mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7bcb2c99f8
			
		
	
	
		7bcb2c99f8
		
	
	
	
	
		
			
			The flag CRYPTO_ALG_ASYNC is "inherited" in the sense that when a
template is instantiated, the template will have CRYPTO_ALG_ASYNC set if
any of the algorithms it uses has CRYPTO_ALG_ASYNC set.
We'd like to add a second flag (CRYPTO_ALG_ALLOCATES_MEMORY) that gets
"inherited" in the same way.  This is difficult because the handling of
CRYPTO_ALG_ASYNC is hardcoded everywhere.  Address this by:
  - Add CRYPTO_ALG_INHERITED_FLAGS, which contains the set of flags that
    have these inheritance semantics.
  - Add crypto_algt_inherited_mask(), for use by template ->create()
    methods.  It returns any of these flags that the user asked to be
    unset and thus must be passed in the 'mask' to crypto_grab_*().
  - Also modify crypto_check_attr_type() to handle computing the 'mask'
    so that most templates can just use this.
  - Make crypto_grab_*() propagate these flags to the template instance
    being created so that templates don't have to do this themselves.
Make crypto/simd.c propagate these flags too, since it "wraps" another
algorithm, similar to a template.
Based on a patch by Mikulas Patocka <mpatocka@redhat.com>
(https://lore.kernel.org/r/alpine.LRH.2.02.2006301414580.30526@file01.intranet.prod.int.rdu2.redhat.com).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
	
			
		
			
				
	
	
		
			526 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			526 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Shared crypto simd helpers
 | |
|  *
 | |
|  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
 | |
|  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
 | |
|  * Copyright (c) 2019 Google LLC
 | |
|  *
 | |
|  * Based on aesni-intel_glue.c by:
 | |
|  *  Copyright (C) 2008, Intel Corp.
 | |
|  *    Author: Huang Ying <ying.huang@intel.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Shared crypto SIMD helpers.  These functions dynamically create and register
 | |
|  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
 | |
|  * wrapper ensures that the internal algorithm is only executed in a context
 | |
|  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
 | |
|  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
 | |
|  * Otherwise it defers execution to a workqueue via cryptd.
 | |
|  *
 | |
|  * This is an alternative to the internal algorithm implementing a fallback for
 | |
|  * the !may_use_simd() case itself.
 | |
|  *
 | |
|  * Note that the wrapper algorithm is asynchronous, i.e. it has the
 | |
|  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
 | |
|  * explicitly allocate a synchronous algorithm.
 | |
|  */
 | |
| 
 | |
| #include <crypto/cryptd.h>
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/internal/simd.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <asm/simd.h>
 | |
| 
 | |
| /* skcipher support */
 | |
| 
 | |
| struct simd_skcipher_alg {
 | |
| 	const char *ialg_name;
 | |
| 	struct skcipher_alg alg;
 | |
| };
 | |
| 
 | |
| struct simd_skcipher_ctx {
 | |
| 	struct cryptd_skcipher *cryptd_tfm;
 | |
| };
 | |
| 
 | |
| static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 				unsigned int key_len)
 | |
| {
 | |
| 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
 | |
| 
 | |
| 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 | |
| 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
 | |
| 					 CRYPTO_TFM_REQ_MASK);
 | |
| 	return crypto_skcipher_setkey(child, key, key_len);
 | |
| }
 | |
| 
 | |
| static int simd_skcipher_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_request *subreq;
 | |
| 	struct crypto_skcipher *child;
 | |
| 
 | |
| 	subreq = skcipher_request_ctx(req);
 | |
| 	*subreq = *req;
 | |
| 
 | |
| 	if (!crypto_simd_usable() ||
 | |
| 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
 | |
| 		child = &ctx->cryptd_tfm->base;
 | |
| 	else
 | |
| 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
 | |
| 
 | |
| 	skcipher_request_set_tfm(subreq, child);
 | |
| 
 | |
| 	return crypto_skcipher_encrypt(subreq);
 | |
| }
 | |
| 
 | |
| static int simd_skcipher_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_request *subreq;
 | |
| 	struct crypto_skcipher *child;
 | |
| 
 | |
| 	subreq = skcipher_request_ctx(req);
 | |
| 	*subreq = *req;
 | |
| 
 | |
| 	if (!crypto_simd_usable() ||
 | |
| 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
 | |
| 		child = &ctx->cryptd_tfm->base;
 | |
| 	else
 | |
| 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
 | |
| 
 | |
| 	skcipher_request_set_tfm(subreq, child);
 | |
| 
 | |
| 	return crypto_skcipher_decrypt(subreq);
 | |
| }
 | |
| 
 | |
| static void simd_skcipher_exit(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	cryptd_free_skcipher(ctx->cryptd_tfm);
 | |
| }
 | |
| 
 | |
| static int simd_skcipher_init(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct cryptd_skcipher *cryptd_tfm;
 | |
| 	struct simd_skcipher_alg *salg;
 | |
| 	struct skcipher_alg *alg;
 | |
| 	unsigned reqsize;
 | |
| 
 | |
| 	alg = crypto_skcipher_alg(tfm);
 | |
| 	salg = container_of(alg, struct simd_skcipher_alg, alg);
 | |
| 
 | |
| 	cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
 | |
| 					   CRYPTO_ALG_INTERNAL,
 | |
| 					   CRYPTO_ALG_INTERNAL);
 | |
| 	if (IS_ERR(cryptd_tfm))
 | |
| 		return PTR_ERR(cryptd_tfm);
 | |
| 
 | |
| 	ctx->cryptd_tfm = cryptd_tfm;
 | |
| 
 | |
| 	reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
 | |
| 	reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
 | |
| 	reqsize += sizeof(struct skcipher_request);
 | |
| 
 | |
| 	crypto_skcipher_set_reqsize(tfm, reqsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
 | |
| 						      const char *drvname,
 | |
| 						      const char *basename)
 | |
| {
 | |
| 	struct simd_skcipher_alg *salg;
 | |
| 	struct crypto_skcipher *tfm;
 | |
| 	struct skcipher_alg *ialg;
 | |
| 	struct skcipher_alg *alg;
 | |
| 	int err;
 | |
| 
 | |
| 	tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
 | |
| 				    CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(tfm))
 | |
| 		return ERR_CAST(tfm);
 | |
| 
 | |
| 	ialg = crypto_skcipher_alg(tfm);
 | |
| 
 | |
| 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
 | |
| 	if (!salg) {
 | |
| 		salg = ERR_PTR(-ENOMEM);
 | |
| 		goto out_put_tfm;
 | |
| 	}
 | |
| 
 | |
| 	salg->ialg_name = basename;
 | |
| 	alg = &salg->alg;
 | |
| 
 | |
| 	err = -ENAMETOOLONG;
 | |
| 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
 | |
| 	    CRYPTO_MAX_ALG_NAME)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 | |
| 		     drvname) >= CRYPTO_MAX_ALG_NAME)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| 	alg->base.cra_flags = CRYPTO_ALG_ASYNC |
 | |
| 		(ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
 | |
| 	alg->base.cra_priority = ialg->base.cra_priority;
 | |
| 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
 | |
| 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
 | |
| 	alg->base.cra_module = ialg->base.cra_module;
 | |
| 	alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
 | |
| 
 | |
| 	alg->ivsize = ialg->ivsize;
 | |
| 	alg->chunksize = ialg->chunksize;
 | |
| 	alg->min_keysize = ialg->min_keysize;
 | |
| 	alg->max_keysize = ialg->max_keysize;
 | |
| 
 | |
| 	alg->init = simd_skcipher_init;
 | |
| 	alg->exit = simd_skcipher_exit;
 | |
| 
 | |
| 	alg->setkey = simd_skcipher_setkey;
 | |
| 	alg->encrypt = simd_skcipher_encrypt;
 | |
| 	alg->decrypt = simd_skcipher_decrypt;
 | |
| 
 | |
| 	err = crypto_register_skcipher(alg);
 | |
| 	if (err)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| out_put_tfm:
 | |
| 	crypto_free_skcipher(tfm);
 | |
| 	return salg;
 | |
| 
 | |
| out_free_salg:
 | |
| 	kfree(salg);
 | |
| 	salg = ERR_PTR(err);
 | |
| 	goto out_put_tfm;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
 | |
| 
 | |
| struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
 | |
| 					       const char *basename)
 | |
| {
 | |
| 	char drvname[CRYPTO_MAX_ALG_NAME];
 | |
| 
 | |
| 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
 | |
| 	    CRYPTO_MAX_ALG_NAME)
 | |
| 		return ERR_PTR(-ENAMETOOLONG);
 | |
| 
 | |
| 	return simd_skcipher_create_compat(algname, drvname, basename);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_skcipher_create);
 | |
| 
 | |
| void simd_skcipher_free(struct simd_skcipher_alg *salg)
 | |
| {
 | |
| 	crypto_unregister_skcipher(&salg->alg);
 | |
| 	kfree(salg);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_skcipher_free);
 | |
| 
 | |
| int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
 | |
| 				   struct simd_skcipher_alg **simd_algs)
 | |
| {
 | |
| 	int err;
 | |
| 	int i;
 | |
| 	const char *algname;
 | |
| 	const char *drvname;
 | |
| 	const char *basename;
 | |
| 	struct simd_skcipher_alg *simd;
 | |
| 
 | |
| 	err = crypto_register_skciphers(algs, count);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
 | |
| 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
 | |
| 		algname = algs[i].base.cra_name + 2;
 | |
| 		drvname = algs[i].base.cra_driver_name + 2;
 | |
| 		basename = algs[i].base.cra_driver_name;
 | |
| 		simd = simd_skcipher_create_compat(algname, drvname, basename);
 | |
| 		err = PTR_ERR(simd);
 | |
| 		if (IS_ERR(simd))
 | |
| 			goto err_unregister;
 | |
| 		simd_algs[i] = simd;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_unregister:
 | |
| 	simd_unregister_skciphers(algs, count, simd_algs);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
 | |
| 
 | |
| void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
 | |
| 			       struct simd_skcipher_alg **simd_algs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	crypto_unregister_skciphers(algs, count);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (simd_algs[i]) {
 | |
| 			simd_skcipher_free(simd_algs[i]);
 | |
| 			simd_algs[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
 | |
| 
 | |
| /* AEAD support */
 | |
| 
 | |
| struct simd_aead_alg {
 | |
| 	const char *ialg_name;
 | |
| 	struct aead_alg alg;
 | |
| };
 | |
| 
 | |
| struct simd_aead_ctx {
 | |
| 	struct cryptd_aead *cryptd_tfm;
 | |
| };
 | |
| 
 | |
| static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 | |
| 				unsigned int key_len)
 | |
| {
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
 | |
| 
 | |
| 	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 | |
| 	crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
 | |
| 				     CRYPTO_TFM_REQ_MASK);
 | |
| 	return crypto_aead_setkey(child, key, key_len);
 | |
| }
 | |
| 
 | |
| static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
 | |
| {
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
 | |
| 
 | |
| 	return crypto_aead_setauthsize(child, authsize);
 | |
| }
 | |
| 
 | |
| static int simd_aead_encrypt(struct aead_request *req)
 | |
| {
 | |
| 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	struct aead_request *subreq;
 | |
| 	struct crypto_aead *child;
 | |
| 
 | |
| 	subreq = aead_request_ctx(req);
 | |
| 	*subreq = *req;
 | |
| 
 | |
| 	if (!crypto_simd_usable() ||
 | |
| 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
 | |
| 		child = &ctx->cryptd_tfm->base;
 | |
| 	else
 | |
| 		child = cryptd_aead_child(ctx->cryptd_tfm);
 | |
| 
 | |
| 	aead_request_set_tfm(subreq, child);
 | |
| 
 | |
| 	return crypto_aead_encrypt(subreq);
 | |
| }
 | |
| 
 | |
| static int simd_aead_decrypt(struct aead_request *req)
 | |
| {
 | |
| 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	struct aead_request *subreq;
 | |
| 	struct crypto_aead *child;
 | |
| 
 | |
| 	subreq = aead_request_ctx(req);
 | |
| 	*subreq = *req;
 | |
| 
 | |
| 	if (!crypto_simd_usable() ||
 | |
| 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
 | |
| 		child = &ctx->cryptd_tfm->base;
 | |
| 	else
 | |
| 		child = cryptd_aead_child(ctx->cryptd_tfm);
 | |
| 
 | |
| 	aead_request_set_tfm(subreq, child);
 | |
| 
 | |
| 	return crypto_aead_decrypt(subreq);
 | |
| }
 | |
| 
 | |
| static void simd_aead_exit(struct crypto_aead *tfm)
 | |
| {
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 
 | |
| 	cryptd_free_aead(ctx->cryptd_tfm);
 | |
| }
 | |
| 
 | |
| static int simd_aead_init(struct crypto_aead *tfm)
 | |
| {
 | |
| 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	struct cryptd_aead *cryptd_tfm;
 | |
| 	struct simd_aead_alg *salg;
 | |
| 	struct aead_alg *alg;
 | |
| 	unsigned reqsize;
 | |
| 
 | |
| 	alg = crypto_aead_alg(tfm);
 | |
| 	salg = container_of(alg, struct simd_aead_alg, alg);
 | |
| 
 | |
| 	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
 | |
| 				       CRYPTO_ALG_INTERNAL);
 | |
| 	if (IS_ERR(cryptd_tfm))
 | |
| 		return PTR_ERR(cryptd_tfm);
 | |
| 
 | |
| 	ctx->cryptd_tfm = cryptd_tfm;
 | |
| 
 | |
| 	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
 | |
| 	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
 | |
| 	reqsize += sizeof(struct aead_request);
 | |
| 
 | |
| 	crypto_aead_set_reqsize(tfm, reqsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct simd_aead_alg *simd_aead_create_compat(const char *algname,
 | |
| 					      const char *drvname,
 | |
| 					      const char *basename)
 | |
| {
 | |
| 	struct simd_aead_alg *salg;
 | |
| 	struct crypto_aead *tfm;
 | |
| 	struct aead_alg *ialg;
 | |
| 	struct aead_alg *alg;
 | |
| 	int err;
 | |
| 
 | |
| 	tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
 | |
| 				CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(tfm))
 | |
| 		return ERR_CAST(tfm);
 | |
| 
 | |
| 	ialg = crypto_aead_alg(tfm);
 | |
| 
 | |
| 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
 | |
| 	if (!salg) {
 | |
| 		salg = ERR_PTR(-ENOMEM);
 | |
| 		goto out_put_tfm;
 | |
| 	}
 | |
| 
 | |
| 	salg->ialg_name = basename;
 | |
| 	alg = &salg->alg;
 | |
| 
 | |
| 	err = -ENAMETOOLONG;
 | |
| 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
 | |
| 	    CRYPTO_MAX_ALG_NAME)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 | |
| 		     drvname) >= CRYPTO_MAX_ALG_NAME)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| 	alg->base.cra_flags = CRYPTO_ALG_ASYNC |
 | |
| 		(ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
 | |
| 	alg->base.cra_priority = ialg->base.cra_priority;
 | |
| 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
 | |
| 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
 | |
| 	alg->base.cra_module = ialg->base.cra_module;
 | |
| 	alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
 | |
| 
 | |
| 	alg->ivsize = ialg->ivsize;
 | |
| 	alg->maxauthsize = ialg->maxauthsize;
 | |
| 	alg->chunksize = ialg->chunksize;
 | |
| 
 | |
| 	alg->init = simd_aead_init;
 | |
| 	alg->exit = simd_aead_exit;
 | |
| 
 | |
| 	alg->setkey = simd_aead_setkey;
 | |
| 	alg->setauthsize = simd_aead_setauthsize;
 | |
| 	alg->encrypt = simd_aead_encrypt;
 | |
| 	alg->decrypt = simd_aead_decrypt;
 | |
| 
 | |
| 	err = crypto_register_aead(alg);
 | |
| 	if (err)
 | |
| 		goto out_free_salg;
 | |
| 
 | |
| out_put_tfm:
 | |
| 	crypto_free_aead(tfm);
 | |
| 	return salg;
 | |
| 
 | |
| out_free_salg:
 | |
| 	kfree(salg);
 | |
| 	salg = ERR_PTR(err);
 | |
| 	goto out_put_tfm;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_aead_create_compat);
 | |
| 
 | |
| struct simd_aead_alg *simd_aead_create(const char *algname,
 | |
| 				       const char *basename)
 | |
| {
 | |
| 	char drvname[CRYPTO_MAX_ALG_NAME];
 | |
| 
 | |
| 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
 | |
| 	    CRYPTO_MAX_ALG_NAME)
 | |
| 		return ERR_PTR(-ENAMETOOLONG);
 | |
| 
 | |
| 	return simd_aead_create_compat(algname, drvname, basename);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_aead_create);
 | |
| 
 | |
| void simd_aead_free(struct simd_aead_alg *salg)
 | |
| {
 | |
| 	crypto_unregister_aead(&salg->alg);
 | |
| 	kfree(salg);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_aead_free);
 | |
| 
 | |
| int simd_register_aeads_compat(struct aead_alg *algs, int count,
 | |
| 			       struct simd_aead_alg **simd_algs)
 | |
| {
 | |
| 	int err;
 | |
| 	int i;
 | |
| 	const char *algname;
 | |
| 	const char *drvname;
 | |
| 	const char *basename;
 | |
| 	struct simd_aead_alg *simd;
 | |
| 
 | |
| 	err = crypto_register_aeads(algs, count);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
 | |
| 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
 | |
| 		algname = algs[i].base.cra_name + 2;
 | |
| 		drvname = algs[i].base.cra_driver_name + 2;
 | |
| 		basename = algs[i].base.cra_driver_name;
 | |
| 		simd = simd_aead_create_compat(algname, drvname, basename);
 | |
| 		err = PTR_ERR(simd);
 | |
| 		if (IS_ERR(simd))
 | |
| 			goto err_unregister;
 | |
| 		simd_algs[i] = simd;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_unregister:
 | |
| 	simd_unregister_aeads(algs, count, simd_algs);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
 | |
| 
 | |
| void simd_unregister_aeads(struct aead_alg *algs, int count,
 | |
| 			   struct simd_aead_alg **simd_algs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	crypto_unregister_aeads(algs, count);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (simd_algs[i]) {
 | |
| 			simd_aead_free(simd_algs[i]);
 | |
| 			simd_algs[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(simd_unregister_aeads);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 |