;
 | 
						|
 | 
						|
	/* Readahead page, never charged */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
 | 
						|
	VM_BUG_ON_PAGE(oldid, page);
 | 
						|
	mem_cgroup_swap_statistics(memcg, true);
 | 
						|
 | 
						|
	page->mem_cgroup = NULL;
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(memcg))
 | 
						|
		page_counter_uncharge(&memcg->memory, 1);
 | 
						|
 | 
						|
	/* XXX: caller holds IRQ-safe mapping->tree_lock */
 | 
						|
	VM_BUG_ON(!irqs_disabled());
 | 
						|
 | 
						|
	mem_cgroup_charge_statistics(memcg, page, -1);
 | 
						|
	memcg_check_events(memcg, page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 | 
						|
 * @entry: swap entry to uncharge
 | 
						|
 *
 | 
						|
 * Drop the memsw charge associated with @entry.
 | 
						|
 */
 | 
						|
void mem_cgroup_uncharge_swap(swp_entry_t entry)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned short id;
 | 
						|
 | 
						|
	if (!do_swap_account)
 | 
						|
		return;
 | 
						|
 | 
						|
	id = swap_cgroup_record(entry, 0);
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_lookup(id);
 | 
						|
	if (memcg) {
 | 
						|
		if (!mem_cgroup_is_root(memcg))
 | 
						|
			page_counter_uncharge(&memcg->memsw, 1);
 | 
						|
		mem_cgroup_swap_statistics(memcg, false);
 | 
						|
		css_put(&memcg->css);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_try_charge - try charging a page
 | 
						|
 * @page: page to charge
 | 
						|
 * @mm: mm context of the victim
 | 
						|
 * @gfp_mask: reclaim mode
 | 
						|
 * @memcgp: charged memcg return
 | 
						|
 *
 | 
						|
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 | 
						|
 * pages according to @gfp_mask if necessary.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 | 
						|
 * Otherwise, an error code is returned.
 | 
						|
 *
 | 
						|
 * After page->mapping has been set up, the caller must finalize the
 | 
						|
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 | 
						|
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 | 
						|
 */
 | 
						|
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
 | 
						|
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (PageSwapCache(page)) {
 | 
						|
		/*
 | 
						|
		 * Every swap fault against a single page tries to charge the
 | 
						|
		 * page, bail as early as possible.  shmem_unuse() encounters
 | 
						|
		 * already charged pages, too.  The USED bit is protected by
 | 
						|
		 * the page lock, which serializes swap cache removal, which
 | 
						|
		 * in turn serializes uncharging.
 | 
						|
		 */
 | 
						|
		if (page->mem_cgroup)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageTransHuge(page)) {
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | 
						|
	}
 | 
						|
 | 
						|
	if (do_swap_account && PageSwapCache(page))
 | 
						|
		memcg = try_get_mem_cgroup_from_page(page);
 | 
						|
	if (!memcg)
 | 
						|
		memcg = get_mem_cgroup_from_mm(mm);
 | 
						|
 | 
						|
	ret = try_charge(memcg, gfp_mask, nr_pages);
 | 
						|
 | 
						|
	css_put(&memcg->css);
 | 
						|
 | 
						|
	if (ret == -EINTR) {
 | 
						|
		memcg = root_mem_cgroup;
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	*memcgp = memcg;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_commit_charge - commit a page charge
 | 
						|
 * @page: page to charge
 | 
						|
 * @memcg: memcg to charge the page to
 | 
						|
 * @lrucare: page might be on LRU already
 | 
						|
 *
 | 
						|
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 | 
						|
 * after page->mapping has been set up.  This must happen atomically
 | 
						|
 * as part of the page instantiation, i.e. under the page table lock
 | 
						|
 * for anonymous pages, under the page lock for page and swap cache.
 | 
						|
 *
 | 
						|
 * In addition, the page must not be on the LRU during the commit, to
 | 
						|
 * prevent racing with task migration.  If it might be, use @lrucare.
 | 
						|
 *
 | 
						|
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 | 
						|
 */
 | 
						|
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
 | 
						|
			      bool lrucare)
 | 
						|
{
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!page->mapping, page);
 | 
						|
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * Swap faults will attempt to charge the same page multiple
 | 
						|
	 * times.  But reuse_swap_page() might have removed the page
 | 
						|
	 * from swapcache already, so we can't check PageSwapCache().
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	commit_charge(page, memcg, lrucare);
 | 
						|
 | 
						|
	if (PageTransHuge(page)) {
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
 | 
						|
	memcg_check_events(memcg, page);
 | 
						|
	local_irq_enable();
 | 
						|
 | 
						|
	if (do_swap_account && PageSwapCache(page)) {
 | 
						|
		swp_entry_t entry = { .val = page_private(page) };
 | 
						|
		/*
 | 
						|
		 * The swap entry might not get freed for a long time,
 | 
						|
		 * let's not wait for it.  The page already received a
 | 
						|
		 * memory+swap charge, drop the swap entry duplicate.
 | 
						|
		 */
 | 
						|
		mem_cgroup_uncharge_swap(entry);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_cancel_charge - cancel a page charge
 | 
						|
 * @page: page to charge
 | 
						|
 * @memcg: memcg to charge the page to
 | 
						|
 *
 | 
						|
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 | 
						|
 */
 | 
						|
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * Swap faults will attempt to charge the same page multiple
 | 
						|
	 * times.  But reuse_swap_page() might have removed the page
 | 
						|
	 * from swapcache already, so we can't check PageSwapCache().
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (PageTransHuge(page)) {
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | 
						|
	}
 | 
						|
 | 
						|
	cancel_charge(memcg, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
 | 
						|
			   unsigned long nr_anon, unsigned long nr_file,
 | 
						|
			   unsigned long nr_huge, struct page *dummy_page)
 | 
						|
{
 | 
						|
	unsigned long nr_pages = nr_anon + nr_file;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(memcg)) {
 | 
						|
		page_counter_uncharge(&memcg->memory, nr_pages);
 | 
						|
		if (do_swap_account)
 | 
						|
			page_counter_uncharge(&memcg->memsw, nr_pages);
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
 | 
						|
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
 | 
						|
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
 | 
						|
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
 | 
						|
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 | 
						|
	memcg_check_events(memcg, dummy_page);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(memcg))
 | 
						|
		css_put_many(&memcg->css, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
static void uncharge_list(struct list_head *page_list)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	unsigned long nr_anon = 0;
 | 
						|
	unsigned long nr_file = 0;
 | 
						|
	unsigned long nr_huge = 0;
 | 
						|
	unsigned long pgpgout = 0;
 | 
						|
	struct list_head *next;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	next = page_list->next;
 | 
						|
	do {
 | 
						|
		unsigned int nr_pages = 1;
 | 
						|
 | 
						|
		page = list_entry(next, struct page, lru);
 | 
						|
		next = page->lru.next;
 | 
						|
 | 
						|
		VM_BUG_ON_PAGE(PageLRU(page), page);
 | 
						|
		VM_BUG_ON_PAGE(page_count(page), page);
 | 
						|
 | 
						|
		if (!page->mem_cgroup)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Nobody should be changing or seriously looking at
 | 
						|
		 * page->mem_cgroup at this point, we have fully
 | 
						|
		 * exclusive access to the page.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (memcg != page->mem_cgroup) {
 | 
						|
			if (memcg) {
 | 
						|
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
 | 
						|
					       nr_huge, page);
 | 
						|
				pgpgout = nr_anon = nr_file = nr_huge = 0;
 | 
						|
			}
 | 
						|
			memcg = page->mem_cgroup;
 | 
						|
		}
 | 
						|
 | 
						|
		if (PageTransHuge(page)) {
 | 
						|
			nr_pages <<= compound_order(page);
 | 
						|
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | 
						|
			nr_huge += nr_pages;
 | 
						|
		}
 | 
						|
 | 
						|
		if (PageAnon(page))
 | 
						|
			nr_anon += nr_pages;
 | 
						|
		else
 | 
						|
			nr_file += nr_pages;
 | 
						|
 | 
						|
		page->mem_cgroup = NULL;
 | 
						|
 | 
						|
		pgpgout++;
 | 
						|
	} while (next != page_list);
 | 
						|
 | 
						|
	if (memcg)
 | 
						|
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
 | 
						|
			       nr_huge, page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_uncharge - uncharge a page
 | 
						|
 * @page: page to uncharge
 | 
						|
 *
 | 
						|
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 | 
						|
 * mem_cgroup_commit_charge().
 | 
						|
 */
 | 
						|
void mem_cgroup_uncharge(struct page *page)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Don't touch page->lru of any random page, pre-check: */
 | 
						|
	if (!page->mem_cgroup)
 | 
						|
		return;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&page->lru);
 | 
						|
	uncharge_list(&page->lru);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_uncharge_list - uncharge a list of page
 | 
						|
 * @page_list: list of pages to uncharge
 | 
						|
 *
 | 
						|
 * Uncharge a list of pages previously charged with
 | 
						|
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 | 
						|
 */
 | 
						|
void mem_cgroup_uncharge_list(struct list_head *page_list)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!list_empty(page_list))
 | 
						|
		uncharge_list(page_list);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_migrate - migrate a charge to another page
 | 
						|
 * @oldpage: currently charged page
 | 
						|
 * @newpage: page to transfer the charge to
 | 
						|
 * @lrucare: both pages might be on the LRU already
 | 
						|
 *
 | 
						|
 * Migrate the charge from @oldpage to @newpage.
 | 
						|
 *
 | 
						|
 * Both pages must be locked, @newpage->mapping must be set up.
 | 
						|
 */
 | 
						|
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
 | 
						|
			bool lrucare)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int isolated;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 | 
						|
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
 | 
						|
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
 | 
						|
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
 | 
						|
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
 | 
						|
		       newpage);
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Page cache replacement: new page already charged? */
 | 
						|
	if (newpage->mem_cgroup)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Swapcache readahead pages can get migrated before being
 | 
						|
	 * charged, and migration from compaction can happen to an
 | 
						|
	 * uncharged page when the PFN walker finds a page that
 | 
						|
	 * reclaim just put back on the LRU but has not released yet.
 | 
						|
	 */
 | 
						|
	memcg = oldpage->mem_cgroup;
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (lrucare)
 | 
						|
		lock_page_lru(oldpage, &isolated);
 | 
						|
 | 
						|
	oldpage->mem_cgroup = NULL;
 | 
						|
 | 
						|
	if (lrucare)
 | 
						|
		unlock_page_lru(oldpage, isolated);
 | 
						|
 | 
						|
	commit_charge(newpage, memcg, lrucare);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * subsys_initcall() for memory controller.
 | 
						|
 *
 | 
						|
 * Some parts like hotcpu_notifier() have to be initialized from this context
 | 
						|
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 | 
						|
 * everything that doesn't depend on a specific mem_cgroup structure should
 | 
						|
 * be initialized from here.
 | 
						|
 */
 | 
						|
static int __init mem_cgroup_init(void)
 | 
						|
{
 | 
						|
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
 | 
						|
	enable_swap_cgroup();
 | 
						|
	mem_cgroup_soft_limit_tree_init();
 | 
						|
	memcg_stock_init();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(mem_cgroup_init);
 |