linux/rust/kernel/cred.rs
Alice Ryhl 94d356c033
rust: security: add abstraction for secctx
Add an abstraction for viewing the string representation of a security
context.

This is needed by Rust Binder because it has a feature where a process
can view the string representation of the security context for incoming
transactions. The process can use that to authenticate incoming
transactions, and since the feature is provided by the kernel, the
process can trust that the security context is legitimate.

This abstraction makes the following assumptions about the C side:
* When a call to `security_secid_to_secctx` is successful, it returns a
  pointer and length. The pointer references a byte string and is valid
  for reading for that many bytes.
* The string may be referenced until `security_release_secctx` is
  called.
* If CONFIG_SECURITY is set, then the three methods mentioned in
  rust/helpers are available without a helper. (That is, they are not a
  #define or `static inline`.)

Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-5-88484f7a3dcf@google.com
Acked-by: Paul Moore <paul@paul-moore.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-30 13:02:28 +02:00

84 lines
3.2 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2024 Google LLC.
//! Credentials management.
//!
//! C header: [`include/linux/cred.h`](srctree/include/linux/cred.h).
//!
//! Reference: <https://www.kernel.org/doc/html/latest/security/credentials.html>
use crate::{
bindings,
types::{AlwaysRefCounted, Opaque},
};
/// Wraps the kernel's `struct cred`.
///
/// Credentials are used for various security checks in the kernel.
///
/// Most fields of credentials are immutable. When things have their credentials changed, that
/// happens by replacing the credential instead of changing an existing credential. See the [kernel
/// documentation][ref] for more info on this.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `get_cred` ensures that the
/// allocation remains valid at least until the matching call to `put_cred`.
///
/// [ref]: https://www.kernel.org/doc/html/latest/security/credentials.html
#[repr(transparent)]
pub struct Credential(Opaque<bindings::cred>);
// SAFETY:
// - `Credential::dec_ref` can be called from any thread.
// - It is okay to send ownership of `Credential` across thread boundaries.
unsafe impl Send for Credential {}
// SAFETY: It's OK to access `Credential` through shared references from other threads because
// we're either accessing properties that don't change or that are properly synchronised by C code.
unsafe impl Sync for Credential {}
impl Credential {
/// Creates a reference to a [`Credential`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Credential`] reference.
pub unsafe fn from_ptr<'a>(ptr: *const bindings::cred) -> &'a Credential {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Credential` type being transparent makes the cast ok.
unsafe { &*ptr.cast() }
}
/// Get the id for this security context.
pub fn get_secid(&self) -> u32 {
let mut secid = 0;
// SAFETY: The invariants of this type ensures that the pointer is valid.
unsafe { bindings::security_cred_getsecid(self.0.get(), &mut secid) };
secid
}
/// Returns the effective UID of the given credential.
pub fn euid(&self) -> bindings::kuid_t {
// SAFETY: By the type invariant, we know that `self.0` is valid. Furthermore, the `euid`
// field of a credential is never changed after initialization, so there is no potential
// for data races.
unsafe { (*self.0.get()).euid }
}
}
// SAFETY: The type invariants guarantee that `Credential` is always ref-counted.
unsafe impl AlwaysRefCounted for Credential {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::get_cred(self.0.get()) };
}
unsafe fn dec_ref(obj: core::ptr::NonNull<Credential>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero. The cast is okay
// because `Credential` has the same representation as `struct cred`.
unsafe { bindings::put_cred(obj.cast().as_ptr()) };
}
}