mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 0445ee0004
			
		
	
	
		0445ee0004
		
	
	
	
	
		
			
			The SLAB implementation is going to be removed, and mm-api.rst currently uses mm/slab.c to obtain kerneldocs for some API functions. Switch it to mm/slub.c and move the relevant kerneldocs of exported functions from one to the other. The rest of kerneldocs in slab.c is for static SLAB implementation-specific functions that don't have counterparts in slub.c and thus can be simply removed with the implementation. Acked-by: David Rientjes <rientjes@google.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
		
			
				
	
	
		
			4005 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4005 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * linux/mm/slab.c
 | |
|  * Written by Mark Hemment, 1996/97.
 | |
|  * (markhe@nextd.demon.co.uk)
 | |
|  *
 | |
|  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 | |
|  *
 | |
|  * Major cleanup, different bufctl logic, per-cpu arrays
 | |
|  *	(c) 2000 Manfred Spraul
 | |
|  *
 | |
|  * Cleanup, make the head arrays unconditional, preparation for NUMA
 | |
|  * 	(c) 2002 Manfred Spraul
 | |
|  *
 | |
|  * An implementation of the Slab Allocator as described in outline in;
 | |
|  *	UNIX Internals: The New Frontiers by Uresh Vahalia
 | |
|  *	Pub: Prentice Hall	ISBN 0-13-101908-2
 | |
|  * or with a little more detail in;
 | |
|  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 | |
|  *	Jeff Bonwick (Sun Microsystems).
 | |
|  *	Presented at: USENIX Summer 1994 Technical Conference
 | |
|  *
 | |
|  * The memory is organized in caches, one cache for each object type.
 | |
|  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 | |
|  * Each cache consists out of many slabs (they are small (usually one
 | |
|  * page long) and always contiguous), and each slab contains multiple
 | |
|  * initialized objects.
 | |
|  *
 | |
|  * This means, that your constructor is used only for newly allocated
 | |
|  * slabs and you must pass objects with the same initializations to
 | |
|  * kmem_cache_free.
 | |
|  *
 | |
|  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 | |
|  * normal). If you need a special memory type, then must create a new
 | |
|  * cache for that memory type.
 | |
|  *
 | |
|  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 | |
|  *   full slabs with 0 free objects
 | |
|  *   partial slabs
 | |
|  *   empty slabs with no allocated objects
 | |
|  *
 | |
|  * If partial slabs exist, then new allocations come from these slabs,
 | |
|  * otherwise from empty slabs or new slabs are allocated.
 | |
|  *
 | |
|  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 | |
|  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 | |
|  *
 | |
|  * Each cache has a short per-cpu head array, most allocs
 | |
|  * and frees go into that array, and if that array overflows, then 1/2
 | |
|  * of the entries in the array are given back into the global cache.
 | |
|  * The head array is strictly LIFO and should improve the cache hit rates.
 | |
|  * On SMP, it additionally reduces the spinlock operations.
 | |
|  *
 | |
|  * The c_cpuarray may not be read with enabled local interrupts -
 | |
|  * it's changed with a smp_call_function().
 | |
|  *
 | |
|  * SMP synchronization:
 | |
|  *  constructors and destructors are called without any locking.
 | |
|  *  Several members in struct kmem_cache and struct slab never change, they
 | |
|  *	are accessed without any locking.
 | |
|  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 | |
|  *  	and local interrupts are disabled so slab code is preempt-safe.
 | |
|  *  The non-constant members are protected with a per-cache irq spinlock.
 | |
|  *
 | |
|  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 | |
|  * in 2000 - many ideas in the current implementation are derived from
 | |
|  * his patch.
 | |
|  *
 | |
|  * Further notes from the original documentation:
 | |
|  *
 | |
|  * 11 April '97.  Started multi-threading - markhe
 | |
|  *	The global cache-chain is protected by the mutex 'slab_mutex'.
 | |
|  *	The sem is only needed when accessing/extending the cache-chain, which
 | |
|  *	can never happen inside an interrupt (kmem_cache_create(),
 | |
|  *	kmem_cache_shrink() and kmem_cache_reap()).
 | |
|  *
 | |
|  *	At present, each engine can be growing a cache.  This should be blocked.
 | |
|  *
 | |
|  * 15 March 2005. NUMA slab allocator.
 | |
|  *	Shai Fultheim <shai@scalex86.org>.
 | |
|  *	Shobhit Dayal <shobhit@calsoftinc.com>
 | |
|  *	Alok N Kataria <alokk@calsoftinc.com>
 | |
|  *	Christoph Lameter <christoph@lameter.com>
 | |
|  *
 | |
|  *	Modified the slab allocator to be node aware on NUMA systems.
 | |
|  *	Each node has its own list of partial, free and full slabs.
 | |
|  *	All object allocations for a node occur from node specific slab lists.
 | |
|  */
 | |
| 
 | |
| #include	<linux/slab.h>
 | |
| #include	<linux/mm.h>
 | |
| #include	<linux/poison.h>
 | |
| #include	<linux/swap.h>
 | |
| #include	<linux/cache.h>
 | |
| #include	<linux/interrupt.h>
 | |
| #include	<linux/init.h>
 | |
| #include	<linux/compiler.h>
 | |
| #include	<linux/cpuset.h>
 | |
| #include	<linux/proc_fs.h>
 | |
| #include	<linux/seq_file.h>
 | |
| #include	<linux/notifier.h>
 | |
| #include	<linux/kallsyms.h>
 | |
| #include	<linux/kfence.h>
 | |
| #include	<linux/cpu.h>
 | |
| #include	<linux/sysctl.h>
 | |
| #include	<linux/module.h>
 | |
| #include	<linux/rcupdate.h>
 | |
| #include	<linux/string.h>
 | |
| #include	<linux/uaccess.h>
 | |
| #include	<linux/nodemask.h>
 | |
| #include	<linux/kmemleak.h>
 | |
| #include	<linux/mempolicy.h>
 | |
| #include	<linux/mutex.h>
 | |
| #include	<linux/fault-inject.h>
 | |
| #include	<linux/rtmutex.h>
 | |
| #include	<linux/reciprocal_div.h>
 | |
| #include	<linux/debugobjects.h>
 | |
| #include	<linux/memory.h>
 | |
| #include	<linux/prefetch.h>
 | |
| #include	<linux/sched/task_stack.h>
 | |
| 
 | |
| #include	<net/sock.h>
 | |
| 
 | |
| #include	<asm/cacheflush.h>
 | |
| #include	<asm/tlbflush.h>
 | |
| #include	<asm/page.h>
 | |
| 
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include	"internal.h"
 | |
| 
 | |
| #include	"slab.h"
 | |
| 
 | |
| /*
 | |
|  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 | |
|  *		  0 for faster, smaller code (especially in the critical paths).
 | |
|  *
 | |
|  * STATS	- 1 to collect stats for /proc/slabinfo.
 | |
|  *		  0 for faster, smaller code (especially in the critical paths).
 | |
|  *
 | |
|  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| #define	DEBUG		1
 | |
| #define	STATS		1
 | |
| #define	FORCED_DEBUG	1
 | |
| #else
 | |
| #define	DEBUG		0
 | |
| #define	STATS		0
 | |
| #define	FORCED_DEBUG	0
 | |
| #endif
 | |
| 
 | |
| /* Shouldn't this be in a header file somewhere? */
 | |
| #define	BYTES_PER_WORD		sizeof(void *)
 | |
| #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 | |
| 
 | |
| #ifndef ARCH_KMALLOC_FLAGS
 | |
| #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 | |
| #endif
 | |
| 
 | |
| #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 | |
| 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 | |
| 
 | |
| #if FREELIST_BYTE_INDEX
 | |
| typedef unsigned char freelist_idx_t;
 | |
| #else
 | |
| typedef unsigned short freelist_idx_t;
 | |
| #endif
 | |
| 
 | |
| #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 | |
| 
 | |
| /*
 | |
|  * struct array_cache
 | |
|  *
 | |
|  * Purpose:
 | |
|  * - LIFO ordering, to hand out cache-warm objects from _alloc
 | |
|  * - reduce the number of linked list operations
 | |
|  * - reduce spinlock operations
 | |
|  *
 | |
|  * The limit is stored in the per-cpu structure to reduce the data cache
 | |
|  * footprint.
 | |
|  *
 | |
|  */
 | |
| struct array_cache {
 | |
| 	unsigned int avail;
 | |
| 	unsigned int limit;
 | |
| 	unsigned int batchcount;
 | |
| 	unsigned int touched;
 | |
| 	void *entry[];	/*
 | |
| 			 * Must have this definition in here for the proper
 | |
| 			 * alignment of array_cache. Also simplifies accessing
 | |
| 			 * the entries.
 | |
| 			 */
 | |
| };
 | |
| 
 | |
| struct alien_cache {
 | |
| 	spinlock_t lock;
 | |
| 	struct array_cache ac;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Need this for bootstrapping a per node allocator.
 | |
|  */
 | |
| #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 | |
| static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 | |
| #define	CACHE_CACHE 0
 | |
| #define	SIZE_NODE (MAX_NUMNODES)
 | |
| 
 | |
| static int drain_freelist(struct kmem_cache *cache,
 | |
| 			struct kmem_cache_node *n, int tofree);
 | |
| static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 | |
| 			int node, struct list_head *list);
 | |
| static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 | |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 | |
| static void cache_reap(struct work_struct *unused);
 | |
| 
 | |
| static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 | |
| 						void **list);
 | |
| static inline void fixup_slab_list(struct kmem_cache *cachep,
 | |
| 				struct kmem_cache_node *n, struct slab *slab,
 | |
| 				void **list);
 | |
| 
 | |
| #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 | |
| 
 | |
| static void kmem_cache_node_init(struct kmem_cache_node *parent)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&parent->slabs_full);
 | |
| 	INIT_LIST_HEAD(&parent->slabs_partial);
 | |
| 	INIT_LIST_HEAD(&parent->slabs_free);
 | |
| 	parent->total_slabs = 0;
 | |
| 	parent->free_slabs = 0;
 | |
| 	parent->shared = NULL;
 | |
| 	parent->alien = NULL;
 | |
| 	parent->colour_next = 0;
 | |
| 	raw_spin_lock_init(&parent->list_lock);
 | |
| 	parent->free_objects = 0;
 | |
| 	parent->free_touched = 0;
 | |
| }
 | |
| 
 | |
| #define MAKE_LIST(cachep, listp, slab, nodeid)				\
 | |
| 	do {								\
 | |
| 		INIT_LIST_HEAD(listp);					\
 | |
| 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 | |
| 	do {								\
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 | |
| #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 | |
| #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 | |
| #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 | |
| 
 | |
| #define BATCHREFILL_LIMIT	16
 | |
| /*
 | |
|  * Optimization question: fewer reaps means less probability for unnecessary
 | |
|  * cpucache drain/refill cycles.
 | |
|  *
 | |
|  * OTOH the cpuarrays can contain lots of objects,
 | |
|  * which could lock up otherwise freeable slabs.
 | |
|  */
 | |
| #define REAPTIMEOUT_AC		(2*HZ)
 | |
| #define REAPTIMEOUT_NODE	(4*HZ)
 | |
| 
 | |
| #if STATS
 | |
| #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 | |
| #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 | |
| #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 | |
| #define	STATS_INC_GROWN(x)	((x)->grown++)
 | |
| #define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 | |
| #define	STATS_SET_HIGH(x)						\
 | |
| 	do {								\
 | |
| 		if ((x)->num_active > (x)->high_mark)			\
 | |
| 			(x)->high_mark = (x)->num_active;		\
 | |
| 	} while (0)
 | |
| #define	STATS_INC_ERR(x)	((x)->errors++)
 | |
| #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 | |
| #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 | |
| #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 | |
| #define	STATS_SET_FREEABLE(x, i)					\
 | |
| 	do {								\
 | |
| 		if ((x)->max_freeable < i)				\
 | |
| 			(x)->max_freeable = i;				\
 | |
| 	} while (0)
 | |
| #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 | |
| #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 | |
| #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 | |
| #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 | |
| #else
 | |
| #define	STATS_INC_ACTIVE(x)	do { } while (0)
 | |
| #define	STATS_DEC_ACTIVE(x)	do { } while (0)
 | |
| #define	STATS_INC_ALLOCED(x)	do { } while (0)
 | |
| #define	STATS_INC_GROWN(x)	do { } while (0)
 | |
| #define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 | |
| #define	STATS_SET_HIGH(x)	do { } while (0)
 | |
| #define	STATS_INC_ERR(x)	do { } while (0)
 | |
| #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 | |
| #define	STATS_INC_NODEFREES(x)	do { } while (0)
 | |
| #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 | |
| #define	STATS_SET_FREEABLE(x, i) do { } while (0)
 | |
| #define STATS_INC_ALLOCHIT(x)	do { } while (0)
 | |
| #define STATS_INC_ALLOCMISS(x)	do { } while (0)
 | |
| #define STATS_INC_FREEHIT(x)	do { } while (0)
 | |
| #define STATS_INC_FREEMISS(x)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| /*
 | |
|  * memory layout of objects:
 | |
|  * 0		: objp
 | |
|  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 | |
|  * 		the end of an object is aligned with the end of the real
 | |
|  * 		allocation. Catches writes behind the end of the allocation.
 | |
|  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 | |
|  * 		redzone word.
 | |
|  * cachep->obj_offset: The real object.
 | |
|  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 | |
|  * cachep->size - 1* BYTES_PER_WORD: last caller address
 | |
|  *					[BYTES_PER_WORD long]
 | |
|  */
 | |
| static int obj_offset(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return cachep->obj_offset;
 | |
| }
 | |
| 
 | |
| static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 | |
| 	return (unsigned long long *) (objp + obj_offset(cachep) -
 | |
| 				      sizeof(unsigned long long));
 | |
| }
 | |
| 
 | |
| static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		return (unsigned long long *)(objp + cachep->size -
 | |
| 					      sizeof(unsigned long long) -
 | |
| 					      REDZONE_ALIGN);
 | |
| 	return (unsigned long long *) (objp + cachep->size -
 | |
| 				       sizeof(unsigned long long));
 | |
| }
 | |
| 
 | |
| static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 | |
| 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define obj_offset(x)			0
 | |
| #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 | |
| #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 | |
| #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Do not go above this order unless 0 objects fit into the slab or
 | |
|  * overridden on the command line.
 | |
|  */
 | |
| #define	SLAB_MAX_ORDER_HI	1
 | |
| #define	SLAB_MAX_ORDER_LO	0
 | |
| static int slab_max_order = SLAB_MAX_ORDER_LO;
 | |
| static bool slab_max_order_set __initdata;
 | |
| 
 | |
| static inline void *index_to_obj(struct kmem_cache *cache,
 | |
| 				 const struct slab *slab, unsigned int idx)
 | |
| {
 | |
| 	return slab->s_mem + cache->size * idx;
 | |
| }
 | |
| 
 | |
| #define BOOT_CPUCACHE_ENTRIES	1
 | |
| /* internal cache of cache description objs */
 | |
| static struct kmem_cache kmem_cache_boot = {
 | |
| 	.batchcount = 1,
 | |
| 	.limit = BOOT_CPUCACHE_ENTRIES,
 | |
| 	.shared = 1,
 | |
| 	.size = sizeof(struct kmem_cache),
 | |
| 	.name = "kmem_cache",
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 | |
| 
 | |
| static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return this_cpu_ptr(cachep->cpu_cache);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of objects and left-over bytes for a given buffer size.
 | |
|  */
 | |
| static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 | |
| 		slab_flags_t flags, size_t *left_over)
 | |
| {
 | |
| 	unsigned int num;
 | |
| 	size_t slab_size = PAGE_SIZE << gfporder;
 | |
| 
 | |
| 	/*
 | |
| 	 * The slab management structure can be either off the slab or
 | |
| 	 * on it. For the latter case, the memory allocated for a
 | |
| 	 * slab is used for:
 | |
| 	 *
 | |
| 	 * - @buffer_size bytes for each object
 | |
| 	 * - One freelist_idx_t for each object
 | |
| 	 *
 | |
| 	 * We don't need to consider alignment of freelist because
 | |
| 	 * freelist will be at the end of slab page. The objects will be
 | |
| 	 * at the correct alignment.
 | |
| 	 *
 | |
| 	 * If the slab management structure is off the slab, then the
 | |
| 	 * alignment will already be calculated into the size. Because
 | |
| 	 * the slabs are all pages aligned, the objects will be at the
 | |
| 	 * correct alignment when allocated.
 | |
| 	 */
 | |
| 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 | |
| 		num = slab_size / buffer_size;
 | |
| 		*left_over = slab_size % buffer_size;
 | |
| 	} else {
 | |
| 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 | |
| 		*left_over = slab_size %
 | |
| 			(buffer_size + sizeof(freelist_idx_t));
 | |
| 	}
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 | |
| 
 | |
| static void __slab_error(const char *function, struct kmem_cache *cachep,
 | |
| 			char *msg)
 | |
| {
 | |
| 	pr_err("slab error in %s(): cache `%s': %s\n",
 | |
| 	       function, cachep->name, msg);
 | |
| 	dump_stack();
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * By default on NUMA we use alien caches to stage the freeing of
 | |
|  * objects allocated from other nodes. This causes massive memory
 | |
|  * inefficiencies when using fake NUMA setup to split memory into a
 | |
|  * large number of small nodes, so it can be disabled on the command
 | |
|  * line
 | |
|   */
 | |
| 
 | |
| static int use_alien_caches __read_mostly = 1;
 | |
| static int __init noaliencache_setup(char *s)
 | |
| {
 | |
| 	use_alien_caches = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noaliencache", noaliencache_setup);
 | |
| 
 | |
| static int __init slab_max_order_setup(char *str)
 | |
| {
 | |
| 	get_option(&str, &slab_max_order);
 | |
| 	slab_max_order = slab_max_order < 0 ? 0 :
 | |
| 				min(slab_max_order, MAX_ORDER);
 | |
| 	slab_max_order_set = true;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("slab_max_order=", slab_max_order_setup);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Special reaping functions for NUMA systems called from cache_reap().
 | |
|  * These take care of doing round robin flushing of alien caches (containing
 | |
|  * objects freed on different nodes from which they were allocated) and the
 | |
|  * flushing of remote pcps by calling drain_node_pages.
 | |
|  */
 | |
| static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 | |
| 
 | |
| static void init_reap_node(int cpu)
 | |
| {
 | |
| 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 | |
| 						    node_online_map);
 | |
| }
 | |
| 
 | |
| static void next_reap_node(void)
 | |
| {
 | |
| 	int node = __this_cpu_read(slab_reap_node);
 | |
| 
 | |
| 	node = next_node_in(node, node_online_map);
 | |
| 	__this_cpu_write(slab_reap_node, node);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define init_reap_node(cpu) do { } while (0)
 | |
| #define next_reap_node(void) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 | |
|  * via the workqueue/eventd.
 | |
|  * Add the CPU number into the expiration time to minimize the possibility of
 | |
|  * the CPUs getting into lockstep and contending for the global cache chain
 | |
|  * lock.
 | |
|  */
 | |
| static void start_cpu_timer(int cpu)
 | |
| {
 | |
| 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 | |
| 
 | |
| 	if (reap_work->work.func == NULL) {
 | |
| 		init_reap_node(cpu);
 | |
| 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 | |
| 		schedule_delayed_work_on(cpu, reap_work,
 | |
| 					__round_jiffies_relative(HZ, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_arraycache(struct array_cache *ac, int limit, int batch)
 | |
| {
 | |
| 	if (ac) {
 | |
| 		ac->avail = 0;
 | |
| 		ac->limit = limit;
 | |
| 		ac->batchcount = batch;
 | |
| 		ac->touched = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct array_cache *alloc_arraycache(int node, int entries,
 | |
| 					    int batchcount, gfp_t gfp)
 | |
| {
 | |
| 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 | |
| 	struct array_cache *ac = NULL;
 | |
| 
 | |
| 	ac = kmalloc_node(memsize, gfp, node);
 | |
| 	/*
 | |
| 	 * The array_cache structures contain pointers to free object.
 | |
| 	 * However, when such objects are allocated or transferred to another
 | |
| 	 * cache the pointers are not cleared and they could be counted as
 | |
| 	 * valid references during a kmemleak scan. Therefore, kmemleak must
 | |
| 	 * not scan such objects.
 | |
| 	 */
 | |
| 	kmemleak_no_scan(ac);
 | |
| 	init_arraycache(ac, entries, batchcount);
 | |
| 	return ac;
 | |
| }
 | |
| 
 | |
| static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 | |
| 					struct slab *slab, void *objp)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int slab_node;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	slab_node = slab_nid(slab);
 | |
| 	n = get_node(cachep, slab_node);
 | |
| 
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	free_block(cachep, &objp, 1, slab_node, &list);
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	slabs_destroy(cachep, &list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer objects in one arraycache to another.
 | |
|  * Locking must be handled by the caller.
 | |
|  *
 | |
|  * Return the number of entries transferred.
 | |
|  */
 | |
| static int transfer_objects(struct array_cache *to,
 | |
| 		struct array_cache *from, unsigned int max)
 | |
| {
 | |
| 	/* Figure out how many entries to transfer */
 | |
| 	int nr = min3(from->avail, max, to->limit - to->avail);
 | |
| 
 | |
| 	if (!nr)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 | |
| 			sizeof(void *) *nr);
 | |
| 
 | |
| 	from->avail -= nr;
 | |
| 	to->avail += nr;
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /* &alien->lock must be held by alien callers. */
 | |
| static __always_inline void __free_one(struct array_cache *ac, void *objp)
 | |
| {
 | |
| 	/* Avoid trivial double-free. */
 | |
| 	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 | |
| 	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 | |
| 		return;
 | |
| 	ac->entry[ac->avail++] = objp;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| 
 | |
| #define drain_alien_cache(cachep, alien) do { } while (0)
 | |
| #define reap_alien(cachep, n) do { } while (0)
 | |
| 
 | |
| static inline struct alien_cache **alloc_alien_cache(int node,
 | |
| 						int limit, gfp_t gfp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void free_alien_cache(struct alien_cache **ac_ptr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline gfp_t gfp_exact_node(gfp_t flags)
 | |
| {
 | |
| 	return flags & ~__GFP_NOFAIL;
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static struct alien_cache *__alloc_alien_cache(int node, int entries,
 | |
| 						int batch, gfp_t gfp)
 | |
| {
 | |
| 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 | |
| 	struct alien_cache *alc = NULL;
 | |
| 
 | |
| 	alc = kmalloc_node(memsize, gfp, node);
 | |
| 	if (alc) {
 | |
| 		kmemleak_no_scan(alc);
 | |
| 		init_arraycache(&alc->ac, entries, batch);
 | |
| 		spin_lock_init(&alc->lock);
 | |
| 	}
 | |
| 	return alc;
 | |
| }
 | |
| 
 | |
| static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 | |
| {
 | |
| 	struct alien_cache **alc_ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	if (limit > 1)
 | |
| 		limit = 12;
 | |
| 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 | |
| 	if (!alc_ptr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for_each_node(i) {
 | |
| 		if (i == node || !node_online(i))
 | |
| 			continue;
 | |
| 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 | |
| 		if (!alc_ptr[i]) {
 | |
| 			for (i--; i >= 0; i--)
 | |
| 				kfree(alc_ptr[i]);
 | |
| 			kfree(alc_ptr);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return alc_ptr;
 | |
| }
 | |
| 
 | |
| static void free_alien_cache(struct alien_cache **alc_ptr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!alc_ptr)
 | |
| 		return;
 | |
| 	for_each_node(i)
 | |
| 	    kfree(alc_ptr[i]);
 | |
| 	kfree(alc_ptr);
 | |
| }
 | |
| 
 | |
| static void __drain_alien_cache(struct kmem_cache *cachep,
 | |
| 				struct array_cache *ac, int node,
 | |
| 				struct list_head *list)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(cachep, node);
 | |
| 
 | |
| 	if (ac->avail) {
 | |
| 		raw_spin_lock(&n->list_lock);
 | |
| 		/*
 | |
| 		 * Stuff objects into the remote nodes shared array first.
 | |
| 		 * That way we could avoid the overhead of putting the objects
 | |
| 		 * into the free lists and getting them back later.
 | |
| 		 */
 | |
| 		if (n->shared)
 | |
| 			transfer_objects(n->shared, ac, ac->limit);
 | |
| 
 | |
| 		free_block(cachep, ac->entry, ac->avail, node, list);
 | |
| 		ac->avail = 0;
 | |
| 		raw_spin_unlock(&n->list_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from cache_reap() to regularly drain alien caches round robin.
 | |
|  */
 | |
| static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 | |
| {
 | |
| 	int node = __this_cpu_read(slab_reap_node);
 | |
| 
 | |
| 	if (n->alien) {
 | |
| 		struct alien_cache *alc = n->alien[node];
 | |
| 		struct array_cache *ac;
 | |
| 
 | |
| 		if (alc) {
 | |
| 			ac = &alc->ac;
 | |
| 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 | |
| 				LIST_HEAD(list);
 | |
| 
 | |
| 				__drain_alien_cache(cachep, ac, node, &list);
 | |
| 				spin_unlock_irq(&alc->lock);
 | |
| 				slabs_destroy(cachep, &list);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drain_alien_cache(struct kmem_cache *cachep,
 | |
| 				struct alien_cache **alien)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct alien_cache *alc;
 | |
| 	struct array_cache *ac;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		alc = alien[i];
 | |
| 		if (alc) {
 | |
| 			LIST_HEAD(list);
 | |
| 
 | |
| 			ac = &alc->ac;
 | |
| 			spin_lock_irqsave(&alc->lock, flags);
 | |
| 			__drain_alien_cache(cachep, ac, i, &list);
 | |
| 			spin_unlock_irqrestore(&alc->lock, flags);
 | |
| 			slabs_destroy(cachep, &list);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 | |
| 				int node, int slab_node)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct alien_cache *alien = NULL;
 | |
| 	struct array_cache *ac;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	n = get_node(cachep, node);
 | |
| 	STATS_INC_NODEFREES(cachep);
 | |
| 	if (n->alien && n->alien[slab_node]) {
 | |
| 		alien = n->alien[slab_node];
 | |
| 		ac = &alien->ac;
 | |
| 		spin_lock(&alien->lock);
 | |
| 		if (unlikely(ac->avail == ac->limit)) {
 | |
| 			STATS_INC_ACOVERFLOW(cachep);
 | |
| 			__drain_alien_cache(cachep, ac, slab_node, &list);
 | |
| 		}
 | |
| 		__free_one(ac, objp);
 | |
| 		spin_unlock(&alien->lock);
 | |
| 		slabs_destroy(cachep, &list);
 | |
| 	} else {
 | |
| 		n = get_node(cachep, slab_node);
 | |
| 		raw_spin_lock(&n->list_lock);
 | |
| 		free_block(cachep, &objp, 1, slab_node, &list);
 | |
| 		raw_spin_unlock(&n->list_lock);
 | |
| 		slabs_destroy(cachep, &list);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	int slab_node = slab_nid(virt_to_slab(objp));
 | |
| 	int node = numa_mem_id();
 | |
| 	/*
 | |
| 	 * Make sure we are not freeing an object from another node to the array
 | |
| 	 * cache on this cpu.
 | |
| 	 */
 | |
| 	if (likely(node == slab_node))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __cache_free_alien(cachep, objp, node, slab_node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct gfp mask to allocate from a specific node but do not reclaim or
 | |
|  * warn about failures.
 | |
|  */
 | |
| static inline gfp_t gfp_exact_node(gfp_t flags)
 | |
| {
 | |
| 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the kmem_cache_node for cpu before we can
 | |
| 	 * begin anything. Make sure some other cpu on this
 | |
| 	 * node has not already allocated this
 | |
| 	 */
 | |
| 	n = get_node(cachep, node);
 | |
| 	if (n) {
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 | |
| 				cachep->num;
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 | |
| 	if (!n)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	kmem_cache_node_init(n);
 | |
| 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 | |
| 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 
 | |
| 	n->free_limit =
 | |
| 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 | |
| 
 | |
| 	/*
 | |
| 	 * The kmem_cache_nodes don't come and go as CPUs
 | |
| 	 * come and go.  slab_mutex provides sufficient
 | |
| 	 * protection here.
 | |
| 	 */
 | |
| 	cachep->node[node] = n;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_NUMA) || defined(CONFIG_SMP)
 | |
| /*
 | |
|  * Allocates and initializes node for a node on each slab cache, used for
 | |
|  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 | |
|  * will be allocated off-node since memory is not yet online for the new node.
 | |
|  * When hotplugging memory or a cpu, existing nodes are not replaced if
 | |
|  * already in use.
 | |
|  *
 | |
|  * Must hold slab_mutex.
 | |
|  */
 | |
| static int init_cache_node_node(int node)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		ret = init_cache_node(cachep, node, GFP_KERNEL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int setup_kmem_cache_node(struct kmem_cache *cachep,
 | |
| 				int node, gfp_t gfp, bool force_change)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct array_cache *old_shared = NULL;
 | |
| 	struct array_cache *new_shared = NULL;
 | |
| 	struct alien_cache **new_alien = NULL;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	if (use_alien_caches) {
 | |
| 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 | |
| 		if (!new_alien)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (cachep->shared) {
 | |
| 		new_shared = alloc_arraycache(node,
 | |
| 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 | |
| 		if (!new_shared)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = init_cache_node(cachep, node, gfp);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	n = get_node(cachep, node);
 | |
| 	raw_spin_lock_irq(&n->list_lock);
 | |
| 	if (n->shared && force_change) {
 | |
| 		free_block(cachep, n->shared->entry,
 | |
| 				n->shared->avail, node, &list);
 | |
| 		n->shared->avail = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!n->shared || force_change) {
 | |
| 		old_shared = n->shared;
 | |
| 		n->shared = new_shared;
 | |
| 		new_shared = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!n->alien) {
 | |
| 		n->alien = new_alien;
 | |
| 		new_alien = NULL;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irq(&n->list_lock);
 | |
| 	slabs_destroy(cachep, &list);
 | |
| 
 | |
| 	/*
 | |
| 	 * To protect lockless access to n->shared during irq disabled context.
 | |
| 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 | |
| 	 * guaranteed to be valid until irq is re-enabled, because it will be
 | |
| 	 * freed after synchronize_rcu().
 | |
| 	 */
 | |
| 	if (old_shared && force_change)
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| fail:
 | |
| 	kfree(old_shared);
 | |
| 	kfree(new_shared);
 | |
| 	free_alien_cache(new_alien);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void cpuup_canceled(long cpu)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct kmem_cache_node *n = NULL;
 | |
| 	int node = cpu_to_mem(cpu);
 | |
| 	const struct cpumask *mask = cpumask_of_node(node);
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		struct array_cache *nc;
 | |
| 		struct array_cache *shared;
 | |
| 		struct alien_cache **alien;
 | |
| 		LIST_HEAD(list);
 | |
| 
 | |
| 		n = get_node(cachep, node);
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 		/* Free limit for this kmem_cache_node */
 | |
| 		n->free_limit -= cachep->batchcount;
 | |
| 
 | |
| 		/* cpu is dead; no one can alloc from it. */
 | |
| 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 | |
| 		free_block(cachep, nc->entry, nc->avail, node, &list);
 | |
| 		nc->avail = 0;
 | |
| 
 | |
| 		if (!cpumask_empty(mask)) {
 | |
| 			raw_spin_unlock_irq(&n->list_lock);
 | |
| 			goto free_slab;
 | |
| 		}
 | |
| 
 | |
| 		shared = n->shared;
 | |
| 		if (shared) {
 | |
| 			free_block(cachep, shared->entry,
 | |
| 				   shared->avail, node, &list);
 | |
| 			n->shared = NULL;
 | |
| 		}
 | |
| 
 | |
| 		alien = n->alien;
 | |
| 		n->alien = NULL;
 | |
| 
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 		kfree(shared);
 | |
| 		if (alien) {
 | |
| 			drain_alien_cache(cachep, alien);
 | |
| 			free_alien_cache(alien);
 | |
| 		}
 | |
| 
 | |
| free_slab:
 | |
| 		slabs_destroy(cachep, &list);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * In the previous loop, all the objects were freed to
 | |
| 	 * the respective cache's slabs,  now we can go ahead and
 | |
| 	 * shrink each nodelist to its limit.
 | |
| 	 */
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		n = get_node(cachep, node);
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 		drain_freelist(cachep, n, INT_MAX);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cpuup_prepare(long cpu)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	int node = cpu_to_mem(cpu);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to do this right in the beginning since
 | |
| 	 * alloc_arraycache's are going to use this list.
 | |
| 	 * kmalloc_node allows us to add the slab to the right
 | |
| 	 * kmem_cache_node and not this cpu's kmem_cache_node
 | |
| 	 */
 | |
| 	err = init_cache_node_node(node);
 | |
| 	if (err < 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can go ahead with allocating the shared arrays and
 | |
| 	 * array caches
 | |
| 	 */
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
 | |
| 		if (err)
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	cpuup_canceled(cpu);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int slab_prepare_cpu(unsigned int cpu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	err = cpuup_prepare(cpu);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called for a failed online attempt and for a successful
 | |
|  * offline.
 | |
|  *
 | |
|  * Even if all the cpus of a node are down, we don't free the
 | |
|  * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
 | |
|  * a kmalloc allocation from another cpu for memory from the node of
 | |
|  * the cpu going down.  The kmem_cache_node structure is usually allocated from
 | |
|  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 | |
|  */
 | |
| int slab_dead_cpu(unsigned int cpu)
 | |
| {
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	cpuup_canceled(cpu);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int slab_online_cpu(unsigned int cpu)
 | |
| {
 | |
| 	start_cpu_timer(cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int slab_offline_cpu(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Shutdown cache reaper. Note that the slab_mutex is held so
 | |
| 	 * that if cache_reap() is invoked it cannot do anything
 | |
| 	 * expensive but will only modify reap_work and reschedule the
 | |
| 	 * timer.
 | |
| 	 */
 | |
| 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
 | |
| 	/* Now the cache_reaper is guaranteed to be not running. */
 | |
| 	per_cpu(slab_reap_work, cpu).work.func = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_NUMA)
 | |
| /*
 | |
|  * Drains freelist for a node on each slab cache, used for memory hot-remove.
 | |
|  * Returns -EBUSY if all objects cannot be drained so that the node is not
 | |
|  * removed.
 | |
|  *
 | |
|  * Must hold slab_mutex.
 | |
|  */
 | |
| static int __meminit drain_cache_node_node(int node)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		n = get_node(cachep, node);
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		drain_freelist(cachep, n, INT_MAX);
 | |
| 
 | |
| 		if (!list_empty(&n->slabs_full) ||
 | |
| 		    !list_empty(&n->slabs_partial)) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __meminit slab_memory_callback(struct notifier_block *self,
 | |
| 					unsigned long action, void *arg)
 | |
| {
 | |
| 	struct memory_notify *mnb = arg;
 | |
| 	int ret = 0;
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = mnb->status_change_nid;
 | |
| 	if (nid < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		ret = init_cache_node_node(nid);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		ret = drain_cache_node_node(nid);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	return notifier_from_errno(ret);
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * swap the static kmem_cache_node with kmalloced memory
 | |
|  */
 | |
| static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
 | |
| 				int nodeid)
 | |
| {
 | |
| 	struct kmem_cache_node *ptr;
 | |
| 
 | |
| 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
 | |
| 	BUG_ON(!ptr);
 | |
| 
 | |
| 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
 | |
| 	/*
 | |
| 	 * Do not assume that spinlocks can be initialized via memcpy:
 | |
| 	 */
 | |
| 	raw_spin_lock_init(&ptr->list_lock);
 | |
| 
 | |
| 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
 | |
| 	cachep->node[nodeid] = ptr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 | |
|  * size of kmem_cache_node.
 | |
|  */
 | |
| static void __init set_up_node(struct kmem_cache *cachep, int index)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		cachep->node[node] = &init_kmem_cache_node[index + node];
 | |
| 		cachep->node[node]->next_reap = jiffies +
 | |
| 		    REAPTIMEOUT_NODE +
 | |
| 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialisation.  Called after the page allocator have been initialised and
 | |
|  * before smp_init().
 | |
|  */
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	kmem_cache = &kmem_cache_boot;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
 | |
| 		use_alien_caches = 0;
 | |
| 
 | |
| 	for (i = 0; i < NUM_INIT_LISTS; i++)
 | |
| 		kmem_cache_node_init(&init_kmem_cache_node[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fragmentation resistance on low memory - only use bigger
 | |
| 	 * page orders on machines with more than 32MB of memory if
 | |
| 	 * not overridden on the command line.
 | |
| 	 */
 | |
| 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
 | |
| 		slab_max_order = SLAB_MAX_ORDER_HI;
 | |
| 
 | |
| 	/* Bootstrap is tricky, because several objects are allocated
 | |
| 	 * from caches that do not exist yet:
 | |
| 	 * 1) initialize the kmem_cache cache: it contains the struct
 | |
| 	 *    kmem_cache structures of all caches, except kmem_cache itself:
 | |
| 	 *    kmem_cache is statically allocated.
 | |
| 	 *    Initially an __init data area is used for the head array and the
 | |
| 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
 | |
| 	 *    array at the end of the bootstrap.
 | |
| 	 * 2) Create the first kmalloc cache.
 | |
| 	 *    The struct kmem_cache for the new cache is allocated normally.
 | |
| 	 *    An __init data area is used for the head array.
 | |
| 	 * 3) Create the remaining kmalloc caches, with minimally sized
 | |
| 	 *    head arrays.
 | |
| 	 * 4) Replace the __init data head arrays for kmem_cache and the first
 | |
| 	 *    kmalloc cache with kmalloc allocated arrays.
 | |
| 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
 | |
| 	 *    the other cache's with kmalloc allocated memory.
 | |
| 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
 | |
| 	 */
 | |
| 
 | |
| 	/* 1) create the kmem_cache */
 | |
| 
 | |
| 	/*
 | |
| 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
 | |
| 	 */
 | |
| 	create_boot_cache(kmem_cache, "kmem_cache",
 | |
| 		offsetof(struct kmem_cache, node) +
 | |
| 				  nr_node_ids * sizeof(struct kmem_cache_node *),
 | |
| 				  SLAB_HWCACHE_ALIGN, 0, 0);
 | |
| 	list_add(&kmem_cache->list, &slab_caches);
 | |
| 	slab_state = PARTIAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the caches that provide memory for the  kmem_cache_node
 | |
| 	 * structures first.  Without this, further allocations will bug.
 | |
| 	 */
 | |
| 	new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS);
 | |
| 	slab_state = PARTIAL_NODE;
 | |
| 	setup_kmalloc_cache_index_table();
 | |
| 
 | |
| 	/* 5) Replace the bootstrap kmem_cache_node */
 | |
| 	{
 | |
| 		int nid;
 | |
| 
 | |
| 		for_each_online_node(nid) {
 | |
| 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
 | |
| 
 | |
| 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
 | |
| 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	/* 6) resize the head arrays to their final sizes */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(cachep, &slab_caches, list)
 | |
| 		if (enable_cpucache(cachep, GFP_NOWAIT))
 | |
| 			BUG();
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	/* Done! */
 | |
| 	slab_state = FULL;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/*
 | |
| 	 * Register a memory hotplug callback that initializes and frees
 | |
| 	 * node.
 | |
| 	 */
 | |
| 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The reap timers are started later, with a module init call: That part
 | |
| 	 * of the kernel is not yet operational.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static int __init cpucache_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the timers that return unneeded pages to the page allocator
 | |
| 	 */
 | |
| 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
 | |
| 				slab_online_cpu, slab_offline_cpu);
 | |
| 	WARN_ON(ret < 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(cpucache_init);
 | |
| 
 | |
| static noinline void
 | |
| slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
 | |
| {
 | |
| #if DEBUG
 | |
| 	struct kmem_cache_node *n;
 | |
| 	unsigned long flags;
 | |
| 	int node;
 | |
| 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
 | |
| 		nodeid, gfpflags, &gfpflags);
 | |
| 	pr_warn("  cache: %s, object size: %d, order: %d\n",
 | |
| 		cachep->name, cachep->size, cachep->gfporder);
 | |
| 
 | |
| 	for_each_kmem_cache_node(cachep, node, n) {
 | |
| 		unsigned long total_slabs, free_slabs, free_objs;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		total_slabs = n->total_slabs;
 | |
| 		free_slabs = n->free_slabs;
 | |
| 		free_objs = n->free_objects;
 | |
| 		raw_spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
 | |
| 			node, total_slabs - free_slabs, total_slabs,
 | |
| 			(total_slabs * cachep->num) - free_objs,
 | |
| 			total_slabs * cachep->num);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface to system's page allocator. No need to hold the
 | |
|  * kmem_cache_node ->list_lock.
 | |
|  *
 | |
|  * If we requested dmaable memory, we will get it. Even if we
 | |
|  * did not request dmaable memory, we might get it, but that
 | |
|  * would be relatively rare and ignorable.
 | |
|  */
 | |
| static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
 | |
| 								int nodeid)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	flags |= cachep->allocflags;
 | |
| 
 | |
| 	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
 | |
| 	if (!folio) {
 | |
| 		slab_out_of_memory(cachep, flags, nodeid);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	slab = folio_slab(folio);
 | |
| 
 | |
| 	account_slab(slab, cachep->gfporder, cachep, flags);
 | |
| 	__folio_set_slab(folio);
 | |
| 	/* Make the flag visible before any changes to folio->mapping */
 | |
| 	smp_wmb();
 | |
| 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
 | |
| 	if (sk_memalloc_socks() && folio_is_pfmemalloc(folio))
 | |
| 		slab_set_pfmemalloc(slab);
 | |
| 
 | |
| 	return slab;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface to system's page release.
 | |
|  */
 | |
| static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| 	int order = cachep->gfporder;
 | |
| 	struct folio *folio = slab_folio(slab);
 | |
| 
 | |
| 	BUG_ON(!folio_test_slab(folio));
 | |
| 	__slab_clear_pfmemalloc(slab);
 | |
| 	page_mapcount_reset(&folio->page);
 | |
| 	folio->mapping = NULL;
 | |
| 	/* Make the mapping reset visible before clearing the flag */
 | |
| 	smp_wmb();
 | |
| 	__folio_clear_slab(folio);
 | |
| 
 | |
| 	mm_account_reclaimed_pages(1 << order);
 | |
| 	unaccount_slab(slab, order, cachep);
 | |
| 	__free_pages(&folio->page, order);
 | |
| }
 | |
| 
 | |
| static void kmem_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	slab = container_of(head, struct slab, rcu_head);
 | |
| 	cachep = slab->slab_cache;
 | |
| 
 | |
| 	kmem_freepages(cachep, slab);
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
 | |
| 			((cachep->size % PAGE_SIZE) == 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
 | |
| {
 | |
| 	if (!is_debug_pagealloc_cache(cachep))
 | |
| 		return;
 | |
| 
 | |
| 	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
 | |
| 				int map) {}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
 | |
| {
 | |
| 	int size = cachep->object_size;
 | |
| 	addr = &((char *)addr)[obj_offset(cachep)];
 | |
| 
 | |
| 	memset(addr, val, size);
 | |
| 	*(unsigned char *)(addr + size - 1) = POISON_END;
 | |
| }
 | |
| 
 | |
| static void dump_line(char *data, int offset, int limit)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned char error = 0;
 | |
| 	int bad_count = 0;
 | |
| 
 | |
| 	pr_err("%03x: ", offset);
 | |
| 	for (i = 0; i < limit; i++) {
 | |
| 		if (data[offset + i] != POISON_FREE) {
 | |
| 			error = data[offset + i];
 | |
| 			bad_count++;
 | |
| 		}
 | |
| 	}
 | |
| 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
 | |
| 			&data[offset], limit, 1);
 | |
| 
 | |
| 	if (bad_count == 1) {
 | |
| 		error ^= POISON_FREE;
 | |
| 		if (!(error & (error - 1))) {
 | |
| 			pr_err("Single bit error detected. Probably bad RAM.\n");
 | |
| #ifdef CONFIG_X86
 | |
| 			pr_err("Run memtest86+ or a similar memory test tool.\n");
 | |
| #else
 | |
| 			pr_err("Run a memory test tool.\n");
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
 | |
| {
 | |
| 	int i, size;
 | |
| 	char *realobj;
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		pr_err("Redzone: 0x%llx/0x%llx\n",
 | |
| 		       *dbg_redzone1(cachep, objp),
 | |
| 		       *dbg_redzone2(cachep, objp));
 | |
| 	}
 | |
| 
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 | |
| 	realobj = (char *)objp + obj_offset(cachep);
 | |
| 	size = cachep->object_size;
 | |
| 	for (i = 0; i < size && lines; i += 16, lines--) {
 | |
| 		int limit;
 | |
| 		limit = 16;
 | |
| 		if (i + limit > size)
 | |
| 			limit = size - i;
 | |
| 		dump_line(realobj, i, limit);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	char *realobj;
 | |
| 	int size, i;
 | |
| 	int lines = 0;
 | |
| 
 | |
| 	if (is_debug_pagealloc_cache(cachep))
 | |
| 		return;
 | |
| 
 | |
| 	realobj = (char *)objp + obj_offset(cachep);
 | |
| 	size = cachep->object_size;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		char exp = POISON_FREE;
 | |
| 		if (i == size - 1)
 | |
| 			exp = POISON_END;
 | |
| 		if (realobj[i] != exp) {
 | |
| 			int limit;
 | |
| 			/* Mismatch ! */
 | |
| 			/* Print header */
 | |
| 			if (lines == 0) {
 | |
| 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
 | |
| 				       print_tainted(), cachep->name,
 | |
| 				       realobj, size);
 | |
| 				print_objinfo(cachep, objp, 0);
 | |
| 			}
 | |
| 			/* Hexdump the affected line */
 | |
| 			i = (i / 16) * 16;
 | |
| 			limit = 16;
 | |
| 			if (i + limit > size)
 | |
| 				limit = size - i;
 | |
| 			dump_line(realobj, i, limit);
 | |
| 			i += 16;
 | |
| 			lines++;
 | |
| 			/* Limit to 5 lines */
 | |
| 			if (lines > 5)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (lines != 0) {
 | |
| 		/* Print some data about the neighboring objects, if they
 | |
| 		 * exist:
 | |
| 		 */
 | |
| 		struct slab *slab = virt_to_slab(objp);
 | |
| 		unsigned int objnr;
 | |
| 
 | |
| 		objnr = obj_to_index(cachep, slab, objp);
 | |
| 		if (objnr) {
 | |
| 			objp = index_to_obj(cachep, slab, objnr - 1);
 | |
| 			realobj = (char *)objp + obj_offset(cachep);
 | |
| 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
 | |
| 			print_objinfo(cachep, objp, 2);
 | |
| 		}
 | |
| 		if (objnr + 1 < cachep->num) {
 | |
| 			objp = index_to_obj(cachep, slab, objnr + 1);
 | |
| 			realobj = (char *)objp + obj_offset(cachep);
 | |
| 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
 | |
| 			print_objinfo(cachep, objp, 2);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 | |
| 						struct slab *slab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
 | |
| 		poison_obj(cachep, slab->freelist - obj_offset(cachep),
 | |
| 			POISON_FREE);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < cachep->num; i++) {
 | |
| 		void *objp = index_to_obj(cachep, slab, i);
 | |
| 
 | |
| 		if (cachep->flags & SLAB_POISON) {
 | |
| 			check_poison_obj(cachep, objp);
 | |
| 			slab_kernel_map(cachep, objp, 1);
 | |
| 		}
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "start of a freed object was overwritten");
 | |
| 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "end of a freed object was overwritten");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 | |
| 						struct slab *slab)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * slab_destroy - destroy and release all objects in a slab
 | |
|  * @cachep: cache pointer being destroyed
 | |
|  * @slab: slab being destroyed
 | |
|  *
 | |
|  * Destroy all the objs in a slab, and release the mem back to the system.
 | |
|  * Before calling the slab must have been unlinked from the cache. The
 | |
|  * kmem_cache_node ->list_lock is not held/needed.
 | |
|  */
 | |
| static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| 	void *freelist;
 | |
| 
 | |
| 	freelist = slab->freelist;
 | |
| 	slab_destroy_debugcheck(cachep, slab);
 | |
| 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		call_rcu(&slab->rcu_head, kmem_rcu_free);
 | |
| 	else
 | |
| 		kmem_freepages(cachep, slab);
 | |
| 
 | |
| 	/*
 | |
| 	 * From now on, we don't use freelist
 | |
| 	 * although actual page can be freed in rcu context
 | |
| 	 */
 | |
| 	if (OFF_SLAB(cachep))
 | |
| 		kfree(freelist);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the size of the caches before calling slabs_destroy as it may
 | |
|  * recursively call kfree.
 | |
|  */
 | |
| static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
 | |
| {
 | |
| 	struct slab *slab, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(slab, n, list, slab_list) {
 | |
| 		list_del(&slab->slab_list);
 | |
| 		slab_destroy(cachep, slab);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate_slab_order - calculate size (page order) of slabs
 | |
|  * @cachep: pointer to the cache that is being created
 | |
|  * @size: size of objects to be created in this cache.
 | |
|  * @flags: slab allocation flags
 | |
|  *
 | |
|  * Also calculates the number of objects per slab.
 | |
|  *
 | |
|  * This could be made much more intelligent.  For now, try to avoid using
 | |
|  * high order pages for slabs.  When the gfp() functions are more friendly
 | |
|  * towards high-order requests, this should be changed.
 | |
|  *
 | |
|  * Return: number of left-over bytes in a slab
 | |
|  */
 | |
| static size_t calculate_slab_order(struct kmem_cache *cachep,
 | |
| 				size_t size, slab_flags_t flags)
 | |
| {
 | |
| 	size_t left_over = 0;
 | |
| 	int gfporder;
 | |
| 
 | |
| 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
 | |
| 		unsigned int num;
 | |
| 		size_t remainder;
 | |
| 
 | |
| 		num = cache_estimate(gfporder, size, flags, &remainder);
 | |
| 		if (!num)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
 | |
| 		if (num > SLAB_OBJ_MAX_NUM)
 | |
| 			break;
 | |
| 
 | |
| 		if (flags & CFLGS_OFF_SLAB) {
 | |
| 			struct kmem_cache *freelist_cache;
 | |
| 			size_t freelist_size;
 | |
| 			size_t freelist_cache_size;
 | |
| 
 | |
| 			freelist_size = num * sizeof(freelist_idx_t);
 | |
| 			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
 | |
| 				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
 | |
| 			} else {
 | |
| 				freelist_cache = kmalloc_slab(freelist_size, 0u, _RET_IP_);
 | |
| 				if (!freelist_cache)
 | |
| 					continue;
 | |
| 				freelist_cache_size = freelist_cache->size;
 | |
| 
 | |
| 				/*
 | |
| 				 * Needed to avoid possible looping condition
 | |
| 				 * in cache_grow_begin()
 | |
| 				 */
 | |
| 				if (OFF_SLAB(freelist_cache))
 | |
| 					continue;
 | |
| 			}
 | |
| 
 | |
| 			/* check if off slab has enough benefit */
 | |
| 			if (freelist_cache_size > cachep->size / 2)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Found something acceptable - save it away */
 | |
| 		cachep->num = num;
 | |
| 		cachep->gfporder = gfporder;
 | |
| 		left_over = remainder;
 | |
| 
 | |
| 		/*
 | |
| 		 * A VFS-reclaimable slab tends to have most allocations
 | |
| 		 * as GFP_NOFS and we really don't want to have to be allocating
 | |
| 		 * higher-order pages when we are unable to shrink dcache.
 | |
| 		 */
 | |
| 		if (flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Large number of objects is good, but very large slabs are
 | |
| 		 * currently bad for the gfp()s.
 | |
| 		 */
 | |
| 		if (gfporder >= slab_max_order)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Acceptable internal fragmentation?
 | |
| 		 */
 | |
| 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
 | |
| 			break;
 | |
| 	}
 | |
| 	return left_over;
 | |
| }
 | |
| 
 | |
| static struct array_cache __percpu *alloc_kmem_cache_cpus(
 | |
| 		struct kmem_cache *cachep, int entries, int batchcount)
 | |
| {
 | |
| 	int cpu;
 | |
| 	size_t size;
 | |
| 	struct array_cache __percpu *cpu_cache;
 | |
| 
 | |
| 	size = sizeof(void *) * entries + sizeof(struct array_cache);
 | |
| 	cpu_cache = __alloc_percpu(size, sizeof(void *));
 | |
| 
 | |
| 	if (!cpu_cache)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
 | |
| 				entries, batchcount);
 | |
| 	}
 | |
| 
 | |
| 	return cpu_cache;
 | |
| }
 | |
| 
 | |
| static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	if (slab_state >= FULL)
 | |
| 		return enable_cpucache(cachep, gfp);
 | |
| 
 | |
| 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
 | |
| 	if (!cachep->cpu_cache)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (slab_state == DOWN) {
 | |
| 		/* Creation of first cache (kmem_cache). */
 | |
| 		set_up_node(kmem_cache, CACHE_CACHE);
 | |
| 	} else if (slab_state == PARTIAL) {
 | |
| 		/* For kmem_cache_node */
 | |
| 		set_up_node(cachep, SIZE_NODE);
 | |
| 	} else {
 | |
| 		int node;
 | |
| 
 | |
| 		for_each_online_node(node) {
 | |
| 			cachep->node[node] = kmalloc_node(
 | |
| 				sizeof(struct kmem_cache_node), gfp, node);
 | |
| 			BUG_ON(!cachep->node[node]);
 | |
| 			kmem_cache_node_init(cachep->node[node]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cachep->node[numa_mem_id()]->next_reap =
 | |
| 			jiffies + REAPTIMEOUT_NODE +
 | |
| 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 
 | |
| 	cpu_cache_get(cachep)->avail = 0;
 | |
| 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
 | |
| 	cpu_cache_get(cachep)->batchcount = 1;
 | |
| 	cpu_cache_get(cachep)->touched = 0;
 | |
| 	cachep->batchcount = 1;
 | |
| 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name)
 | |
| {
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	cachep = find_mergeable(size, align, flags, name, ctor);
 | |
| 	if (cachep) {
 | |
| 		cachep->refcount++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the object sizes so that we clear
 | |
| 		 * the complete object on kzalloc.
 | |
| 		 */
 | |
| 		cachep->object_size = max_t(int, cachep->object_size, size);
 | |
| 	}
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
 | |
| 			size_t size, slab_flags_t flags)
 | |
| {
 | |
| 	size_t left;
 | |
| 
 | |
| 	cachep->num = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If slab auto-initialization on free is enabled, store the freelist
 | |
| 	 * off-slab, so that its contents don't end up in one of the allocated
 | |
| 	 * objects.
 | |
| 	 */
 | |
| 	if (unlikely(slab_want_init_on_free(cachep)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
 | |
| 		return false;
 | |
| 
 | |
| 	left = calculate_slab_order(cachep, size,
 | |
| 			flags | CFLGS_OBJFREELIST_SLAB);
 | |
| 	if (!cachep->num)
 | |
| 		return false;
 | |
| 
 | |
| 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
 | |
| 		return false;
 | |
| 
 | |
| 	cachep->colour = left / cachep->colour_off;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool set_off_slab_cache(struct kmem_cache *cachep,
 | |
| 			size_t size, slab_flags_t flags)
 | |
| {
 | |
| 	size_t left;
 | |
| 
 | |
| 	cachep->num = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always use on-slab management when SLAB_NOLEAKTRACE
 | |
| 	 * to avoid recursive calls into kmemleak.
 | |
| 	 */
 | |
| 	if (flags & SLAB_NOLEAKTRACE)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Size is large, assume best to place the slab management obj
 | |
| 	 * off-slab (should allow better packing of objs).
 | |
| 	 */
 | |
| 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
 | |
| 	if (!cachep->num)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the slab has been placed off-slab, and we have enough space then
 | |
| 	 * move it on-slab. This is at the expense of any extra colouring.
 | |
| 	 */
 | |
| 	if (left >= cachep->num * sizeof(freelist_idx_t))
 | |
| 		return false;
 | |
| 
 | |
| 	cachep->colour = left / cachep->colour_off;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool set_on_slab_cache(struct kmem_cache *cachep,
 | |
| 			size_t size, slab_flags_t flags)
 | |
| {
 | |
| 	size_t left;
 | |
| 
 | |
| 	cachep->num = 0;
 | |
| 
 | |
| 	left = calculate_slab_order(cachep, size, flags);
 | |
| 	if (!cachep->num)
 | |
| 		return false;
 | |
| 
 | |
| 	cachep->colour = left / cachep->colour_off;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __kmem_cache_create - Create a cache.
 | |
|  * @cachep: cache management descriptor
 | |
|  * @flags: SLAB flags
 | |
|  *
 | |
|  * Returns zero on success, nonzero on failure.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  */
 | |
| int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 | |
| {
 | |
| 	size_t ralign = BYTES_PER_WORD;
 | |
| 	gfp_t gfp;
 | |
| 	int err;
 | |
| 	unsigned int size = cachep->size;
 | |
| 
 | |
| #if DEBUG
 | |
| #if FORCED_DEBUG
 | |
| 	/*
 | |
| 	 * Enable redzoning and last user accounting, except for caches with
 | |
| 	 * large objects, if the increased size would increase the object size
 | |
| 	 * above the next power of two: caches with object sizes just above a
 | |
| 	 * power of two have a significant amount of internal fragmentation.
 | |
| 	 */
 | |
| 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
 | |
| 						2 * sizeof(unsigned long long)))
 | |
| 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
 | |
| 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		flags |= SLAB_POISON;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that size is in terms of words.  This is needed to avoid
 | |
| 	 * unaligned accesses for some archs when redzoning is used, and makes
 | |
| 	 * sure any on-slab bufctl's are also correctly aligned.
 | |
| 	 */
 | |
| 	size = ALIGN(size, BYTES_PER_WORD);
 | |
| 
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		ralign = REDZONE_ALIGN;
 | |
| 		/* If redzoning, ensure that the second redzone is suitably
 | |
| 		 * aligned, by adjusting the object size accordingly. */
 | |
| 		size = ALIGN(size, REDZONE_ALIGN);
 | |
| 	}
 | |
| 
 | |
| 	/* 3) caller mandated alignment */
 | |
| 	if (ralign < cachep->align) {
 | |
| 		ralign = cachep->align;
 | |
| 	}
 | |
| 	/* disable debug if necessary */
 | |
| 	if (ralign > __alignof__(unsigned long long))
 | |
| 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
 | |
| 	/*
 | |
| 	 * 4) Store it.
 | |
| 	 */
 | |
| 	cachep->align = ralign;
 | |
| 	cachep->colour_off = cache_line_size();
 | |
| 	/* Offset must be a multiple of the alignment. */
 | |
| 	if (cachep->colour_off < cachep->align)
 | |
| 		cachep->colour_off = cachep->align;
 | |
| 
 | |
| 	if (slab_is_available())
 | |
| 		gfp = GFP_KERNEL;
 | |
| 	else
 | |
| 		gfp = GFP_NOWAIT;
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| 	/*
 | |
| 	 * Both debugging options require word-alignment which is calculated
 | |
| 	 * into align above.
 | |
| 	 */
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		/* add space for red zone words */
 | |
| 		cachep->obj_offset += sizeof(unsigned long long);
 | |
| 		size += 2 * sizeof(unsigned long long);
 | |
| 	}
 | |
| 	if (flags & SLAB_STORE_USER) {
 | |
| 		/* user store requires one word storage behind the end of
 | |
| 		 * the real object. But if the second red zone needs to be
 | |
| 		 * aligned to 64 bits, we must allow that much space.
 | |
| 		 */
 | |
| 		if (flags & SLAB_RED_ZONE)
 | |
| 			size += REDZONE_ALIGN;
 | |
| 		else
 | |
| 			size += BYTES_PER_WORD;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	kasan_cache_create(cachep, &size, &flags);
 | |
| 
 | |
| 	size = ALIGN(size, cachep->align);
 | |
| 	/*
 | |
| 	 * We should restrict the number of objects in a slab to implement
 | |
| 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
 | |
| 	 */
 | |
| 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
 | |
| 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
 | |
| 
 | |
| #if DEBUG
 | |
| 	/*
 | |
| 	 * To activate debug pagealloc, off-slab management is necessary
 | |
| 	 * requirement. In early phase of initialization, small sized slab
 | |
| 	 * doesn't get initialized so it would not be possible. So, we need
 | |
| 	 * to check size >= 256. It guarantees that all necessary small
 | |
| 	 * sized slab is initialized in current slab initialization sequence.
 | |
| 	 */
 | |
| 	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
 | |
| 		size >= 256 && cachep->object_size > cache_line_size()) {
 | |
| 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
 | |
| 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
 | |
| 
 | |
| 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
 | |
| 				flags |= CFLGS_OFF_SLAB;
 | |
| 				cachep->obj_offset += tmp_size - size;
 | |
| 				size = tmp_size;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
 | |
| 		flags |= CFLGS_OBJFREELIST_SLAB;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (set_off_slab_cache(cachep, size, flags)) {
 | |
| 		flags |= CFLGS_OFF_SLAB;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (set_on_slab_cache(cachep, size, flags))
 | |
| 		goto done;
 | |
| 
 | |
| 	return -E2BIG;
 | |
| 
 | |
| done:
 | |
| 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
 | |
| 	cachep->flags = flags;
 | |
| 	cachep->allocflags = __GFP_COMP;
 | |
| 	if (flags & SLAB_CACHE_DMA)
 | |
| 		cachep->allocflags |= GFP_DMA;
 | |
| 	if (flags & SLAB_CACHE_DMA32)
 | |
| 		cachep->allocflags |= GFP_DMA32;
 | |
| 	if (flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		cachep->allocflags |= __GFP_RECLAIMABLE;
 | |
| 	cachep->size = size;
 | |
| 	cachep->reciprocal_buffer_size = reciprocal_value(size);
 | |
| 
 | |
| #if DEBUG
 | |
| 	/*
 | |
| 	 * If we're going to use the generic kernel_map_pages()
 | |
| 	 * poisoning, then it's going to smash the contents of
 | |
| 	 * the redzone and userword anyhow, so switch them off.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
 | |
| 		(cachep->flags & SLAB_POISON) &&
 | |
| 		is_debug_pagealloc_cache(cachep))
 | |
| 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
 | |
| #endif
 | |
| 
 | |
| 	err = setup_cpu_cache(cachep, gfp);
 | |
| 	if (err) {
 | |
| 		__kmem_cache_release(cachep);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| static void check_irq_off(void)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| }
 | |
| 
 | |
| static void check_irq_on(void)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled());
 | |
| }
 | |
| 
 | |
| static void check_mutex_acquired(void)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&slab_mutex));
 | |
| }
 | |
| 
 | |
| static void check_spinlock_acquired(struct kmem_cache *cachep)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	check_irq_off();
 | |
| 	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	check_irq_off();
 | |
| 	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define check_irq_off()	do { } while(0)
 | |
| #define check_irq_on()	do { } while(0)
 | |
| #define check_mutex_acquired()	do { } while(0)
 | |
| #define check_spinlock_acquired(x) do { } while(0)
 | |
| #define check_spinlock_acquired_node(x, y) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
 | |
| 				int node, bool free_all, struct list_head *list)
 | |
| {
 | |
| 	int tofree;
 | |
| 
 | |
| 	if (!ac || !ac->avail)
 | |
| 		return;
 | |
| 
 | |
| 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
 | |
| 	if (tofree > ac->avail)
 | |
| 		tofree = (ac->avail + 1) / 2;
 | |
| 
 | |
| 	free_block(cachep, ac->entry, tofree, node, list);
 | |
| 	ac->avail -= tofree;
 | |
| 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
 | |
| }
 | |
| 
 | |
| static void do_drain(void *arg)
 | |
| {
 | |
| 	struct kmem_cache *cachep = arg;
 | |
| 	struct array_cache *ac;
 | |
| 	int node = numa_mem_id();
 | |
| 	struct kmem_cache_node *n;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	n = get_node(cachep, node);
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	free_block(cachep, ac->entry, ac->avail, node, &list);
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	ac->avail = 0;
 | |
| 	slabs_destroy(cachep, &list);
 | |
| }
 | |
| 
 | |
| static void drain_cpu_caches(struct kmem_cache *cachep)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	on_each_cpu(do_drain, cachep, 1);
 | |
| 	check_irq_on();
 | |
| 	for_each_kmem_cache_node(cachep, node, n)
 | |
| 		if (n->alien)
 | |
| 			drain_alien_cache(cachep, n->alien);
 | |
| 
 | |
| 	for_each_kmem_cache_node(cachep, node, n) {
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 		drain_array_locked(cachep, n->shared, node, true, &list);
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 		slabs_destroy(cachep, &list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove slabs from the list of free slabs.
 | |
|  * Specify the number of slabs to drain in tofree.
 | |
|  *
 | |
|  * Returns the actual number of slabs released.
 | |
|  */
 | |
| static int drain_freelist(struct kmem_cache *cache,
 | |
| 			struct kmem_cache_node *n, int tofree)
 | |
| {
 | |
| 	struct list_head *p;
 | |
| 	int nr_freed;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	nr_freed = 0;
 | |
| 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
 | |
| 
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 		p = n->slabs_free.prev;
 | |
| 		if (p == &n->slabs_free) {
 | |
| 			raw_spin_unlock_irq(&n->list_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		slab = list_entry(p, struct slab, slab_list);
 | |
| 		list_del(&slab->slab_list);
 | |
| 		n->free_slabs--;
 | |
| 		n->total_slabs--;
 | |
| 		/*
 | |
| 		 * Safe to drop the lock. The slab is no longer linked
 | |
| 		 * to the cache.
 | |
| 		 */
 | |
| 		n->free_objects -= cache->num;
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 		slab_destroy(cache, slab);
 | |
| 		nr_freed++;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| out:
 | |
| 	return nr_freed;
 | |
| }
 | |
| 
 | |
| bool __kmem_cache_empty(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		if (!list_empty(&n->slabs_full) ||
 | |
| 		    !list_empty(&n->slabs_partial))
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int __kmem_cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	drain_cpu_caches(cachep);
 | |
| 
 | |
| 	check_irq_on();
 | |
| 	for_each_kmem_cache_node(cachep, node, n) {
 | |
| 		drain_freelist(cachep, n, INT_MAX);
 | |
| 
 | |
| 		ret += !list_empty(&n->slabs_full) ||
 | |
| 			!list_empty(&n->slabs_partial);
 | |
| 	}
 | |
| 	return (ret ? 1 : 0);
 | |
| }
 | |
| 
 | |
| int __kmem_cache_shutdown(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return __kmem_cache_shrink(cachep);
 | |
| }
 | |
| 
 | |
| void __kmem_cache_release(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	cache_random_seq_destroy(cachep);
 | |
| 
 | |
| 	free_percpu(cachep->cpu_cache);
 | |
| 
 | |
| 	/* NUMA: free the node structures */
 | |
| 	for_each_kmem_cache_node(cachep, i, n) {
 | |
| 		kfree(n->shared);
 | |
| 		free_alien_cache(n->alien);
 | |
| 		kfree(n);
 | |
| 		cachep->node[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the memory for a slab management obj.
 | |
|  *
 | |
|  * For a slab cache when the slab descriptor is off-slab, the
 | |
|  * slab descriptor can't come from the same cache which is being created,
 | |
|  * Because if it is the case, that means we defer the creation of
 | |
|  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 | |
|  * And we eventually call down to __kmem_cache_create(), which
 | |
|  * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
 | |
|  * This is a "chicken-and-egg" problem.
 | |
|  *
 | |
|  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 | |
|  * which are all initialized during kmem_cache_init().
 | |
|  */
 | |
| static void *alloc_slabmgmt(struct kmem_cache *cachep,
 | |
| 				   struct slab *slab, int colour_off,
 | |
| 				   gfp_t local_flags, int nodeid)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	void *addr = slab_address(slab);
 | |
| 
 | |
| 	slab->s_mem = addr + colour_off;
 | |
| 	slab->active = 0;
 | |
| 
 | |
| 	if (OBJFREELIST_SLAB(cachep))
 | |
| 		freelist = NULL;
 | |
| 	else if (OFF_SLAB(cachep)) {
 | |
| 		/* Slab management obj is off-slab. */
 | |
| 		freelist = kmalloc_node(cachep->freelist_size,
 | |
| 					      local_flags, nodeid);
 | |
| 	} else {
 | |
| 		/* We will use last bytes at the slab for freelist */
 | |
| 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
 | |
| 				cachep->freelist_size;
 | |
| 	}
 | |
| 
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
 | |
| {
 | |
| 	return ((freelist_idx_t *) slab->freelist)[idx];
 | |
| }
 | |
| 
 | |
| static inline void set_free_obj(struct slab *slab,
 | |
| 					unsigned int idx, freelist_idx_t val)
 | |
| {
 | |
| 	((freelist_idx_t *)(slab->freelist))[idx] = val;
 | |
| }
 | |
| 
 | |
| static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| #if DEBUG
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cachep->num; i++) {
 | |
| 		void *objp = index_to_obj(cachep, slab, i);
 | |
| 
 | |
| 		if (cachep->flags & SLAB_STORE_USER)
 | |
| 			*dbg_userword(cachep, objp) = NULL;
 | |
| 
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
 | |
| 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Constructors are not allowed to allocate memory from the same
 | |
| 		 * cache which they are a constructor for.  Otherwise, deadlock.
 | |
| 		 * They must also be threaded.
 | |
| 		 */
 | |
| 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
 | |
| 			kasan_unpoison_object_data(cachep,
 | |
| 						   objp + obj_offset(cachep));
 | |
| 			cachep->ctor(objp + obj_offset(cachep));
 | |
| 			kasan_poison_object_data(
 | |
| 				cachep, objp + obj_offset(cachep));
 | |
| 		}
 | |
| 
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "constructor overwrote the end of an object");
 | |
| 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "constructor overwrote the start of an object");
 | |
| 		}
 | |
| 		/* need to poison the objs? */
 | |
| 		if (cachep->flags & SLAB_POISON) {
 | |
| 			poison_obj(cachep, objp, POISON_FREE);
 | |
| 			slab_kernel_map(cachep, objp, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Hold information during a freelist initialization */
 | |
| struct freelist_init_state {
 | |
| 	unsigned int pos;
 | |
| 	unsigned int *list;
 | |
| 	unsigned int count;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialize the state based on the randomization method available.
 | |
|  * return true if the pre-computed list is available, false otherwise.
 | |
|  */
 | |
| static bool freelist_state_initialize(struct freelist_init_state *state,
 | |
| 				struct kmem_cache *cachep,
 | |
| 				unsigned int count)
 | |
| {
 | |
| 	bool ret;
 | |
| 	if (!cachep->random_seq) {
 | |
| 		ret = false;
 | |
| 	} else {
 | |
| 		state->list = cachep->random_seq;
 | |
| 		state->count = count;
 | |
| 		state->pos = get_random_u32_below(count);
 | |
| 		ret = true;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Get the next entry on the list and randomize it using a random shift */
 | |
| static freelist_idx_t next_random_slot(struct freelist_init_state *state)
 | |
| {
 | |
| 	if (state->pos >= state->count)
 | |
| 		state->pos = 0;
 | |
| 	return state->list[state->pos++];
 | |
| }
 | |
| 
 | |
| /* Swap two freelist entries */
 | |
| static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
 | |
| {
 | |
| 	swap(((freelist_idx_t *) slab->freelist)[a],
 | |
| 		((freelist_idx_t *) slab->freelist)[b]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shuffle the freelist initialization state based on pre-computed lists.
 | |
|  * return true if the list was successfully shuffled, false otherwise.
 | |
|  */
 | |
| static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
 | |
| 	struct freelist_init_state state;
 | |
| 	bool precomputed;
 | |
| 
 | |
| 	if (count < 2)
 | |
| 		return false;
 | |
| 
 | |
| 	precomputed = freelist_state_initialize(&state, cachep, count);
 | |
| 
 | |
| 	/* Take a random entry as the objfreelist */
 | |
| 	if (OBJFREELIST_SLAB(cachep)) {
 | |
| 		if (!precomputed)
 | |
| 			objfreelist = count - 1;
 | |
| 		else
 | |
| 			objfreelist = next_random_slot(&state);
 | |
| 		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
 | |
| 						obj_offset(cachep);
 | |
| 		count--;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On early boot, generate the list dynamically.
 | |
| 	 * Later use a pre-computed list for speed.
 | |
| 	 */
 | |
| 	if (!precomputed) {
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			set_free_obj(slab, i, i);
 | |
| 
 | |
| 		/* Fisher-Yates shuffle */
 | |
| 		for (i = count - 1; i > 0; i--) {
 | |
| 			rand = get_random_u32_below(i + 1);
 | |
| 			swap_free_obj(slab, i, rand);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			set_free_obj(slab, i, next_random_slot(&state));
 | |
| 	}
 | |
| 
 | |
| 	if (OBJFREELIST_SLAB(cachep))
 | |
| 		set_free_obj(slab, cachep->num - 1, objfreelist);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline bool shuffle_freelist(struct kmem_cache *cachep,
 | |
| 				struct slab *slab)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| static void cache_init_objs(struct kmem_cache *cachep,
 | |
| 			    struct slab *slab)
 | |
| {
 | |
| 	int i;
 | |
| 	void *objp;
 | |
| 	bool shuffled;
 | |
| 
 | |
| 	cache_init_objs_debug(cachep, slab);
 | |
| 
 | |
| 	/* Try to randomize the freelist if enabled */
 | |
| 	shuffled = shuffle_freelist(cachep, slab);
 | |
| 
 | |
| 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
 | |
| 		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
 | |
| 						obj_offset(cachep);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < cachep->num; i++) {
 | |
| 		objp = index_to_obj(cachep, slab, i);
 | |
| 		objp = kasan_init_slab_obj(cachep, objp);
 | |
| 
 | |
| 		/* constructor could break poison info */
 | |
| 		if (DEBUG == 0 && cachep->ctor) {
 | |
| 			kasan_unpoison_object_data(cachep, objp);
 | |
| 			cachep->ctor(objp);
 | |
| 			kasan_poison_object_data(cachep, objp);
 | |
| 		}
 | |
| 
 | |
| 		if (!shuffled)
 | |
| 			set_free_obj(slab, i, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| 	void *objp;
 | |
| 
 | |
| 	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
 | |
| 	slab->active++;
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static void slab_put_obj(struct kmem_cache *cachep,
 | |
| 			struct slab *slab, void *objp)
 | |
| {
 | |
| 	unsigned int objnr = obj_to_index(cachep, slab, objp);
 | |
| #if DEBUG
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Verify double free bug */
 | |
| 	for (i = slab->active; i < cachep->num; i++) {
 | |
| 		if (get_free_obj(slab, i) == objnr) {
 | |
| 			pr_err("slab: double free detected in cache '%s', objp %px\n",
 | |
| 			       cachep->name, objp);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	slab->active--;
 | |
| 	if (!slab->freelist)
 | |
| 		slab->freelist = objp + obj_offset(cachep);
 | |
| 
 | |
| 	set_free_obj(slab, slab->active, objnr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Grow (by 1) the number of slabs within a cache.  This is called by
 | |
|  * kmem_cache_alloc() when there are no active objs left in a cache.
 | |
|  */
 | |
| static struct slab *cache_grow_begin(struct kmem_cache *cachep,
 | |
| 				gfp_t flags, int nodeid)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	size_t offset;
 | |
| 	gfp_t local_flags;
 | |
| 	int slab_node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	/*
 | |
| 	 * Be lazy and only check for valid flags here,  keeping it out of the
 | |
| 	 * critical path in kmem_cache_alloc().
 | |
| 	 */
 | |
| 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 | |
| 		flags = kmalloc_fix_flags(flags);
 | |
| 
 | |
| 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
 | |
| 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	if (gfpflags_allow_blocking(local_flags))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Get mem for the objs.  Attempt to allocate a physical page from
 | |
| 	 * 'nodeid'.
 | |
| 	 */
 | |
| 	slab = kmem_getpages(cachep, local_flags, nodeid);
 | |
| 	if (!slab)
 | |
| 		goto failed;
 | |
| 
 | |
| 	slab_node = slab_nid(slab);
 | |
| 	n = get_node(cachep, slab_node);
 | |
| 
 | |
| 	/* Get colour for the slab, and cal the next value. */
 | |
| 	n->colour_next++;
 | |
| 	if (n->colour_next >= cachep->colour)
 | |
| 		n->colour_next = 0;
 | |
| 
 | |
| 	offset = n->colour_next;
 | |
| 	if (offset >= cachep->colour)
 | |
| 		offset = 0;
 | |
| 
 | |
| 	offset *= cachep->colour_off;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
 | |
| 	 * page_address() in the latter returns a non-tagged pointer,
 | |
| 	 * as it should be for slab pages.
 | |
| 	 */
 | |
| 	kasan_poison_slab(slab);
 | |
| 
 | |
| 	/* Get slab management. */
 | |
| 	freelist = alloc_slabmgmt(cachep, slab, offset,
 | |
| 			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
 | |
| 	if (OFF_SLAB(cachep) && !freelist)
 | |
| 		goto opps1;
 | |
| 
 | |
| 	slab->slab_cache = cachep;
 | |
| 	slab->freelist = freelist;
 | |
| 
 | |
| 	cache_init_objs(cachep, slab);
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(local_flags))
 | |
| 		local_irq_disable();
 | |
| 
 | |
| 	return slab;
 | |
| 
 | |
| opps1:
 | |
| 	kmem_freepages(cachep, slab);
 | |
| failed:
 | |
| 	if (gfpflags_allow_blocking(local_flags))
 | |
| 		local_irq_disable();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	void *list = NULL;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 
 | |
| 	if (!slab)
 | |
| 		return;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&slab->slab_list);
 | |
| 	n = get_node(cachep, slab_nid(slab));
 | |
| 
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	n->total_slabs++;
 | |
| 	if (!slab->active) {
 | |
| 		list_add_tail(&slab->slab_list, &n->slabs_free);
 | |
| 		n->free_slabs++;
 | |
| 	} else
 | |
| 		fixup_slab_list(cachep, n, slab, &list);
 | |
| 
 | |
| 	STATS_INC_GROWN(cachep);
 | |
| 	n->free_objects += cachep->num - slab->active;
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	fixup_objfreelist_debug(cachep, &list);
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| /*
 | |
|  * Perform extra freeing checks:
 | |
|  * - detect bad pointers.
 | |
|  * - POISON/RED_ZONE checking
 | |
|  */
 | |
| static void kfree_debugcheck(const void *objp)
 | |
| {
 | |
| 	if (!virt_addr_valid(objp)) {
 | |
| 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
 | |
| 		       (unsigned long)objp);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
 | |
| {
 | |
| 	unsigned long long redzone1, redzone2;
 | |
| 
 | |
| 	redzone1 = *dbg_redzone1(cache, obj);
 | |
| 	redzone2 = *dbg_redzone2(cache, obj);
 | |
| 
 | |
| 	/*
 | |
| 	 * Redzone is ok.
 | |
| 	 */
 | |
| 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
 | |
| 		slab_error(cache, "double free detected");
 | |
| 	else
 | |
| 		slab_error(cache, "memory outside object was overwritten");
 | |
| 
 | |
| 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
 | |
| 	       obj, redzone1, redzone2);
 | |
| }
 | |
| 
 | |
| static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
 | |
| 				   unsigned long caller)
 | |
| {
 | |
| 	unsigned int objnr;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	BUG_ON(virt_to_cache(objp) != cachep);
 | |
| 
 | |
| 	objp -= obj_offset(cachep);
 | |
| 	kfree_debugcheck(objp);
 | |
| 	slab = virt_to_slab(objp);
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		verify_redzone_free(cachep, objp);
 | |
| 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
 | |
| 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
 | |
| 	}
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		*dbg_userword(cachep, objp) = (void *)caller;
 | |
| 
 | |
| 	objnr = obj_to_index(cachep, slab, objp);
 | |
| 
 | |
| 	BUG_ON(objnr >= cachep->num);
 | |
| 	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
 | |
| 
 | |
| 	if (cachep->flags & SLAB_POISON) {
 | |
| 		poison_obj(cachep, objp, POISON_FREE);
 | |
| 		slab_kernel_map(cachep, objp, 0);
 | |
| 	}
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define kfree_debugcheck(x) do { } while(0)
 | |
| #define cache_free_debugcheck(x, objp, z) (objp)
 | |
| #endif
 | |
| 
 | |
| static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 | |
| 						void **list)
 | |
| {
 | |
| #if DEBUG
 | |
| 	void *next = *list;
 | |
| 	void *objp;
 | |
| 
 | |
| 	while (next) {
 | |
| 		objp = next - obj_offset(cachep);
 | |
| 		next = *(void **)next;
 | |
| 		poison_obj(cachep, objp, POISON_FREE);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void fixup_slab_list(struct kmem_cache *cachep,
 | |
| 				struct kmem_cache_node *n, struct slab *slab,
 | |
| 				void **list)
 | |
| {
 | |
| 	/* move slabp to correct slabp list: */
 | |
| 	list_del(&slab->slab_list);
 | |
| 	if (slab->active == cachep->num) {
 | |
| 		list_add(&slab->slab_list, &n->slabs_full);
 | |
| 		if (OBJFREELIST_SLAB(cachep)) {
 | |
| #if DEBUG
 | |
| 			/* Poisoning will be done without holding the lock */
 | |
| 			if (cachep->flags & SLAB_POISON) {
 | |
| 				void **objp = slab->freelist;
 | |
| 
 | |
| 				*objp = *list;
 | |
| 				*list = objp;
 | |
| 			}
 | |
| #endif
 | |
| 			slab->freelist = NULL;
 | |
| 		}
 | |
| 	} else
 | |
| 		list_add(&slab->slab_list, &n->slabs_partial);
 | |
| }
 | |
| 
 | |
| /* Try to find non-pfmemalloc slab if needed */
 | |
| static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
 | |
| 					struct slab *slab, bool pfmemalloc)
 | |
| {
 | |
| 	if (!slab)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pfmemalloc)
 | |
| 		return slab;
 | |
| 
 | |
| 	if (!slab_test_pfmemalloc(slab))
 | |
| 		return slab;
 | |
| 
 | |
| 	/* No need to keep pfmemalloc slab if we have enough free objects */
 | |
| 	if (n->free_objects > n->free_limit) {
 | |
| 		slab_clear_pfmemalloc(slab);
 | |
| 		return slab;
 | |
| 	}
 | |
| 
 | |
| 	/* Move pfmemalloc slab to the end of list to speed up next search */
 | |
| 	list_del(&slab->slab_list);
 | |
| 	if (!slab->active) {
 | |
| 		list_add_tail(&slab->slab_list, &n->slabs_free);
 | |
| 		n->free_slabs++;
 | |
| 	} else
 | |
| 		list_add_tail(&slab->slab_list, &n->slabs_partial);
 | |
| 
 | |
| 	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
 | |
| 		if (!slab_test_pfmemalloc(slab))
 | |
| 			return slab;
 | |
| 	}
 | |
| 
 | |
| 	n->free_touched = 1;
 | |
| 	list_for_each_entry(slab, &n->slabs_free, slab_list) {
 | |
| 		if (!slab_test_pfmemalloc(slab)) {
 | |
| 			n->free_slabs--;
 | |
| 			return slab;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	assert_raw_spin_locked(&n->list_lock);
 | |
| 	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
 | |
| 					slab_list);
 | |
| 	if (!slab) {
 | |
| 		n->free_touched = 1;
 | |
| 		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
 | |
| 						slab_list);
 | |
| 		if (slab)
 | |
| 			n->free_slabs--;
 | |
| 	}
 | |
| 
 | |
| 	if (sk_memalloc_socks())
 | |
| 		slab = get_valid_first_slab(n, slab, pfmemalloc);
 | |
| 
 | |
| 	return slab;
 | |
| }
 | |
| 
 | |
| static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
 | |
| 				struct kmem_cache_node *n, gfp_t flags)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	void *obj;
 | |
| 	void *list = NULL;
 | |
| 
 | |
| 	if (!gfp_pfmemalloc_allowed(flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	slab = get_first_slab(n, true);
 | |
| 	if (!slab) {
 | |
| 		raw_spin_unlock(&n->list_lock);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	obj = slab_get_obj(cachep, slab);
 | |
| 	n->free_objects--;
 | |
| 
 | |
| 	fixup_slab_list(cachep, n, slab, &list);
 | |
| 
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	fixup_objfreelist_debug(cachep, &list);
 | |
| 
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slab list should be fixed up by fixup_slab_list() for existing slab
 | |
|  * or cache_grow_end() for new slab
 | |
|  */
 | |
| static __always_inline int alloc_block(struct kmem_cache *cachep,
 | |
| 		struct array_cache *ac, struct slab *slab, int batchcount)
 | |
| {
 | |
| 	/*
 | |
| 	 * There must be at least one object available for
 | |
| 	 * allocation.
 | |
| 	 */
 | |
| 	BUG_ON(slab->active >= cachep->num);
 | |
| 
 | |
| 	while (slab->active < cachep->num && batchcount--) {
 | |
| 		STATS_INC_ALLOCED(cachep);
 | |
| 		STATS_INC_ACTIVE(cachep);
 | |
| 		STATS_SET_HIGH(cachep);
 | |
| 
 | |
| 		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
 | |
| 	}
 | |
| 
 | |
| 	return batchcount;
 | |
| }
 | |
| 
 | |
| static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	int batchcount;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct array_cache *ac, *shared;
 | |
| 	int node;
 | |
| 	void *list = NULL;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	node = numa_mem_id();
 | |
| 
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	batchcount = ac->batchcount;
 | |
| 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
 | |
| 		/*
 | |
| 		 * If there was little recent activity on this cache, then
 | |
| 		 * perform only a partial refill.  Otherwise we could generate
 | |
| 		 * refill bouncing.
 | |
| 		 */
 | |
| 		batchcount = BATCHREFILL_LIMIT;
 | |
| 	}
 | |
| 	n = get_node(cachep, node);
 | |
| 
 | |
| 	BUG_ON(ac->avail > 0 || !n);
 | |
| 	shared = READ_ONCE(n->shared);
 | |
| 	if (!n->free_objects && (!shared || !shared->avail))
 | |
| 		goto direct_grow;
 | |
| 
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	shared = READ_ONCE(n->shared);
 | |
| 
 | |
| 	/* See if we can refill from the shared array */
 | |
| 	if (shared && transfer_objects(ac, shared, batchcount)) {
 | |
| 		shared->touched = 1;
 | |
| 		goto alloc_done;
 | |
| 	}
 | |
| 
 | |
| 	while (batchcount > 0) {
 | |
| 		/* Get slab alloc is to come from. */
 | |
| 		slab = get_first_slab(n, false);
 | |
| 		if (!slab)
 | |
| 			goto must_grow;
 | |
| 
 | |
| 		check_spinlock_acquired(cachep);
 | |
| 
 | |
| 		batchcount = alloc_block(cachep, ac, slab, batchcount);
 | |
| 		fixup_slab_list(cachep, n, slab, &list);
 | |
| 	}
 | |
| 
 | |
| must_grow:
 | |
| 	n->free_objects -= ac->avail;
 | |
| alloc_done:
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	fixup_objfreelist_debug(cachep, &list);
 | |
| 
 | |
| direct_grow:
 | |
| 	if (unlikely(!ac->avail)) {
 | |
| 		/* Check if we can use obj in pfmemalloc slab */
 | |
| 		if (sk_memalloc_socks()) {
 | |
| 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
 | |
| 
 | |
| 			if (obj)
 | |
| 				return obj;
 | |
| 		}
 | |
| 
 | |
| 		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
 | |
| 
 | |
| 		/*
 | |
| 		 * cache_grow_begin() can reenable interrupts,
 | |
| 		 * then ac could change.
 | |
| 		 */
 | |
| 		ac = cpu_cache_get(cachep);
 | |
| 		if (!ac->avail && slab)
 | |
| 			alloc_block(cachep, ac, slab, batchcount);
 | |
| 		cache_grow_end(cachep, slab);
 | |
| 
 | |
| 		if (!ac->avail)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ac->touched = 1;
 | |
| 
 | |
| 	return ac->entry[--ac->avail];
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
 | |
| 				gfp_t flags, void *objp, unsigned long caller)
 | |
| {
 | |
| 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
 | |
| 	if (!objp || is_kfence_address(objp))
 | |
| 		return objp;
 | |
| 	if (cachep->flags & SLAB_POISON) {
 | |
| 		check_poison_obj(cachep, objp);
 | |
| 		slab_kernel_map(cachep, objp, 1);
 | |
| 		poison_obj(cachep, objp, POISON_INUSE);
 | |
| 	}
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		*dbg_userword(cachep, objp) = (void *)caller;
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
 | |
| 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
 | |
| 			slab_error(cachep, "double free, or memory outside object was overwritten");
 | |
| 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
 | |
| 			       objp, *dbg_redzone1(cachep, objp),
 | |
| 			       *dbg_redzone2(cachep, objp));
 | |
| 		}
 | |
| 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
 | |
| 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
 | |
| 	}
 | |
| 
 | |
| 	objp += obj_offset(cachep);
 | |
| 	if (cachep->ctor && cachep->flags & SLAB_POISON)
 | |
| 		cachep->ctor(objp);
 | |
| 	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
 | |
| 		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
 | |
| 		       arch_slab_minalign());
 | |
| 	}
 | |
| 	return objp;
 | |
| }
 | |
| #else
 | |
| #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
 | |
| #endif
 | |
| 
 | |
| static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	void *objp;
 | |
| 	struct array_cache *ac;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	if (likely(ac->avail)) {
 | |
| 		ac->touched = 1;
 | |
| 		objp = ac->entry[--ac->avail];
 | |
| 
 | |
| 		STATS_INC_ALLOCHIT(cachep);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	STATS_INC_ALLOCMISS(cachep);
 | |
| 	objp = cache_alloc_refill(cachep, flags);
 | |
| 	/*
 | |
| 	 * the 'ac' may be updated by cache_alloc_refill(),
 | |
| 	 * and kmemleak_erase() requires its correct value.
 | |
| 	 */
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * To avoid a false negative, if an object that is in one of the
 | |
| 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
 | |
| 	 * treat the array pointers as a reference to the object.
 | |
| 	 */
 | |
| 	if (objp)
 | |
| 		kmemleak_erase(&ac->entry[ac->avail]);
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 | |
| 
 | |
| /*
 | |
|  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
 | |
|  *
 | |
|  * If we are in_interrupt, then process context, including cpusets and
 | |
|  * mempolicy, may not apply and should not be used for allocation policy.
 | |
|  */
 | |
| static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	int nid_alloc, nid_here;
 | |
| 
 | |
| 	if (in_interrupt() || (flags & __GFP_THISNODE))
 | |
| 		return NULL;
 | |
| 	nid_alloc = nid_here = numa_mem_id();
 | |
| 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
 | |
| 		nid_alloc = cpuset_slab_spread_node();
 | |
| 	else if (current->mempolicy)
 | |
| 		nid_alloc = mempolicy_slab_node();
 | |
| 	if (nid_alloc != nid_here)
 | |
| 		return ____cache_alloc_node(cachep, flags, nid_alloc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fallback function if there was no memory available and no objects on a
 | |
|  * certain node and fall back is permitted. First we scan all the
 | |
|  * available node for available objects. If that fails then we
 | |
|  * perform an allocation without specifying a node. This allows the page
 | |
|  * allocator to do its reclaim / fallback magic. We then insert the
 | |
|  * slab into the proper nodelist and then allocate from it.
 | |
|  */
 | |
| static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 | |
| {
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type highest_zoneidx = gfp_zone(flags);
 | |
| 	void *obj = NULL;
 | |
| 	struct slab *slab;
 | |
| 	int nid;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	if (flags & __GFP_THISNODE)
 | |
| 		return NULL;
 | |
| 
 | |
| retry_cpuset:
 | |
| 	cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * Look through allowed nodes for objects available
 | |
| 	 * from existing per node queues.
 | |
| 	 */
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
 | |
| 		nid = zone_to_nid(zone);
 | |
| 
 | |
| 		if (cpuset_zone_allowed(zone, flags) &&
 | |
| 			get_node(cache, nid) &&
 | |
| 			get_node(cache, nid)->free_objects) {
 | |
| 				obj = ____cache_alloc_node(cache,
 | |
| 					gfp_exact_node(flags), nid);
 | |
| 				if (obj)
 | |
| 					break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!obj) {
 | |
| 		/*
 | |
| 		 * This allocation will be performed within the constraints
 | |
| 		 * of the current cpuset / memory policy requirements.
 | |
| 		 * We may trigger various forms of reclaim on the allowed
 | |
| 		 * set and go into memory reserves if necessary.
 | |
| 		 */
 | |
| 		slab = cache_grow_begin(cache, flags, numa_mem_id());
 | |
| 		cache_grow_end(cache, slab);
 | |
| 		if (slab) {
 | |
| 			nid = slab_nid(slab);
 | |
| 			obj = ____cache_alloc_node(cache,
 | |
| 				gfp_exact_node(flags), nid);
 | |
| 
 | |
| 			/*
 | |
| 			 * Another processor may allocate the objects in
 | |
| 			 * the slab since we are not holding any locks.
 | |
| 			 */
 | |
| 			if (!obj)
 | |
| 				goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
 | |
| 		goto retry_cpuset;
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * An interface to enable slab creation on nodeid
 | |
|  */
 | |
| static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 | |
| 				int nodeid)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	void *obj = NULL;
 | |
| 	void *list = NULL;
 | |
| 
 | |
| 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
 | |
| 	n = get_node(cachep, nodeid);
 | |
| 	BUG_ON(!n);
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	slab = get_first_slab(n, false);
 | |
| 	if (!slab)
 | |
| 		goto must_grow;
 | |
| 
 | |
| 	check_spinlock_acquired_node(cachep, nodeid);
 | |
| 
 | |
| 	STATS_INC_NODEALLOCS(cachep);
 | |
| 	STATS_INC_ACTIVE(cachep);
 | |
| 	STATS_SET_HIGH(cachep);
 | |
| 
 | |
| 	BUG_ON(slab->active == cachep->num);
 | |
| 
 | |
| 	obj = slab_get_obj(cachep, slab);
 | |
| 	n->free_objects--;
 | |
| 
 | |
| 	fixup_slab_list(cachep, n, slab, &list);
 | |
| 
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	fixup_objfreelist_debug(cachep, &list);
 | |
| 	return obj;
 | |
| 
 | |
| must_grow:
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
 | |
| 	if (slab) {
 | |
| 		/* This slab isn't counted yet so don't update free_objects */
 | |
| 		obj = slab_get_obj(cachep, slab);
 | |
| 	}
 | |
| 	cache_grow_end(cachep, slab);
 | |
| 
 | |
| 	return obj ? obj : fallback_alloc(cachep, flags);
 | |
| }
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 | |
| {
 | |
| 	void *objp = NULL;
 | |
| 	int slab_node = numa_mem_id();
 | |
| 
 | |
| 	if (nodeid == NUMA_NO_NODE) {
 | |
| 		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
 | |
| 			objp = alternate_node_alloc(cachep, flags);
 | |
| 			if (objp)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Use the locally cached objects if possible.
 | |
| 		 * However ____cache_alloc does not allow fallback
 | |
| 		 * to other nodes. It may fail while we still have
 | |
| 		 * objects on other nodes available.
 | |
| 		 */
 | |
| 		objp = ____cache_alloc(cachep, flags);
 | |
| 		nodeid = slab_node;
 | |
| 	} else if (nodeid == slab_node) {
 | |
| 		objp = ____cache_alloc(cachep, flags);
 | |
| 	} else if (!get_node(cachep, nodeid)) {
 | |
| 		/* Node not bootstrapped yet */
 | |
| 		objp = fallback_alloc(cachep, flags);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may just have run out of memory on the local node.
 | |
| 	 * ____cache_alloc_node() knows how to locate memory on other nodes
 | |
| 	 */
 | |
| 	if (!objp)
 | |
| 		objp = ____cache_alloc_node(cachep, flags, nodeid);
 | |
| out:
 | |
| 	return objp;
 | |
| }
 | |
| #else
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
 | |
| {
 | |
| 	return ____cache_alloc(cachep, flags);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| static __always_inline void *
 | |
| slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
 | |
| 		int nodeid, size_t orig_size, unsigned long caller)
 | |
| {
 | |
| 	unsigned long save_flags;
 | |
| 	void *objp;
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 	bool init = false;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
 | |
| 	if (unlikely(!cachep))
 | |
| 		return NULL;
 | |
| 
 | |
| 	objp = kfence_alloc(cachep, orig_size, flags);
 | |
| 	if (unlikely(objp))
 | |
| 		goto out;
 | |
| 
 | |
| 	local_irq_save(save_flags);
 | |
| 	objp = __do_cache_alloc(cachep, flags, nodeid);
 | |
| 	local_irq_restore(save_flags);
 | |
| 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 | |
| 	prefetchw(objp);
 | |
| 	init = slab_want_init_on_alloc(flags, cachep);
 | |
| 
 | |
| out:
 | |
| 	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
 | |
| 				cachep->object_size);
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static __always_inline void *
 | |
| slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
 | |
| 	   size_t orig_size, unsigned long caller)
 | |
| {
 | |
| 	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
 | |
| 			       caller);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller needs to acquire correct kmem_cache_node's list_lock
 | |
|  * @list: List of detached free slabs should be freed by caller
 | |
|  */
 | |
| static void free_block(struct kmem_cache *cachep, void **objpp,
 | |
| 			int nr_objects, int node, struct list_head *list)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n = get_node(cachep, node);
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	n->free_objects += nr_objects;
 | |
| 
 | |
| 	for (i = 0; i < nr_objects; i++) {
 | |
| 		void *objp;
 | |
| 		struct slab *slab;
 | |
| 
 | |
| 		objp = objpp[i];
 | |
| 
 | |
| 		slab = virt_to_slab(objp);
 | |
| 		list_del(&slab->slab_list);
 | |
| 		check_spinlock_acquired_node(cachep, node);
 | |
| 		slab_put_obj(cachep, slab, objp);
 | |
| 		STATS_DEC_ACTIVE(cachep);
 | |
| 
 | |
| 		/* fixup slab chains */
 | |
| 		if (slab->active == 0) {
 | |
| 			list_add(&slab->slab_list, &n->slabs_free);
 | |
| 			n->free_slabs++;
 | |
| 		} else {
 | |
| 			/* Unconditionally move a slab to the end of the
 | |
| 			 * partial list on free - maximum time for the
 | |
| 			 * other objects to be freed, too.
 | |
| 			 */
 | |
| 			list_add_tail(&slab->slab_list, &n->slabs_partial);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
 | |
| 		n->free_objects -= cachep->num;
 | |
| 
 | |
| 		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
 | |
| 		list_move(&slab->slab_list, list);
 | |
| 		n->free_slabs--;
 | |
| 		n->total_slabs--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 | |
| {
 | |
| 	int batchcount;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node = numa_mem_id();
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	batchcount = ac->batchcount;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	n = get_node(cachep, node);
 | |
| 	raw_spin_lock(&n->list_lock);
 | |
| 	if (n->shared) {
 | |
| 		struct array_cache *shared_array = n->shared;
 | |
| 		int max = shared_array->limit - shared_array->avail;
 | |
| 		if (max) {
 | |
| 			if (batchcount > max)
 | |
| 				batchcount = max;
 | |
| 			memcpy(&(shared_array->entry[shared_array->avail]),
 | |
| 			       ac->entry, sizeof(void *) * batchcount);
 | |
| 			shared_array->avail += batchcount;
 | |
| 			goto free_done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_block(cachep, ac->entry, batchcount, node, &list);
 | |
| free_done:
 | |
| #if STATS
 | |
| 	{
 | |
| 		int i = 0;
 | |
| 		struct slab *slab;
 | |
| 
 | |
| 		list_for_each_entry(slab, &n->slabs_free, slab_list) {
 | |
| 			BUG_ON(slab->active);
 | |
| 
 | |
| 			i++;
 | |
| 		}
 | |
| 		STATS_SET_FREEABLE(cachep, i);
 | |
| 	}
 | |
| #endif
 | |
| 	raw_spin_unlock(&n->list_lock);
 | |
| 	ac->avail -= batchcount;
 | |
| 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 | |
| 	slabs_destroy(cachep, &list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release an obj back to its cache. If the obj has a constructed state, it must
 | |
|  * be in this state _before_ it is released.  Called with disabled ints.
 | |
|  */
 | |
| static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
 | |
| 					 unsigned long caller)
 | |
| {
 | |
| 	bool init;
 | |
| 
 | |
| 	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
 | |
| 
 | |
| 	if (is_kfence_address(objp)) {
 | |
| 		kmemleak_free_recursive(objp, cachep->flags);
 | |
| 		__kfence_free(objp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * As memory initialization might be integrated into KASAN,
 | |
| 	 * kasan_slab_free and initialization memset must be
 | |
| 	 * kept together to avoid discrepancies in behavior.
 | |
| 	 */
 | |
| 	init = slab_want_init_on_free(cachep);
 | |
| 	if (init && !kasan_has_integrated_init())
 | |
| 		memset(objp, 0, cachep->object_size);
 | |
| 	/* KASAN might put objp into memory quarantine, delaying its reuse. */
 | |
| 	if (kasan_slab_free(cachep, objp, init))
 | |
| 		return;
 | |
| 
 | |
| 	/* Use KCSAN to help debug racy use-after-free. */
 | |
| 	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		__kcsan_check_access(objp, cachep->object_size,
 | |
| 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
 | |
| 
 | |
| 	___cache_free(cachep, objp, caller);
 | |
| }
 | |
| 
 | |
| void ___cache_free(struct kmem_cache *cachep, void *objp,
 | |
| 		unsigned long caller)
 | |
| {
 | |
| 	struct array_cache *ac = cpu_cache_get(cachep);
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	kmemleak_free_recursive(objp, cachep->flags);
 | |
| 	objp = cache_free_debugcheck(cachep, objp, caller);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip calling cache_free_alien() when the platform is not numa.
 | |
| 	 * This will avoid cache misses that happen while accessing slabp (which
 | |
| 	 * is per page memory  reference) to get nodeid. Instead use a global
 | |
| 	 * variable to skip the call, which is mostly likely to be present in
 | |
| 	 * the cache.
 | |
| 	 */
 | |
| 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
 | |
| 		return;
 | |
| 
 | |
| 	if (ac->avail < ac->limit) {
 | |
| 		STATS_INC_FREEHIT(cachep);
 | |
| 	} else {
 | |
| 		STATS_INC_FREEMISS(cachep);
 | |
| 		cache_flusharray(cachep, ac);
 | |
| 	}
 | |
| 
 | |
| 	if (sk_memalloc_socks()) {
 | |
| 		struct slab *slab = virt_to_slab(objp);
 | |
| 
 | |
| 		if (unlikely(slab_test_pfmemalloc(slab))) {
 | |
| 			cache_free_pfmemalloc(cachep, slab, objp);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__free_one(ac, objp);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
 | |
| 			     gfp_t flags)
 | |
| {
 | |
| 	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	return __kmem_cache_alloc_lru(cachep, NULL, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
 | |
| 			   gfp_t flags)
 | |
| {
 | |
| 	return __kmem_cache_alloc_lru(cachep, lru, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_lru);
 | |
| 
 | |
| static __always_inline void
 | |
| cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
 | |
| 				  size_t size, void **p, unsigned long caller)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
 | |
| }
 | |
| 
 | |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 | |
| 			  void **p)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 	unsigned long irqflags;
 | |
| 	size_t i;
 | |
| 
 | |
| 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	local_irq_save(irqflags);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		void *objp = kfence_alloc(s, s->object_size, flags) ?:
 | |
| 			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
 | |
| 
 | |
| 		if (unlikely(!objp))
 | |
| 			goto error;
 | |
| 		p[i] = objp;
 | |
| 	}
 | |
| 	local_irq_restore(irqflags);
 | |
| 
 | |
| 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * memcg and kmem_cache debug support and memory initialization.
 | |
| 	 * Done outside of the IRQ disabled section.
 | |
| 	 */
 | |
| 	slab_post_alloc_hook(s, objcg, flags, size, p,
 | |
| 			slab_want_init_on_alloc(flags, s), s->object_size);
 | |
| 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
 | |
| 	return size;
 | |
| error:
 | |
| 	local_irq_restore(irqflags);
 | |
| 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
 | |
| 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
 | |
| 	kmem_cache_free_bulk(s, i, p);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 | |
| 
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 | |
| 			     int nodeid, size_t orig_size,
 | |
| 			     unsigned long caller)
 | |
| {
 | |
| 	return slab_alloc_node(cachep, NULL, flags, nodeid,
 | |
| 			       orig_size, caller);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	unsigned int objnr;
 | |
| 	void *objp;
 | |
| 
 | |
| 	kpp->kp_ptr = object;
 | |
| 	kpp->kp_slab = slab;
 | |
| 	cachep = slab->slab_cache;
 | |
| 	kpp->kp_slab_cache = cachep;
 | |
| 	objp = object - obj_offset(cachep);
 | |
| 	kpp->kp_data_offset = obj_offset(cachep);
 | |
| 	slab = virt_to_slab(objp);
 | |
| 	objnr = obj_to_index(cachep, slab, objp);
 | |
| 	objp = index_to_obj(cachep, slab, objnr);
 | |
| 	kpp->kp_objp = objp;
 | |
| 	if (DEBUG && cachep->flags & SLAB_STORE_USER)
 | |
| 		kpp->kp_ret = *dbg_userword(cachep, objp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static __always_inline
 | |
| void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
 | |
| 			  unsigned long caller)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	debug_check_no_locks_freed(objp, cachep->object_size);
 | |
| 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
 | |
| 		debug_check_no_obj_freed(objp, cachep->object_size);
 | |
| 	__cache_free(cachep, objp, caller);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
 | |
| 		       unsigned long caller)
 | |
| {
 | |
| 	__do_kmem_cache_free(cachep, objp, caller);
 | |
| }
 | |
| 
 | |
| void kmem_cache_free(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	cachep = cache_from_obj(cachep, objp);
 | |
| 	if (!cachep)
 | |
| 		return;
 | |
| 
 | |
| 	trace_kmem_cache_free(_RET_IP_, objp, cachep);
 | |
| 	__do_kmem_cache_free(cachep, objp, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	for (int i = 0; i < size; i++) {
 | |
| 		void *objp = p[i];
 | |
| 		struct kmem_cache *s;
 | |
| 
 | |
| 		if (!orig_s) {
 | |
| 			struct folio *folio = virt_to_folio(objp);
 | |
| 
 | |
| 			/* called via kfree_bulk */
 | |
| 			if (!folio_test_slab(folio)) {
 | |
| 				local_irq_restore(flags);
 | |
| 				free_large_kmalloc(folio, objp);
 | |
| 				local_irq_save(flags);
 | |
| 				continue;
 | |
| 			}
 | |
| 			s = folio_slab(folio)->slab_cache;
 | |
| 		} else {
 | |
| 			s = cache_from_obj(orig_s, objp);
 | |
| 		}
 | |
| 
 | |
| 		if (!s)
 | |
| 			continue;
 | |
| 
 | |
| 		debug_check_no_locks_freed(objp, s->object_size);
 | |
| 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
 | |
| 			debug_check_no_obj_freed(objp, s->object_size);
 | |
| 
 | |
| 		__cache_free(s, objp, _RET_IP_);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* FIXME: add tracing */
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free_bulk);
 | |
| 
 | |
| /*
 | |
|  * This initializes kmem_cache_node or resizes various caches for all nodes.
 | |
|  */
 | |
| static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	int ret;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (!cachep->list.next) {
 | |
| 		/* Cache is not active yet. Roll back what we did */
 | |
| 		node--;
 | |
| 		while (node >= 0) {
 | |
| 			n = get_node(cachep, node);
 | |
| 			if (n) {
 | |
| 				kfree(n->shared);
 | |
| 				free_alien_cache(n->alien);
 | |
| 				kfree(n);
 | |
| 				cachep->node[node] = NULL;
 | |
| 			}
 | |
| 			node--;
 | |
| 		}
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Always called with the slab_mutex held */
 | |
| static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
 | |
| 			    int batchcount, int shared, gfp_t gfp)
 | |
| {
 | |
| 	struct array_cache __percpu *cpu_cache, *prev;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
 | |
| 	if (!cpu_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	prev = cachep->cpu_cache;
 | |
| 	cachep->cpu_cache = cpu_cache;
 | |
| 	/*
 | |
| 	 * Without a previous cpu_cache there's no need to synchronize remote
 | |
| 	 * cpus, so skip the IPIs.
 | |
| 	 */
 | |
| 	if (prev)
 | |
| 		kick_all_cpus_sync();
 | |
| 
 | |
| 	check_irq_on();
 | |
| 	cachep->batchcount = batchcount;
 | |
| 	cachep->limit = limit;
 | |
| 	cachep->shared = shared;
 | |
| 
 | |
| 	if (!prev)
 | |
| 		goto setup_node;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		LIST_HEAD(list);
 | |
| 		int node;
 | |
| 		struct kmem_cache_node *n;
 | |
| 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
 | |
| 
 | |
| 		node = cpu_to_mem(cpu);
 | |
| 		n = get_node(cachep, node);
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 		free_block(cachep, ac->entry, ac->avail, node, &list);
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 		slabs_destroy(cachep, &list);
 | |
| 	}
 | |
| 	free_percpu(prev);
 | |
| 
 | |
| setup_node:
 | |
| 	return setup_kmem_cache_nodes(cachep, gfp);
 | |
| }
 | |
| 
 | |
| /* Called with slab_mutex held always */
 | |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	int err;
 | |
| 	int limit = 0;
 | |
| 	int shared = 0;
 | |
| 	int batchcount = 0;
 | |
| 
 | |
| 	err = cache_random_seq_create(cachep, cachep->num, gfp);
 | |
| 	if (err)
 | |
| 		goto end;
 | |
| 
 | |
| 	/*
 | |
| 	 * The head array serves three purposes:
 | |
| 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
 | |
| 	 * - reduce the number of spinlock operations.
 | |
| 	 * - reduce the number of linked list operations on the slab and
 | |
| 	 *   bufctl chains: array operations are cheaper.
 | |
| 	 * The numbers are guessed, we should auto-tune as described by
 | |
| 	 * Bonwick.
 | |
| 	 */
 | |
| 	if (cachep->size > 131072)
 | |
| 		limit = 1;
 | |
| 	else if (cachep->size > PAGE_SIZE)
 | |
| 		limit = 8;
 | |
| 	else if (cachep->size > 1024)
 | |
| 		limit = 24;
 | |
| 	else if (cachep->size > 256)
 | |
| 		limit = 54;
 | |
| 	else
 | |
| 		limit = 120;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
 | |
| 	 * allocation behaviour: Most allocs on one cpu, most free operations
 | |
| 	 * on another cpu. For these cases, an efficient object passing between
 | |
| 	 * cpus is necessary. This is provided by a shared array. The array
 | |
| 	 * replaces Bonwick's magazine layer.
 | |
| 	 * On uniprocessor, it's functionally equivalent (but less efficient)
 | |
| 	 * to a larger limit. Thus disabled by default.
 | |
| 	 */
 | |
| 	shared = 0;
 | |
| 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
 | |
| 		shared = 8;
 | |
| 
 | |
| #if DEBUG
 | |
| 	/*
 | |
| 	 * With debugging enabled, large batchcount lead to excessively long
 | |
| 	 * periods with disabled local interrupts. Limit the batchcount
 | |
| 	 */
 | |
| 	if (limit > 32)
 | |
| 		limit = 32;
 | |
| #endif
 | |
| 	batchcount = (limit + 1) / 2;
 | |
| 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
 | |
| end:
 | |
| 	if (err)
 | |
| 		pr_err("enable_cpucache failed for %s, error %d\n",
 | |
| 		       cachep->name, -err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain an array if it contains any elements taking the node lock only if
 | |
|  * necessary. Note that the node listlock also protects the array_cache
 | |
|  * if drain_array() is used on the shared array.
 | |
|  */
 | |
| static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
 | |
| 			 struct array_cache *ac, int node)
 | |
| {
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
 | |
| 	check_mutex_acquired();
 | |
| 
 | |
| 	if (!ac || !ac->avail)
 | |
| 		return;
 | |
| 
 | |
| 	if (ac->touched) {
 | |
| 		ac->touched = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irq(&n->list_lock);
 | |
| 	drain_array_locked(cachep, ac, node, false, &list);
 | |
| 	raw_spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 	slabs_destroy(cachep, &list);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cache_reap - Reclaim memory from caches.
 | |
|  * @w: work descriptor
 | |
|  *
 | |
|  * Called from workqueue/eventd every few seconds.
 | |
|  * Purpose:
 | |
|  * - clear the per-cpu caches for this CPU.
 | |
|  * - return freeable pages to the main free memory pool.
 | |
|  *
 | |
|  * If we cannot acquire the cache chain mutex then just give up - we'll try
 | |
|  * again on the next iteration.
 | |
|  */
 | |
| static void cache_reap(struct work_struct *w)
 | |
| {
 | |
| 	struct kmem_cache *searchp;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node = numa_mem_id();
 | |
| 	struct delayed_work *work = to_delayed_work(w);
 | |
| 
 | |
| 	if (!mutex_trylock(&slab_mutex))
 | |
| 		/* Give up. Setup the next iteration. */
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(searchp, &slab_caches, list) {
 | |
| 		check_irq_on();
 | |
| 
 | |
| 		/*
 | |
| 		 * We only take the node lock if absolutely necessary and we
 | |
| 		 * have established with reasonable certainty that
 | |
| 		 * we can do some work if the lock was obtained.
 | |
| 		 */
 | |
| 		n = get_node(searchp, node);
 | |
| 
 | |
| 		reap_alien(searchp, n);
 | |
| 
 | |
| 		drain_array(searchp, n, cpu_cache_get(searchp), node);
 | |
| 
 | |
| 		/*
 | |
| 		 * These are racy checks but it does not matter
 | |
| 		 * if we skip one check or scan twice.
 | |
| 		 */
 | |
| 		if (time_after(n->next_reap, jiffies))
 | |
| 			goto next;
 | |
| 
 | |
| 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
 | |
| 
 | |
| 		drain_array(searchp, n, n->shared, node);
 | |
| 
 | |
| 		if (n->free_touched)
 | |
| 			n->free_touched = 0;
 | |
| 		else {
 | |
| 			int freed;
 | |
| 
 | |
| 			freed = drain_freelist(searchp, n, (n->free_limit +
 | |
| 				5 * searchp->num - 1) / (5 * searchp->num));
 | |
| 			STATS_ADD_REAPED(searchp, freed);
 | |
| 		}
 | |
| next:
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	check_irq_on();
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	next_reap_node();
 | |
| out:
 | |
| 	/* Set up the next iteration */
 | |
| 	schedule_delayed_work_on(smp_processor_id(), work,
 | |
| 				round_jiffies_relative(REAPTIMEOUT_AC));
 | |
| }
 | |
| 
 | |
| void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
 | |
| {
 | |
| 	unsigned long active_objs, num_objs, active_slabs;
 | |
| 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
 | |
| 	unsigned long free_slabs = 0;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(cachep, node, n) {
 | |
| 		check_irq_on();
 | |
| 		raw_spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 		total_slabs += n->total_slabs;
 | |
| 		free_slabs += n->free_slabs;
 | |
| 		free_objs += n->free_objects;
 | |
| 
 | |
| 		if (n->shared)
 | |
| 			shared_avail += n->shared->avail;
 | |
| 
 | |
| 		raw_spin_unlock_irq(&n->list_lock);
 | |
| 	}
 | |
| 	num_objs = total_slabs * cachep->num;
 | |
| 	active_slabs = total_slabs - free_slabs;
 | |
| 	active_objs = num_objs - free_objs;
 | |
| 
 | |
| 	sinfo->active_objs = active_objs;
 | |
| 	sinfo->num_objs = num_objs;
 | |
| 	sinfo->active_slabs = active_slabs;
 | |
| 	sinfo->num_slabs = total_slabs;
 | |
| 	sinfo->shared_avail = shared_avail;
 | |
| 	sinfo->limit = cachep->limit;
 | |
| 	sinfo->batchcount = cachep->batchcount;
 | |
| 	sinfo->shared = cachep->shared;
 | |
| 	sinfo->objects_per_slab = cachep->num;
 | |
| 	sinfo->cache_order = cachep->gfporder;
 | |
| }
 | |
| 
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
 | |
| {
 | |
| #if STATS
 | |
| 	{			/* node stats */
 | |
| 		unsigned long high = cachep->high_mark;
 | |
| 		unsigned long allocs = cachep->num_allocations;
 | |
| 		unsigned long grown = cachep->grown;
 | |
| 		unsigned long reaped = cachep->reaped;
 | |
| 		unsigned long errors = cachep->errors;
 | |
| 		unsigned long max_freeable = cachep->max_freeable;
 | |
| 		unsigned long node_allocs = cachep->node_allocs;
 | |
| 		unsigned long node_frees = cachep->node_frees;
 | |
| 		unsigned long overflows = cachep->node_overflow;
 | |
| 
 | |
| 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
 | |
| 			   allocs, high, grown,
 | |
| 			   reaped, errors, max_freeable, node_allocs,
 | |
| 			   node_frees, overflows);
 | |
| 	}
 | |
| 	/* cpu stats */
 | |
| 	{
 | |
| 		unsigned long allochit = atomic_read(&cachep->allochit);
 | |
| 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
 | |
| 		unsigned long freehit = atomic_read(&cachep->freehit);
 | |
| 		unsigned long freemiss = atomic_read(&cachep->freemiss);
 | |
| 
 | |
| 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
 | |
| 			   allochit, allocmiss, freehit, freemiss);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define MAX_SLABINFO_WRITE 128
 | |
| /**
 | |
|  * slabinfo_write - Tuning for the slab allocator
 | |
|  * @file: unused
 | |
|  * @buffer: user buffer
 | |
|  * @count: data length
 | |
|  * @ppos: unused
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos)
 | |
| {
 | |
| 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
 | |
| 	int limit, batchcount, shared, res;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	if (count > MAX_SLABINFO_WRITE)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&kbuf, buffer, count))
 | |
| 		return -EFAULT;
 | |
| 	kbuf[MAX_SLABINFO_WRITE] = '\0';
 | |
| 
 | |
| 	tmp = strchr(kbuf, ' ');
 | |
| 	if (!tmp)
 | |
| 		return -EINVAL;
 | |
| 	*tmp = '\0';
 | |
| 	tmp++;
 | |
| 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Find the cache in the chain of caches. */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	res = -EINVAL;
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		if (!strcmp(cachep->name, kbuf)) {
 | |
| 			if (limit < 1 || batchcount < 1 ||
 | |
| 					batchcount > limit || shared < 0) {
 | |
| 				res = 0;
 | |
| 			} else {
 | |
| 				res = do_tune_cpucache(cachep, limit,
 | |
| 						       batchcount, shared,
 | |
| 						       GFP_KERNEL);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	if (res >= 0)
 | |
| 		res = count;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| /*
 | |
|  * Rejects incorrectly sized objects and objects that are to be copied
 | |
|  * to/from userspace but do not fall entirely within the containing slab
 | |
|  * cache's usercopy region.
 | |
|  *
 | |
|  * Returns NULL if check passes, otherwise const char * to name of cache
 | |
|  * to indicate an error.
 | |
|  */
 | |
| void __check_heap_object(const void *ptr, unsigned long n,
 | |
| 			 const struct slab *slab, bool to_user)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	unsigned int objnr;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	ptr = kasan_reset_tag(ptr);
 | |
| 
 | |
| 	/* Find and validate object. */
 | |
| 	cachep = slab->slab_cache;
 | |
| 	objnr = obj_to_index(cachep, slab, (void *)ptr);
 | |
| 	BUG_ON(objnr >= cachep->num);
 | |
| 
 | |
| 	/* Find offset within object. */
 | |
| 	if (is_kfence_address(ptr))
 | |
| 		offset = ptr - kfence_object_start(ptr);
 | |
| 	else
 | |
| 		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
 | |
| 
 | |
| 	/* Allow address range falling entirely within usercopy region. */
 | |
| 	if (offset >= cachep->useroffset &&
 | |
| 	    offset - cachep->useroffset <= cachep->usersize &&
 | |
| 	    n <= cachep->useroffset - offset + cachep->usersize)
 | |
| 		return;
 | |
| 
 | |
| 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
 | |
| }
 | |
| #endif /* CONFIG_HARDENED_USERCOPY */
 |