mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
  virtual patch
  @r1@
  identifier ctl, write, buffer, lenp, ppos;
  identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
  @@
  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);
  @r2@
  identifier func, ctl, write, buffer, lenp, ppos;
  @@
  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos)
  { ... }
  @r3@
  identifier func;
  @@
  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int , void *, size_t *, loff_t *);
  @r4@
  identifier func, ctl;
  @@
  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int , void *, size_t *, loff_t *);
  @r5@
  identifier func, write, buffer, lenp, ppos;
  @@
  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
  conventions. The xfs_stats_clear_proc_handler,
  xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
  adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
  This is called from a proc_handler itself and is calling back into
  another proc_handler, making it necessary to change it as part of the
  proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
		
	
			
		
			
				
	
	
		
			3382 lines
		
	
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3382 lines
		
	
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * linux/mm/compaction.c
 | 
						|
 *
 | 
						|
 * Memory compaction for the reduction of external fragmentation. Note that
 | 
						|
 * this heavily depends upon page migration to do all the real heavy
 | 
						|
 * lifting
 | 
						|
 *
 | 
						|
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 | 
						|
 */
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/compaction.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/sysfs.h>
 | 
						|
#include <linux/page-isolation.h>
 | 
						|
#include <linux/kasan.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/freezer.h>
 | 
						|
#include <linux/page_owner.h>
 | 
						|
#include <linux/psi.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
/*
 | 
						|
 * Fragmentation score check interval for proactive compaction purposes.
 | 
						|
 */
 | 
						|
#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
 | 
						|
 | 
						|
static inline void count_compact_event(enum vm_event_item item)
 | 
						|
{
 | 
						|
	count_vm_event(item);
 | 
						|
}
 | 
						|
 | 
						|
static inline void count_compact_events(enum vm_event_item item, long delta)
 | 
						|
{
 | 
						|
	count_vm_events(item, delta);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * order == -1 is expected when compacting proactively via
 | 
						|
 * 1. /proc/sys/vm/compact_memory
 | 
						|
 * 2. /sys/devices/system/node/nodex/compact
 | 
						|
 * 3. /proc/sys/vm/compaction_proactiveness
 | 
						|
 */
 | 
						|
static inline bool is_via_compact_memory(int order)
 | 
						|
{
 | 
						|
	return order == -1;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
#define count_compact_event(item) do { } while (0)
 | 
						|
#define count_compact_events(item, delta) do { } while (0)
 | 
						|
static inline bool is_via_compact_memory(int order) { return false; }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/compaction.h>
 | 
						|
 | 
						|
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
 | 
						|
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 | 
						|
 | 
						|
/*
 | 
						|
 * Page order with-respect-to which proactive compaction
 | 
						|
 * calculates external fragmentation, which is used as
 | 
						|
 * the "fragmentation score" of a node/zone.
 | 
						|
 */
 | 
						|
#if defined CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
 | 
						|
#elif defined CONFIG_HUGETLBFS
 | 
						|
#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
 | 
						|
#else
 | 
						|
#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
 | 
						|
#endif
 | 
						|
 | 
						|
static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	post_alloc_hook(page, order, __GFP_MOVABLE);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
#define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
 | 
						|
 | 
						|
static void split_map_pages(struct list_head *freepages)
 | 
						|
{
 | 
						|
	unsigned int i, order;
 | 
						|
	struct page *page, *next;
 | 
						|
	LIST_HEAD(tmp_list);
 | 
						|
 | 
						|
	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 | 
						|
		list_for_each_entry_safe(page, next, &freepages[order], lru) {
 | 
						|
			unsigned int nr_pages;
 | 
						|
 | 
						|
			list_del(&page->lru);
 | 
						|
 | 
						|
			nr_pages = 1 << order;
 | 
						|
 | 
						|
			mark_allocated(page, order, __GFP_MOVABLE);
 | 
						|
			if (order)
 | 
						|
				split_page(page, order);
 | 
						|
 | 
						|
			for (i = 0; i < nr_pages; i++) {
 | 
						|
				list_add(&page->lru, &tmp_list);
 | 
						|
				page++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		list_splice_init(&tmp_list, &freepages[0]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long release_free_list(struct list_head *freepages)
 | 
						|
{
 | 
						|
	int order;
 | 
						|
	unsigned long high_pfn = 0;
 | 
						|
 | 
						|
	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 | 
						|
		struct page *page, *next;
 | 
						|
 | 
						|
		list_for_each_entry_safe(page, next, &freepages[order], lru) {
 | 
						|
			unsigned long pfn = page_to_pfn(page);
 | 
						|
 | 
						|
			list_del(&page->lru);
 | 
						|
			/*
 | 
						|
			 * Convert free pages into post allocation pages, so
 | 
						|
			 * that we can free them via __free_page.
 | 
						|
			 */
 | 
						|
			mark_allocated(page, order, __GFP_MOVABLE);
 | 
						|
			__free_pages(page, order);
 | 
						|
			if (pfn > high_pfn)
 | 
						|
				high_pfn = pfn;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return high_pfn;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
bool PageMovable(struct page *page)
 | 
						|
{
 | 
						|
	const struct movable_operations *mops;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	if (!__PageMovable(page))
 | 
						|
		return false;
 | 
						|
 | 
						|
	mops = page_movable_ops(page);
 | 
						|
	if (mops)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 | 
						|
	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__SetPageMovable);
 | 
						|
 | 
						|
void __ClearPageMovable(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageMovable(page), page);
 | 
						|
	/*
 | 
						|
	 * This page still has the type of a movable page, but it's
 | 
						|
	 * actually not movable any more.
 | 
						|
	 */
 | 
						|
	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__ClearPageMovable);
 | 
						|
 | 
						|
/* Do not skip compaction more than 64 times */
 | 
						|
#define COMPACT_MAX_DEFER_SHIFT 6
 | 
						|
 | 
						|
/*
 | 
						|
 * Compaction is deferred when compaction fails to result in a page
 | 
						|
 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 | 
						|
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 | 
						|
 */
 | 
						|
static void defer_compaction(struct zone *zone, int order)
 | 
						|
{
 | 
						|
	zone->compact_considered = 0;
 | 
						|
	zone->compact_defer_shift++;
 | 
						|
 | 
						|
	if (order < zone->compact_order_failed)
 | 
						|
		zone->compact_order_failed = order;
 | 
						|
 | 
						|
	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 | 
						|
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 | 
						|
 | 
						|
	trace_mm_compaction_defer_compaction(zone, order);
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if compaction should be skipped this time */
 | 
						|
static bool compaction_deferred(struct zone *zone, int order)
 | 
						|
{
 | 
						|
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 | 
						|
 | 
						|
	if (order < zone->compact_order_failed)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Avoid possible overflow */
 | 
						|
	if (++zone->compact_considered >= defer_limit) {
 | 
						|
		zone->compact_considered = defer_limit;
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_mm_compaction_deferred(zone, order);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update defer tracking counters after successful compaction of given order,
 | 
						|
 * which means an allocation either succeeded (alloc_success == true) or is
 | 
						|
 * expected to succeed.
 | 
						|
 */
 | 
						|
void compaction_defer_reset(struct zone *zone, int order,
 | 
						|
		bool alloc_success)
 | 
						|
{
 | 
						|
	if (alloc_success) {
 | 
						|
		zone->compact_considered = 0;
 | 
						|
		zone->compact_defer_shift = 0;
 | 
						|
	}
 | 
						|
	if (order >= zone->compact_order_failed)
 | 
						|
		zone->compact_order_failed = order + 1;
 | 
						|
 | 
						|
	trace_mm_compaction_defer_reset(zone, order);
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if restarting compaction after many failures */
 | 
						|
static bool compaction_restarting(struct zone *zone, int order)
 | 
						|
{
 | 
						|
	if (order < zone->compact_order_failed)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 | 
						|
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the pageblock should be scanned for pages to isolate. */
 | 
						|
static inline bool isolation_suitable(struct compact_control *cc,
 | 
						|
					struct page *page)
 | 
						|
{
 | 
						|
	if (cc->ignore_skip_hint)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return !get_pageblock_skip(page);
 | 
						|
}
 | 
						|
 | 
						|
static void reset_cached_positions(struct zone *zone)
 | 
						|
{
 | 
						|
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 | 
						|
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 | 
						|
	zone->compact_cached_free_pfn =
 | 
						|
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM
 | 
						|
/*
 | 
						|
 * If the PFN falls into an offline section, return the start PFN of the
 | 
						|
 * next online section. If the PFN falls into an online section or if
 | 
						|
 * there is no next online section, return 0.
 | 
						|
 */
 | 
						|
static unsigned long skip_offline_sections(unsigned long start_pfn)
 | 
						|
{
 | 
						|
	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 | 
						|
 | 
						|
	if (online_section_nr(start_nr))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	while (++start_nr <= __highest_present_section_nr) {
 | 
						|
		if (online_section_nr(start_nr))
 | 
						|
			return section_nr_to_pfn(start_nr);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the PFN falls into an offline section, return the end PFN of the
 | 
						|
 * next online section in reverse. If the PFN falls into an online section
 | 
						|
 * or if there is no next online section in reverse, return 0.
 | 
						|
 */
 | 
						|
static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 | 
						|
{
 | 
						|
	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 | 
						|
 | 
						|
	if (!start_nr || online_section_nr(start_nr))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	while (start_nr-- > 0) {
 | 
						|
		if (online_section_nr(start_nr))
 | 
						|
			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static unsigned long skip_offline_sections(unsigned long start_pfn)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Compound pages of >= pageblock_order should consistently be skipped until
 | 
						|
 * released. It is always pointless to compact pages of such order (if they are
 | 
						|
 * migratable), and the pageblocks they occupy cannot contain any free pages.
 | 
						|
 */
 | 
						|
static bool pageblock_skip_persistent(struct page *page)
 | 
						|
{
 | 
						|
	if (!PageCompound(page))
 | 
						|
		return false;
 | 
						|
 | 
						|
	page = compound_head(page);
 | 
						|
 | 
						|
	if (compound_order(page) >= pageblock_order)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 | 
						|
							bool check_target)
 | 
						|
{
 | 
						|
	struct page *page = pfn_to_online_page(pfn);
 | 
						|
	struct page *block_page;
 | 
						|
	struct page *end_page;
 | 
						|
	unsigned long block_pfn;
 | 
						|
 | 
						|
	if (!page)
 | 
						|
		return false;
 | 
						|
	if (zone != page_zone(page))
 | 
						|
		return false;
 | 
						|
	if (pageblock_skip_persistent(page))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If skip is already cleared do no further checking once the
 | 
						|
	 * restart points have been set.
 | 
						|
	 */
 | 
						|
	if (check_source && check_target && !get_pageblock_skip(page))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If clearing skip for the target scanner, do not select a
 | 
						|
	 * non-movable pageblock as the starting point.
 | 
						|
	 */
 | 
						|
	if (!check_source && check_target &&
 | 
						|
	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Ensure the start of the pageblock or zone is online and valid */
 | 
						|
	block_pfn = pageblock_start_pfn(pfn);
 | 
						|
	block_pfn = max(block_pfn, zone->zone_start_pfn);
 | 
						|
	block_page = pfn_to_online_page(block_pfn);
 | 
						|
	if (block_page) {
 | 
						|
		page = block_page;
 | 
						|
		pfn = block_pfn;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Ensure the end of the pageblock or zone is online and valid */
 | 
						|
	block_pfn = pageblock_end_pfn(pfn) - 1;
 | 
						|
	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 | 
						|
	end_page = pfn_to_online_page(block_pfn);
 | 
						|
	if (!end_page)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only clear the hint if a sample indicates there is either a
 | 
						|
	 * free page or an LRU page in the block. One or other condition
 | 
						|
	 * is necessary for the block to be a migration source/target.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		if (check_source && PageLRU(page)) {
 | 
						|
			clear_pageblock_skip(page);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		if (check_target && PageBuddy(page)) {
 | 
						|
			clear_pageblock_skip(page);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 | 
						|
	} while (page <= end_page);
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called to clear all cached information on pageblocks that
 | 
						|
 * should be skipped for page isolation when the migrate and free page scanner
 | 
						|
 * meet.
 | 
						|
 */
 | 
						|
static void __reset_isolation_suitable(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned long migrate_pfn = zone->zone_start_pfn;
 | 
						|
	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 | 
						|
	unsigned long reset_migrate = free_pfn;
 | 
						|
	unsigned long reset_free = migrate_pfn;
 | 
						|
	bool source_set = false;
 | 
						|
	bool free_set = false;
 | 
						|
 | 
						|
	/* Only flush if a full compaction finished recently */
 | 
						|
	if (!zone->compact_blockskip_flush)
 | 
						|
		return;
 | 
						|
 | 
						|
	zone->compact_blockskip_flush = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Walk the zone and update pageblock skip information. Source looks
 | 
						|
	 * for PageLRU while target looks for PageBuddy. When the scanner
 | 
						|
	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 | 
						|
	 * is suitable as both source and target.
 | 
						|
	 */
 | 
						|
	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 | 
						|
					free_pfn -= pageblock_nr_pages) {
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		/* Update the migrate PFN */
 | 
						|
		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 | 
						|
		    migrate_pfn < reset_migrate) {
 | 
						|
			source_set = true;
 | 
						|
			reset_migrate = migrate_pfn;
 | 
						|
			zone->compact_init_migrate_pfn = reset_migrate;
 | 
						|
			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 | 
						|
			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Update the free PFN */
 | 
						|
		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 | 
						|
		    free_pfn > reset_free) {
 | 
						|
			free_set = true;
 | 
						|
			reset_free = free_pfn;
 | 
						|
			zone->compact_init_free_pfn = reset_free;
 | 
						|
			zone->compact_cached_free_pfn = reset_free;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Leave no distance if no suitable block was reset */
 | 
						|
	if (reset_migrate >= reset_free) {
 | 
						|
		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 | 
						|
		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 | 
						|
		zone->compact_cached_free_pfn = free_pfn;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void reset_isolation_suitable(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int zoneid;
 | 
						|
 | 
						|
	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 | 
						|
		struct zone *zone = &pgdat->node_zones[zoneid];
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		__reset_isolation_suitable(zone);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 | 
						|
 * locks are not required for read/writers. Returns true if it was already set.
 | 
						|
 */
 | 
						|
static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 | 
						|
{
 | 
						|
	bool skip;
 | 
						|
 | 
						|
	/* Do not update if skip hint is being ignored */
 | 
						|
	if (cc->ignore_skip_hint)
 | 
						|
		return false;
 | 
						|
 | 
						|
	skip = get_pageblock_skip(page);
 | 
						|
	if (!skip && !cc->no_set_skip_hint)
 | 
						|
		set_pageblock_skip(page);
 | 
						|
 | 
						|
	return skip;
 | 
						|
}
 | 
						|
 | 
						|
static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 | 
						|
{
 | 
						|
	struct zone *zone = cc->zone;
 | 
						|
 | 
						|
	/* Set for isolation rather than compaction */
 | 
						|
	if (cc->no_set_skip_hint)
 | 
						|
		return;
 | 
						|
 | 
						|
	pfn = pageblock_end_pfn(pfn);
 | 
						|
 | 
						|
	/* Update where async and sync compaction should restart */
 | 
						|
	if (pfn > zone->compact_cached_migrate_pfn[0])
 | 
						|
		zone->compact_cached_migrate_pfn[0] = pfn;
 | 
						|
	if (cc->mode != MIGRATE_ASYNC &&
 | 
						|
	    pfn > zone->compact_cached_migrate_pfn[1])
 | 
						|
		zone->compact_cached_migrate_pfn[1] = pfn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If no pages were isolated then mark this pageblock to be skipped in the
 | 
						|
 * future. The information is later cleared by __reset_isolation_suitable().
 | 
						|
 */
 | 
						|
static void update_pageblock_skip(struct compact_control *cc,
 | 
						|
			struct page *page, unsigned long pfn)
 | 
						|
{
 | 
						|
	struct zone *zone = cc->zone;
 | 
						|
 | 
						|
	if (cc->no_set_skip_hint)
 | 
						|
		return;
 | 
						|
 | 
						|
	set_pageblock_skip(page);
 | 
						|
 | 
						|
	if (pfn < zone->compact_cached_free_pfn)
 | 
						|
		zone->compact_cached_free_pfn = pfn;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline bool isolation_suitable(struct compact_control *cc,
 | 
						|
					struct page *page)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool pageblock_skip_persistent(struct page *page)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline void update_pageblock_skip(struct compact_control *cc,
 | 
						|
			struct page *page, unsigned long pfn)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif /* CONFIG_COMPACTION */
 | 
						|
 | 
						|
/*
 | 
						|
 * Compaction requires the taking of some coarse locks that are potentially
 | 
						|
 * very heavily contended. For async compaction, trylock and record if the
 | 
						|
 * lock is contended. The lock will still be acquired but compaction will
 | 
						|
 * abort when the current block is finished regardless of success rate.
 | 
						|
 * Sync compaction acquires the lock.
 | 
						|
 *
 | 
						|
 * Always returns true which makes it easier to track lock state in callers.
 | 
						|
 */
 | 
						|
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 | 
						|
						struct compact_control *cc)
 | 
						|
	__acquires(lock)
 | 
						|
{
 | 
						|
	/* Track if the lock is contended in async mode */
 | 
						|
	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 | 
						|
		if (spin_trylock_irqsave(lock, *flags))
 | 
						|
			return true;
 | 
						|
 | 
						|
		cc->contended = true;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irqsave(lock, *flags);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compaction requires the taking of some coarse locks that are potentially
 | 
						|
 * very heavily contended. The lock should be periodically unlocked to avoid
 | 
						|
 * having disabled IRQs for a long time, even when there is nobody waiting on
 | 
						|
 * the lock. It might also be that allowing the IRQs will result in
 | 
						|
 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 | 
						|
 * Either compaction type will also abort if a fatal signal is pending.
 | 
						|
 * In either case if the lock was locked, it is dropped and not regained.
 | 
						|
 *
 | 
						|
 * Returns true if compaction should abort due to fatal signal pending.
 | 
						|
 * Returns false when compaction can continue.
 | 
						|
 */
 | 
						|
static bool compact_unlock_should_abort(spinlock_t *lock,
 | 
						|
		unsigned long flags, bool *locked, struct compact_control *cc)
 | 
						|
{
 | 
						|
	if (*locked) {
 | 
						|
		spin_unlock_irqrestore(lock, flags);
 | 
						|
		*locked = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (fatal_signal_pending(current)) {
 | 
						|
		cc->contended = true;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 | 
						|
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 | 
						|
 * (even though it may still end up isolating some pages).
 | 
						|
 */
 | 
						|
static unsigned long isolate_freepages_block(struct compact_control *cc,
 | 
						|
				unsigned long *start_pfn,
 | 
						|
				unsigned long end_pfn,
 | 
						|
				struct list_head *freelist,
 | 
						|
				unsigned int stride,
 | 
						|
				bool strict)
 | 
						|
{
 | 
						|
	int nr_scanned = 0, total_isolated = 0;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long flags = 0;
 | 
						|
	bool locked = false;
 | 
						|
	unsigned long blockpfn = *start_pfn;
 | 
						|
	unsigned int order;
 | 
						|
 | 
						|
	/* Strict mode is for isolation, speed is secondary */
 | 
						|
	if (strict)
 | 
						|
		stride = 1;
 | 
						|
 | 
						|
	page = pfn_to_page(blockpfn);
 | 
						|
 | 
						|
	/* Isolate free pages. */
 | 
						|
	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 | 
						|
		int isolated;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Periodically drop the lock (if held) regardless of its
 | 
						|
		 * contention, to give chance to IRQs. Abort if fatal signal
 | 
						|
		 * pending.
 | 
						|
		 */
 | 
						|
		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 | 
						|
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 | 
						|
								&locked, cc))
 | 
						|
			break;
 | 
						|
 | 
						|
		nr_scanned++;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For compound pages such as THP and hugetlbfs, we can save
 | 
						|
		 * potentially a lot of iterations if we skip them at once.
 | 
						|
		 * The check is racy, but we can consider only valid values
 | 
						|
		 * and the only danger is skipping too much.
 | 
						|
		 */
 | 
						|
		if (PageCompound(page)) {
 | 
						|
			const unsigned int order = compound_order(page);
 | 
						|
 | 
						|
			if (blockpfn + (1UL << order) <= end_pfn) {
 | 
						|
				blockpfn += (1UL << order) - 1;
 | 
						|
				page += (1UL << order) - 1;
 | 
						|
				nr_scanned += (1UL << order) - 1;
 | 
						|
			}
 | 
						|
 | 
						|
			goto isolate_fail;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!PageBuddy(page))
 | 
						|
			goto isolate_fail;
 | 
						|
 | 
						|
		/* If we already hold the lock, we can skip some rechecking. */
 | 
						|
		if (!locked) {
 | 
						|
			locked = compact_lock_irqsave(&cc->zone->lock,
 | 
						|
								&flags, cc);
 | 
						|
 | 
						|
			/* Recheck this is a buddy page under lock */
 | 
						|
			if (!PageBuddy(page))
 | 
						|
				goto isolate_fail;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Found a free page, will break it into order-0 pages */
 | 
						|
		order = buddy_order(page);
 | 
						|
		isolated = __isolate_free_page(page, order);
 | 
						|
		if (!isolated)
 | 
						|
			break;
 | 
						|
		set_page_private(page, order);
 | 
						|
 | 
						|
		nr_scanned += isolated - 1;
 | 
						|
		total_isolated += isolated;
 | 
						|
		cc->nr_freepages += isolated;
 | 
						|
		list_add_tail(&page->lru, &freelist[order]);
 | 
						|
 | 
						|
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 | 
						|
			blockpfn += isolated;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* Advance to the end of split page */
 | 
						|
		blockpfn += isolated - 1;
 | 
						|
		page += isolated - 1;
 | 
						|
		continue;
 | 
						|
 | 
						|
isolate_fail:
 | 
						|
		if (strict)
 | 
						|
			break;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if (locked)
 | 
						|
		spin_unlock_irqrestore(&cc->zone->lock, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Be careful to not go outside of the pageblock.
 | 
						|
	 */
 | 
						|
	if (unlikely(blockpfn > end_pfn))
 | 
						|
		blockpfn = end_pfn;
 | 
						|
 | 
						|
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 | 
						|
					nr_scanned, total_isolated);
 | 
						|
 | 
						|
	/* Record how far we have got within the block */
 | 
						|
	*start_pfn = blockpfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If strict isolation is requested by CMA then check that all the
 | 
						|
	 * pages requested were isolated. If there were any failures, 0 is
 | 
						|
	 * returned and CMA will fail.
 | 
						|
	 */
 | 
						|
	if (strict && blockpfn < end_pfn)
 | 
						|
		total_isolated = 0;
 | 
						|
 | 
						|
	cc->total_free_scanned += nr_scanned;
 | 
						|
	if (total_isolated)
 | 
						|
		count_compact_events(COMPACTISOLATED, total_isolated);
 | 
						|
	return total_isolated;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * isolate_freepages_range() - isolate free pages.
 | 
						|
 * @cc:        Compaction control structure.
 | 
						|
 * @start_pfn: The first PFN to start isolating.
 | 
						|
 * @end_pfn:   The one-past-last PFN.
 | 
						|
 *
 | 
						|
 * Non-free pages, invalid PFNs, or zone boundaries within the
 | 
						|
 * [start_pfn, end_pfn) range are considered errors, cause function to
 | 
						|
 * undo its actions and return zero.
 | 
						|
 *
 | 
						|
 * Otherwise, function returns one-past-the-last PFN of isolated page
 | 
						|
 * (which may be greater then end_pfn if end fell in a middle of
 | 
						|
 * a free page).
 | 
						|
 */
 | 
						|
unsigned long
 | 
						|
isolate_freepages_range(struct compact_control *cc,
 | 
						|
			unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 | 
						|
	int order;
 | 
						|
	struct list_head tmp_freepages[NR_PAGE_ORDERS];
 | 
						|
 | 
						|
	for (order = 0; order < NR_PAGE_ORDERS; order++)
 | 
						|
		INIT_LIST_HEAD(&tmp_freepages[order]);
 | 
						|
 | 
						|
	pfn = start_pfn;
 | 
						|
	block_start_pfn = pageblock_start_pfn(pfn);
 | 
						|
	if (block_start_pfn < cc->zone->zone_start_pfn)
 | 
						|
		block_start_pfn = cc->zone->zone_start_pfn;
 | 
						|
	block_end_pfn = pageblock_end_pfn(pfn);
 | 
						|
 | 
						|
	for (; pfn < end_pfn; pfn += isolated,
 | 
						|
				block_start_pfn = block_end_pfn,
 | 
						|
				block_end_pfn += pageblock_nr_pages) {
 | 
						|
		/* Protect pfn from changing by isolate_freepages_block */
 | 
						|
		unsigned long isolate_start_pfn = pfn;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * pfn could pass the block_end_pfn if isolated freepage
 | 
						|
		 * is more than pageblock order. In this case, we adjust
 | 
						|
		 * scanning range to right one.
 | 
						|
		 */
 | 
						|
		if (pfn >= block_end_pfn) {
 | 
						|
			block_start_pfn = pageblock_start_pfn(pfn);
 | 
						|
			block_end_pfn = pageblock_end_pfn(pfn);
 | 
						|
		}
 | 
						|
 | 
						|
		block_end_pfn = min(block_end_pfn, end_pfn);
 | 
						|
 | 
						|
		if (!pageblock_pfn_to_page(block_start_pfn,
 | 
						|
					block_end_pfn, cc->zone))
 | 
						|
			break;
 | 
						|
 | 
						|
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 | 
						|
					block_end_pfn, tmp_freepages, 0, true);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In strict mode, isolate_freepages_block() returns 0 if
 | 
						|
		 * there are any holes in the block (ie. invalid PFNs or
 | 
						|
		 * non-free pages).
 | 
						|
		 */
 | 
						|
		if (!isolated)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we managed to isolate pages, it is always (1 << n) *
 | 
						|
		 * pageblock_nr_pages for some non-negative n.  (Max order
 | 
						|
		 * page may span two pageblocks).
 | 
						|
		 */
 | 
						|
	}
 | 
						|
 | 
						|
	if (pfn < end_pfn) {
 | 
						|
		/* Loop terminated early, cleanup. */
 | 
						|
		release_free_list(tmp_freepages);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* __isolate_free_page() does not map the pages */
 | 
						|
	split_map_pages(tmp_freepages);
 | 
						|
 | 
						|
	/* We don't use freelists for anything. */
 | 
						|
	return pfn;
 | 
						|
}
 | 
						|
 | 
						|
/* Similar to reclaim, but different enough that they don't share logic */
 | 
						|
static bool too_many_isolated(struct compact_control *cc)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = cc->zone->zone_pgdat;
 | 
						|
	bool too_many;
 | 
						|
 | 
						|
	unsigned long active, inactive, isolated;
 | 
						|
 | 
						|
	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 | 
						|
			node_page_state(pgdat, NR_INACTIVE_ANON);
 | 
						|
	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 | 
						|
			node_page_state(pgdat, NR_ACTIVE_ANON);
 | 
						|
	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 | 
						|
			node_page_state(pgdat, NR_ISOLATED_ANON);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allow GFP_NOFS to isolate past the limit set for regular
 | 
						|
	 * compaction runs. This prevents an ABBA deadlock when other
 | 
						|
	 * compactors have already isolated to the limit, but are
 | 
						|
	 * blocked on filesystem locks held by the GFP_NOFS thread.
 | 
						|
	 */
 | 
						|
	if (cc->gfp_mask & __GFP_FS) {
 | 
						|
		inactive >>= 3;
 | 
						|
		active >>= 3;
 | 
						|
	}
 | 
						|
 | 
						|
	too_many = isolated > (inactive + active) / 2;
 | 
						|
	if (!too_many)
 | 
						|
		wake_throttle_isolated(pgdat);
 | 
						|
 | 
						|
	return too_many;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * skip_isolation_on_order() - determine when to skip folio isolation based on
 | 
						|
 *			       folio order and compaction target order
 | 
						|
 * @order:		to-be-isolated folio order
 | 
						|
 * @target_order:	compaction target order
 | 
						|
 *
 | 
						|
 * This avoids unnecessary folio isolations during compaction.
 | 
						|
 */
 | 
						|
static bool skip_isolation_on_order(int order, int target_order)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Unless we are performing global compaction (i.e.,
 | 
						|
	 * is_via_compact_memory), skip any folios that are larger than the
 | 
						|
	 * target order: we wouldn't be here if we'd have a free folio with
 | 
						|
	 * the desired target_order, so migrating this folio would likely fail
 | 
						|
	 * later.
 | 
						|
	 */
 | 
						|
	if (!is_via_compact_memory(target_order) && order >= target_order)
 | 
						|
		return true;
 | 
						|
	/*
 | 
						|
	 * We limit memory compaction to pageblocks and won't try
 | 
						|
	 * creating free blocks of memory that are larger than that.
 | 
						|
	 */
 | 
						|
	return order >= pageblock_order;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * isolate_migratepages_block() - isolate all migrate-able pages within
 | 
						|
 *				  a single pageblock
 | 
						|
 * @cc:		Compaction control structure.
 | 
						|
 * @low_pfn:	The first PFN to isolate
 | 
						|
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 | 
						|
 * @mode:	Isolation mode to be used.
 | 
						|
 *
 | 
						|
 * Isolate all pages that can be migrated from the range specified by
 | 
						|
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 | 
						|
 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 | 
						|
 * -ENOMEM in case we could not allocate a page, or 0.
 | 
						|
 * cc->migrate_pfn will contain the next pfn to scan.
 | 
						|
 *
 | 
						|
 * The pages are isolated on cc->migratepages list (not required to be empty),
 | 
						|
 * and cc->nr_migratepages is updated accordingly.
 | 
						|
 */
 | 
						|
static int
 | 
						|
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 | 
						|
			unsigned long end_pfn, isolate_mode_t mode)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = cc->zone->zone_pgdat;
 | 
						|
	unsigned long nr_scanned = 0, nr_isolated = 0;
 | 
						|
	struct lruvec *lruvec;
 | 
						|
	unsigned long flags = 0;
 | 
						|
	struct lruvec *locked = NULL;
 | 
						|
	struct folio *folio = NULL;
 | 
						|
	struct page *page = NULL, *valid_page = NULL;
 | 
						|
	struct address_space *mapping;
 | 
						|
	unsigned long start_pfn = low_pfn;
 | 
						|
	bool skip_on_failure = false;
 | 
						|
	unsigned long next_skip_pfn = 0;
 | 
						|
	bool skip_updated = false;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	cc->migrate_pfn = low_pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that there are not too many pages isolated from the LRU
 | 
						|
	 * list by either parallel reclaimers or compaction. If there are,
 | 
						|
	 * delay for some time until fewer pages are isolated
 | 
						|
	 */
 | 
						|
	while (unlikely(too_many_isolated(cc))) {
 | 
						|
		/* stop isolation if there are still pages not migrated */
 | 
						|
		if (cc->nr_migratepages)
 | 
						|
			return -EAGAIN;
 | 
						|
 | 
						|
		/* async migration should just abort */
 | 
						|
		if (cc->mode == MIGRATE_ASYNC)
 | 
						|
			return -EAGAIN;
 | 
						|
 | 
						|
		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 | 
						|
 | 
						|
		if (fatal_signal_pending(current))
 | 
						|
			return -EINTR;
 | 
						|
	}
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 | 
						|
		skip_on_failure = true;
 | 
						|
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Time to isolate some pages for migration */
 | 
						|
	for (; low_pfn < end_pfn; low_pfn++) {
 | 
						|
		bool is_dirty, is_unevictable;
 | 
						|
 | 
						|
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 | 
						|
			/*
 | 
						|
			 * We have isolated all migration candidates in the
 | 
						|
			 * previous order-aligned block, and did not skip it due
 | 
						|
			 * to failure. We should migrate the pages now and
 | 
						|
			 * hopefully succeed compaction.
 | 
						|
			 */
 | 
						|
			if (nr_isolated)
 | 
						|
				break;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We failed to isolate in the previous order-aligned
 | 
						|
			 * block. Set the new boundary to the end of the
 | 
						|
			 * current block. Note we can't simply increase
 | 
						|
			 * next_skip_pfn by 1 << order, as low_pfn might have
 | 
						|
			 * been incremented by a higher number due to skipping
 | 
						|
			 * a compound or a high-order buddy page in the
 | 
						|
			 * previous loop iteration.
 | 
						|
			 */
 | 
						|
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Periodically drop the lock (if held) regardless of its
 | 
						|
		 * contention, to give chance to IRQs. Abort completely if
 | 
						|
		 * a fatal signal is pending.
 | 
						|
		 */
 | 
						|
		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 | 
						|
			if (locked) {
 | 
						|
				unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
				locked = NULL;
 | 
						|
			}
 | 
						|
 | 
						|
			if (fatal_signal_pending(current)) {
 | 
						|
				cc->contended = true;
 | 
						|
				ret = -EINTR;
 | 
						|
 | 
						|
				goto fatal_pending;
 | 
						|
			}
 | 
						|
 | 
						|
			cond_resched();
 | 
						|
		}
 | 
						|
 | 
						|
		nr_scanned++;
 | 
						|
 | 
						|
		page = pfn_to_page(low_pfn);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check if the pageblock has already been marked skipped.
 | 
						|
		 * Only the first PFN is checked as the caller isolates
 | 
						|
		 * COMPACT_CLUSTER_MAX at a time so the second call must
 | 
						|
		 * not falsely conclude that the block should be skipped.
 | 
						|
		 */
 | 
						|
		if (!valid_page && (pageblock_aligned(low_pfn) ||
 | 
						|
				    low_pfn == cc->zone->zone_start_pfn)) {
 | 
						|
			if (!isolation_suitable(cc, page)) {
 | 
						|
				low_pfn = end_pfn;
 | 
						|
				folio = NULL;
 | 
						|
				goto isolate_abort;
 | 
						|
			}
 | 
						|
			valid_page = page;
 | 
						|
		}
 | 
						|
 | 
						|
		if (PageHuge(page)) {
 | 
						|
			/*
 | 
						|
			 * skip hugetlbfs if we are not compacting for pages
 | 
						|
			 * bigger than its order. THPs and other compound pages
 | 
						|
			 * are handled below.
 | 
						|
			 */
 | 
						|
			if (!cc->alloc_contig) {
 | 
						|
				const unsigned int order = compound_order(page);
 | 
						|
 | 
						|
				if (order <= MAX_PAGE_ORDER) {
 | 
						|
					low_pfn += (1UL << order) - 1;
 | 
						|
					nr_scanned += (1UL << order) - 1;
 | 
						|
				}
 | 
						|
				goto isolate_fail;
 | 
						|
			}
 | 
						|
			/* for alloc_contig case */
 | 
						|
			if (locked) {
 | 
						|
				unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
				locked = NULL;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Fail isolation in case isolate_or_dissolve_huge_page()
 | 
						|
			 * reports an error. In case of -ENOMEM, abort right away.
 | 
						|
			 */
 | 
						|
			if (ret < 0) {
 | 
						|
				 /* Do not report -EBUSY down the chain */
 | 
						|
				if (ret == -EBUSY)
 | 
						|
					ret = 0;
 | 
						|
				low_pfn += compound_nr(page) - 1;
 | 
						|
				nr_scanned += compound_nr(page) - 1;
 | 
						|
				goto isolate_fail;
 | 
						|
			}
 | 
						|
 | 
						|
			if (PageHuge(page)) {
 | 
						|
				/*
 | 
						|
				 * Hugepage was successfully isolated and placed
 | 
						|
				 * on the cc->migratepages list.
 | 
						|
				 */
 | 
						|
				folio = page_folio(page);
 | 
						|
				low_pfn += folio_nr_pages(folio) - 1;
 | 
						|
				goto isolate_success_no_list;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Ok, the hugepage was dissolved. Now these pages are
 | 
						|
			 * Buddy and cannot be re-allocated because they are
 | 
						|
			 * isolated. Fall-through as the check below handles
 | 
						|
			 * Buddy pages.
 | 
						|
			 */
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Skip if free. We read page order here without zone lock
 | 
						|
		 * which is generally unsafe, but the race window is small and
 | 
						|
		 * the worst thing that can happen is that we skip some
 | 
						|
		 * potential isolation targets.
 | 
						|
		 */
 | 
						|
		if (PageBuddy(page)) {
 | 
						|
			unsigned long freepage_order = buddy_order_unsafe(page);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Without lock, we cannot be sure that what we got is
 | 
						|
			 * a valid page order. Consider only values in the
 | 
						|
			 * valid order range to prevent low_pfn overflow.
 | 
						|
			 */
 | 
						|
			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
 | 
						|
				low_pfn += (1UL << freepage_order) - 1;
 | 
						|
				nr_scanned += (1UL << freepage_order) - 1;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Regardless of being on LRU, compound pages such as THP
 | 
						|
		 * (hugetlbfs is handled above) are not to be compacted unless
 | 
						|
		 * we are attempting an allocation larger than the compound
 | 
						|
		 * page size. We can potentially save a lot of iterations if we
 | 
						|
		 * skip them at once. The check is racy, but we can consider
 | 
						|
		 * only valid values and the only danger is skipping too much.
 | 
						|
		 */
 | 
						|
		if (PageCompound(page) && !cc->alloc_contig) {
 | 
						|
			const unsigned int order = compound_order(page);
 | 
						|
 | 
						|
			/* Skip based on page order and compaction target order. */
 | 
						|
			if (skip_isolation_on_order(order, cc->order)) {
 | 
						|
				if (order <= MAX_PAGE_ORDER) {
 | 
						|
					low_pfn += (1UL << order) - 1;
 | 
						|
					nr_scanned += (1UL << order) - 1;
 | 
						|
				}
 | 
						|
				goto isolate_fail;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check may be lockless but that's ok as we recheck later.
 | 
						|
		 * It's possible to migrate LRU and non-lru movable pages.
 | 
						|
		 * Skip any other type of page
 | 
						|
		 */
 | 
						|
		if (!PageLRU(page)) {
 | 
						|
			/*
 | 
						|
			 * __PageMovable can return false positive so we need
 | 
						|
			 * to verify it under page_lock.
 | 
						|
			 */
 | 
						|
			if (unlikely(__PageMovable(page)) &&
 | 
						|
					!PageIsolated(page)) {
 | 
						|
				if (locked) {
 | 
						|
					unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
					locked = NULL;
 | 
						|
				}
 | 
						|
 | 
						|
				if (isolate_movable_page(page, mode)) {
 | 
						|
					folio = page_folio(page);
 | 
						|
					goto isolate_success;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			goto isolate_fail;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Be careful not to clear PageLRU until after we're
 | 
						|
		 * sure the page is not being freed elsewhere -- the
 | 
						|
		 * page release code relies on it.
 | 
						|
		 */
 | 
						|
		folio = folio_get_nontail_page(page);
 | 
						|
		if (unlikely(!folio))
 | 
						|
			goto isolate_fail;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Migration will fail if an anonymous page is pinned in memory,
 | 
						|
		 * so avoid taking lru_lock and isolating it unnecessarily in an
 | 
						|
		 * admittedly racy check.
 | 
						|
		 */
 | 
						|
		mapping = folio_mapping(folio);
 | 
						|
		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Only allow to migrate anonymous pages in GFP_NOFS context
 | 
						|
		 * because those do not depend on fs locks.
 | 
						|
		 */
 | 
						|
		if (!(cc->gfp_mask & __GFP_FS) && mapping)
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		/* Only take pages on LRU: a check now makes later tests safe */
 | 
						|
		if (!folio_test_lru(folio))
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		is_unevictable = folio_test_unevictable(folio);
 | 
						|
 | 
						|
		/* Compaction might skip unevictable pages but CMA takes them */
 | 
						|
		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * To minimise LRU disruption, the caller can indicate with
 | 
						|
		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
 | 
						|
		 * it will be able to migrate without blocking - clean pages
 | 
						|
		 * for the most part.  PageWriteback would require blocking.
 | 
						|
		 */
 | 
						|
		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		is_dirty = folio_test_dirty(folio);
 | 
						|
 | 
						|
		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
 | 
						|
		    (mapping && is_unevictable)) {
 | 
						|
			bool migrate_dirty = true;
 | 
						|
			bool is_inaccessible;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Only folios without mappings or that have
 | 
						|
			 * a ->migrate_folio callback are possible to migrate
 | 
						|
			 * without blocking.
 | 
						|
			 *
 | 
						|
			 * Folios from inaccessible mappings are not migratable.
 | 
						|
			 *
 | 
						|
			 * However, we can be racing with truncation, which can
 | 
						|
			 * free the mapping that we need to check. Truncation
 | 
						|
			 * holds the folio lock until after the folio is removed
 | 
						|
			 * from the page so holding it ourselves is sufficient.
 | 
						|
			 *
 | 
						|
			 * To avoid locking the folio just to check inaccessible,
 | 
						|
			 * assume every inaccessible folio is also unevictable,
 | 
						|
			 * which is a cheaper test.  If our assumption goes
 | 
						|
			 * wrong, it's not a correctness bug, just potentially
 | 
						|
			 * wasted cycles.
 | 
						|
			 */
 | 
						|
			if (!folio_trylock(folio))
 | 
						|
				goto isolate_fail_put;
 | 
						|
 | 
						|
			mapping = folio_mapping(folio);
 | 
						|
			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
 | 
						|
				migrate_dirty = !mapping ||
 | 
						|
						mapping->a_ops->migrate_folio;
 | 
						|
			}
 | 
						|
			is_inaccessible = mapping && mapping_inaccessible(mapping);
 | 
						|
			folio_unlock(folio);
 | 
						|
			if (!migrate_dirty || is_inaccessible)
 | 
						|
				goto isolate_fail_put;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Try isolate the folio */
 | 
						|
		if (!folio_test_clear_lru(folio))
 | 
						|
			goto isolate_fail_put;
 | 
						|
 | 
						|
		lruvec = folio_lruvec(folio);
 | 
						|
 | 
						|
		/* If we already hold the lock, we can skip some rechecking */
 | 
						|
		if (lruvec != locked) {
 | 
						|
			if (locked)
 | 
						|
				unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
 | 
						|
			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
 | 
						|
			locked = lruvec;
 | 
						|
 | 
						|
			lruvec_memcg_debug(lruvec, folio);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Try get exclusive access under lock. If marked for
 | 
						|
			 * skip, the scan is aborted unless the current context
 | 
						|
			 * is a rescan to reach the end of the pageblock.
 | 
						|
			 */
 | 
						|
			if (!skip_updated && valid_page) {
 | 
						|
				skip_updated = true;
 | 
						|
				if (test_and_set_skip(cc, valid_page) &&
 | 
						|
				    !cc->finish_pageblock) {
 | 
						|
					low_pfn = end_pfn;
 | 
						|
					goto isolate_abort;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Check LRU folio order under the lock
 | 
						|
			 */
 | 
						|
			if (unlikely(skip_isolation_on_order(folio_order(folio),
 | 
						|
							     cc->order) &&
 | 
						|
				     !cc->alloc_contig)) {
 | 
						|
				low_pfn += folio_nr_pages(folio) - 1;
 | 
						|
				nr_scanned += folio_nr_pages(folio) - 1;
 | 
						|
				folio_set_lru(folio);
 | 
						|
				goto isolate_fail_put;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* The folio is taken off the LRU */
 | 
						|
		if (folio_test_large(folio))
 | 
						|
			low_pfn += folio_nr_pages(folio) - 1;
 | 
						|
 | 
						|
		/* Successfully isolated */
 | 
						|
		lruvec_del_folio(lruvec, folio);
 | 
						|
		node_stat_mod_folio(folio,
 | 
						|
				NR_ISOLATED_ANON + folio_is_file_lru(folio),
 | 
						|
				folio_nr_pages(folio));
 | 
						|
 | 
						|
isolate_success:
 | 
						|
		list_add(&folio->lru, &cc->migratepages);
 | 
						|
isolate_success_no_list:
 | 
						|
		cc->nr_migratepages += folio_nr_pages(folio);
 | 
						|
		nr_isolated += folio_nr_pages(folio);
 | 
						|
		nr_scanned += folio_nr_pages(folio) - 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid isolating too much unless this block is being
 | 
						|
		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
 | 
						|
		 * or a lock is contended. For contention, isolate quickly to
 | 
						|
		 * potentially remove one source of contention.
 | 
						|
		 */
 | 
						|
		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
 | 
						|
		    !cc->finish_pageblock && !cc->contended) {
 | 
						|
			++low_pfn;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		continue;
 | 
						|
 | 
						|
isolate_fail_put:
 | 
						|
		/* Avoid potential deadlock in freeing page under lru_lock */
 | 
						|
		if (locked) {
 | 
						|
			unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
			locked = NULL;
 | 
						|
		}
 | 
						|
		folio_put(folio);
 | 
						|
 | 
						|
isolate_fail:
 | 
						|
		if (!skip_on_failure && ret != -ENOMEM)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have isolated some pages, but then failed. Release them
 | 
						|
		 * instead of migrating, as we cannot form the cc->order buddy
 | 
						|
		 * page anyway.
 | 
						|
		 */
 | 
						|
		if (nr_isolated) {
 | 
						|
			if (locked) {
 | 
						|
				unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
				locked = NULL;
 | 
						|
			}
 | 
						|
			putback_movable_pages(&cc->migratepages);
 | 
						|
			cc->nr_migratepages = 0;
 | 
						|
			nr_isolated = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (low_pfn < next_skip_pfn) {
 | 
						|
			low_pfn = next_skip_pfn - 1;
 | 
						|
			/*
 | 
						|
			 * The check near the loop beginning would have updated
 | 
						|
			 * next_skip_pfn too, but this is a bit simpler.
 | 
						|
			 */
 | 
						|
			next_skip_pfn += 1UL << cc->order;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret == -ENOMEM)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The PageBuddy() check could have potentially brought us outside
 | 
						|
	 * the range to be scanned.
 | 
						|
	 */
 | 
						|
	if (unlikely(low_pfn > end_pfn))
 | 
						|
		low_pfn = end_pfn;
 | 
						|
 | 
						|
	folio = NULL;
 | 
						|
 | 
						|
isolate_abort:
 | 
						|
	if (locked)
 | 
						|
		unlock_page_lruvec_irqrestore(locked, flags);
 | 
						|
	if (folio) {
 | 
						|
		folio_set_lru(folio);
 | 
						|
		folio_put(folio);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update the cached scanner pfn once the pageblock has been scanned.
 | 
						|
	 * Pages will either be migrated in which case there is no point
 | 
						|
	 * scanning in the near future or migration failed in which case the
 | 
						|
	 * failure reason may persist. The block is marked for skipping if
 | 
						|
	 * there were no pages isolated in the block or if the block is
 | 
						|
	 * rescanned twice in a row.
 | 
						|
	 */
 | 
						|
	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
 | 
						|
		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
 | 
						|
			set_pageblock_skip(valid_page);
 | 
						|
		update_cached_migrate(cc, low_pfn);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 | 
						|
						nr_scanned, nr_isolated);
 | 
						|
 | 
						|
fatal_pending:
 | 
						|
	cc->total_migrate_scanned += nr_scanned;
 | 
						|
	if (nr_isolated)
 | 
						|
		count_compact_events(COMPACTISOLATED, nr_isolated);
 | 
						|
 | 
						|
	cc->migrate_pfn = low_pfn;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 | 
						|
 * @cc:        Compaction control structure.
 | 
						|
 * @start_pfn: The first PFN to start isolating.
 | 
						|
 * @end_pfn:   The one-past-last PFN.
 | 
						|
 *
 | 
						|
 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
 | 
						|
 * in case we could not allocate a page, or 0.
 | 
						|
 */
 | 
						|
int
 | 
						|
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 | 
						|
							unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long pfn, block_start_pfn, block_end_pfn;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/* Scan block by block. First and last block may be incomplete */
 | 
						|
	pfn = start_pfn;
 | 
						|
	block_start_pfn = pageblock_start_pfn(pfn);
 | 
						|
	if (block_start_pfn < cc->zone->zone_start_pfn)
 | 
						|
		block_start_pfn = cc->zone->zone_start_pfn;
 | 
						|
	block_end_pfn = pageblock_end_pfn(pfn);
 | 
						|
 | 
						|
	for (; pfn < end_pfn; pfn = block_end_pfn,
 | 
						|
				block_start_pfn = block_end_pfn,
 | 
						|
				block_end_pfn += pageblock_nr_pages) {
 | 
						|
 | 
						|
		block_end_pfn = min(block_end_pfn, end_pfn);
 | 
						|
 | 
						|
		if (!pageblock_pfn_to_page(block_start_pfn,
 | 
						|
					block_end_pfn, cc->zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
 | 
						|
						 ISOLATE_UNEVICTABLE);
 | 
						|
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
 | 
						|
static bool suitable_migration_source(struct compact_control *cc,
 | 
						|
							struct page *page)
 | 
						|
{
 | 
						|
	int block_mt;
 | 
						|
 | 
						|
	if (pageblock_skip_persistent(page))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
 | 
						|
		return true;
 | 
						|
 | 
						|
	block_mt = get_pageblock_migratetype(page);
 | 
						|
 | 
						|
	if (cc->migratetype == MIGRATE_MOVABLE)
 | 
						|
		return is_migrate_movable(block_mt);
 | 
						|
	else
 | 
						|
		return block_mt == cc->migratetype;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the page is within a block suitable for migration to */
 | 
						|
static bool suitable_migration_target(struct compact_control *cc,
 | 
						|
							struct page *page)
 | 
						|
{
 | 
						|
	/* If the page is a large free page, then disallow migration */
 | 
						|
	if (PageBuddy(page)) {
 | 
						|
		int order = cc->order > 0 ? cc->order : pageblock_order;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We are checking page_order without zone->lock taken. But
 | 
						|
		 * the only small danger is that we skip a potentially suitable
 | 
						|
		 * pageblock, so it's not worth to check order for valid range.
 | 
						|
		 */
 | 
						|
		if (buddy_order_unsafe(page) >= order)
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cc->ignore_block_suitable)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 | 
						|
	if (is_migrate_movable(get_pageblock_migratetype(page)))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* Otherwise skip the block */
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int
 | 
						|
freelist_scan_limit(struct compact_control *cc)
 | 
						|
{
 | 
						|
	unsigned short shift = BITS_PER_LONG - 1;
 | 
						|
 | 
						|
	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Test whether the free scanner has reached the same or lower pageblock than
 | 
						|
 * the migration scanner, and compaction should thus terminate.
 | 
						|
 */
 | 
						|
static inline bool compact_scanners_met(struct compact_control *cc)
 | 
						|
{
 | 
						|
	return (cc->free_pfn >> pageblock_order)
 | 
						|
		<= (cc->migrate_pfn >> pageblock_order);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used when scanning for a suitable migration target which scans freelists
 | 
						|
 * in reverse. Reorders the list such as the unscanned pages are scanned
 | 
						|
 * first on the next iteration of the free scanner
 | 
						|
 */
 | 
						|
static void
 | 
						|
move_freelist_head(struct list_head *freelist, struct page *freepage)
 | 
						|
{
 | 
						|
	LIST_HEAD(sublist);
 | 
						|
 | 
						|
	if (!list_is_first(&freepage->buddy_list, freelist)) {
 | 
						|
		list_cut_before(&sublist, freelist, &freepage->buddy_list);
 | 
						|
		list_splice_tail(&sublist, freelist);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to move_freelist_head except used by the migration scanner
 | 
						|
 * when scanning forward. It's possible for these list operations to
 | 
						|
 * move against each other if they search the free list exactly in
 | 
						|
 * lockstep.
 | 
						|
 */
 | 
						|
static void
 | 
						|
move_freelist_tail(struct list_head *freelist, struct page *freepage)
 | 
						|
{
 | 
						|
	LIST_HEAD(sublist);
 | 
						|
 | 
						|
	if (!list_is_last(&freepage->buddy_list, freelist)) {
 | 
						|
		list_cut_position(&sublist, freelist, &freepage->buddy_list);
 | 
						|
		list_splice_tail(&sublist, freelist);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fast_isolate_around(struct compact_control *cc, unsigned long pfn)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	/* Do not search around if there are enough pages already */
 | 
						|
	if (cc->nr_freepages >= cc->nr_migratepages)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Minimise scanning during async compaction */
 | 
						|
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Pageblock boundaries */
 | 
						|
	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
 | 
						|
	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
 | 
						|
 | 
						|
	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
 | 
						|
	if (!page)
 | 
						|
		return;
 | 
						|
 | 
						|
	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
 | 
						|
 | 
						|
	/* Skip this pageblock in the future as it's full or nearly full */
 | 
						|
	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
 | 
						|
		set_pageblock_skip(page);
 | 
						|
}
 | 
						|
 | 
						|
/* Search orders in round-robin fashion */
 | 
						|
static int next_search_order(struct compact_control *cc, int order)
 | 
						|
{
 | 
						|
	order--;
 | 
						|
	if (order < 0)
 | 
						|
		order = cc->order - 1;
 | 
						|
 | 
						|
	/* Search wrapped around? */
 | 
						|
	if (order == cc->search_order) {
 | 
						|
		cc->search_order--;
 | 
						|
		if (cc->search_order < 0)
 | 
						|
			cc->search_order = cc->order - 1;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return order;
 | 
						|
}
 | 
						|
 | 
						|
static void fast_isolate_freepages(struct compact_control *cc)
 | 
						|
{
 | 
						|
	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
 | 
						|
	unsigned int nr_scanned = 0, total_isolated = 0;
 | 
						|
	unsigned long low_pfn, min_pfn, highest = 0;
 | 
						|
	unsigned long nr_isolated = 0;
 | 
						|
	unsigned long distance;
 | 
						|
	struct page *page = NULL;
 | 
						|
	bool scan_start = false;
 | 
						|
	int order;
 | 
						|
 | 
						|
	/* Full compaction passes in a negative order */
 | 
						|
	if (cc->order <= 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If starting the scan, use a deeper search and use the highest
 | 
						|
	 * PFN found if a suitable one is not found.
 | 
						|
	 */
 | 
						|
	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
 | 
						|
		limit = pageblock_nr_pages >> 1;
 | 
						|
		scan_start = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Preferred point is in the top quarter of the scan space but take
 | 
						|
	 * a pfn from the top half if the search is problematic.
 | 
						|
	 */
 | 
						|
	distance = (cc->free_pfn - cc->migrate_pfn);
 | 
						|
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
 | 
						|
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(min_pfn > low_pfn))
 | 
						|
		low_pfn = min_pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search starts from the last successful isolation order or the next
 | 
						|
	 * order to search after a previous failure
 | 
						|
	 */
 | 
						|
	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
 | 
						|
 | 
						|
	for (order = cc->search_order;
 | 
						|
	     !page && order >= 0;
 | 
						|
	     order = next_search_order(cc, order)) {
 | 
						|
		struct free_area *area = &cc->zone->free_area[order];
 | 
						|
		struct list_head *freelist;
 | 
						|
		struct page *freepage;
 | 
						|
		unsigned long flags;
 | 
						|
		unsigned int order_scanned = 0;
 | 
						|
		unsigned long high_pfn = 0;
 | 
						|
 | 
						|
		if (!area->nr_free)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock_irqsave(&cc->zone->lock, flags);
 | 
						|
		freelist = &area->free_list[MIGRATE_MOVABLE];
 | 
						|
		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
 | 
						|
			unsigned long pfn;
 | 
						|
 | 
						|
			order_scanned++;
 | 
						|
			nr_scanned++;
 | 
						|
			pfn = page_to_pfn(freepage);
 | 
						|
 | 
						|
			if (pfn >= highest)
 | 
						|
				highest = max(pageblock_start_pfn(pfn),
 | 
						|
					      cc->zone->zone_start_pfn);
 | 
						|
 | 
						|
			if (pfn >= low_pfn) {
 | 
						|
				cc->fast_search_fail = 0;
 | 
						|
				cc->search_order = order;
 | 
						|
				page = freepage;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (pfn >= min_pfn && pfn > high_pfn) {
 | 
						|
				high_pfn = pfn;
 | 
						|
 | 
						|
				/* Shorten the scan if a candidate is found */
 | 
						|
				limit >>= 1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (order_scanned >= limit)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Use a maximum candidate pfn if a preferred one was not found */
 | 
						|
		if (!page && high_pfn) {
 | 
						|
			page = pfn_to_page(high_pfn);
 | 
						|
 | 
						|
			/* Update freepage for the list reorder below */
 | 
						|
			freepage = page;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Reorder to so a future search skips recent pages */
 | 
						|
		move_freelist_head(freelist, freepage);
 | 
						|
 | 
						|
		/* Isolate the page if available */
 | 
						|
		if (page) {
 | 
						|
			if (__isolate_free_page(page, order)) {
 | 
						|
				set_page_private(page, order);
 | 
						|
				nr_isolated = 1 << order;
 | 
						|
				nr_scanned += nr_isolated - 1;
 | 
						|
				total_isolated += nr_isolated;
 | 
						|
				cc->nr_freepages += nr_isolated;
 | 
						|
				list_add_tail(&page->lru, &cc->freepages[order]);
 | 
						|
				count_compact_events(COMPACTISOLATED, nr_isolated);
 | 
						|
			} else {
 | 
						|
				/* If isolation fails, abort the search */
 | 
						|
				order = cc->search_order + 1;
 | 
						|
				page = NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock_irqrestore(&cc->zone->lock, flags);
 | 
						|
 | 
						|
		/* Skip fast search if enough freepages isolated */
 | 
						|
		if (cc->nr_freepages >= cc->nr_migratepages)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Smaller scan on next order so the total scan is related
 | 
						|
		 * to freelist_scan_limit.
 | 
						|
		 */
 | 
						|
		if (order_scanned >= limit)
 | 
						|
			limit = max(1U, limit >> 1);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
 | 
						|
						   nr_scanned, total_isolated);
 | 
						|
 | 
						|
	if (!page) {
 | 
						|
		cc->fast_search_fail++;
 | 
						|
		if (scan_start) {
 | 
						|
			/*
 | 
						|
			 * Use the highest PFN found above min. If one was
 | 
						|
			 * not found, be pessimistic for direct compaction
 | 
						|
			 * and use the min mark.
 | 
						|
			 */
 | 
						|
			if (highest >= min_pfn) {
 | 
						|
				page = pfn_to_page(highest);
 | 
						|
				cc->free_pfn = highest;
 | 
						|
			} else {
 | 
						|
				if (cc->direct_compaction && pfn_valid(min_pfn)) {
 | 
						|
					page = pageblock_pfn_to_page(min_pfn,
 | 
						|
						min(pageblock_end_pfn(min_pfn),
 | 
						|
						    zone_end_pfn(cc->zone)),
 | 
						|
						cc->zone);
 | 
						|
					if (page && !suitable_migration_target(cc, page))
 | 
						|
						page = NULL;
 | 
						|
 | 
						|
					cc->free_pfn = min_pfn;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
 | 
						|
		highest -= pageblock_nr_pages;
 | 
						|
		cc->zone->compact_cached_free_pfn = highest;
 | 
						|
	}
 | 
						|
 | 
						|
	cc->total_free_scanned += nr_scanned;
 | 
						|
	if (!page)
 | 
						|
		return;
 | 
						|
 | 
						|
	low_pfn = page_to_pfn(page);
 | 
						|
	fast_isolate_around(cc, low_pfn);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Based on information in the current compact_control, find blocks
 | 
						|
 * suitable for isolating free pages from and then isolate them.
 | 
						|
 */
 | 
						|
static void isolate_freepages(struct compact_control *cc)
 | 
						|
{
 | 
						|
	struct zone *zone = cc->zone;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long block_start_pfn;	/* start of current pageblock */
 | 
						|
	unsigned long isolate_start_pfn; /* exact pfn we start at */
 | 
						|
	unsigned long block_end_pfn;	/* end of current pageblock */
 | 
						|
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 | 
						|
	unsigned int stride;
 | 
						|
 | 
						|
	/* Try a small search of the free lists for a candidate */
 | 
						|
	fast_isolate_freepages(cc);
 | 
						|
	if (cc->nr_freepages)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialise the free scanner. The starting point is where we last
 | 
						|
	 * successfully isolated from, zone-cached value, or the end of the
 | 
						|
	 * zone when isolating for the first time. For looping we also need
 | 
						|
	 * this pfn aligned down to the pageblock boundary, because we do
 | 
						|
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
 | 
						|
	 * For ending point, take care when isolating in last pageblock of a
 | 
						|
	 * zone which ends in the middle of a pageblock.
 | 
						|
	 * The low boundary is the end of the pageblock the migration scanner
 | 
						|
	 * is using.
 | 
						|
	 */
 | 
						|
	isolate_start_pfn = cc->free_pfn;
 | 
						|
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
 | 
						|
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
 | 
						|
						zone_end_pfn(zone));
 | 
						|
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
 | 
						|
	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Isolate free pages until enough are available to migrate the
 | 
						|
	 * pages on cc->migratepages. We stop searching if the migrate
 | 
						|
	 * and free page scanners meet or enough free pages are isolated.
 | 
						|
	 */
 | 
						|
	for (; block_start_pfn >= low_pfn;
 | 
						|
				block_end_pfn = block_start_pfn,
 | 
						|
				block_start_pfn -= pageblock_nr_pages,
 | 
						|
				isolate_start_pfn = block_start_pfn) {
 | 
						|
		unsigned long nr_isolated;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This can iterate a massively long zone without finding any
 | 
						|
		 * suitable migration targets, so periodically check resched.
 | 
						|
		 */
 | 
						|
		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
 | 
						|
			cond_resched();
 | 
						|
 | 
						|
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
 | 
						|
									zone);
 | 
						|
		if (!page) {
 | 
						|
			unsigned long next_pfn;
 | 
						|
 | 
						|
			next_pfn = skip_offline_sections_reverse(block_start_pfn);
 | 
						|
			if (next_pfn)
 | 
						|
				block_start_pfn = max(next_pfn, low_pfn);
 | 
						|
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Check the block is suitable for migration */
 | 
						|
		if (!suitable_migration_target(cc, page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* If isolation recently failed, do not retry */
 | 
						|
		if (!isolation_suitable(cc, page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Found a block suitable for isolating free pages from. */
 | 
						|
		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 | 
						|
					block_end_pfn, cc->freepages, stride, false);
 | 
						|
 | 
						|
		/* Update the skip hint if the full pageblock was scanned */
 | 
						|
		if (isolate_start_pfn == block_end_pfn)
 | 
						|
			update_pageblock_skip(cc, page, block_start_pfn -
 | 
						|
					      pageblock_nr_pages);
 | 
						|
 | 
						|
		/* Are enough freepages isolated? */
 | 
						|
		if (cc->nr_freepages >= cc->nr_migratepages) {
 | 
						|
			if (isolate_start_pfn >= block_end_pfn) {
 | 
						|
				/*
 | 
						|
				 * Restart at previous pageblock if more
 | 
						|
				 * freepages can be isolated next time.
 | 
						|
				 */
 | 
						|
				isolate_start_pfn =
 | 
						|
					block_start_pfn - pageblock_nr_pages;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		} else if (isolate_start_pfn < block_end_pfn) {
 | 
						|
			/*
 | 
						|
			 * If isolation failed early, do not continue
 | 
						|
			 * needlessly.
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Adjust stride depending on isolation */
 | 
						|
		if (nr_isolated) {
 | 
						|
			stride = 1;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Record where the free scanner will restart next time. Either we
 | 
						|
	 * broke from the loop and set isolate_start_pfn based on the last
 | 
						|
	 * call to isolate_freepages_block(), or we met the migration scanner
 | 
						|
	 * and the loop terminated due to isolate_start_pfn < low_pfn
 | 
						|
	 */
 | 
						|
	cc->free_pfn = isolate_start_pfn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a migrate-callback that "allocates" freepages by taking pages
 | 
						|
 * from the isolated freelists in the block we are migrating to.
 | 
						|
 */
 | 
						|
static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
 | 
						|
{
 | 
						|
	struct compact_control *cc = (struct compact_control *)data;
 | 
						|
	struct folio *dst;
 | 
						|
	int order = folio_order(src);
 | 
						|
	bool has_isolated_pages = false;
 | 
						|
	int start_order;
 | 
						|
	struct page *freepage;
 | 
						|
	unsigned long size;
 | 
						|
 | 
						|
again:
 | 
						|
	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
 | 
						|
		if (!list_empty(&cc->freepages[start_order]))
 | 
						|
			break;
 | 
						|
 | 
						|
	/* no free pages in the list */
 | 
						|
	if (start_order == NR_PAGE_ORDERS) {
 | 
						|
		if (has_isolated_pages)
 | 
						|
			return NULL;
 | 
						|
		isolate_freepages(cc);
 | 
						|
		has_isolated_pages = true;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	freepage = list_first_entry(&cc->freepages[start_order], struct page,
 | 
						|
				lru);
 | 
						|
	size = 1 << start_order;
 | 
						|
 | 
						|
	list_del(&freepage->lru);
 | 
						|
 | 
						|
	while (start_order > order) {
 | 
						|
		start_order--;
 | 
						|
		size >>= 1;
 | 
						|
 | 
						|
		list_add(&freepage[size].lru, &cc->freepages[start_order]);
 | 
						|
		set_page_private(&freepage[size], start_order);
 | 
						|
	}
 | 
						|
	dst = (struct folio *)freepage;
 | 
						|
 | 
						|
	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
 | 
						|
	if (order)
 | 
						|
		prep_compound_page(&dst->page, order);
 | 
						|
	cc->nr_freepages -= 1 << order;
 | 
						|
	cc->nr_migratepages -= 1 << order;
 | 
						|
	return page_rmappable_folio(&dst->page);
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *compaction_alloc(struct folio *src, unsigned long data)
 | 
						|
{
 | 
						|
	return alloc_hooks(compaction_alloc_noprof(src, data));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a migrate-callback that "frees" freepages back to the isolated
 | 
						|
 * freelist.  All pages on the freelist are from the same zone, so there is no
 | 
						|
 * special handling needed for NUMA.
 | 
						|
 */
 | 
						|
static void compaction_free(struct folio *dst, unsigned long data)
 | 
						|
{
 | 
						|
	struct compact_control *cc = (struct compact_control *)data;
 | 
						|
	int order = folio_order(dst);
 | 
						|
	struct page *page = &dst->page;
 | 
						|
 | 
						|
	if (folio_put_testzero(dst)) {
 | 
						|
		free_pages_prepare(page, order);
 | 
						|
		list_add(&dst->lru, &cc->freepages[order]);
 | 
						|
		cc->nr_freepages += 1 << order;
 | 
						|
	}
 | 
						|
	cc->nr_migratepages += 1 << order;
 | 
						|
	/*
 | 
						|
	 * someone else has referenced the page, we cannot take it back to our
 | 
						|
	 * free list.
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
/* possible outcome of isolate_migratepages */
 | 
						|
typedef enum {
 | 
						|
	ISOLATE_ABORT,		/* Abort compaction now */
 | 
						|
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
 | 
						|
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
 | 
						|
} isolate_migrate_t;
 | 
						|
 | 
						|
/*
 | 
						|
 * Allow userspace to control policy on scanning the unevictable LRU for
 | 
						|
 * compactable pages.
 | 
						|
 */
 | 
						|
static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
 | 
						|
/*
 | 
						|
 * Tunable for proactive compaction. It determines how
 | 
						|
 * aggressively the kernel should compact memory in the
 | 
						|
 * background. It takes values in the range [0, 100].
 | 
						|
 */
 | 
						|
static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
 | 
						|
static int sysctl_extfrag_threshold = 500;
 | 
						|
static int __read_mostly sysctl_compact_memory;
 | 
						|
 | 
						|
static inline void
 | 
						|
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
 | 
						|
{
 | 
						|
	if (cc->fast_start_pfn == ULONG_MAX)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!cc->fast_start_pfn)
 | 
						|
		cc->fast_start_pfn = pfn;
 | 
						|
 | 
						|
	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long
 | 
						|
reinit_migrate_pfn(struct compact_control *cc)
 | 
						|
{
 | 
						|
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
 | 
						|
		return cc->migrate_pfn;
 | 
						|
 | 
						|
	cc->migrate_pfn = cc->fast_start_pfn;
 | 
						|
	cc->fast_start_pfn = ULONG_MAX;
 | 
						|
 | 
						|
	return cc->migrate_pfn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Briefly search the free lists for a migration source that already has
 | 
						|
 * some free pages to reduce the number of pages that need migration
 | 
						|
 * before a pageblock is free.
 | 
						|
 */
 | 
						|
static unsigned long fast_find_migrateblock(struct compact_control *cc)
 | 
						|
{
 | 
						|
	unsigned int limit = freelist_scan_limit(cc);
 | 
						|
	unsigned int nr_scanned = 0;
 | 
						|
	unsigned long distance;
 | 
						|
	unsigned long pfn = cc->migrate_pfn;
 | 
						|
	unsigned long high_pfn;
 | 
						|
	int order;
 | 
						|
	bool found_block = false;
 | 
						|
 | 
						|
	/* Skip hints are relied on to avoid repeats on the fast search */
 | 
						|
	if (cc->ignore_skip_hint)
 | 
						|
		return pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the pageblock should be finished then do not select a different
 | 
						|
	 * pageblock.
 | 
						|
	 */
 | 
						|
	if (cc->finish_pageblock)
 | 
						|
		return pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the migrate_pfn is not at the start of a zone or the start
 | 
						|
	 * of a pageblock then assume this is a continuation of a previous
 | 
						|
	 * scan restarted due to COMPACT_CLUSTER_MAX.
 | 
						|
	 */
 | 
						|
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
 | 
						|
		return pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For smaller orders, just linearly scan as the number of pages
 | 
						|
	 * to migrate should be relatively small and does not necessarily
 | 
						|
	 * justify freeing up a large block for a small allocation.
 | 
						|
	 */
 | 
						|
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
 | 
						|
		return pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only allow kcompactd and direct requests for movable pages to
 | 
						|
	 * quickly clear out a MOVABLE pageblock for allocation. This
 | 
						|
	 * reduces the risk that a large movable pageblock is freed for
 | 
						|
	 * an unmovable/reclaimable small allocation.
 | 
						|
	 */
 | 
						|
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
 | 
						|
		return pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When starting the migration scanner, pick any pageblock within the
 | 
						|
	 * first half of the search space. Otherwise try and pick a pageblock
 | 
						|
	 * within the first eighth to reduce the chances that a migration
 | 
						|
	 * target later becomes a source.
 | 
						|
	 */
 | 
						|
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
 | 
						|
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
 | 
						|
		distance >>= 2;
 | 
						|
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
 | 
						|
 | 
						|
	for (order = cc->order - 1;
 | 
						|
	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
 | 
						|
	     order--) {
 | 
						|
		struct free_area *area = &cc->zone->free_area[order];
 | 
						|
		struct list_head *freelist;
 | 
						|
		unsigned long flags;
 | 
						|
		struct page *freepage;
 | 
						|
 | 
						|
		if (!area->nr_free)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock_irqsave(&cc->zone->lock, flags);
 | 
						|
		freelist = &area->free_list[MIGRATE_MOVABLE];
 | 
						|
		list_for_each_entry(freepage, freelist, buddy_list) {
 | 
						|
			unsigned long free_pfn;
 | 
						|
 | 
						|
			if (nr_scanned++ >= limit) {
 | 
						|
				move_freelist_tail(freelist, freepage);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			free_pfn = page_to_pfn(freepage);
 | 
						|
			if (free_pfn < high_pfn) {
 | 
						|
				/*
 | 
						|
				 * Avoid if skipped recently. Ideally it would
 | 
						|
				 * move to the tail but even safe iteration of
 | 
						|
				 * the list assumes an entry is deleted, not
 | 
						|
				 * reordered.
 | 
						|
				 */
 | 
						|
				if (get_pageblock_skip(freepage))
 | 
						|
					continue;
 | 
						|
 | 
						|
				/* Reorder to so a future search skips recent pages */
 | 
						|
				move_freelist_tail(freelist, freepage);
 | 
						|
 | 
						|
				update_fast_start_pfn(cc, free_pfn);
 | 
						|
				pfn = pageblock_start_pfn(free_pfn);
 | 
						|
				if (pfn < cc->zone->zone_start_pfn)
 | 
						|
					pfn = cc->zone->zone_start_pfn;
 | 
						|
				cc->fast_search_fail = 0;
 | 
						|
				found_block = true;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&cc->zone->lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	cc->total_migrate_scanned += nr_scanned;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If fast scanning failed then use a cached entry for a page block
 | 
						|
	 * that had free pages as the basis for starting a linear scan.
 | 
						|
	 */
 | 
						|
	if (!found_block) {
 | 
						|
		cc->fast_search_fail++;
 | 
						|
		pfn = reinit_migrate_pfn(cc);
 | 
						|
	}
 | 
						|
	return pfn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Isolate all pages that can be migrated from the first suitable block,
 | 
						|
 * starting at the block pointed to by the migrate scanner pfn within
 | 
						|
 * compact_control.
 | 
						|
 */
 | 
						|
static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
 | 
						|
{
 | 
						|
	unsigned long block_start_pfn;
 | 
						|
	unsigned long block_end_pfn;
 | 
						|
	unsigned long low_pfn;
 | 
						|
	struct page *page;
 | 
						|
	const isolate_mode_t isolate_mode =
 | 
						|
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
 | 
						|
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 | 
						|
	bool fast_find_block;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start at where we last stopped, or beginning of the zone as
 | 
						|
	 * initialized by compact_zone(). The first failure will use
 | 
						|
	 * the lowest PFN as the starting point for linear scanning.
 | 
						|
	 */
 | 
						|
	low_pfn = fast_find_migrateblock(cc);
 | 
						|
	block_start_pfn = pageblock_start_pfn(low_pfn);
 | 
						|
	if (block_start_pfn < cc->zone->zone_start_pfn)
 | 
						|
		block_start_pfn = cc->zone->zone_start_pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fast_find_migrateblock() has already ensured the pageblock is not
 | 
						|
	 * set with a skipped flag, so to avoid the isolation_suitable check
 | 
						|
	 * below again, check whether the fast search was successful.
 | 
						|
	 */
 | 
						|
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
 | 
						|
 | 
						|
	/* Only scan within a pageblock boundary */
 | 
						|
	block_end_pfn = pageblock_end_pfn(low_pfn);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate over whole pageblocks until we find the first suitable.
 | 
						|
	 * Do not cross the free scanner.
 | 
						|
	 */
 | 
						|
	for (; block_end_pfn <= cc->free_pfn;
 | 
						|
			fast_find_block = false,
 | 
						|
			cc->migrate_pfn = low_pfn = block_end_pfn,
 | 
						|
			block_start_pfn = block_end_pfn,
 | 
						|
			block_end_pfn += pageblock_nr_pages) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This can potentially iterate a massively long zone with
 | 
						|
		 * many pageblocks unsuitable, so periodically check if we
 | 
						|
		 * need to schedule.
 | 
						|
		 */
 | 
						|
		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
 | 
						|
			cond_resched();
 | 
						|
 | 
						|
		page = pageblock_pfn_to_page(block_start_pfn,
 | 
						|
						block_end_pfn, cc->zone);
 | 
						|
		if (!page) {
 | 
						|
			unsigned long next_pfn;
 | 
						|
 | 
						|
			next_pfn = skip_offline_sections(block_start_pfn);
 | 
						|
			if (next_pfn)
 | 
						|
				block_end_pfn = min(next_pfn, cc->free_pfn);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If isolation recently failed, do not retry. Only check the
 | 
						|
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
 | 
						|
		 * to be visited multiple times. Assume skip was checked
 | 
						|
		 * before making it "skip" so other compaction instances do
 | 
						|
		 * not scan the same block.
 | 
						|
		 */
 | 
						|
		if ((pageblock_aligned(low_pfn) ||
 | 
						|
		     low_pfn == cc->zone->zone_start_pfn) &&
 | 
						|
		    !fast_find_block && !isolation_suitable(cc, page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For async direct compaction, only scan the pageblocks of the
 | 
						|
		 * same migratetype without huge pages. Async direct compaction
 | 
						|
		 * is optimistic to see if the minimum amount of work satisfies
 | 
						|
		 * the allocation. The cached PFN is updated as it's possible
 | 
						|
		 * that all remaining blocks between source and target are
 | 
						|
		 * unsuitable and the compaction scanners fail to meet.
 | 
						|
		 */
 | 
						|
		if (!suitable_migration_source(cc, page)) {
 | 
						|
			update_cached_migrate(cc, block_end_pfn);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Perform the isolation */
 | 
						|
		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
 | 
						|
						isolate_mode))
 | 
						|
			return ISOLATE_ABORT;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Either we isolated something and proceed with migration. Or
 | 
						|
		 * we failed and compact_zone should decide if we should
 | 
						|
		 * continue or not.
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine whether kswapd is (or recently was!) running on this node.
 | 
						|
 *
 | 
						|
 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
 | 
						|
 * zero it.
 | 
						|
 */
 | 
						|
static bool kswapd_is_running(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	bool running;
 | 
						|
 | 
						|
	pgdat_kswapd_lock(pgdat);
 | 
						|
	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
 | 
						|
	pgdat_kswapd_unlock(pgdat);
 | 
						|
 | 
						|
	return running;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A zone's fragmentation score is the external fragmentation wrt to the
 | 
						|
 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
 | 
						|
 */
 | 
						|
static unsigned int fragmentation_score_zone(struct zone *zone)
 | 
						|
{
 | 
						|
	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A weighted zone's fragmentation score is the external fragmentation
 | 
						|
 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
 | 
						|
 * returns a value in the range [0, 100].
 | 
						|
 *
 | 
						|
 * The scaling factor ensures that proactive compaction focuses on larger
 | 
						|
 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
 | 
						|
 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
 | 
						|
 * and thus never exceeds the high threshold for proactive compaction.
 | 
						|
 */
 | 
						|
static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned long score;
 | 
						|
 | 
						|
	score = zone->present_pages * fragmentation_score_zone(zone);
 | 
						|
	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The per-node proactive (background) compaction process is started by its
 | 
						|
 * corresponding kcompactd thread when the node's fragmentation score
 | 
						|
 * exceeds the high threshold. The compaction process remains active till
 | 
						|
 * the node's score falls below the low threshold, or one of the back-off
 | 
						|
 * conditions is met.
 | 
						|
 */
 | 
						|
static unsigned int fragmentation_score_node(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	unsigned int score = 0;
 | 
						|
	int zoneid;
 | 
						|
 | 
						|
	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 | 
						|
		struct zone *zone;
 | 
						|
 | 
						|
		zone = &pgdat->node_zones[zoneid];
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
		score += fragmentation_score_zone_weighted(zone);
 | 
						|
	}
 | 
						|
 | 
						|
	return score;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int fragmentation_score_wmark(bool low)
 | 
						|
{
 | 
						|
	unsigned int wmark_low;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Cap the low watermark to avoid excessive compaction
 | 
						|
	 * activity in case a user sets the proactiveness tunable
 | 
						|
	 * close to 100 (maximum).
 | 
						|
	 */
 | 
						|
	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
 | 
						|
	return low ? wmark_low : min(wmark_low + 10, 100U);
 | 
						|
}
 | 
						|
 | 
						|
static bool should_proactive_compact_node(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int wmark_high;
 | 
						|
 | 
						|
	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
 | 
						|
		return false;
 | 
						|
 | 
						|
	wmark_high = fragmentation_score_wmark(false);
 | 
						|
	return fragmentation_score_node(pgdat) > wmark_high;
 | 
						|
}
 | 
						|
 | 
						|
static enum compact_result __compact_finished(struct compact_control *cc)
 | 
						|
{
 | 
						|
	unsigned int order;
 | 
						|
	const int migratetype = cc->migratetype;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Compaction run completes if the migrate and free scanner meet */
 | 
						|
	if (compact_scanners_met(cc)) {
 | 
						|
		/* Let the next compaction start anew. */
 | 
						|
		reset_cached_positions(cc->zone);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Mark that the PG_migrate_skip information should be cleared
 | 
						|
		 * by kswapd when it goes to sleep. kcompactd does not set the
 | 
						|
		 * flag itself as the decision to be clear should be directly
 | 
						|
		 * based on an allocation request.
 | 
						|
		 */
 | 
						|
		if (cc->direct_compaction)
 | 
						|
			cc->zone->compact_blockskip_flush = true;
 | 
						|
 | 
						|
		if (cc->whole_zone)
 | 
						|
			return COMPACT_COMPLETE;
 | 
						|
		else
 | 
						|
			return COMPACT_PARTIAL_SKIPPED;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cc->proactive_compaction) {
 | 
						|
		int score, wmark_low;
 | 
						|
		pg_data_t *pgdat;
 | 
						|
 | 
						|
		pgdat = cc->zone->zone_pgdat;
 | 
						|
		if (kswapd_is_running(pgdat))
 | 
						|
			return COMPACT_PARTIAL_SKIPPED;
 | 
						|
 | 
						|
		score = fragmentation_score_zone(cc->zone);
 | 
						|
		wmark_low = fragmentation_score_wmark(true);
 | 
						|
 | 
						|
		if (score > wmark_low)
 | 
						|
			ret = COMPACT_CONTINUE;
 | 
						|
		else
 | 
						|
			ret = COMPACT_SUCCESS;
 | 
						|
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_via_compact_memory(cc->order))
 | 
						|
		return COMPACT_CONTINUE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always finish scanning a pageblock to reduce the possibility of
 | 
						|
	 * fallbacks in the future. This is particularly important when
 | 
						|
	 * migration source is unmovable/reclaimable but it's not worth
 | 
						|
	 * special casing.
 | 
						|
	 */
 | 
						|
	if (!pageblock_aligned(cc->migrate_pfn))
 | 
						|
		return COMPACT_CONTINUE;
 | 
						|
 | 
						|
	/* Direct compactor: Is a suitable page free? */
 | 
						|
	ret = COMPACT_NO_SUITABLE_PAGE;
 | 
						|
	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
 | 
						|
		struct free_area *area = &cc->zone->free_area[order];
 | 
						|
		bool can_steal;
 | 
						|
 | 
						|
		/* Job done if page is free of the right migratetype */
 | 
						|
		if (!free_area_empty(area, migratetype))
 | 
						|
			return COMPACT_SUCCESS;
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
 | 
						|
		if (migratetype == MIGRATE_MOVABLE &&
 | 
						|
			!free_area_empty(area, MIGRATE_CMA))
 | 
						|
			return COMPACT_SUCCESS;
 | 
						|
#endif
 | 
						|
		/*
 | 
						|
		 * Job done if allocation would steal freepages from
 | 
						|
		 * other migratetype buddy lists.
 | 
						|
		 */
 | 
						|
		if (find_suitable_fallback(area, order, migratetype,
 | 
						|
						true, &can_steal) != -1)
 | 
						|
			/*
 | 
						|
			 * Movable pages are OK in any pageblock. If we are
 | 
						|
			 * stealing for a non-movable allocation, make sure
 | 
						|
			 * we finish compacting the current pageblock first
 | 
						|
			 * (which is assured by the above migrate_pfn align
 | 
						|
			 * check) so it is as free as possible and we won't
 | 
						|
			 * have to steal another one soon.
 | 
						|
			 */
 | 
						|
			return COMPACT_SUCCESS;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (cc->contended || fatal_signal_pending(current))
 | 
						|
		ret = COMPACT_CONTENDED;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static enum compact_result compact_finished(struct compact_control *cc)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = __compact_finished(cc);
 | 
						|
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
 | 
						|
	if (ret == COMPACT_NO_SUITABLE_PAGE)
 | 
						|
		ret = COMPACT_CONTINUE;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool __compaction_suitable(struct zone *zone, int order,
 | 
						|
				  int highest_zoneidx,
 | 
						|
				  unsigned long wmark_target)
 | 
						|
{
 | 
						|
	unsigned long watermark;
 | 
						|
	/*
 | 
						|
	 * Watermarks for order-0 must be met for compaction to be able to
 | 
						|
	 * isolate free pages for migration targets. This means that the
 | 
						|
	 * watermark and alloc_flags have to match, or be more pessimistic than
 | 
						|
	 * the check in __isolate_free_page(). We don't use the direct
 | 
						|
	 * compactor's alloc_flags, as they are not relevant for freepage
 | 
						|
	 * isolation. We however do use the direct compactor's highest_zoneidx
 | 
						|
	 * to skip over zones where lowmem reserves would prevent allocation
 | 
						|
	 * even if compaction succeeds.
 | 
						|
	 * For costly orders, we require low watermark instead of min for
 | 
						|
	 * compaction to proceed to increase its chances.
 | 
						|
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
 | 
						|
	 * suitable migration targets
 | 
						|
	 */
 | 
						|
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
 | 
						|
				low_wmark_pages(zone) : min_wmark_pages(zone);
 | 
						|
	watermark += compact_gap(order);
 | 
						|
	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
 | 
						|
				   ALLOC_CMA, wmark_target);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 | 
						|
 */
 | 
						|
bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
 | 
						|
{
 | 
						|
	enum compact_result compact_result;
 | 
						|
	bool suitable;
 | 
						|
 | 
						|
	suitable = __compaction_suitable(zone, order, highest_zoneidx,
 | 
						|
					 zone_page_state(zone, NR_FREE_PAGES));
 | 
						|
	/*
 | 
						|
	 * fragmentation index determines if allocation failures are due to
 | 
						|
	 * low memory or external fragmentation
 | 
						|
	 *
 | 
						|
	 * index of -1000 would imply allocations might succeed depending on
 | 
						|
	 * watermarks, but we already failed the high-order watermark check
 | 
						|
	 * index towards 0 implies failure is due to lack of memory
 | 
						|
	 * index towards 1000 implies failure is due to fragmentation
 | 
						|
	 *
 | 
						|
	 * Only compact if a failure would be due to fragmentation. Also
 | 
						|
	 * ignore fragindex for non-costly orders where the alternative to
 | 
						|
	 * a successful reclaim/compaction is OOM. Fragindex and the
 | 
						|
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
 | 
						|
	 * excessive compaction for costly orders, but it should not be at the
 | 
						|
	 * expense of system stability.
 | 
						|
	 */
 | 
						|
	if (suitable) {
 | 
						|
		compact_result = COMPACT_CONTINUE;
 | 
						|
		if (order > PAGE_ALLOC_COSTLY_ORDER) {
 | 
						|
			int fragindex = fragmentation_index(zone, order);
 | 
						|
 | 
						|
			if (fragindex >= 0 &&
 | 
						|
			    fragindex <= sysctl_extfrag_threshold) {
 | 
						|
				suitable = false;
 | 
						|
				compact_result = COMPACT_NOT_SUITABLE_ZONE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		compact_result = COMPACT_SKIPPED;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_mm_compaction_suitable(zone, order, compact_result);
 | 
						|
 | 
						|
	return suitable;
 | 
						|
}
 | 
						|
 | 
						|
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
 | 
						|
		int alloc_flags)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	struct zoneref *z;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure at least one zone would pass __compaction_suitable if we continue
 | 
						|
	 * retrying the reclaim.
 | 
						|
	 */
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
 | 
						|
				ac->highest_zoneidx, ac->nodemask) {
 | 
						|
		unsigned long available;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do not consider all the reclaimable memory because we do not
 | 
						|
		 * want to trash just for a single high order allocation which
 | 
						|
		 * is even not guaranteed to appear even if __compaction_suitable
 | 
						|
		 * is happy about the watermark check.
 | 
						|
		 */
 | 
						|
		available = zone_reclaimable_pages(zone) / order;
 | 
						|
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
 | 
						|
		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
 | 
						|
					  available))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Should we do compaction for target allocation order.
 | 
						|
 * Return COMPACT_SUCCESS if allocation for target order can be already
 | 
						|
 * satisfied
 | 
						|
 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
 | 
						|
 * Return COMPACT_CONTINUE if compaction for target order should be ran
 | 
						|
 */
 | 
						|
static enum compact_result
 | 
						|
compaction_suit_allocation_order(struct zone *zone, unsigned int order,
 | 
						|
				 int highest_zoneidx, unsigned int alloc_flags)
 | 
						|
{
 | 
						|
	unsigned long watermark;
 | 
						|
 | 
						|
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
 | 
						|
	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
 | 
						|
			      alloc_flags))
 | 
						|
		return COMPACT_SUCCESS;
 | 
						|
 | 
						|
	if (!compaction_suitable(zone, order, highest_zoneidx))
 | 
						|
		return COMPACT_SKIPPED;
 | 
						|
 | 
						|
	return COMPACT_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static enum compact_result
 | 
						|
compact_zone(struct compact_control *cc, struct capture_control *capc)
 | 
						|
{
 | 
						|
	enum compact_result ret;
 | 
						|
	unsigned long start_pfn = cc->zone->zone_start_pfn;
 | 
						|
	unsigned long end_pfn = zone_end_pfn(cc->zone);
 | 
						|
	unsigned long last_migrated_pfn;
 | 
						|
	const bool sync = cc->mode != MIGRATE_ASYNC;
 | 
						|
	bool update_cached;
 | 
						|
	unsigned int nr_succeeded = 0, nr_migratepages;
 | 
						|
	int order;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * These counters track activities during zone compaction.  Initialize
 | 
						|
	 * them before compacting a new zone.
 | 
						|
	 */
 | 
						|
	cc->total_migrate_scanned = 0;
 | 
						|
	cc->total_free_scanned = 0;
 | 
						|
	cc->nr_migratepages = 0;
 | 
						|
	cc->nr_freepages = 0;
 | 
						|
	for (order = 0; order < NR_PAGE_ORDERS; order++)
 | 
						|
		INIT_LIST_HEAD(&cc->freepages[order]);
 | 
						|
	INIT_LIST_HEAD(&cc->migratepages);
 | 
						|
 | 
						|
	cc->migratetype = gfp_migratetype(cc->gfp_mask);
 | 
						|
 | 
						|
	if (!is_via_compact_memory(cc->order)) {
 | 
						|
		ret = compaction_suit_allocation_order(cc->zone, cc->order,
 | 
						|
						       cc->highest_zoneidx,
 | 
						|
						       cc->alloc_flags);
 | 
						|
		if (ret != COMPACT_CONTINUE)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear pageblock skip if there were failures recently and compaction
 | 
						|
	 * is about to be retried after being deferred.
 | 
						|
	 */
 | 
						|
	if (compaction_restarting(cc->zone, cc->order))
 | 
						|
		__reset_isolation_suitable(cc->zone);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setup to move all movable pages to the end of the zone. Used cached
 | 
						|
	 * information on where the scanners should start (unless we explicitly
 | 
						|
	 * want to compact the whole zone), but check that it is initialised
 | 
						|
	 * by ensuring the values are within zone boundaries.
 | 
						|
	 */
 | 
						|
	cc->fast_start_pfn = 0;
 | 
						|
	if (cc->whole_zone) {
 | 
						|
		cc->migrate_pfn = start_pfn;
 | 
						|
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
 | 
						|
	} else {
 | 
						|
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
 | 
						|
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
 | 
						|
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
 | 
						|
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
 | 
						|
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
 | 
						|
		}
 | 
						|
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
 | 
						|
			cc->migrate_pfn = start_pfn;
 | 
						|
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
 | 
						|
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
 | 
						|
			cc->whole_zone = true;
 | 
						|
	}
 | 
						|
 | 
						|
	last_migrated_pfn = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
 | 
						|
	 * the basis that some migrations will fail in ASYNC mode. However,
 | 
						|
	 * if the cached PFNs match and pageblocks are skipped due to having
 | 
						|
	 * no isolation candidates, then the sync state does not matter.
 | 
						|
	 * Until a pageblock with isolation candidates is found, keep the
 | 
						|
	 * cached PFNs in sync to avoid revisiting the same blocks.
 | 
						|
	 */
 | 
						|
	update_cached = !sync &&
 | 
						|
		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
 | 
						|
 | 
						|
	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 | 
						|
 | 
						|
	/* lru_add_drain_all could be expensive with involving other CPUs */
 | 
						|
	lru_add_drain();
 | 
						|
 | 
						|
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
 | 
						|
		int err;
 | 
						|
		unsigned long iteration_start_pfn = cc->migrate_pfn;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid multiple rescans of the same pageblock which can
 | 
						|
		 * happen if a page cannot be isolated (dirty/writeback in
 | 
						|
		 * async mode) or if the migrated pages are being allocated
 | 
						|
		 * before the pageblock is cleared.  The first rescan will
 | 
						|
		 * capture the entire pageblock for migration. If it fails,
 | 
						|
		 * it'll be marked skip and scanning will proceed as normal.
 | 
						|
		 */
 | 
						|
		cc->finish_pageblock = false;
 | 
						|
		if (pageblock_start_pfn(last_migrated_pfn) ==
 | 
						|
		    pageblock_start_pfn(iteration_start_pfn)) {
 | 
						|
			cc->finish_pageblock = true;
 | 
						|
		}
 | 
						|
 | 
						|
rescan:
 | 
						|
		switch (isolate_migratepages(cc)) {
 | 
						|
		case ISOLATE_ABORT:
 | 
						|
			ret = COMPACT_CONTENDED;
 | 
						|
			putback_movable_pages(&cc->migratepages);
 | 
						|
			cc->nr_migratepages = 0;
 | 
						|
			goto out;
 | 
						|
		case ISOLATE_NONE:
 | 
						|
			if (update_cached) {
 | 
						|
				cc->zone->compact_cached_migrate_pfn[1] =
 | 
						|
					cc->zone->compact_cached_migrate_pfn[0];
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We haven't isolated and migrated anything, but
 | 
						|
			 * there might still be unflushed migrations from
 | 
						|
			 * previous cc->order aligned block.
 | 
						|
			 */
 | 
						|
			goto check_drain;
 | 
						|
		case ISOLATE_SUCCESS:
 | 
						|
			update_cached = false;
 | 
						|
			last_migrated_pfn = max(cc->zone->zone_start_pfn,
 | 
						|
				pageblock_start_pfn(cc->migrate_pfn - 1));
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Record the number of pages to migrate since the
 | 
						|
		 * compaction_alloc/free() will update cc->nr_migratepages
 | 
						|
		 * properly.
 | 
						|
		 */
 | 
						|
		nr_migratepages = cc->nr_migratepages;
 | 
						|
		err = migrate_pages(&cc->migratepages, compaction_alloc,
 | 
						|
				compaction_free, (unsigned long)cc, cc->mode,
 | 
						|
				MR_COMPACTION, &nr_succeeded);
 | 
						|
 | 
						|
		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
 | 
						|
 | 
						|
		/* All pages were either migrated or will be released */
 | 
						|
		cc->nr_migratepages = 0;
 | 
						|
		if (err) {
 | 
						|
			putback_movable_pages(&cc->migratepages);
 | 
						|
			/*
 | 
						|
			 * migrate_pages() may return -ENOMEM when scanners meet
 | 
						|
			 * and we want compact_finished() to detect it
 | 
						|
			 */
 | 
						|
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
 | 
						|
				ret = COMPACT_CONTENDED;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
 | 
						|
			 * within the pageblock_order-aligned block and
 | 
						|
			 * fast_find_migrateblock may be used then scan the
 | 
						|
			 * remainder of the pageblock. This will mark the
 | 
						|
			 * pageblock "skip" to avoid rescanning in the near
 | 
						|
			 * future. This will isolate more pages than necessary
 | 
						|
			 * for the request but avoid loops due to
 | 
						|
			 * fast_find_migrateblock revisiting blocks that were
 | 
						|
			 * recently partially scanned.
 | 
						|
			 */
 | 
						|
			if (!pageblock_aligned(cc->migrate_pfn) &&
 | 
						|
			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
 | 
						|
			    (cc->mode < MIGRATE_SYNC)) {
 | 
						|
				cc->finish_pageblock = true;
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Draining pcplists does not help THP if
 | 
						|
				 * any page failed to migrate. Even after
 | 
						|
				 * drain, the pageblock will not be free.
 | 
						|
				 */
 | 
						|
				if (cc->order == COMPACTION_HPAGE_ORDER)
 | 
						|
					last_migrated_pfn = 0;
 | 
						|
 | 
						|
				goto rescan;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Stop if a page has been captured */
 | 
						|
		if (capc && capc->page) {
 | 
						|
			ret = COMPACT_SUCCESS;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
check_drain:
 | 
						|
		/*
 | 
						|
		 * Has the migration scanner moved away from the previous
 | 
						|
		 * cc->order aligned block where we migrated from? If yes,
 | 
						|
		 * flush the pages that were freed, so that they can merge and
 | 
						|
		 * compact_finished() can detect immediately if allocation
 | 
						|
		 * would succeed.
 | 
						|
		 */
 | 
						|
		if (cc->order > 0 && last_migrated_pfn) {
 | 
						|
			unsigned long current_block_start =
 | 
						|
				block_start_pfn(cc->migrate_pfn, cc->order);
 | 
						|
 | 
						|
			if (last_migrated_pfn < current_block_start) {
 | 
						|
				lru_add_drain_cpu_zone(cc->zone);
 | 
						|
				/* No more flushing until we migrate again */
 | 
						|
				last_migrated_pfn = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Release free pages and update where the free scanner should restart,
 | 
						|
	 * so we don't leave any returned pages behind in the next attempt.
 | 
						|
	 */
 | 
						|
	if (cc->nr_freepages > 0) {
 | 
						|
		unsigned long free_pfn = release_free_list(cc->freepages);
 | 
						|
 | 
						|
		cc->nr_freepages = 0;
 | 
						|
		VM_BUG_ON(free_pfn == 0);
 | 
						|
		/* The cached pfn is always the first in a pageblock */
 | 
						|
		free_pfn = pageblock_start_pfn(free_pfn);
 | 
						|
		/*
 | 
						|
		 * Only go back, not forward. The cached pfn might have been
 | 
						|
		 * already reset to zone end in compact_finished()
 | 
						|
		 */
 | 
						|
		if (free_pfn > cc->zone->compact_cached_free_pfn)
 | 
						|
			cc->zone->compact_cached_free_pfn = free_pfn;
 | 
						|
	}
 | 
						|
 | 
						|
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
 | 
						|
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
 | 
						|
 | 
						|
	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
 | 
						|
 | 
						|
	VM_BUG_ON(!list_empty(&cc->migratepages));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static enum compact_result compact_zone_order(struct zone *zone, int order,
 | 
						|
		gfp_t gfp_mask, enum compact_priority prio,
 | 
						|
		unsigned int alloc_flags, int highest_zoneidx,
 | 
						|
		struct page **capture)
 | 
						|
{
 | 
						|
	enum compact_result ret;
 | 
						|
	struct compact_control cc = {
 | 
						|
		.order = order,
 | 
						|
		.search_order = order,
 | 
						|
		.gfp_mask = gfp_mask,
 | 
						|
		.zone = zone,
 | 
						|
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
 | 
						|
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
 | 
						|
		.alloc_flags = alloc_flags,
 | 
						|
		.highest_zoneidx = highest_zoneidx,
 | 
						|
		.direct_compaction = true,
 | 
						|
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
 | 
						|
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
 | 
						|
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
 | 
						|
	};
 | 
						|
	struct capture_control capc = {
 | 
						|
		.cc = &cc,
 | 
						|
		.page = NULL,
 | 
						|
	};
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure the structs are really initialized before we expose the
 | 
						|
	 * capture control, in case we are interrupted and the interrupt handler
 | 
						|
	 * frees a page.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	WRITE_ONCE(current->capture_control, &capc);
 | 
						|
 | 
						|
	ret = compact_zone(&cc, &capc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure we hide capture control first before we read the captured
 | 
						|
	 * page pointer, otherwise an interrupt could free and capture a page
 | 
						|
	 * and we would leak it.
 | 
						|
	 */
 | 
						|
	WRITE_ONCE(current->capture_control, NULL);
 | 
						|
	*capture = READ_ONCE(capc.page);
 | 
						|
	/*
 | 
						|
	 * Technically, it is also possible that compaction is skipped but
 | 
						|
	 * the page is still captured out of luck(IRQ came and freed the page).
 | 
						|
	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
 | 
						|
	 * the COMPACT[STALL|FAIL] when compaction is skipped.
 | 
						|
	 */
 | 
						|
	if (*capture)
 | 
						|
		ret = COMPACT_SUCCESS;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 | 
						|
 * @gfp_mask: The GFP mask of the current allocation
 | 
						|
 * @order: The order of the current allocation
 | 
						|
 * @alloc_flags: The allocation flags of the current allocation
 | 
						|
 * @ac: The context of current allocation
 | 
						|
 * @prio: Determines how hard direct compaction should try to succeed
 | 
						|
 * @capture: Pointer to free page created by compaction will be stored here
 | 
						|
 *
 | 
						|
 * This is the main entry point for direct page compaction.
 | 
						|
 */
 | 
						|
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
 | 
						|
		unsigned int alloc_flags, const struct alloc_context *ac,
 | 
						|
		enum compact_priority prio, struct page **capture)
 | 
						|
{
 | 
						|
	struct zoneref *z;
 | 
						|
	struct zone *zone;
 | 
						|
	enum compact_result rc = COMPACT_SKIPPED;
 | 
						|
 | 
						|
	if (!gfp_compaction_allowed(gfp_mask))
 | 
						|
		return COMPACT_SKIPPED;
 | 
						|
 | 
						|
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
 | 
						|
 | 
						|
	/* Compact each zone in the list */
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
 | 
						|
					ac->highest_zoneidx, ac->nodemask) {
 | 
						|
		enum compact_result status;
 | 
						|
 | 
						|
		if (prio > MIN_COMPACT_PRIORITY
 | 
						|
					&& compaction_deferred(zone, order)) {
 | 
						|
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		status = compact_zone_order(zone, order, gfp_mask, prio,
 | 
						|
				alloc_flags, ac->highest_zoneidx, capture);
 | 
						|
		rc = max(status, rc);
 | 
						|
 | 
						|
		/* The allocation should succeed, stop compacting */
 | 
						|
		if (status == COMPACT_SUCCESS) {
 | 
						|
			/*
 | 
						|
			 * We think the allocation will succeed in this zone,
 | 
						|
			 * but it is not certain, hence the false. The caller
 | 
						|
			 * will repeat this with true if allocation indeed
 | 
						|
			 * succeeds in this zone.
 | 
						|
			 */
 | 
						|
			compaction_defer_reset(zone, order, false);
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
 | 
						|
					status == COMPACT_PARTIAL_SKIPPED))
 | 
						|
			/*
 | 
						|
			 * We think that allocation won't succeed in this zone
 | 
						|
			 * so we defer compaction there. If it ends up
 | 
						|
			 * succeeding after all, it will be reset.
 | 
						|
			 */
 | 
						|
			defer_compaction(zone, order);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We might have stopped compacting due to need_resched() in
 | 
						|
		 * async compaction, or due to a fatal signal detected. In that
 | 
						|
		 * case do not try further zones
 | 
						|
		 */
 | 
						|
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
 | 
						|
					|| fatal_signal_pending(current))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compact_node() - compact all zones within a node
 | 
						|
 * @pgdat: The node page data
 | 
						|
 * @proactive: Whether the compaction is proactive
 | 
						|
 *
 | 
						|
 * For proactive compaction, compact till each zone's fragmentation score
 | 
						|
 * reaches within proactive compaction thresholds (as determined by the
 | 
						|
 * proactiveness tunable), it is possible that the function returns before
 | 
						|
 * reaching score targets due to various back-off conditions, such as,
 | 
						|
 * contention on per-node or per-zone locks.
 | 
						|
 */
 | 
						|
static int compact_node(pg_data_t *pgdat, bool proactive)
 | 
						|
{
 | 
						|
	int zoneid;
 | 
						|
	struct zone *zone;
 | 
						|
	struct compact_control cc = {
 | 
						|
		.order = -1,
 | 
						|
		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
 | 
						|
		.ignore_skip_hint = true,
 | 
						|
		.whole_zone = true,
 | 
						|
		.gfp_mask = GFP_KERNEL,
 | 
						|
		.proactive_compaction = proactive,
 | 
						|
	};
 | 
						|
 | 
						|
	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 | 
						|
		zone = &pgdat->node_zones[zoneid];
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (fatal_signal_pending(current))
 | 
						|
			return -EINTR;
 | 
						|
 | 
						|
		cc.zone = zone;
 | 
						|
 | 
						|
		compact_zone(&cc, NULL);
 | 
						|
 | 
						|
		if (proactive) {
 | 
						|
			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
 | 
						|
					     cc.total_migrate_scanned);
 | 
						|
			count_compact_events(KCOMPACTD_FREE_SCANNED,
 | 
						|
					     cc.total_free_scanned);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Compact all zones of all nodes in the system */
 | 
						|
static int compact_nodes(void)
 | 
						|
{
 | 
						|
	int ret, nid;
 | 
						|
 | 
						|
	/* Flush pending updates to the LRU lists */
 | 
						|
	lru_add_drain_all();
 | 
						|
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		ret = compact_node(NODE_DATA(nid), false);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
 | 
						|
		void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	int rc, nid;
 | 
						|
 | 
						|
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	if (write && sysctl_compaction_proactiveness) {
 | 
						|
		for_each_online_node(nid) {
 | 
						|
			pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
 | 
						|
			if (pgdat->proactive_compact_trigger)
 | 
						|
				continue;
 | 
						|
 | 
						|
			pgdat->proactive_compact_trigger = true;
 | 
						|
			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
 | 
						|
							     pgdat->nr_zones - 1);
 | 
						|
			wake_up_interruptible(&pgdat->kcompactd_wait);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the entry point for compacting all nodes via
 | 
						|
 * /proc/sys/vm/compact_memory
 | 
						|
 */
 | 
						|
static int sysctl_compaction_handler(const struct ctl_table *table, int write,
 | 
						|
			void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = proc_dointvec(table, write, buffer, length, ppos);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (sysctl_compact_memory != 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (write)
 | 
						|
		ret = compact_nodes();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
 | 
						|
static ssize_t compact_store(struct device *dev,
 | 
						|
			     struct device_attribute *attr,
 | 
						|
			     const char *buf, size_t count)
 | 
						|
{
 | 
						|
	int nid = dev->id;
 | 
						|
 | 
						|
	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
 | 
						|
		/* Flush pending updates to the LRU lists */
 | 
						|
		lru_add_drain_all();
 | 
						|
 | 
						|
		compact_node(NODE_DATA(nid), false);
 | 
						|
	}
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
static DEVICE_ATTR_WO(compact);
 | 
						|
 | 
						|
int compaction_register_node(struct node *node)
 | 
						|
{
 | 
						|
	return device_create_file(&node->dev, &dev_attr_compact);
 | 
						|
}
 | 
						|
 | 
						|
void compaction_unregister_node(struct node *node)
 | 
						|
{
 | 
						|
	device_remove_file(&node->dev, &dev_attr_compact);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
 | 
						|
 | 
						|
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
 | 
						|
		pgdat->proactive_compact_trigger;
 | 
						|
}
 | 
						|
 | 
						|
static bool kcompactd_node_suitable(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int zoneid;
 | 
						|
	struct zone *zone;
 | 
						|
	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
 | 
						|
	enum compact_result ret;
 | 
						|
 | 
						|
	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
 | 
						|
		zone = &pgdat->node_zones[zoneid];
 | 
						|
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		ret = compaction_suit_allocation_order(zone,
 | 
						|
				pgdat->kcompactd_max_order,
 | 
						|
				highest_zoneidx, ALLOC_WMARK_MIN);
 | 
						|
		if (ret == COMPACT_CONTINUE)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void kcompactd_do_work(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * With no special task, compact all zones so that a page of requested
 | 
						|
	 * order is allocatable.
 | 
						|
	 */
 | 
						|
	int zoneid;
 | 
						|
	struct zone *zone;
 | 
						|
	struct compact_control cc = {
 | 
						|
		.order = pgdat->kcompactd_max_order,
 | 
						|
		.search_order = pgdat->kcompactd_max_order,
 | 
						|
		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
 | 
						|
		.mode = MIGRATE_SYNC_LIGHT,
 | 
						|
		.ignore_skip_hint = false,
 | 
						|
		.gfp_mask = GFP_KERNEL,
 | 
						|
	};
 | 
						|
	enum compact_result ret;
 | 
						|
 | 
						|
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
 | 
						|
							cc.highest_zoneidx);
 | 
						|
	count_compact_event(KCOMPACTD_WAKE);
 | 
						|
 | 
						|
	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
 | 
						|
		int status;
 | 
						|
 | 
						|
		zone = &pgdat->node_zones[zoneid];
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (compaction_deferred(zone, cc.order))
 | 
						|
			continue;
 | 
						|
 | 
						|
		ret = compaction_suit_allocation_order(zone,
 | 
						|
				cc.order, zoneid, ALLOC_WMARK_MIN);
 | 
						|
		if (ret != COMPACT_CONTINUE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (kthread_should_stop())
 | 
						|
			return;
 | 
						|
 | 
						|
		cc.zone = zone;
 | 
						|
		status = compact_zone(&cc, NULL);
 | 
						|
 | 
						|
		if (status == COMPACT_SUCCESS) {
 | 
						|
			compaction_defer_reset(zone, cc.order, false);
 | 
						|
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
 | 
						|
			/*
 | 
						|
			 * Buddy pages may become stranded on pcps that could
 | 
						|
			 * otherwise coalesce on the zone's free area for
 | 
						|
			 * order >= cc.order.  This is ratelimited by the
 | 
						|
			 * upcoming deferral.
 | 
						|
			 */
 | 
						|
			drain_all_pages(zone);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We use sync migration mode here, so we defer like
 | 
						|
			 * sync direct compaction does.
 | 
						|
			 */
 | 
						|
			defer_compaction(zone, cc.order);
 | 
						|
		}
 | 
						|
 | 
						|
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
 | 
						|
				     cc.total_migrate_scanned);
 | 
						|
		count_compact_events(KCOMPACTD_FREE_SCANNED,
 | 
						|
				     cc.total_free_scanned);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Regardless of success, we are done until woken up next. But remember
 | 
						|
	 * the requested order/highest_zoneidx in case it was higher/tighter
 | 
						|
	 * than our current ones
 | 
						|
	 */
 | 
						|
	if (pgdat->kcompactd_max_order <= cc.order)
 | 
						|
		pgdat->kcompactd_max_order = 0;
 | 
						|
	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
 | 
						|
		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
 | 
						|
}
 | 
						|
 | 
						|
void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
 | 
						|
{
 | 
						|
	if (!order)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (pgdat->kcompactd_max_order < order)
 | 
						|
		pgdat->kcompactd_max_order = order;
 | 
						|
 | 
						|
	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
 | 
						|
		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pairs with implicit barrier in wait_event_freezable()
 | 
						|
	 * such that wakeups are not missed.
 | 
						|
	 */
 | 
						|
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!kcompactd_node_suitable(pgdat))
 | 
						|
		return;
 | 
						|
 | 
						|
	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
 | 
						|
							highest_zoneidx);
 | 
						|
	wake_up_interruptible(&pgdat->kcompactd_wait);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The background compaction daemon, started as a kernel thread
 | 
						|
 * from the init process.
 | 
						|
 */
 | 
						|
static int kcompactd(void *p)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = (pg_data_t *)p;
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
 | 
						|
	long timeout = default_timeout;
 | 
						|
 | 
						|
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 | 
						|
 | 
						|
	if (!cpumask_empty(cpumask))
 | 
						|
		set_cpus_allowed_ptr(tsk, cpumask);
 | 
						|
 | 
						|
	set_freezable();
 | 
						|
 | 
						|
	pgdat->kcompactd_max_order = 0;
 | 
						|
	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
 | 
						|
 | 
						|
	while (!kthread_should_stop()) {
 | 
						|
		unsigned long pflags;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid the unnecessary wakeup for proactive compaction
 | 
						|
		 * when it is disabled.
 | 
						|
		 */
 | 
						|
		if (!sysctl_compaction_proactiveness)
 | 
						|
			timeout = MAX_SCHEDULE_TIMEOUT;
 | 
						|
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
 | 
						|
		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
 | 
						|
			kcompactd_work_requested(pgdat), timeout) &&
 | 
						|
			!pgdat->proactive_compact_trigger) {
 | 
						|
 | 
						|
			psi_memstall_enter(&pflags);
 | 
						|
			kcompactd_do_work(pgdat);
 | 
						|
			psi_memstall_leave(&pflags);
 | 
						|
			/*
 | 
						|
			 * Reset the timeout value. The defer timeout from
 | 
						|
			 * proactive compaction is lost here but that is fine
 | 
						|
			 * as the condition of the zone changing substantionally
 | 
						|
			 * then carrying on with the previous defer interval is
 | 
						|
			 * not useful.
 | 
						|
			 */
 | 
						|
			timeout = default_timeout;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Start the proactive work with default timeout. Based
 | 
						|
		 * on the fragmentation score, this timeout is updated.
 | 
						|
		 */
 | 
						|
		timeout = default_timeout;
 | 
						|
		if (should_proactive_compact_node(pgdat)) {
 | 
						|
			unsigned int prev_score, score;
 | 
						|
 | 
						|
			prev_score = fragmentation_score_node(pgdat);
 | 
						|
			compact_node(pgdat, true);
 | 
						|
			score = fragmentation_score_node(pgdat);
 | 
						|
			/*
 | 
						|
			 * Defer proactive compaction if the fragmentation
 | 
						|
			 * score did not go down i.e. no progress made.
 | 
						|
			 */
 | 
						|
			if (unlikely(score >= prev_score))
 | 
						|
				timeout =
 | 
						|
				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
 | 
						|
		}
 | 
						|
		if (unlikely(pgdat->proactive_compact_trigger))
 | 
						|
			pgdat->proactive_compact_trigger = false;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This kcompactd start function will be called by init and node-hot-add.
 | 
						|
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 | 
						|
 */
 | 
						|
void __meminit kcompactd_run(int nid)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
 | 
						|
	if (pgdat->kcompactd)
 | 
						|
		return;
 | 
						|
 | 
						|
	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
 | 
						|
	if (IS_ERR(pgdat->kcompactd)) {
 | 
						|
		pr_err("Failed to start kcompactd on node %d\n", nid);
 | 
						|
		pgdat->kcompactd = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 | 
						|
 * be holding mem_hotplug_begin/done().
 | 
						|
 */
 | 
						|
void __meminit kcompactd_stop(int nid)
 | 
						|
{
 | 
						|
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
 | 
						|
 | 
						|
	if (kcompactd) {
 | 
						|
		kthread_stop(kcompactd);
 | 
						|
		NODE_DATA(nid)->kcompactd = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 | 
						|
 * not required for correctness. So if the last cpu in a node goes
 | 
						|
 * away, we get changed to run anywhere: as the first one comes back,
 | 
						|
 * restore their cpu bindings.
 | 
						|
 */
 | 
						|
static int kcompactd_cpu_online(unsigned int cpu)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
		const struct cpumask *mask;
 | 
						|
 | 
						|
		mask = cpumask_of_node(pgdat->node_id);
 | 
						|
 | 
						|
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
 | 
						|
			/* One of our CPUs online: restore mask */
 | 
						|
			if (pgdat->kcompactd)
 | 
						|
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
 | 
						|
		int write, void *buffer, size_t *lenp, loff_t *ppos)
 | 
						|
{
 | 
						|
	int ret, old;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
 | 
						|
		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | 
						|
 | 
						|
	old = *(int *)table->data;
 | 
						|
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	if (old != *(int *)table->data)
 | 
						|
		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
 | 
						|
			     table->procname, current->comm,
 | 
						|
			     task_pid_nr(current));
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct ctl_table vm_compaction[] = {
 | 
						|
	{
 | 
						|
		.procname	= "compact_memory",
 | 
						|
		.data		= &sysctl_compact_memory,
 | 
						|
		.maxlen		= sizeof(int),
 | 
						|
		.mode		= 0200,
 | 
						|
		.proc_handler	= sysctl_compaction_handler,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "compaction_proactiveness",
 | 
						|
		.data		= &sysctl_compaction_proactiveness,
 | 
						|
		.maxlen		= sizeof(sysctl_compaction_proactiveness),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= compaction_proactiveness_sysctl_handler,
 | 
						|
		.extra1		= SYSCTL_ZERO,
 | 
						|
		.extra2		= SYSCTL_ONE_HUNDRED,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "extfrag_threshold",
 | 
						|
		.data		= &sysctl_extfrag_threshold,
 | 
						|
		.maxlen		= sizeof(int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec_minmax,
 | 
						|
		.extra1		= SYSCTL_ZERO,
 | 
						|
		.extra2		= SYSCTL_ONE_THOUSAND,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "compact_unevictable_allowed",
 | 
						|
		.data		= &sysctl_compact_unevictable_allowed,
 | 
						|
		.maxlen		= sizeof(int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
 | 
						|
		.extra1		= SYSCTL_ZERO,
 | 
						|
		.extra2		= SYSCTL_ONE,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static int __init kcompactd_init(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 | 
						|
					"mm/compaction:online",
 | 
						|
					kcompactd_cpu_online, NULL);
 | 
						|
	if (ret < 0) {
 | 
						|
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY)
 | 
						|
		kcompactd_run(nid);
 | 
						|
	register_sysctl_init("vm", vm_compaction);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(kcompactd_init)
 | 
						|
 | 
						|
#endif /* CONFIG_COMPACTION */
 |