mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	By checking the effective credentials instead of the real UID / permitted
capabilities, ensure that the calling process actually intended to use its
credentials.
To ensure that all ptrace checks use the correct caller credentials (e.g.
in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS
flag), use two new flags and require one of them to be set.
The problem was that when a privileged task had temporarily dropped its
privileges, e.g.  by calling setreuid(0, user_uid), with the intent to
perform following syscalls with the credentials of a user, it still passed
ptrace access checks that the user would not be able to pass.
While an attacker should not be able to convince the privileged task to
perform a ptrace() syscall, this is a problem because the ptrace access
check is reused for things in procfs.
In particular, the following somewhat interesting procfs entries only rely
on ptrace access checks:
 /proc/$pid/stat - uses the check for determining whether pointers
     should be visible, useful for bypassing ASLR
 /proc/$pid/maps - also useful for bypassing ASLR
 /proc/$pid/cwd - useful for gaining access to restricted
     directories that contain files with lax permissions, e.g. in
     this scenario:
     lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar
     drwx------ root root /root
     drwxr-xr-x root root /root/foobar
     -rw-r--r-- root root /root/foobar/secret
Therefore, on a system where a root-owned mode 6755 binary changes its
effective credentials as described and then dumps a user-specified file,
this could be used by an attacker to reveal the memory layout of root's
processes or reveal the contents of files he is not allowed to access
(through /proc/$pid/cwd).
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			198 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			198 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <linux/kernel.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/fdtable.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/kcmp.h>
 | 
						|
 | 
						|
#include <asm/unistd.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * We don't expose the real in-memory order of objects for security reasons.
 | 
						|
 * But still the comparison results should be suitable for sorting. So we
 | 
						|
 * obfuscate kernel pointers values and compare the production instead.
 | 
						|
 *
 | 
						|
 * The obfuscation is done in two steps. First we xor the kernel pointer with
 | 
						|
 * a random value, which puts pointer into a new position in a reordered space.
 | 
						|
 * Secondly we multiply the xor production with a large odd random number to
 | 
						|
 * permute its bits even more (the odd multiplier guarantees that the product
 | 
						|
 * is unique ever after the high bits are truncated, since any odd number is
 | 
						|
 * relative prime to 2^n).
 | 
						|
 *
 | 
						|
 * Note also that the obfuscation itself is invisible to userspace and if needed
 | 
						|
 * it can be changed to an alternate scheme.
 | 
						|
 */
 | 
						|
static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
 | 
						|
 | 
						|
static long kptr_obfuscate(long v, int type)
 | 
						|
{
 | 
						|
	return (v ^ cookies[type][0]) * cookies[type][1];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * 0 - equal, i.e. v1 = v2
 | 
						|
 * 1 - less than, i.e. v1 < v2
 | 
						|
 * 2 - greater than, i.e. v1 > v2
 | 
						|
 * 3 - not equal but ordering unavailable (reserved for future)
 | 
						|
 */
 | 
						|
static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
 | 
						|
{
 | 
						|
	long t1, t2;
 | 
						|
 | 
						|
	t1 = kptr_obfuscate((long)v1, type);
 | 
						|
	t2 = kptr_obfuscate((long)v2, type);
 | 
						|
 | 
						|
	return (t1 < t2) | ((t1 > t2) << 1);
 | 
						|
}
 | 
						|
 | 
						|
/* The caller must have pinned the task */
 | 
						|
static struct file *
 | 
						|
get_file_raw_ptr(struct task_struct *task, unsigned int idx)
 | 
						|
{
 | 
						|
	struct file *file = NULL;
 | 
						|
 | 
						|
	task_lock(task);
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	if (task->files)
 | 
						|
		file = fcheck_files(task->files, idx);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
	task_unlock(task);
 | 
						|
 | 
						|
	return file;
 | 
						|
}
 | 
						|
 | 
						|
static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
 | 
						|
{
 | 
						|
	if (likely(m2 != m1))
 | 
						|
		mutex_unlock(m2);
 | 
						|
	mutex_unlock(m1);
 | 
						|
}
 | 
						|
 | 
						|
static int kcmp_lock(struct mutex *m1, struct mutex *m2)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (m2 > m1)
 | 
						|
		swap(m1, m2);
 | 
						|
 | 
						|
	err = mutex_lock_killable(m1);
 | 
						|
	if (!err && likely(m1 != m2)) {
 | 
						|
		err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
 | 
						|
		if (err)
 | 
						|
			mutex_unlock(m1);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
 | 
						|
		unsigned long, idx1, unsigned long, idx2)
 | 
						|
{
 | 
						|
	struct task_struct *task1, *task2;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tasks are looked up in caller's PID namespace only.
 | 
						|
	 */
 | 
						|
	task1 = find_task_by_vpid(pid1);
 | 
						|
	task2 = find_task_by_vpid(pid2);
 | 
						|
	if (!task1 || !task2)
 | 
						|
		goto err_no_task;
 | 
						|
 | 
						|
	get_task_struct(task1);
 | 
						|
	get_task_struct(task2);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * One should have enough rights to inspect task details.
 | 
						|
	 */
 | 
						|
	ret = kcmp_lock(&task1->signal->cred_guard_mutex,
 | 
						|
			&task2->signal->cred_guard_mutex);
 | 
						|
	if (ret)
 | 
						|
		goto err;
 | 
						|
	if (!ptrace_may_access(task1, PTRACE_MODE_READ_REALCREDS) ||
 | 
						|
	    !ptrace_may_access(task2, PTRACE_MODE_READ_REALCREDS)) {
 | 
						|
		ret = -EPERM;
 | 
						|
		goto err_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case KCMP_FILE: {
 | 
						|
		struct file *filp1, *filp2;
 | 
						|
 | 
						|
		filp1 = get_file_raw_ptr(task1, idx1);
 | 
						|
		filp2 = get_file_raw_ptr(task2, idx2);
 | 
						|
 | 
						|
		if (filp1 && filp2)
 | 
						|
			ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
 | 
						|
		else
 | 
						|
			ret = -EBADF;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case KCMP_VM:
 | 
						|
		ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
 | 
						|
		break;
 | 
						|
	case KCMP_FILES:
 | 
						|
		ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
 | 
						|
		break;
 | 
						|
	case KCMP_FS:
 | 
						|
		ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
 | 
						|
		break;
 | 
						|
	case KCMP_SIGHAND:
 | 
						|
		ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
 | 
						|
		break;
 | 
						|
	case KCMP_IO:
 | 
						|
		ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
 | 
						|
		break;
 | 
						|
	case KCMP_SYSVSEM:
 | 
						|
#ifdef CONFIG_SYSVIPC
 | 
						|
		ret = kcmp_ptr(task1->sysvsem.undo_list,
 | 
						|
			       task2->sysvsem.undo_list,
 | 
						|
			       KCMP_SYSVSEM);
 | 
						|
#else
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
#endif
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -EINVAL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
err_unlock:
 | 
						|
	kcmp_unlock(&task1->signal->cred_guard_mutex,
 | 
						|
		    &task2->signal->cred_guard_mutex);
 | 
						|
err:
 | 
						|
	put_task_struct(task1);
 | 
						|
	put_task_struct(task2);
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
err_no_task:
 | 
						|
	rcu_read_unlock();
 | 
						|
	return -ESRCH;
 | 
						|
}
 | 
						|
 | 
						|
static __init int kcmp_cookies_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	get_random_bytes(cookies, sizeof(cookies));
 | 
						|
 | 
						|
	for (i = 0; i < KCMP_TYPES; i++)
 | 
						|
		cookies[i][1] |= (~(~0UL >>  1) | 1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
arch_initcall(kcmp_cookies_init);
 |