mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2351 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2351 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * zsmalloc memory allocator
 | 
						|
 *
 | 
						|
 * Copyright (C) 2011  Nitin Gupta
 | 
						|
 * Copyright (C) 2012, 2013 Minchan Kim
 | 
						|
 *
 | 
						|
 * This code is released using a dual license strategy: BSD/GPL
 | 
						|
 * You can choose the license that better fits your requirements.
 | 
						|
 *
 | 
						|
 * Released under the terms of 3-clause BSD License
 | 
						|
 * Released under the terms of GNU General Public License Version 2.0
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Following is how we use various fields and flags of underlying
 | 
						|
 * struct page(s) to form a zspage.
 | 
						|
 *
 | 
						|
 * Usage of struct page fields:
 | 
						|
 *	page->private: points to zspage
 | 
						|
 *	page->index: links together all component pages of a zspage
 | 
						|
 *		For the huge page, this is always 0, so we use this field
 | 
						|
 *		to store handle.
 | 
						|
 *	page->page_type: first object offset in a subpage of zspage
 | 
						|
 *
 | 
						|
 * Usage of struct page flags:
 | 
						|
 *	PG_private: identifies the first component page
 | 
						|
 *	PG_owner_priv_1: identifies the huge component page
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
/*
 | 
						|
 * lock ordering:
 | 
						|
 *	page_lock
 | 
						|
 *	pool->lock
 | 
						|
 *	zspage->lock
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/pgtable.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/shrinker.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/zsmalloc.h>
 | 
						|
#include <linux/zpool.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/local_lock.h>
 | 
						|
 | 
						|
#define ZSPAGE_MAGIC	0x58
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be power of 2 and greater than or equal to sizeof(link_free).
 | 
						|
 * These two conditions ensure that any 'struct link_free' itself doesn't
 | 
						|
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 | 
						|
 * to restore link_free pointer values.
 | 
						|
 */
 | 
						|
#define ZS_ALIGN		8
 | 
						|
 | 
						|
#define ZS_HANDLE_SIZE (sizeof(unsigned long))
 | 
						|
 | 
						|
/*
 | 
						|
 * Object location (<PFN>, <obj_idx>) is encoded as
 | 
						|
 * a single (unsigned long) handle value.
 | 
						|
 *
 | 
						|
 * Note that object index <obj_idx> starts from 0.
 | 
						|
 *
 | 
						|
 * This is made more complicated by various memory models and PAE.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef MAX_POSSIBLE_PHYSMEM_BITS
 | 
						|
#ifdef MAX_PHYSMEM_BITS
 | 
						|
#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 | 
						|
 * be PAGE_SHIFT
 | 
						|
 */
 | 
						|
#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 | 
						|
 | 
						|
/*
 | 
						|
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 | 
						|
 * to identify the object was allocated or not.
 | 
						|
 * It's okay to add the status bit in the least bit because
 | 
						|
 * header keeps handle which is 4byte-aligned address so we
 | 
						|
 * have room for two bit at least.
 | 
						|
 */
 | 
						|
#define OBJ_ALLOCATED_TAG 1
 | 
						|
 | 
						|
#define OBJ_TAG_BITS	1
 | 
						|
#define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
 | 
						|
 | 
						|
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 | 
						|
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 | 
						|
 | 
						|
#define HUGE_BITS	1
 | 
						|
#define FULLNESS_BITS	4
 | 
						|
#define CLASS_BITS	8
 | 
						|
#define ISOLATED_BITS	5
 | 
						|
#define MAGIC_VAL_BITS	8
 | 
						|
 | 
						|
#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
#define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
 | 
						|
 | 
						|
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 | 
						|
#define ZS_MIN_ALLOC_SIZE \
 | 
						|
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 | 
						|
/* each chunk includes extra space to keep handle */
 | 
						|
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 | 
						|
 | 
						|
/*
 | 
						|
 * On systems with 4K page size, this gives 255 size classes! There is a
 | 
						|
 * trader-off here:
 | 
						|
 *  - Large number of size classes is potentially wasteful as free page are
 | 
						|
 *    spread across these classes
 | 
						|
 *  - Small number of size classes causes large internal fragmentation
 | 
						|
 *  - Probably its better to use specific size classes (empirically
 | 
						|
 *    determined). NOTE: all those class sizes must be set as multiple of
 | 
						|
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 | 
						|
 *
 | 
						|
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 | 
						|
 *  (reason above)
 | 
						|
 */
 | 
						|
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 | 
						|
#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 | 
						|
				      ZS_SIZE_CLASS_DELTA) + 1)
 | 
						|
 | 
						|
/*
 | 
						|
 * Pages are distinguished by the ratio of used memory (that is the ratio
 | 
						|
 * of ->inuse objects to all objects that page can store). For example,
 | 
						|
 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
 | 
						|
 *
 | 
						|
 * The number of fullness groups is not random. It allows us to keep
 | 
						|
 * difference between the least busy page in the group (minimum permitted
 | 
						|
 * number of ->inuse objects) and the most busy page (maximum permitted
 | 
						|
 * number of ->inuse objects) at a reasonable value.
 | 
						|
 */
 | 
						|
enum fullness_group {
 | 
						|
	ZS_INUSE_RATIO_0,
 | 
						|
	ZS_INUSE_RATIO_10,
 | 
						|
	/* NOTE: 8 more fullness groups here */
 | 
						|
	ZS_INUSE_RATIO_99       = 10,
 | 
						|
	ZS_INUSE_RATIO_100,
 | 
						|
	NR_FULLNESS_GROUPS,
 | 
						|
};
 | 
						|
 | 
						|
enum class_stat_type {
 | 
						|
	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
 | 
						|
	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
 | 
						|
	ZS_OBJS_INUSE,
 | 
						|
	NR_CLASS_STAT_TYPES,
 | 
						|
};
 | 
						|
 | 
						|
struct zs_size_stat {
 | 
						|
	unsigned long objs[NR_CLASS_STAT_TYPES];
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_ZSMALLOC_STAT
 | 
						|
static struct dentry *zs_stat_root;
 | 
						|
#endif
 | 
						|
 | 
						|
static size_t huge_class_size;
 | 
						|
 | 
						|
struct size_class {
 | 
						|
	struct list_head fullness_list[NR_FULLNESS_GROUPS];
 | 
						|
	/*
 | 
						|
	 * Size of objects stored in this class. Must be multiple
 | 
						|
	 * of ZS_ALIGN.
 | 
						|
	 */
 | 
						|
	int size;
 | 
						|
	int objs_per_zspage;
 | 
						|
	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 | 
						|
	int pages_per_zspage;
 | 
						|
 | 
						|
	unsigned int index;
 | 
						|
	struct zs_size_stat stats;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Placed within free objects to form a singly linked list.
 | 
						|
 * For every zspage, zspage->freeobj gives head of this list.
 | 
						|
 *
 | 
						|
 * This must be power of 2 and less than or equal to ZS_ALIGN
 | 
						|
 */
 | 
						|
struct link_free {
 | 
						|
	union {
 | 
						|
		/*
 | 
						|
		 * Free object index;
 | 
						|
		 * It's valid for non-allocated object
 | 
						|
		 */
 | 
						|
		unsigned long next;
 | 
						|
		/*
 | 
						|
		 * Handle of allocated object.
 | 
						|
		 */
 | 
						|
		unsigned long handle;
 | 
						|
	};
 | 
						|
};
 | 
						|
 | 
						|
struct zs_pool {
 | 
						|
	const char *name;
 | 
						|
 | 
						|
	struct size_class *size_class[ZS_SIZE_CLASSES];
 | 
						|
	struct kmem_cache *handle_cachep;
 | 
						|
	struct kmem_cache *zspage_cachep;
 | 
						|
 | 
						|
	atomic_long_t pages_allocated;
 | 
						|
 | 
						|
	struct zs_pool_stats stats;
 | 
						|
 | 
						|
	/* Compact classes */
 | 
						|
	struct shrinker shrinker;
 | 
						|
 | 
						|
#ifdef CONFIG_ZSMALLOC_STAT
 | 
						|
	struct dentry *stat_dentry;
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
	struct work_struct free_work;
 | 
						|
#endif
 | 
						|
	spinlock_t lock;
 | 
						|
	atomic_t compaction_in_progress;
 | 
						|
};
 | 
						|
 | 
						|
struct zspage {
 | 
						|
	struct {
 | 
						|
		unsigned int huge:HUGE_BITS;
 | 
						|
		unsigned int fullness:FULLNESS_BITS;
 | 
						|
		unsigned int class:CLASS_BITS + 1;
 | 
						|
		unsigned int isolated:ISOLATED_BITS;
 | 
						|
		unsigned int magic:MAGIC_VAL_BITS;
 | 
						|
	};
 | 
						|
	unsigned int inuse;
 | 
						|
	unsigned int freeobj;
 | 
						|
	struct page *first_page;
 | 
						|
	struct list_head list; /* fullness list */
 | 
						|
	struct zs_pool *pool;
 | 
						|
	rwlock_t lock;
 | 
						|
};
 | 
						|
 | 
						|
struct mapping_area {
 | 
						|
	local_lock_t lock;
 | 
						|
	char *vm_buf; /* copy buffer for objects that span pages */
 | 
						|
	char *vm_addr; /* address of kmap_atomic()'ed pages */
 | 
						|
	enum zs_mapmode vm_mm; /* mapping mode */
 | 
						|
};
 | 
						|
 | 
						|
/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 | 
						|
static void SetZsHugePage(struct zspage *zspage)
 | 
						|
{
 | 
						|
	zspage->huge = 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool ZsHugePage(struct zspage *zspage)
 | 
						|
{
 | 
						|
	return zspage->huge;
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_lock_init(struct zspage *zspage);
 | 
						|
static void migrate_read_lock(struct zspage *zspage);
 | 
						|
static void migrate_read_unlock(struct zspage *zspage);
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
static void migrate_write_lock(struct zspage *zspage);
 | 
						|
static void migrate_write_lock_nested(struct zspage *zspage);
 | 
						|
static void migrate_write_unlock(struct zspage *zspage);
 | 
						|
static void kick_deferred_free(struct zs_pool *pool);
 | 
						|
static void init_deferred_free(struct zs_pool *pool);
 | 
						|
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 | 
						|
#else
 | 
						|
static void migrate_write_lock(struct zspage *zspage) {}
 | 
						|
static void migrate_write_lock_nested(struct zspage *zspage) {}
 | 
						|
static void migrate_write_unlock(struct zspage *zspage) {}
 | 
						|
static void kick_deferred_free(struct zs_pool *pool) {}
 | 
						|
static void init_deferred_free(struct zs_pool *pool) {}
 | 
						|
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 | 
						|
#endif
 | 
						|
 | 
						|
static int create_cache(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 | 
						|
					0, 0, NULL);
 | 
						|
	if (!pool->handle_cachep)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 | 
						|
					0, 0, NULL);
 | 
						|
	if (!pool->zspage_cachep) {
 | 
						|
		kmem_cache_destroy(pool->handle_cachep);
 | 
						|
		pool->handle_cachep = NULL;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_cache(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(pool->handle_cachep);
 | 
						|
	kmem_cache_destroy(pool->zspage_cachep);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 | 
						|
{
 | 
						|
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 | 
						|
			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 | 
						|
}
 | 
						|
 | 
						|
static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	kmem_cache_free(pool->handle_cachep, (void *)handle);
 | 
						|
}
 | 
						|
 | 
						|
static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 | 
						|
{
 | 
						|
	return kmem_cache_zalloc(pool->zspage_cachep,
 | 
						|
			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 | 
						|
}
 | 
						|
 | 
						|
static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 | 
						|
{
 | 
						|
	kmem_cache_free(pool->zspage_cachep, zspage);
 | 
						|
}
 | 
						|
 | 
						|
/* pool->lock(which owns the handle) synchronizes races */
 | 
						|
static void record_obj(unsigned long handle, unsigned long obj)
 | 
						|
{
 | 
						|
	*(unsigned long *)handle = obj;
 | 
						|
}
 | 
						|
 | 
						|
/* zpool driver */
 | 
						|
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
 | 
						|
static void *zs_zpool_create(const char *name, gfp_t gfp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Ignore global gfp flags: zs_malloc() may be invoked from
 | 
						|
	 * different contexts and its caller must provide a valid
 | 
						|
	 * gfp mask.
 | 
						|
	 */
 | 
						|
	return zs_create_pool(name);
 | 
						|
}
 | 
						|
 | 
						|
static void zs_zpool_destroy(void *pool)
 | 
						|
{
 | 
						|
	zs_destroy_pool(pool);
 | 
						|
}
 | 
						|
 | 
						|
static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 | 
						|
			unsigned long *handle)
 | 
						|
{
 | 
						|
	*handle = zs_malloc(pool, size, gfp);
 | 
						|
 | 
						|
	if (IS_ERR_VALUE(*handle))
 | 
						|
		return PTR_ERR((void *)*handle);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static void zs_zpool_free(void *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	zs_free(pool, handle);
 | 
						|
}
 | 
						|
 | 
						|
static void *zs_zpool_map(void *pool, unsigned long handle,
 | 
						|
			enum zpool_mapmode mm)
 | 
						|
{
 | 
						|
	enum zs_mapmode zs_mm;
 | 
						|
 | 
						|
	switch (mm) {
 | 
						|
	case ZPOOL_MM_RO:
 | 
						|
		zs_mm = ZS_MM_RO;
 | 
						|
		break;
 | 
						|
	case ZPOOL_MM_WO:
 | 
						|
		zs_mm = ZS_MM_WO;
 | 
						|
		break;
 | 
						|
	case ZPOOL_MM_RW:
 | 
						|
	default:
 | 
						|
		zs_mm = ZS_MM_RW;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return zs_map_object(pool, handle, zs_mm);
 | 
						|
}
 | 
						|
static void zs_zpool_unmap(void *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	zs_unmap_object(pool, handle);
 | 
						|
}
 | 
						|
 | 
						|
static u64 zs_zpool_total_size(void *pool)
 | 
						|
{
 | 
						|
	return zs_get_total_pages(pool) << PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static struct zpool_driver zs_zpool_driver = {
 | 
						|
	.type =			  "zsmalloc",
 | 
						|
	.owner =		  THIS_MODULE,
 | 
						|
	.create =		  zs_zpool_create,
 | 
						|
	.destroy =		  zs_zpool_destroy,
 | 
						|
	.malloc_support_movable = true,
 | 
						|
	.malloc =		  zs_zpool_malloc,
 | 
						|
	.free =			  zs_zpool_free,
 | 
						|
	.map =			  zs_zpool_map,
 | 
						|
	.unmap =		  zs_zpool_unmap,
 | 
						|
	.total_size =		  zs_zpool_total_size,
 | 
						|
};
 | 
						|
 | 
						|
MODULE_ALIAS("zpool-zsmalloc");
 | 
						|
#endif /* CONFIG_ZPOOL */
 | 
						|
 | 
						|
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 | 
						|
static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 | 
						|
	.lock	= INIT_LOCAL_LOCK(lock),
 | 
						|
};
 | 
						|
 | 
						|
static __maybe_unused int is_first_page(struct page *page)
 | 
						|
{
 | 
						|
	return PagePrivate(page);
 | 
						|
}
 | 
						|
 | 
						|
/* Protected by pool->lock */
 | 
						|
static inline int get_zspage_inuse(struct zspage *zspage)
 | 
						|
{
 | 
						|
	return zspage->inuse;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 | 
						|
{
 | 
						|
	zspage->inuse += val;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct page *get_first_page(struct zspage *zspage)
 | 
						|
{
 | 
						|
	struct page *first_page = zspage->first_page;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 | 
						|
	return first_page;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int get_first_obj_offset(struct page *page)
 | 
						|
{
 | 
						|
	return page->page_type;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_first_obj_offset(struct page *page, unsigned int offset)
 | 
						|
{
 | 
						|
	page->page_type = offset;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int get_freeobj(struct zspage *zspage)
 | 
						|
{
 | 
						|
	return zspage->freeobj;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 | 
						|
{
 | 
						|
	zspage->freeobj = obj;
 | 
						|
}
 | 
						|
 | 
						|
static void get_zspage_mapping(struct zspage *zspage,
 | 
						|
			       unsigned int *class_idx,
 | 
						|
			       int *fullness)
 | 
						|
{
 | 
						|
	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 | 
						|
 | 
						|
	*fullness = zspage->fullness;
 | 
						|
	*class_idx = zspage->class;
 | 
						|
}
 | 
						|
 | 
						|
static struct size_class *zspage_class(struct zs_pool *pool,
 | 
						|
				       struct zspage *zspage)
 | 
						|
{
 | 
						|
	return pool->size_class[zspage->class];
 | 
						|
}
 | 
						|
 | 
						|
static void set_zspage_mapping(struct zspage *zspage,
 | 
						|
			       unsigned int class_idx,
 | 
						|
			       int fullness)
 | 
						|
{
 | 
						|
	zspage->class = class_idx;
 | 
						|
	zspage->fullness = fullness;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zsmalloc divides the pool into various size classes where each
 | 
						|
 * class maintains a list of zspages where each zspage is divided
 | 
						|
 * into equal sized chunks. Each allocation falls into one of these
 | 
						|
 * classes depending on its size. This function returns index of the
 | 
						|
 * size class which has chunk size big enough to hold the given size.
 | 
						|
 */
 | 
						|
static int get_size_class_index(int size)
 | 
						|
{
 | 
						|
	int idx = 0;
 | 
						|
 | 
						|
	if (likely(size > ZS_MIN_ALLOC_SIZE))
 | 
						|
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 | 
						|
				ZS_SIZE_CLASS_DELTA);
 | 
						|
 | 
						|
	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 | 
						|
}
 | 
						|
 | 
						|
static inline void class_stat_inc(struct size_class *class,
 | 
						|
				int type, unsigned long cnt)
 | 
						|
{
 | 
						|
	class->stats.objs[type] += cnt;
 | 
						|
}
 | 
						|
 | 
						|
static inline void class_stat_dec(struct size_class *class,
 | 
						|
				int type, unsigned long cnt)
 | 
						|
{
 | 
						|
	class->stats.objs[type] -= cnt;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long zs_stat_get(struct size_class *class, int type)
 | 
						|
{
 | 
						|
	return class->stats.objs[type];
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ZSMALLOC_STAT
 | 
						|
 | 
						|
static void __init zs_stat_init(void)
 | 
						|
{
 | 
						|
	if (!debugfs_initialized()) {
 | 
						|
		pr_warn("debugfs not available, stat dir not created\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit zs_stat_exit(void)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(zs_stat_root);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long zs_can_compact(struct size_class *class);
 | 
						|
 | 
						|
static int zs_stats_size_show(struct seq_file *s, void *v)
 | 
						|
{
 | 
						|
	int i, fg;
 | 
						|
	struct zs_pool *pool = s->private;
 | 
						|
	struct size_class *class;
 | 
						|
	int objs_per_zspage;
 | 
						|
	unsigned long obj_allocated, obj_used, pages_used, freeable;
 | 
						|
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 | 
						|
	unsigned long total_freeable = 0;
 | 
						|
	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
 | 
						|
 | 
						|
	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
 | 
						|
			"class", "size", "10%", "20%", "30%", "40%",
 | 
						|
			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
 | 
						|
			"obj_allocated", "obj_used", "pages_used",
 | 
						|
			"pages_per_zspage", "freeable");
 | 
						|
 | 
						|
	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 | 
						|
 | 
						|
		class = pool->size_class[i];
 | 
						|
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock(&pool->lock);
 | 
						|
 | 
						|
		seq_printf(s, " %5u %5u ", i, class->size);
 | 
						|
		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
 | 
						|
			inuse_totals[fg] += zs_stat_get(class, fg);
 | 
						|
			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
 | 
						|
		}
 | 
						|
 | 
						|
		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
 | 
						|
		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
 | 
						|
		freeable = zs_can_compact(class);
 | 
						|
		spin_unlock(&pool->lock);
 | 
						|
 | 
						|
		objs_per_zspage = class->objs_per_zspage;
 | 
						|
		pages_used = obj_allocated / objs_per_zspage *
 | 
						|
				class->pages_per_zspage;
 | 
						|
 | 
						|
		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
 | 
						|
			   obj_allocated, obj_used, pages_used,
 | 
						|
			   class->pages_per_zspage, freeable);
 | 
						|
 | 
						|
		total_objs += obj_allocated;
 | 
						|
		total_used_objs += obj_used;
 | 
						|
		total_pages += pages_used;
 | 
						|
		total_freeable += freeable;
 | 
						|
	}
 | 
						|
 | 
						|
	seq_puts(s, "\n");
 | 
						|
	seq_printf(s, " %5s %5s ", "Total", "");
 | 
						|
 | 
						|
	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
 | 
						|
		seq_printf(s, "%9lu ", inuse_totals[fg]);
 | 
						|
 | 
						|
	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
 | 
						|
		   total_objs, total_used_objs, total_pages, "",
 | 
						|
		   total_freeable);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 | 
						|
 | 
						|
static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 | 
						|
{
 | 
						|
	if (!zs_stat_root) {
 | 
						|
		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 | 
						|
 | 
						|
	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 | 
						|
			    &zs_stats_size_fops);
 | 
						|
}
 | 
						|
 | 
						|
static void zs_pool_stat_destroy(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(pool->stat_dentry);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_ZSMALLOC_STAT */
 | 
						|
static void __init zs_stat_init(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __exit zs_stat_exit(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * For each size class, zspages are divided into different groups
 | 
						|
 * depending on their usage ratio. This function returns fullness
 | 
						|
 * status of the given page.
 | 
						|
 */
 | 
						|
static int get_fullness_group(struct size_class *class, struct zspage *zspage)
 | 
						|
{
 | 
						|
	int inuse, objs_per_zspage, ratio;
 | 
						|
 | 
						|
	inuse = get_zspage_inuse(zspage);
 | 
						|
	objs_per_zspage = class->objs_per_zspage;
 | 
						|
 | 
						|
	if (inuse == 0)
 | 
						|
		return ZS_INUSE_RATIO_0;
 | 
						|
	if (inuse == objs_per_zspage)
 | 
						|
		return ZS_INUSE_RATIO_100;
 | 
						|
 | 
						|
	ratio = 100 * inuse / objs_per_zspage;
 | 
						|
	/*
 | 
						|
	 * Take integer division into consideration: a page with one inuse
 | 
						|
	 * object out of 127 possible, will end up having 0 usage ratio,
 | 
						|
	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
 | 
						|
	 */
 | 
						|
	return ratio / 10 + 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Each size class maintains various freelists and zspages are assigned
 | 
						|
 * to one of these freelists based on the number of live objects they
 | 
						|
 * have. This functions inserts the given zspage into the freelist
 | 
						|
 * identified by <class, fullness_group>.
 | 
						|
 */
 | 
						|
static void insert_zspage(struct size_class *class,
 | 
						|
				struct zspage *zspage,
 | 
						|
				int fullness)
 | 
						|
{
 | 
						|
	class_stat_inc(class, fullness, 1);
 | 
						|
	list_add(&zspage->list, &class->fullness_list[fullness]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function removes the given zspage from the freelist identified
 | 
						|
 * by <class, fullness_group>.
 | 
						|
 */
 | 
						|
static void remove_zspage(struct size_class *class,
 | 
						|
				struct zspage *zspage,
 | 
						|
				int fullness)
 | 
						|
{
 | 
						|
	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 | 
						|
 | 
						|
	list_del_init(&zspage->list);
 | 
						|
	class_stat_dec(class, fullness, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Each size class maintains zspages in different fullness groups depending
 | 
						|
 * on the number of live objects they contain. When allocating or freeing
 | 
						|
 * objects, the fullness status of the page can change, for instance, from
 | 
						|
 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
 | 
						|
 * checks if such a status change has occurred for the given page and
 | 
						|
 * accordingly moves the page from the list of the old fullness group to that
 | 
						|
 * of the new fullness group.
 | 
						|
 */
 | 
						|
static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
 | 
						|
{
 | 
						|
	int class_idx;
 | 
						|
	int currfg, newfg;
 | 
						|
 | 
						|
	get_zspage_mapping(zspage, &class_idx, &currfg);
 | 
						|
	newfg = get_fullness_group(class, zspage);
 | 
						|
	if (newfg == currfg)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	remove_zspage(class, zspage, currfg);
 | 
						|
	insert_zspage(class, zspage, newfg);
 | 
						|
	set_zspage_mapping(zspage, class_idx, newfg);
 | 
						|
out:
 | 
						|
	return newfg;
 | 
						|
}
 | 
						|
 | 
						|
static struct zspage *get_zspage(struct page *page)
 | 
						|
{
 | 
						|
	struct zspage *zspage = (struct zspage *)page_private(page);
 | 
						|
 | 
						|
	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 | 
						|
	return zspage;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *get_next_page(struct page *page)
 | 
						|
{
 | 
						|
	struct zspage *zspage = get_zspage(page);
 | 
						|
 | 
						|
	if (unlikely(ZsHugePage(zspage)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return (struct page *)page->index;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 | 
						|
 * @obj: the encoded object value
 | 
						|
 * @page: page object resides in zspage
 | 
						|
 * @obj_idx: object index
 | 
						|
 */
 | 
						|
static void obj_to_location(unsigned long obj, struct page **page,
 | 
						|
				unsigned int *obj_idx)
 | 
						|
{
 | 
						|
	obj >>= OBJ_TAG_BITS;
 | 
						|
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 | 
						|
	*obj_idx = (obj & OBJ_INDEX_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static void obj_to_page(unsigned long obj, struct page **page)
 | 
						|
{
 | 
						|
	obj >>= OBJ_TAG_BITS;
 | 
						|
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 | 
						|
 * @page: page object resides in zspage
 | 
						|
 * @obj_idx: object index
 | 
						|
 */
 | 
						|
static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 | 
						|
{
 | 
						|
	unsigned long obj;
 | 
						|
 | 
						|
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 | 
						|
	obj |= obj_idx & OBJ_INDEX_MASK;
 | 
						|
	obj <<= OBJ_TAG_BITS;
 | 
						|
 | 
						|
	return obj;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long handle_to_obj(unsigned long handle)
 | 
						|
{
 | 
						|
	return *(unsigned long *)handle;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool obj_allocated(struct page *page, void *obj,
 | 
						|
				 unsigned long *phandle)
 | 
						|
{
 | 
						|
	unsigned long handle;
 | 
						|
	struct zspage *zspage = get_zspage(page);
 | 
						|
 | 
						|
	if (unlikely(ZsHugePage(zspage))) {
 | 
						|
		VM_BUG_ON_PAGE(!is_first_page(page), page);
 | 
						|
		handle = page->index;
 | 
						|
	} else
 | 
						|
		handle = *(unsigned long *)obj;
 | 
						|
 | 
						|
	if (!(handle & OBJ_ALLOCATED_TAG))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Clear all tags before returning the handle */
 | 
						|
	*phandle = handle & ~OBJ_TAG_MASK;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void reset_page(struct page *page)
 | 
						|
{
 | 
						|
	__ClearPageMovable(page);
 | 
						|
	ClearPagePrivate(page);
 | 
						|
	set_page_private(page, 0);
 | 
						|
	page_mapcount_reset(page);
 | 
						|
	page->index = 0;
 | 
						|
}
 | 
						|
 | 
						|
static int trylock_zspage(struct zspage *zspage)
 | 
						|
{
 | 
						|
	struct page *cursor, *fail;
 | 
						|
 | 
						|
	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 | 
						|
					get_next_page(cursor)) {
 | 
						|
		if (!trylock_page(cursor)) {
 | 
						|
			fail = cursor;
 | 
						|
			goto unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
unlock:
 | 
						|
	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 | 
						|
					get_next_page(cursor))
 | 
						|
		unlock_page(cursor);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 | 
						|
				struct zspage *zspage)
 | 
						|
{
 | 
						|
	struct page *page, *next;
 | 
						|
	int fg;
 | 
						|
	unsigned int class_idx;
 | 
						|
 | 
						|
	get_zspage_mapping(zspage, &class_idx, &fg);
 | 
						|
 | 
						|
	assert_spin_locked(&pool->lock);
 | 
						|
 | 
						|
	VM_BUG_ON(get_zspage_inuse(zspage));
 | 
						|
	VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
 | 
						|
 | 
						|
	next = page = get_first_page(zspage);
 | 
						|
	do {
 | 
						|
		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
		next = get_next_page(page);
 | 
						|
		reset_page(page);
 | 
						|
		unlock_page(page);
 | 
						|
		dec_zone_page_state(page, NR_ZSPAGES);
 | 
						|
		put_page(page);
 | 
						|
		page = next;
 | 
						|
	} while (page != NULL);
 | 
						|
 | 
						|
	cache_free_zspage(pool, zspage);
 | 
						|
 | 
						|
	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
 | 
						|
	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
 | 
						|
}
 | 
						|
 | 
						|
static void free_zspage(struct zs_pool *pool, struct size_class *class,
 | 
						|
				struct zspage *zspage)
 | 
						|
{
 | 
						|
	VM_BUG_ON(get_zspage_inuse(zspage));
 | 
						|
	VM_BUG_ON(list_empty(&zspage->list));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since zs_free couldn't be sleepable, this function cannot call
 | 
						|
	 * lock_page. The page locks trylock_zspage got will be released
 | 
						|
	 * by __free_zspage.
 | 
						|
	 */
 | 
						|
	if (!trylock_zspage(zspage)) {
 | 
						|
		kick_deferred_free(pool);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
 | 
						|
	__free_zspage(pool, class, zspage);
 | 
						|
}
 | 
						|
 | 
						|
/* Initialize a newly allocated zspage */
 | 
						|
static void init_zspage(struct size_class *class, struct zspage *zspage)
 | 
						|
{
 | 
						|
	unsigned int freeobj = 1;
 | 
						|
	unsigned long off = 0;
 | 
						|
	struct page *page = get_first_page(zspage);
 | 
						|
 | 
						|
	while (page) {
 | 
						|
		struct page *next_page;
 | 
						|
		struct link_free *link;
 | 
						|
		void *vaddr;
 | 
						|
 | 
						|
		set_first_obj_offset(page, off);
 | 
						|
 | 
						|
		vaddr = kmap_atomic(page);
 | 
						|
		link = (struct link_free *)vaddr + off / sizeof(*link);
 | 
						|
 | 
						|
		while ((off += class->size) < PAGE_SIZE) {
 | 
						|
			link->next = freeobj++ << OBJ_TAG_BITS;
 | 
						|
			link += class->size / sizeof(*link);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We now come to the last (full or partial) object on this
 | 
						|
		 * page, which must point to the first object on the next
 | 
						|
		 * page (if present)
 | 
						|
		 */
 | 
						|
		next_page = get_next_page(page);
 | 
						|
		if (next_page) {
 | 
						|
			link->next = freeobj++ << OBJ_TAG_BITS;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Reset OBJ_TAG_BITS bit to last link to tell
 | 
						|
			 * whether it's allocated object or not.
 | 
						|
			 */
 | 
						|
			link->next = -1UL << OBJ_TAG_BITS;
 | 
						|
		}
 | 
						|
		kunmap_atomic(vaddr);
 | 
						|
		page = next_page;
 | 
						|
		off %= PAGE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	set_freeobj(zspage, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void create_page_chain(struct size_class *class, struct zspage *zspage,
 | 
						|
				struct page *pages[])
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct page *page;
 | 
						|
	struct page *prev_page = NULL;
 | 
						|
	int nr_pages = class->pages_per_zspage;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate individual pages and link them together as:
 | 
						|
	 * 1. all pages are linked together using page->index
 | 
						|
	 * 2. each sub-page point to zspage using page->private
 | 
						|
	 *
 | 
						|
	 * we set PG_private to identify the first page (i.e. no other sub-page
 | 
						|
	 * has this flag set).
 | 
						|
	 */
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		page = pages[i];
 | 
						|
		set_page_private(page, (unsigned long)zspage);
 | 
						|
		page->index = 0;
 | 
						|
		if (i == 0) {
 | 
						|
			zspage->first_page = page;
 | 
						|
			SetPagePrivate(page);
 | 
						|
			if (unlikely(class->objs_per_zspage == 1 &&
 | 
						|
					class->pages_per_zspage == 1))
 | 
						|
				SetZsHugePage(zspage);
 | 
						|
		} else {
 | 
						|
			prev_page->index = (unsigned long)page;
 | 
						|
		}
 | 
						|
		prev_page = page;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a zspage for the given size class
 | 
						|
 */
 | 
						|
static struct zspage *alloc_zspage(struct zs_pool *pool,
 | 
						|
					struct size_class *class,
 | 
						|
					gfp_t gfp)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
 | 
						|
	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
 | 
						|
 | 
						|
	if (!zspage)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	zspage->magic = ZSPAGE_MAGIC;
 | 
						|
	migrate_lock_init(zspage);
 | 
						|
 | 
						|
	for (i = 0; i < class->pages_per_zspage; i++) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		page = alloc_page(gfp);
 | 
						|
		if (!page) {
 | 
						|
			while (--i >= 0) {
 | 
						|
				dec_zone_page_state(pages[i], NR_ZSPAGES);
 | 
						|
				__free_page(pages[i]);
 | 
						|
			}
 | 
						|
			cache_free_zspage(pool, zspage);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		inc_zone_page_state(page, NR_ZSPAGES);
 | 
						|
		pages[i] = page;
 | 
						|
	}
 | 
						|
 | 
						|
	create_page_chain(class, zspage, pages);
 | 
						|
	init_zspage(class, zspage);
 | 
						|
	zspage->pool = pool;
 | 
						|
 | 
						|
	return zspage;
 | 
						|
}
 | 
						|
 | 
						|
static struct zspage *find_get_zspage(struct size_class *class)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct zspage *zspage;
 | 
						|
 | 
						|
	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
 | 
						|
		zspage = list_first_entry_or_null(&class->fullness_list[i],
 | 
						|
						  struct zspage, list);
 | 
						|
		if (zspage)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return zspage;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __zs_cpu_up(struct mapping_area *area)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Make sure we don't leak memory if a cpu UP notification
 | 
						|
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
 | 
						|
	 */
 | 
						|
	if (area->vm_buf)
 | 
						|
		return 0;
 | 
						|
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
 | 
						|
	if (!area->vm_buf)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __zs_cpu_down(struct mapping_area *area)
 | 
						|
{
 | 
						|
	kfree(area->vm_buf);
 | 
						|
	area->vm_buf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void *__zs_map_object(struct mapping_area *area,
 | 
						|
			struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	int sizes[2];
 | 
						|
	void *addr;
 | 
						|
	char *buf = area->vm_buf;
 | 
						|
 | 
						|
	/* disable page faults to match kmap_atomic() return conditions */
 | 
						|
	pagefault_disable();
 | 
						|
 | 
						|
	/* no read fastpath */
 | 
						|
	if (area->vm_mm == ZS_MM_WO)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	sizes[0] = PAGE_SIZE - off;
 | 
						|
	sizes[1] = size - sizes[0];
 | 
						|
 | 
						|
	/* copy object to per-cpu buffer */
 | 
						|
	addr = kmap_atomic(pages[0]);
 | 
						|
	memcpy(buf, addr + off, sizes[0]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
	addr = kmap_atomic(pages[1]);
 | 
						|
	memcpy(buf + sizes[0], addr, sizes[1]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
out:
 | 
						|
	return area->vm_buf;
 | 
						|
}
 | 
						|
 | 
						|
static void __zs_unmap_object(struct mapping_area *area,
 | 
						|
			struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	int sizes[2];
 | 
						|
	void *addr;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	/* no write fastpath */
 | 
						|
	if (area->vm_mm == ZS_MM_RO)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	buf = area->vm_buf;
 | 
						|
	buf = buf + ZS_HANDLE_SIZE;
 | 
						|
	size -= ZS_HANDLE_SIZE;
 | 
						|
	off += ZS_HANDLE_SIZE;
 | 
						|
 | 
						|
	sizes[0] = PAGE_SIZE - off;
 | 
						|
	sizes[1] = size - sizes[0];
 | 
						|
 | 
						|
	/* copy per-cpu buffer to object */
 | 
						|
	addr = kmap_atomic(pages[0]);
 | 
						|
	memcpy(addr + off, buf, sizes[0]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
	addr = kmap_atomic(pages[1]);
 | 
						|
	memcpy(addr, buf + sizes[0], sizes[1]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
 | 
						|
out:
 | 
						|
	/* enable page faults to match kunmap_atomic() return conditions */
 | 
						|
	pagefault_enable();
 | 
						|
}
 | 
						|
 | 
						|
static int zs_cpu_prepare(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct mapping_area *area;
 | 
						|
 | 
						|
	area = &per_cpu(zs_map_area, cpu);
 | 
						|
	return __zs_cpu_up(area);
 | 
						|
}
 | 
						|
 | 
						|
static int zs_cpu_dead(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct mapping_area *area;
 | 
						|
 | 
						|
	area = &per_cpu(zs_map_area, cpu);
 | 
						|
	__zs_cpu_down(area);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool can_merge(struct size_class *prev, int pages_per_zspage,
 | 
						|
					int objs_per_zspage)
 | 
						|
{
 | 
						|
	if (prev->pages_per_zspage == pages_per_zspage &&
 | 
						|
		prev->objs_per_zspage == objs_per_zspage)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool zspage_full(struct size_class *class, struct zspage *zspage)
 | 
						|
{
 | 
						|
	return get_zspage_inuse(zspage) == class->objs_per_zspage;
 | 
						|
}
 | 
						|
 | 
						|
static bool zspage_empty(struct zspage *zspage)
 | 
						|
{
 | 
						|
	return get_zspage_inuse(zspage) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
 | 
						|
 * that hold objects of the provided size.
 | 
						|
 * @pool: zsmalloc pool to use
 | 
						|
 * @size: object size
 | 
						|
 *
 | 
						|
 * Context: Any context.
 | 
						|
 *
 | 
						|
 * Return: the index of the zsmalloc &size_class that hold objects of the
 | 
						|
 * provided size.
 | 
						|
 */
 | 
						|
unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
 | 
						|
{
 | 
						|
	struct size_class *class;
 | 
						|
 | 
						|
	class = pool->size_class[get_size_class_index(size)];
 | 
						|
 | 
						|
	return class->index;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_lookup_class_index);
 | 
						|
 | 
						|
unsigned long zs_get_total_pages(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	return atomic_long_read(&pool->pages_allocated);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_get_total_pages);
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_map_object - get address of allocated object from handle.
 | 
						|
 * @pool: pool from which the object was allocated
 | 
						|
 * @handle: handle returned from zs_malloc
 | 
						|
 * @mm: mapping mode to use
 | 
						|
 *
 | 
						|
 * Before using an object allocated from zs_malloc, it must be mapped using
 | 
						|
 * this function. When done with the object, it must be unmapped using
 | 
						|
 * zs_unmap_object.
 | 
						|
 *
 | 
						|
 * Only one object can be mapped per cpu at a time. There is no protection
 | 
						|
 * against nested mappings.
 | 
						|
 *
 | 
						|
 * This function returns with preemption and page faults disabled.
 | 
						|
 */
 | 
						|
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
 | 
						|
			enum zs_mapmode mm)
 | 
						|
{
 | 
						|
	struct zspage *zspage;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long obj, off;
 | 
						|
	unsigned int obj_idx;
 | 
						|
 | 
						|
	struct size_class *class;
 | 
						|
	struct mapping_area *area;
 | 
						|
	struct page *pages[2];
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Because we use per-cpu mapping areas shared among the
 | 
						|
	 * pools/users, we can't allow mapping in interrupt context
 | 
						|
	 * because it can corrupt another users mappings.
 | 
						|
	 */
 | 
						|
	BUG_ON(in_interrupt());
 | 
						|
 | 
						|
	/* It guarantees it can get zspage from handle safely */
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	obj = handle_to_obj(handle);
 | 
						|
	obj_to_location(obj, &page, &obj_idx);
 | 
						|
	zspage = get_zspage(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * migration cannot move any zpages in this zspage. Here, pool->lock
 | 
						|
	 * is too heavy since callers would take some time until they calls
 | 
						|
	 * zs_unmap_object API so delegate the locking from class to zspage
 | 
						|
	 * which is smaller granularity.
 | 
						|
	 */
 | 
						|
	migrate_read_lock(zspage);
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	class = zspage_class(pool, zspage);
 | 
						|
	off = offset_in_page(class->size * obj_idx);
 | 
						|
 | 
						|
	local_lock(&zs_map_area.lock);
 | 
						|
	area = this_cpu_ptr(&zs_map_area);
 | 
						|
	area->vm_mm = mm;
 | 
						|
	if (off + class->size <= PAGE_SIZE) {
 | 
						|
		/* this object is contained entirely within a page */
 | 
						|
		area->vm_addr = kmap_atomic(page);
 | 
						|
		ret = area->vm_addr + off;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* this object spans two pages */
 | 
						|
	pages[0] = page;
 | 
						|
	pages[1] = get_next_page(page);
 | 
						|
	BUG_ON(!pages[1]);
 | 
						|
 | 
						|
	ret = __zs_map_object(area, pages, off, class->size);
 | 
						|
out:
 | 
						|
	if (likely(!ZsHugePage(zspage)))
 | 
						|
		ret += ZS_HANDLE_SIZE;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_map_object);
 | 
						|
 | 
						|
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	struct zspage *zspage;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long obj, off;
 | 
						|
	unsigned int obj_idx;
 | 
						|
 | 
						|
	struct size_class *class;
 | 
						|
	struct mapping_area *area;
 | 
						|
 | 
						|
	obj = handle_to_obj(handle);
 | 
						|
	obj_to_location(obj, &page, &obj_idx);
 | 
						|
	zspage = get_zspage(page);
 | 
						|
	class = zspage_class(pool, zspage);
 | 
						|
	off = offset_in_page(class->size * obj_idx);
 | 
						|
 | 
						|
	area = this_cpu_ptr(&zs_map_area);
 | 
						|
	if (off + class->size <= PAGE_SIZE)
 | 
						|
		kunmap_atomic(area->vm_addr);
 | 
						|
	else {
 | 
						|
		struct page *pages[2];
 | 
						|
 | 
						|
		pages[0] = page;
 | 
						|
		pages[1] = get_next_page(page);
 | 
						|
		BUG_ON(!pages[1]);
 | 
						|
 | 
						|
		__zs_unmap_object(area, pages, off, class->size);
 | 
						|
	}
 | 
						|
	local_unlock(&zs_map_area.lock);
 | 
						|
 | 
						|
	migrate_read_unlock(zspage);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_unmap_object);
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
 | 
						|
 *                        zsmalloc &size_class.
 | 
						|
 * @pool: zsmalloc pool to use
 | 
						|
 *
 | 
						|
 * The function returns the size of the first huge class - any object of equal
 | 
						|
 * or bigger size will be stored in zspage consisting of a single physical
 | 
						|
 * page.
 | 
						|
 *
 | 
						|
 * Context: Any context.
 | 
						|
 *
 | 
						|
 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
 | 
						|
 */
 | 
						|
size_t zs_huge_class_size(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	return huge_class_size;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_huge_class_size);
 | 
						|
 | 
						|
static unsigned long obj_malloc(struct zs_pool *pool,
 | 
						|
				struct zspage *zspage, unsigned long handle)
 | 
						|
{
 | 
						|
	int i, nr_page, offset;
 | 
						|
	unsigned long obj;
 | 
						|
	struct link_free *link;
 | 
						|
	struct size_class *class;
 | 
						|
 | 
						|
	struct page *m_page;
 | 
						|
	unsigned long m_offset;
 | 
						|
	void *vaddr;
 | 
						|
 | 
						|
	class = pool->size_class[zspage->class];
 | 
						|
	handle |= OBJ_ALLOCATED_TAG;
 | 
						|
	obj = get_freeobj(zspage);
 | 
						|
 | 
						|
	offset = obj * class->size;
 | 
						|
	nr_page = offset >> PAGE_SHIFT;
 | 
						|
	m_offset = offset_in_page(offset);
 | 
						|
	m_page = get_first_page(zspage);
 | 
						|
 | 
						|
	for (i = 0; i < nr_page; i++)
 | 
						|
		m_page = get_next_page(m_page);
 | 
						|
 | 
						|
	vaddr = kmap_atomic(m_page);
 | 
						|
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
 | 
						|
	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
 | 
						|
	if (likely(!ZsHugePage(zspage)))
 | 
						|
		/* record handle in the header of allocated chunk */
 | 
						|
		link->handle = handle;
 | 
						|
	else
 | 
						|
		/* record handle to page->index */
 | 
						|
		zspage->first_page->index = handle;
 | 
						|
 | 
						|
	kunmap_atomic(vaddr);
 | 
						|
	mod_zspage_inuse(zspage, 1);
 | 
						|
 | 
						|
	obj = location_to_obj(m_page, obj);
 | 
						|
 | 
						|
	return obj;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_malloc - Allocate block of given size from pool.
 | 
						|
 * @pool: pool to allocate from
 | 
						|
 * @size: size of block to allocate
 | 
						|
 * @gfp: gfp flags when allocating object
 | 
						|
 *
 | 
						|
 * On success, handle to the allocated object is returned,
 | 
						|
 * otherwise an ERR_PTR().
 | 
						|
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 | 
						|
 */
 | 
						|
unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
 | 
						|
{
 | 
						|
	unsigned long handle, obj;
 | 
						|
	struct size_class *class;
 | 
						|
	int newfg;
 | 
						|
	struct zspage *zspage;
 | 
						|
 | 
						|
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
 | 
						|
		return (unsigned long)ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	handle = cache_alloc_handle(pool, gfp);
 | 
						|
	if (!handle)
 | 
						|
		return (unsigned long)ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	/* extra space in chunk to keep the handle */
 | 
						|
	size += ZS_HANDLE_SIZE;
 | 
						|
	class = pool->size_class[get_size_class_index(size)];
 | 
						|
 | 
						|
	/* pool->lock effectively protects the zpage migration */
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	zspage = find_get_zspage(class);
 | 
						|
	if (likely(zspage)) {
 | 
						|
		obj = obj_malloc(pool, zspage, handle);
 | 
						|
		/* Now move the zspage to another fullness group, if required */
 | 
						|
		fix_fullness_group(class, zspage);
 | 
						|
		record_obj(handle, obj);
 | 
						|
		class_stat_inc(class, ZS_OBJS_INUSE, 1);
 | 
						|
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	zspage = alloc_zspage(pool, class, gfp);
 | 
						|
	if (!zspage) {
 | 
						|
		cache_free_handle(pool, handle);
 | 
						|
		return (unsigned long)ERR_PTR(-ENOMEM);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	obj = obj_malloc(pool, zspage, handle);
 | 
						|
	newfg = get_fullness_group(class, zspage);
 | 
						|
	insert_zspage(class, zspage, newfg);
 | 
						|
	set_zspage_mapping(zspage, class->index, newfg);
 | 
						|
	record_obj(handle, obj);
 | 
						|
	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
 | 
						|
	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
 | 
						|
	class_stat_inc(class, ZS_OBJS_INUSE, 1);
 | 
						|
 | 
						|
	/* We completely set up zspage so mark them as movable */
 | 
						|
	SetZsPageMovable(pool, zspage);
 | 
						|
out:
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	return handle;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_malloc);
 | 
						|
 | 
						|
static void obj_free(int class_size, unsigned long obj)
 | 
						|
{
 | 
						|
	struct link_free *link;
 | 
						|
	struct zspage *zspage;
 | 
						|
	struct page *f_page;
 | 
						|
	unsigned long f_offset;
 | 
						|
	unsigned int f_objidx;
 | 
						|
	void *vaddr;
 | 
						|
 | 
						|
	obj_to_location(obj, &f_page, &f_objidx);
 | 
						|
	f_offset = offset_in_page(class_size * f_objidx);
 | 
						|
	zspage = get_zspage(f_page);
 | 
						|
 | 
						|
	vaddr = kmap_atomic(f_page);
 | 
						|
	link = (struct link_free *)(vaddr + f_offset);
 | 
						|
 | 
						|
	/* Insert this object in containing zspage's freelist */
 | 
						|
	if (likely(!ZsHugePage(zspage)))
 | 
						|
		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
 | 
						|
	else
 | 
						|
		f_page->index = 0;
 | 
						|
	set_freeobj(zspage, f_objidx);
 | 
						|
 | 
						|
	kunmap_atomic(vaddr);
 | 
						|
	mod_zspage_inuse(zspage, -1);
 | 
						|
}
 | 
						|
 | 
						|
void zs_free(struct zs_pool *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	struct zspage *zspage;
 | 
						|
	struct page *f_page;
 | 
						|
	unsigned long obj;
 | 
						|
	struct size_class *class;
 | 
						|
	int fullness;
 | 
						|
 | 
						|
	if (IS_ERR_OR_NULL((void *)handle))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The pool->lock protects the race with zpage's migration
 | 
						|
	 * so it's safe to get the page from handle.
 | 
						|
	 */
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	obj = handle_to_obj(handle);
 | 
						|
	obj_to_page(obj, &f_page);
 | 
						|
	zspage = get_zspage(f_page);
 | 
						|
	class = zspage_class(pool, zspage);
 | 
						|
 | 
						|
	class_stat_dec(class, ZS_OBJS_INUSE, 1);
 | 
						|
	obj_free(class->size, obj);
 | 
						|
 | 
						|
	fullness = fix_fullness_group(class, zspage);
 | 
						|
	if (fullness == ZS_INUSE_RATIO_0)
 | 
						|
		free_zspage(pool, class, zspage);
 | 
						|
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
	cache_free_handle(pool, handle);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_free);
 | 
						|
 | 
						|
static void zs_object_copy(struct size_class *class, unsigned long dst,
 | 
						|
				unsigned long src)
 | 
						|
{
 | 
						|
	struct page *s_page, *d_page;
 | 
						|
	unsigned int s_objidx, d_objidx;
 | 
						|
	unsigned long s_off, d_off;
 | 
						|
	void *s_addr, *d_addr;
 | 
						|
	int s_size, d_size, size;
 | 
						|
	int written = 0;
 | 
						|
 | 
						|
	s_size = d_size = class->size;
 | 
						|
 | 
						|
	obj_to_location(src, &s_page, &s_objidx);
 | 
						|
	obj_to_location(dst, &d_page, &d_objidx);
 | 
						|
 | 
						|
	s_off = offset_in_page(class->size * s_objidx);
 | 
						|
	d_off = offset_in_page(class->size * d_objidx);
 | 
						|
 | 
						|
	if (s_off + class->size > PAGE_SIZE)
 | 
						|
		s_size = PAGE_SIZE - s_off;
 | 
						|
 | 
						|
	if (d_off + class->size > PAGE_SIZE)
 | 
						|
		d_size = PAGE_SIZE - d_off;
 | 
						|
 | 
						|
	s_addr = kmap_atomic(s_page);
 | 
						|
	d_addr = kmap_atomic(d_page);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		size = min(s_size, d_size);
 | 
						|
		memcpy(d_addr + d_off, s_addr + s_off, size);
 | 
						|
		written += size;
 | 
						|
 | 
						|
		if (written == class->size)
 | 
						|
			break;
 | 
						|
 | 
						|
		s_off += size;
 | 
						|
		s_size -= size;
 | 
						|
		d_off += size;
 | 
						|
		d_size -= size;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
 | 
						|
		 * calls must occurs in reverse order of calls to kmap_atomic().
 | 
						|
		 * So, to call kunmap_atomic(s_addr) we should first call
 | 
						|
		 * kunmap_atomic(d_addr). For more details see
 | 
						|
		 * Documentation/mm/highmem.rst.
 | 
						|
		 */
 | 
						|
		if (s_off >= PAGE_SIZE) {
 | 
						|
			kunmap_atomic(d_addr);
 | 
						|
			kunmap_atomic(s_addr);
 | 
						|
			s_page = get_next_page(s_page);
 | 
						|
			s_addr = kmap_atomic(s_page);
 | 
						|
			d_addr = kmap_atomic(d_page);
 | 
						|
			s_size = class->size - written;
 | 
						|
			s_off = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (d_off >= PAGE_SIZE) {
 | 
						|
			kunmap_atomic(d_addr);
 | 
						|
			d_page = get_next_page(d_page);
 | 
						|
			d_addr = kmap_atomic(d_page);
 | 
						|
			d_size = class->size - written;
 | 
						|
			d_off = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kunmap_atomic(d_addr);
 | 
						|
	kunmap_atomic(s_addr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find alloced object in zspage from index object and
 | 
						|
 * return handle.
 | 
						|
 */
 | 
						|
static unsigned long find_alloced_obj(struct size_class *class,
 | 
						|
				      struct page *page, int *obj_idx)
 | 
						|
{
 | 
						|
	unsigned int offset;
 | 
						|
	int index = *obj_idx;
 | 
						|
	unsigned long handle = 0;
 | 
						|
	void *addr = kmap_atomic(page);
 | 
						|
 | 
						|
	offset = get_first_obj_offset(page);
 | 
						|
	offset += class->size * index;
 | 
						|
 | 
						|
	while (offset < PAGE_SIZE) {
 | 
						|
		if (obj_allocated(page, addr + offset, &handle))
 | 
						|
			break;
 | 
						|
 | 
						|
		offset += class->size;
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
 | 
						|
	kunmap_atomic(addr);
 | 
						|
 | 
						|
	*obj_idx = index;
 | 
						|
 | 
						|
	return handle;
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
 | 
						|
			   struct zspage *dst_zspage)
 | 
						|
{
 | 
						|
	unsigned long used_obj, free_obj;
 | 
						|
	unsigned long handle;
 | 
						|
	int obj_idx = 0;
 | 
						|
	struct page *s_page = get_first_page(src_zspage);
 | 
						|
	struct size_class *class = pool->size_class[src_zspage->class];
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		handle = find_alloced_obj(class, s_page, &obj_idx);
 | 
						|
		if (!handle) {
 | 
						|
			s_page = get_next_page(s_page);
 | 
						|
			if (!s_page)
 | 
						|
				break;
 | 
						|
			obj_idx = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		used_obj = handle_to_obj(handle);
 | 
						|
		free_obj = obj_malloc(pool, dst_zspage, handle);
 | 
						|
		zs_object_copy(class, free_obj, used_obj);
 | 
						|
		obj_idx++;
 | 
						|
		record_obj(handle, free_obj);
 | 
						|
		obj_free(class->size, used_obj);
 | 
						|
 | 
						|
		/* Stop if there is no more space */
 | 
						|
		if (zspage_full(class, dst_zspage))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* Stop if there are no more objects to migrate */
 | 
						|
		if (zspage_empty(src_zspage))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct zspage *isolate_src_zspage(struct size_class *class)
 | 
						|
{
 | 
						|
	struct zspage *zspage;
 | 
						|
	int fg;
 | 
						|
 | 
						|
	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
 | 
						|
		zspage = list_first_entry_or_null(&class->fullness_list[fg],
 | 
						|
						  struct zspage, list);
 | 
						|
		if (zspage) {
 | 
						|
			remove_zspage(class, zspage, fg);
 | 
						|
			return zspage;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return zspage;
 | 
						|
}
 | 
						|
 | 
						|
static struct zspage *isolate_dst_zspage(struct size_class *class)
 | 
						|
{
 | 
						|
	struct zspage *zspage;
 | 
						|
	int fg;
 | 
						|
 | 
						|
	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
 | 
						|
		zspage = list_first_entry_or_null(&class->fullness_list[fg],
 | 
						|
						  struct zspage, list);
 | 
						|
		if (zspage) {
 | 
						|
			remove_zspage(class, zspage, fg);
 | 
						|
			return zspage;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return zspage;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * putback_zspage - add @zspage into right class's fullness list
 | 
						|
 * @class: destination class
 | 
						|
 * @zspage: target page
 | 
						|
 *
 | 
						|
 * Return @zspage's fullness status
 | 
						|
 */
 | 
						|
static int putback_zspage(struct size_class *class, struct zspage *zspage)
 | 
						|
{
 | 
						|
	int fullness;
 | 
						|
 | 
						|
	fullness = get_fullness_group(class, zspage);
 | 
						|
	insert_zspage(class, zspage, fullness);
 | 
						|
	set_zspage_mapping(zspage, class->index, fullness);
 | 
						|
 | 
						|
	return fullness;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
/*
 | 
						|
 * To prevent zspage destroy during migration, zspage freeing should
 | 
						|
 * hold locks of all pages in the zspage.
 | 
						|
 */
 | 
						|
static void lock_zspage(struct zspage *zspage)
 | 
						|
{
 | 
						|
	struct page *curr_page, *page;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pages we haven't locked yet can be migrated off the list while we're
 | 
						|
	 * trying to lock them, so we need to be careful and only attempt to
 | 
						|
	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
 | 
						|
	 * may no longer belong to the zspage. This means that we may wait for
 | 
						|
	 * the wrong page to unlock, so we must take a reference to the page
 | 
						|
	 * prior to waiting for it to unlock outside migrate_read_lock().
 | 
						|
	 */
 | 
						|
	while (1) {
 | 
						|
		migrate_read_lock(zspage);
 | 
						|
		page = get_first_page(zspage);
 | 
						|
		if (trylock_page(page))
 | 
						|
			break;
 | 
						|
		get_page(page);
 | 
						|
		migrate_read_unlock(zspage);
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	curr_page = page;
 | 
						|
	while ((page = get_next_page(curr_page))) {
 | 
						|
		if (trylock_page(page)) {
 | 
						|
			curr_page = page;
 | 
						|
		} else {
 | 
						|
			get_page(page);
 | 
						|
			migrate_read_unlock(zspage);
 | 
						|
			wait_on_page_locked(page);
 | 
						|
			put_page(page);
 | 
						|
			migrate_read_lock(zspage);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	migrate_read_unlock(zspage);
 | 
						|
}
 | 
						|
#endif /* CONFIG_COMPACTION */
 | 
						|
 | 
						|
static void migrate_lock_init(struct zspage *zspage)
 | 
						|
{
 | 
						|
	rwlock_init(&zspage->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
 | 
						|
{
 | 
						|
	read_lock(&zspage->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
 | 
						|
{
 | 
						|
	read_unlock(&zspage->lock);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
static void migrate_write_lock(struct zspage *zspage)
 | 
						|
{
 | 
						|
	write_lock(&zspage->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_write_lock_nested(struct zspage *zspage)
 | 
						|
{
 | 
						|
	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_write_unlock(struct zspage *zspage)
 | 
						|
{
 | 
						|
	write_unlock(&zspage->lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Number of isolated subpage for *page migration* in this zspage */
 | 
						|
static void inc_zspage_isolation(struct zspage *zspage)
 | 
						|
{
 | 
						|
	zspage->isolated++;
 | 
						|
}
 | 
						|
 | 
						|
static void dec_zspage_isolation(struct zspage *zspage)
 | 
						|
{
 | 
						|
	VM_BUG_ON(zspage->isolated == 0);
 | 
						|
	zspage->isolated--;
 | 
						|
}
 | 
						|
 | 
						|
static const struct movable_operations zsmalloc_mops;
 | 
						|
 | 
						|
static void replace_sub_page(struct size_class *class, struct zspage *zspage,
 | 
						|
				struct page *newpage, struct page *oldpage)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
 | 
						|
	int idx = 0;
 | 
						|
 | 
						|
	page = get_first_page(zspage);
 | 
						|
	do {
 | 
						|
		if (page == oldpage)
 | 
						|
			pages[idx] = newpage;
 | 
						|
		else
 | 
						|
			pages[idx] = page;
 | 
						|
		idx++;
 | 
						|
	} while ((page = get_next_page(page)) != NULL);
 | 
						|
 | 
						|
	create_page_chain(class, zspage, pages);
 | 
						|
	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
 | 
						|
	if (unlikely(ZsHugePage(zspage)))
 | 
						|
		newpage->index = oldpage->index;
 | 
						|
	__SetPageMovable(newpage, &zsmalloc_mops);
 | 
						|
}
 | 
						|
 | 
						|
static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
 | 
						|
{
 | 
						|
	struct zs_pool *pool;
 | 
						|
	struct zspage *zspage;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Page is locked so zspage couldn't be destroyed. For detail, look at
 | 
						|
	 * lock_zspage in free_zspage.
 | 
						|
	 */
 | 
						|
	VM_BUG_ON_PAGE(PageIsolated(page), page);
 | 
						|
 | 
						|
	zspage = get_zspage(page);
 | 
						|
	pool = zspage->pool;
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	inc_zspage_isolation(zspage);
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static int zs_page_migrate(struct page *newpage, struct page *page,
 | 
						|
		enum migrate_mode mode)
 | 
						|
{
 | 
						|
	struct zs_pool *pool;
 | 
						|
	struct size_class *class;
 | 
						|
	struct zspage *zspage;
 | 
						|
	struct page *dummy;
 | 
						|
	void *s_addr, *d_addr, *addr;
 | 
						|
	unsigned int offset;
 | 
						|
	unsigned long handle;
 | 
						|
	unsigned long old_obj, new_obj;
 | 
						|
	unsigned int obj_idx;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We cannot support the _NO_COPY case here, because copy needs to
 | 
						|
	 * happen under the zs lock, which does not work with
 | 
						|
	 * MIGRATE_SYNC_NO_COPY workflow.
 | 
						|
	 */
 | 
						|
	if (mode == MIGRATE_SYNC_NO_COPY)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | 
						|
 | 
						|
	/* The page is locked, so this pointer must remain valid */
 | 
						|
	zspage = get_zspage(page);
 | 
						|
	pool = zspage->pool;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The pool's lock protects the race between zpage migration
 | 
						|
	 * and zs_free.
 | 
						|
	 */
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	class = zspage_class(pool, zspage);
 | 
						|
 | 
						|
	/* the migrate_write_lock protects zpage access via zs_map_object */
 | 
						|
	migrate_write_lock(zspage);
 | 
						|
 | 
						|
	offset = get_first_obj_offset(page);
 | 
						|
	s_addr = kmap_atomic(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here, any user cannot access all objects in the zspage so let's move.
 | 
						|
	 */
 | 
						|
	d_addr = kmap_atomic(newpage);
 | 
						|
	memcpy(d_addr, s_addr, PAGE_SIZE);
 | 
						|
	kunmap_atomic(d_addr);
 | 
						|
 | 
						|
	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
 | 
						|
					addr += class->size) {
 | 
						|
		if (obj_allocated(page, addr, &handle)) {
 | 
						|
 | 
						|
			old_obj = handle_to_obj(handle);
 | 
						|
			obj_to_location(old_obj, &dummy, &obj_idx);
 | 
						|
			new_obj = (unsigned long)location_to_obj(newpage,
 | 
						|
								obj_idx);
 | 
						|
			record_obj(handle, new_obj);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	kunmap_atomic(s_addr);
 | 
						|
 | 
						|
	replace_sub_page(class, zspage, newpage, page);
 | 
						|
	dec_zspage_isolation(zspage);
 | 
						|
	/*
 | 
						|
	 * Since we complete the data copy and set up new zspage structure,
 | 
						|
	 * it's okay to release the pool's lock.
 | 
						|
	 */
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
	migrate_write_unlock(zspage);
 | 
						|
 | 
						|
	get_page(newpage);
 | 
						|
	if (page_zone(newpage) != page_zone(page)) {
 | 
						|
		dec_zone_page_state(page, NR_ZSPAGES);
 | 
						|
		inc_zone_page_state(newpage, NR_ZSPAGES);
 | 
						|
	}
 | 
						|
 | 
						|
	reset_page(page);
 | 
						|
	put_page(page);
 | 
						|
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static void zs_page_putback(struct page *page)
 | 
						|
{
 | 
						|
	struct zs_pool *pool;
 | 
						|
	struct zspage *zspage;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | 
						|
 | 
						|
	zspage = get_zspage(page);
 | 
						|
	pool = zspage->pool;
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	dec_zspage_isolation(zspage);
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
}
 | 
						|
 | 
						|
static const struct movable_operations zsmalloc_mops = {
 | 
						|
	.isolate_page = zs_page_isolate,
 | 
						|
	.migrate_page = zs_page_migrate,
 | 
						|
	.putback_page = zs_page_putback,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Caller should hold page_lock of all pages in the zspage
 | 
						|
 * In here, we cannot use zspage meta data.
 | 
						|
 */
 | 
						|
static void async_free_zspage(struct work_struct *work)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct size_class *class;
 | 
						|
	unsigned int class_idx;
 | 
						|
	int fullness;
 | 
						|
	struct zspage *zspage, *tmp;
 | 
						|
	LIST_HEAD(free_pages);
 | 
						|
	struct zs_pool *pool = container_of(work, struct zs_pool,
 | 
						|
					free_work);
 | 
						|
 | 
						|
	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 | 
						|
		class = pool->size_class[i];
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock(&pool->lock);
 | 
						|
		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
 | 
						|
				 &free_pages);
 | 
						|
		spin_unlock(&pool->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
 | 
						|
		list_del(&zspage->list);
 | 
						|
		lock_zspage(zspage);
 | 
						|
 | 
						|
		get_zspage_mapping(zspage, &class_idx, &fullness);
 | 
						|
		VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
 | 
						|
		class = pool->size_class[class_idx];
 | 
						|
		spin_lock(&pool->lock);
 | 
						|
		__free_zspage(pool, class, zspage);
 | 
						|
		spin_unlock(&pool->lock);
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
static void kick_deferred_free(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	schedule_work(&pool->free_work);
 | 
						|
}
 | 
						|
 | 
						|
static void zs_flush_migration(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	flush_work(&pool->free_work);
 | 
						|
}
 | 
						|
 | 
						|
static void init_deferred_free(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	INIT_WORK(&pool->free_work, async_free_zspage);
 | 
						|
}
 | 
						|
 | 
						|
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
 | 
						|
{
 | 
						|
	struct page *page = get_first_page(zspage);
 | 
						|
 | 
						|
	do {
 | 
						|
		WARN_ON(!trylock_page(page));
 | 
						|
		__SetPageMovable(page, &zsmalloc_mops);
 | 
						|
		unlock_page(page);
 | 
						|
	} while ((page = get_next_page(page)) != NULL);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void zs_flush_migration(struct zs_pool *pool) { }
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 *
 | 
						|
 * Based on the number of unused allocated objects calculate
 | 
						|
 * and return the number of pages that we can free.
 | 
						|
 */
 | 
						|
static unsigned long zs_can_compact(struct size_class *class)
 | 
						|
{
 | 
						|
	unsigned long obj_wasted;
 | 
						|
	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
 | 
						|
	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
 | 
						|
 | 
						|
	if (obj_allocated <= obj_used)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	obj_wasted = obj_allocated - obj_used;
 | 
						|
	obj_wasted /= class->objs_per_zspage;
 | 
						|
 | 
						|
	return obj_wasted * class->pages_per_zspage;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long __zs_compact(struct zs_pool *pool,
 | 
						|
				  struct size_class *class)
 | 
						|
{
 | 
						|
	struct zspage *src_zspage = NULL;
 | 
						|
	struct zspage *dst_zspage = NULL;
 | 
						|
	unsigned long pages_freed = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * protect the race between zpage migration and zs_free
 | 
						|
	 * as well as zpage allocation/free
 | 
						|
	 */
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	while (zs_can_compact(class)) {
 | 
						|
		int fg;
 | 
						|
 | 
						|
		if (!dst_zspage) {
 | 
						|
			dst_zspage = isolate_dst_zspage(class);
 | 
						|
			if (!dst_zspage)
 | 
						|
				break;
 | 
						|
			migrate_write_lock(dst_zspage);
 | 
						|
		}
 | 
						|
 | 
						|
		src_zspage = isolate_src_zspage(class);
 | 
						|
		if (!src_zspage)
 | 
						|
			break;
 | 
						|
 | 
						|
		migrate_write_lock_nested(src_zspage);
 | 
						|
 | 
						|
		migrate_zspage(pool, src_zspage, dst_zspage);
 | 
						|
		fg = putback_zspage(class, src_zspage);
 | 
						|
		migrate_write_unlock(src_zspage);
 | 
						|
 | 
						|
		if (fg == ZS_INUSE_RATIO_0) {
 | 
						|
			free_zspage(pool, class, src_zspage);
 | 
						|
			pages_freed += class->pages_per_zspage;
 | 
						|
		}
 | 
						|
		src_zspage = NULL;
 | 
						|
 | 
						|
		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
 | 
						|
		    || spin_is_contended(&pool->lock)) {
 | 
						|
			putback_zspage(class, dst_zspage);
 | 
						|
			migrate_write_unlock(dst_zspage);
 | 
						|
			dst_zspage = NULL;
 | 
						|
 | 
						|
			spin_unlock(&pool->lock);
 | 
						|
			cond_resched();
 | 
						|
			spin_lock(&pool->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (src_zspage) {
 | 
						|
		putback_zspage(class, src_zspage);
 | 
						|
		migrate_write_unlock(src_zspage);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dst_zspage) {
 | 
						|
		putback_zspage(class, dst_zspage);
 | 
						|
		migrate_write_unlock(dst_zspage);
 | 
						|
	}
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	return pages_freed;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long zs_compact(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct size_class *class;
 | 
						|
	unsigned long pages_freed = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pool compaction is performed under pool->lock so it is basically
 | 
						|
	 * single-threaded. Having more than one thread in __zs_compact()
 | 
						|
	 * will increase pool->lock contention, which will impact other
 | 
						|
	 * zsmalloc operations that need pool->lock.
 | 
						|
	 */
 | 
						|
	if (atomic_xchg(&pool->compaction_in_progress, 1))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
 | 
						|
		class = pool->size_class[i];
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
		pages_freed += __zs_compact(pool, class);
 | 
						|
	}
 | 
						|
	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
 | 
						|
	atomic_set(&pool->compaction_in_progress, 0);
 | 
						|
 | 
						|
	return pages_freed;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_compact);
 | 
						|
 | 
						|
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
 | 
						|
{
 | 
						|
	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_pool_stats);
 | 
						|
 | 
						|
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
 | 
						|
		struct shrink_control *sc)
 | 
						|
{
 | 
						|
	unsigned long pages_freed;
 | 
						|
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
 | 
						|
			shrinker);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compact classes and calculate compaction delta.
 | 
						|
	 * Can run concurrently with a manually triggered
 | 
						|
	 * (by user) compaction.
 | 
						|
	 */
 | 
						|
	pages_freed = zs_compact(pool);
 | 
						|
 | 
						|
	return pages_freed ? pages_freed : SHRINK_STOP;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long zs_shrinker_count(struct shrinker *shrinker,
 | 
						|
		struct shrink_control *sc)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct size_class *class;
 | 
						|
	unsigned long pages_to_free = 0;
 | 
						|
	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
 | 
						|
			shrinker);
 | 
						|
 | 
						|
	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
 | 
						|
		class = pool->size_class[i];
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
 | 
						|
		pages_to_free += zs_can_compact(class);
 | 
						|
	}
 | 
						|
 | 
						|
	return pages_to_free;
 | 
						|
}
 | 
						|
 | 
						|
static void zs_unregister_shrinker(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	unregister_shrinker(&pool->shrinker);
 | 
						|
}
 | 
						|
 | 
						|
static int zs_register_shrinker(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	pool->shrinker.scan_objects = zs_shrinker_scan;
 | 
						|
	pool->shrinker.count_objects = zs_shrinker_count;
 | 
						|
	pool->shrinker.batch = 0;
 | 
						|
	pool->shrinker.seeks = DEFAULT_SEEKS;
 | 
						|
 | 
						|
	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
 | 
						|
				 pool->name);
 | 
						|
}
 | 
						|
 | 
						|
static int calculate_zspage_chain_size(int class_size)
 | 
						|
{
 | 
						|
	int i, min_waste = INT_MAX;
 | 
						|
	int chain_size = 1;
 | 
						|
 | 
						|
	if (is_power_of_2(class_size))
 | 
						|
		return chain_size;
 | 
						|
 | 
						|
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 | 
						|
		int waste;
 | 
						|
 | 
						|
		waste = (i * PAGE_SIZE) % class_size;
 | 
						|
		if (waste < min_waste) {
 | 
						|
			min_waste = waste;
 | 
						|
			chain_size = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return chain_size;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_create_pool - Creates an allocation pool to work from.
 | 
						|
 * @name: pool name to be created
 | 
						|
 *
 | 
						|
 * This function must be called before anything when using
 | 
						|
 * the zsmalloc allocator.
 | 
						|
 *
 | 
						|
 * On success, a pointer to the newly created pool is returned,
 | 
						|
 * otherwise NULL.
 | 
						|
 */
 | 
						|
struct zs_pool *zs_create_pool(const char *name)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct zs_pool *pool;
 | 
						|
	struct size_class *prev_class = NULL;
 | 
						|
 | 
						|
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 | 
						|
	if (!pool)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	init_deferred_free(pool);
 | 
						|
	spin_lock_init(&pool->lock);
 | 
						|
	atomic_set(&pool->compaction_in_progress, 0);
 | 
						|
 | 
						|
	pool->name = kstrdup(name, GFP_KERNEL);
 | 
						|
	if (!pool->name)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	if (create_cache(pool))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate reversely, because, size of size_class that we want to use
 | 
						|
	 * for merging should be larger or equal to current size.
 | 
						|
	 */
 | 
						|
	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
 | 
						|
		int size;
 | 
						|
		int pages_per_zspage;
 | 
						|
		int objs_per_zspage;
 | 
						|
		struct size_class *class;
 | 
						|
		int fullness;
 | 
						|
 | 
						|
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
 | 
						|
		if (size > ZS_MAX_ALLOC_SIZE)
 | 
						|
			size = ZS_MAX_ALLOC_SIZE;
 | 
						|
		pages_per_zspage = calculate_zspage_chain_size(size);
 | 
						|
		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We iterate from biggest down to smallest classes,
 | 
						|
		 * so huge_class_size holds the size of the first huge
 | 
						|
		 * class. Any object bigger than or equal to that will
 | 
						|
		 * endup in the huge class.
 | 
						|
		 */
 | 
						|
		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
 | 
						|
				!huge_class_size) {
 | 
						|
			huge_class_size = size;
 | 
						|
			/*
 | 
						|
			 * The object uses ZS_HANDLE_SIZE bytes to store the
 | 
						|
			 * handle. We need to subtract it, because zs_malloc()
 | 
						|
			 * unconditionally adds handle size before it performs
 | 
						|
			 * size class search - so object may be smaller than
 | 
						|
			 * huge class size, yet it still can end up in the huge
 | 
						|
			 * class because it grows by ZS_HANDLE_SIZE extra bytes
 | 
						|
			 * right before class lookup.
 | 
						|
			 */
 | 
						|
			huge_class_size -= (ZS_HANDLE_SIZE - 1);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * size_class is used for normal zsmalloc operation such
 | 
						|
		 * as alloc/free for that size. Although it is natural that we
 | 
						|
		 * have one size_class for each size, there is a chance that we
 | 
						|
		 * can get more memory utilization if we use one size_class for
 | 
						|
		 * many different sizes whose size_class have same
 | 
						|
		 * characteristics. So, we makes size_class point to
 | 
						|
		 * previous size_class if possible.
 | 
						|
		 */
 | 
						|
		if (prev_class) {
 | 
						|
			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
 | 
						|
				pool->size_class[i] = prev_class;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
 | 
						|
		if (!class)
 | 
						|
			goto err;
 | 
						|
 | 
						|
		class->size = size;
 | 
						|
		class->index = i;
 | 
						|
		class->pages_per_zspage = pages_per_zspage;
 | 
						|
		class->objs_per_zspage = objs_per_zspage;
 | 
						|
		pool->size_class[i] = class;
 | 
						|
 | 
						|
		fullness = ZS_INUSE_RATIO_0;
 | 
						|
		while (fullness < NR_FULLNESS_GROUPS) {
 | 
						|
			INIT_LIST_HEAD(&class->fullness_list[fullness]);
 | 
						|
			fullness++;
 | 
						|
		}
 | 
						|
 | 
						|
		prev_class = class;
 | 
						|
	}
 | 
						|
 | 
						|
	/* debug only, don't abort if it fails */
 | 
						|
	zs_pool_stat_create(pool, name);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Not critical since shrinker is only used to trigger internal
 | 
						|
	 * defragmentation of the pool which is pretty optional thing.  If
 | 
						|
	 * registration fails we still can use the pool normally and user can
 | 
						|
	 * trigger compaction manually. Thus, ignore return code.
 | 
						|
	 */
 | 
						|
	zs_register_shrinker(pool);
 | 
						|
 | 
						|
	return pool;
 | 
						|
 | 
						|
err:
 | 
						|
	zs_destroy_pool(pool);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_create_pool);
 | 
						|
 | 
						|
void zs_destroy_pool(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	zs_unregister_shrinker(pool);
 | 
						|
	zs_flush_migration(pool);
 | 
						|
	zs_pool_stat_destroy(pool);
 | 
						|
 | 
						|
	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 | 
						|
		int fg;
 | 
						|
		struct size_class *class = pool->size_class[i];
 | 
						|
 | 
						|
		if (!class)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
 | 
						|
			if (list_empty(&class->fullness_list[fg]))
 | 
						|
				continue;
 | 
						|
 | 
						|
			pr_err("Class-%d fullness group %d is not empty\n",
 | 
						|
			       class->size, fg);
 | 
						|
		}
 | 
						|
		kfree(class);
 | 
						|
	}
 | 
						|
 | 
						|
	destroy_cache(pool);
 | 
						|
	kfree(pool->name);
 | 
						|
	kfree(pool);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_destroy_pool);
 | 
						|
 | 
						|
static int __init zs_init(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
 | 
						|
				zs_cpu_prepare, zs_cpu_dead);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
	zpool_register_driver(&zs_zpool_driver);
 | 
						|
#endif
 | 
						|
 | 
						|
	zs_stat_init();
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit zs_exit(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
	zpool_unregister_driver(&zs_zpool_driver);
 | 
						|
#endif
 | 
						|
	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
 | 
						|
 | 
						|
	zs_stat_exit();
 | 
						|
}
 | 
						|
 | 
						|
module_init(zs_init);
 | 
						|
module_exit(zs_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("Dual BSD/GPL");
 | 
						|
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
 |