mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7d9d077c78
			
		
	
	
		7d9d077c78
		
	
	
	
	
		
			
			This pull request contains the following branches: doc.2022.06.21a: Documentation updates. fixes.2022.07.19a: Miscellaneous fixes. nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms. poll.2022.07.21a: Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods. rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead. torture.2022.06.21a: Torture-test updates. ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt 0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5 7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0 Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r vX60+QNxvUBLwA== =vUNm -----END PGP SIGNATURE----- Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms - Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods - Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead - Torture-test updates - Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y * tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits) rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings rcu: Diagnose extended sync_rcu_do_polled_gp() loops rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings rcutorture: Test polled expedited grace-period primitives rcu: Add polled expedited grace-period primitives rcutorture: Verify that polled GP API sees synchronous grace periods rcu: Make Tiny RCU grace periods visible to polled APIs rcu: Make polled grace-period API account for expedited grace periods rcu: Switch polled grace-period APIs to ->gp_seq_polled rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty rcu/nocb: Add option to opt rcuo kthreads out of RT priority rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread() rcu/nocb: Add an option to offload all CPUs on boot rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order rcu/nocb: Add/del rdp to iterate from rcuog itself rcu/tree: Add comment to describe GP-done condition in fqs loop rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs() rcu/kvfree: Remove useless monitor_todo flag rcu: Cleanup RCU urgency state for offline CPU ...
		
			
				
	
	
		
			3159 lines
		
	
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3159 lines
		
	
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * Scheduler internal types and methods:
 | |
|  */
 | |
| #ifndef _KERNEL_SCHED_SCHED_H
 | |
| #define _KERNEL_SCHED_SCHED_H
 | |
| 
 | |
| #include <linux/sched/affinity.h>
 | |
| #include <linux/sched/autogroup.h>
 | |
| #include <linux/sched/cpufreq.h>
 | |
| #include <linux/sched/deadline.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/loadavg.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/rseq_api.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/smt.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/sysctl.h>
 | |
| #include <linux/sched/task_flags.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/topology.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cgroup_api.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpumask_api.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs_api.h>
 | |
| #include <linux/hrtimer_api.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kref_api.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/ktime_api.h>
 | |
| #include <linux/lockdep_api.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/minmax.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex_api.h>
 | |
| #include <linux/plist.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/softirq.h>
 | |
| #include <linux/spinlock_api.h>
 | |
| #include <linux/static_key.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/syscalls_api.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/u64_stats_sync_api.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/wait_api.h>
 | |
| #include <linux/wait_bit.h>
 | |
| #include <linux/workqueue_api.h>
 | |
| 
 | |
| #include <trace/events/power.h>
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| #include "../workqueue_internal.h"
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/psi.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # include <linux/static_key.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| # include <asm/paravirt.h>
 | |
| # include <asm/paravirt_api_clock.h>
 | |
| #endif
 | |
| 
 | |
| #include "cpupri.h"
 | |
| #include "cpudeadline.h"
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
 | |
| #else
 | |
| # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
 | |
| #endif
 | |
| 
 | |
| struct rq;
 | |
| struct cpuidle_state;
 | |
| 
 | |
| /* task_struct::on_rq states: */
 | |
| #define TASK_ON_RQ_QUEUED	1
 | |
| #define TASK_ON_RQ_MIGRATING	2
 | |
| 
 | |
| extern __read_mostly int scheduler_running;
 | |
| 
 | |
| extern unsigned long calc_load_update;
 | |
| extern atomic_long_t calc_load_tasks;
 | |
| 
 | |
| extern unsigned int sysctl_sched_child_runs_first;
 | |
| 
 | |
| extern void calc_global_load_tick(struct rq *this_rq);
 | |
| extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 | |
| 
 | |
| extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 | |
| 
 | |
| extern unsigned int sysctl_sched_rt_period;
 | |
| extern int sysctl_sched_rt_runtime;
 | |
| extern int sched_rr_timeslice;
 | |
| 
 | |
| /*
 | |
|  * Helpers for converting nanosecond timing to jiffy resolution
 | |
|  */
 | |
| #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 | |
| 
 | |
| /*
 | |
|  * Increase resolution of nice-level calculations for 64-bit architectures.
 | |
|  * The extra resolution improves shares distribution and load balancing of
 | |
|  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 | |
|  * hierarchies, especially on larger systems. This is not a user-visible change
 | |
|  * and does not change the user-interface for setting shares/weights.
 | |
|  *
 | |
|  * We increase resolution only if we have enough bits to allow this increased
 | |
|  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 | |
|  * are pretty high and the returns do not justify the increased costs.
 | |
|  *
 | |
|  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 | |
|  * increase coverage and consistency always enable it on 64-bit platforms.
 | |
|  */
 | |
| #ifdef CONFIG_64BIT
 | |
| # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 | |
| # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 | |
| # define scale_load_down(w) \
 | |
| ({ \
 | |
| 	unsigned long __w = (w); \
 | |
| 	if (__w) \
 | |
| 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 | |
| 	__w; \
 | |
| })
 | |
| #else
 | |
| # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 | |
| # define scale_load(w)		(w)
 | |
| # define scale_load_down(w)	(w)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Task weight (visible to users) and its load (invisible to users) have
 | |
|  * independent resolution, but they should be well calibrated. We use
 | |
|  * scale_load() and scale_load_down(w) to convert between them. The
 | |
|  * following must be true:
 | |
|  *
 | |
|  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 | |
|  *
 | |
|  */
 | |
| #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Single value that decides SCHED_DEADLINE internal math precision.
 | |
|  * 10 -> just above 1us
 | |
|  * 9  -> just above 0.5us
 | |
|  */
 | |
| #define DL_SCALE		10
 | |
| 
 | |
| /*
 | |
|  * Single value that denotes runtime == period, ie unlimited time.
 | |
|  */
 | |
| #define RUNTIME_INF		((u64)~0ULL)
 | |
| 
 | |
| static inline int idle_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_IDLE;
 | |
| }
 | |
| static inline int fair_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 | |
| }
 | |
| 
 | |
| static inline int rt_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_FIFO || policy == SCHED_RR;
 | |
| }
 | |
| 
 | |
| static inline int dl_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_DEADLINE;
 | |
| }
 | |
| static inline bool valid_policy(int policy)
 | |
| {
 | |
| 	return idle_policy(policy) || fair_policy(policy) ||
 | |
| 		rt_policy(policy) || dl_policy(policy);
 | |
| }
 | |
| 
 | |
| static inline int task_has_idle_policy(struct task_struct *p)
 | |
| {
 | |
| 	return idle_policy(p->policy);
 | |
| }
 | |
| 
 | |
| static inline int task_has_rt_policy(struct task_struct *p)
 | |
| {
 | |
| 	return rt_policy(p->policy);
 | |
| }
 | |
| 
 | |
| static inline int task_has_dl_policy(struct task_struct *p)
 | |
| {
 | |
| 	return dl_policy(p->policy);
 | |
| }
 | |
| 
 | |
| #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 | |
| 
 | |
| static inline void update_avg(u64 *avg, u64 sample)
 | |
| {
 | |
| 	s64 diff = sample - *avg;
 | |
| 	*avg += diff / 8;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shifting a value by an exponent greater *or equal* to the size of said value
 | |
|  * is UB; cap at size-1.
 | |
|  */
 | |
| #define shr_bound(val, shift)							\
 | |
| 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 | |
| 
 | |
| /*
 | |
|  * !! For sched_setattr_nocheck() (kernel) only !!
 | |
|  *
 | |
|  * This is actually gross. :(
 | |
|  *
 | |
|  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 | |
|  * tasks, but still be able to sleep. We need this on platforms that cannot
 | |
|  * atomically change clock frequency. Remove once fast switching will be
 | |
|  * available on such platforms.
 | |
|  *
 | |
|  * SUGOV stands for SchedUtil GOVernor.
 | |
|  */
 | |
| #define SCHED_FLAG_SUGOV	0x10000000
 | |
| 
 | |
| #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 | |
| 
 | |
| static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 | |
| 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tells if entity @a should preempt entity @b.
 | |
|  */
 | |
| static inline bool
 | |
| dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 | |
| {
 | |
| 	return dl_entity_is_special(a) ||
 | |
| 	       dl_time_before(a->deadline, b->deadline);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the priority-queue data structure of the RT scheduling class:
 | |
|  */
 | |
| struct rt_prio_array {
 | |
| 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 | |
| 	struct list_head queue[MAX_RT_PRIO];
 | |
| };
 | |
| 
 | |
| struct rt_bandwidth {
 | |
| 	/* nests inside the rq lock: */
 | |
| 	raw_spinlock_t		rt_runtime_lock;
 | |
| 	ktime_t			rt_period;
 | |
| 	u64			rt_runtime;
 | |
| 	struct hrtimer		rt_period_timer;
 | |
| 	unsigned int		rt_period_active;
 | |
| };
 | |
| 
 | |
| void __dl_clear_params(struct task_struct *p);
 | |
| 
 | |
| struct dl_bandwidth {
 | |
| 	raw_spinlock_t		dl_runtime_lock;
 | |
| 	u64			dl_runtime;
 | |
| 	u64			dl_period;
 | |
| };
 | |
| 
 | |
| static inline int dl_bandwidth_enabled(void)
 | |
| {
 | |
| 	return sysctl_sched_rt_runtime >= 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To keep the bandwidth of -deadline tasks under control
 | |
|  * we need some place where:
 | |
|  *  - store the maximum -deadline bandwidth of each cpu;
 | |
|  *  - cache the fraction of bandwidth that is currently allocated in
 | |
|  *    each root domain;
 | |
|  *
 | |
|  * This is all done in the data structure below. It is similar to the
 | |
|  * one used for RT-throttling (rt_bandwidth), with the main difference
 | |
|  * that, since here we are only interested in admission control, we
 | |
|  * do not decrease any runtime while the group "executes", neither we
 | |
|  * need a timer to replenish it.
 | |
|  *
 | |
|  * With respect to SMP, bandwidth is given on a per root domain basis,
 | |
|  * meaning that:
 | |
|  *  - bw (< 100%) is the deadline bandwidth of each CPU;
 | |
|  *  - total_bw is the currently allocated bandwidth in each root domain;
 | |
|  */
 | |
| struct dl_bw {
 | |
| 	raw_spinlock_t		lock;
 | |
| 	u64			bw;
 | |
| 	u64			total_bw;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Verify the fitness of task @p to run on @cpu taking into account the
 | |
|  * CPU original capacity and the runtime/deadline ratio of the task.
 | |
|  *
 | |
|  * The function will return true if the CPU original capacity of the
 | |
|  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 | |
|  * task and false otherwise.
 | |
|  */
 | |
| static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	unsigned long cap = arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
 | |
| }
 | |
| 
 | |
| extern void init_dl_bw(struct dl_bw *dl_b);
 | |
| extern int  sched_dl_global_validate(void);
 | |
| extern void sched_dl_do_global(void);
 | |
| extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 | |
| extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 | |
| extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 | |
| extern bool __checkparam_dl(const struct sched_attr *attr);
 | |
| extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 | |
| extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 | |
| extern int  dl_cpu_busy(int cpu, struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| struct cfs_rq;
 | |
| struct rt_rq;
 | |
| 
 | |
| extern struct list_head task_groups;
 | |
| 
 | |
| struct cfs_bandwidth {
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	raw_spinlock_t		lock;
 | |
| 	ktime_t			period;
 | |
| 	u64			quota;
 | |
| 	u64			runtime;
 | |
| 	u64			burst;
 | |
| 	u64			runtime_snap;
 | |
| 	s64			hierarchical_quota;
 | |
| 
 | |
| 	u8			idle;
 | |
| 	u8			period_active;
 | |
| 	u8			slack_started;
 | |
| 	struct hrtimer		period_timer;
 | |
| 	struct hrtimer		slack_timer;
 | |
| 	struct list_head	throttled_cfs_rq;
 | |
| 
 | |
| 	/* Statistics: */
 | |
| 	int			nr_periods;
 | |
| 	int			nr_throttled;
 | |
| 	int			nr_burst;
 | |
| 	u64			throttled_time;
 | |
| 	u64			burst_time;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Task group related information */
 | |
| struct task_group {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* schedulable entities of this group on each CPU */
 | |
| 	struct sched_entity	**se;
 | |
| 	/* runqueue "owned" by this group on each CPU */
 | |
| 	struct cfs_rq		**cfs_rq;
 | |
| 	unsigned long		shares;
 | |
| 
 | |
| 	/* A positive value indicates that this is a SCHED_IDLE group. */
 | |
| 	int			idle;
 | |
| 
 | |
| #ifdef	CONFIG_SMP
 | |
| 	/*
 | |
| 	 * load_avg can be heavily contended at clock tick time, so put
 | |
| 	 * it in its own cacheline separated from the fields above which
 | |
| 	 * will also be accessed at each tick.
 | |
| 	 */
 | |
| 	atomic_long_t		load_avg ____cacheline_aligned;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct sched_rt_entity	**rt_se;
 | |
| 	struct rt_rq		**rt_rq;
 | |
| 
 | |
| 	struct rt_bandwidth	rt_bandwidth;
 | |
| #endif
 | |
| 
 | |
| 	struct rcu_head		rcu;
 | |
| 	struct list_head	list;
 | |
| 
 | |
| 	struct task_group	*parent;
 | |
| 	struct list_head	siblings;
 | |
| 	struct list_head	children;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| 	struct autogroup	*autogroup;
 | |
| #endif
 | |
| 
 | |
| 	struct cfs_bandwidth	cfs_bandwidth;
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK_GROUP
 | |
| 	/* The two decimal precision [%] value requested from user-space */
 | |
| 	unsigned int		uclamp_pct[UCLAMP_CNT];
 | |
| 	/* Clamp values requested for a task group */
 | |
| 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 | |
| 	/* Effective clamp values used for a task group */
 | |
| 	struct uclamp_se	uclamp[UCLAMP_CNT];
 | |
| #endif
 | |
| 
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 | |
| 
 | |
| /*
 | |
|  * A weight of 0 or 1 can cause arithmetics problems.
 | |
|  * A weight of a cfs_rq is the sum of weights of which entities
 | |
|  * are queued on this cfs_rq, so a weight of a entity should not be
 | |
|  * too large, so as the shares value of a task group.
 | |
|  * (The default weight is 1024 - so there's no practical
 | |
|  *  limitation from this.)
 | |
|  */
 | |
| #define MIN_SHARES		(1UL <<  1)
 | |
| #define MAX_SHARES		(1UL << 18)
 | |
| #endif
 | |
| 
 | |
| typedef int (*tg_visitor)(struct task_group *, void *);
 | |
| 
 | |
| extern int walk_tg_tree_from(struct task_group *from,
 | |
| 			     tg_visitor down, tg_visitor up, void *data);
 | |
| 
 | |
| /*
 | |
|  * Iterate the full tree, calling @down when first entering a node and @up when
 | |
|  * leaving it for the final time.
 | |
|  *
 | |
|  * Caller must hold rcu_lock or sufficient equivalent.
 | |
|  */
 | |
| static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 | |
| {
 | |
| 	return walk_tg_tree_from(&root_task_group, down, up, data);
 | |
| }
 | |
| 
 | |
| extern int tg_nop(struct task_group *tg, void *data);
 | |
| 
 | |
| extern void free_fair_sched_group(struct task_group *tg);
 | |
| extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 | |
| extern void online_fair_sched_group(struct task_group *tg);
 | |
| extern void unregister_fair_sched_group(struct task_group *tg);
 | |
| extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 | |
| 			struct sched_entity *se, int cpu,
 | |
| 			struct sched_entity *parent);
 | |
| extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 | |
| 
 | |
| extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 | |
| extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 | |
| extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| extern void unregister_rt_sched_group(struct task_group *tg);
 | |
| extern void free_rt_sched_group(struct task_group *tg);
 | |
| extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 | |
| extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 | |
| 		struct sched_rt_entity *rt_se, int cpu,
 | |
| 		struct sched_rt_entity *parent);
 | |
| extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 | |
| extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 | |
| extern long sched_group_rt_runtime(struct task_group *tg);
 | |
| extern long sched_group_rt_period(struct task_group *tg);
 | |
| extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 | |
| 
 | |
| extern struct task_group *sched_create_group(struct task_group *parent);
 | |
| extern void sched_online_group(struct task_group *tg,
 | |
| 			       struct task_group *parent);
 | |
| extern void sched_destroy_group(struct task_group *tg);
 | |
| extern void sched_release_group(struct task_group *tg);
 | |
| 
 | |
| extern void sched_move_task(struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 | |
| 
 | |
| extern int sched_group_set_idle(struct task_group *tg, long idle);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern void set_task_rq_fair(struct sched_entity *se,
 | |
| 			     struct cfs_rq *prev, struct cfs_rq *next);
 | |
| #else /* !CONFIG_SMP */
 | |
| static inline void set_task_rq_fair(struct sched_entity *se,
 | |
| 			     struct cfs_rq *prev, struct cfs_rq *next) { }
 | |
| #endif /* CONFIG_SMP */
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #else /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| struct cfs_bandwidth { };
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| /*
 | |
|  * u64_u32_load/u64_u32_store
 | |
|  *
 | |
|  * Use a copy of a u64 value to protect against data race. This is only
 | |
|  * applicable for 32-bits architectures.
 | |
|  */
 | |
| #ifdef CONFIG_64BIT
 | |
| # define u64_u32_load_copy(var, copy)       var
 | |
| # define u64_u32_store_copy(var, copy, val) (var = val)
 | |
| #else
 | |
| # define u64_u32_load_copy(var, copy)					\
 | |
| ({									\
 | |
| 	u64 __val, __val_copy;						\
 | |
| 	do {								\
 | |
| 		__val_copy = copy;					\
 | |
| 		/*							\
 | |
| 		 * paired with u64_u32_store_copy(), ordering access	\
 | |
| 		 * to var and copy.					\
 | |
| 		 */							\
 | |
| 		smp_rmb();						\
 | |
| 		__val = var;						\
 | |
| 	} while (__val != __val_copy);					\
 | |
| 	__val;								\
 | |
| })
 | |
| # define u64_u32_store_copy(var, copy, val)				\
 | |
| do {									\
 | |
| 	typeof(val) __val = (val);					\
 | |
| 	var = __val;							\
 | |
| 	/*								\
 | |
| 	 * paired with u64_u32_load_copy(), ordering access to var and	\
 | |
| 	 * copy.							\
 | |
| 	 */								\
 | |
| 	smp_wmb();							\
 | |
| 	copy = __val;							\
 | |
| } while (0)
 | |
| #endif
 | |
| # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
 | |
| # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
 | |
| 
 | |
| /* CFS-related fields in a runqueue */
 | |
| struct cfs_rq {
 | |
| 	struct load_weight	load;
 | |
| 	unsigned int		nr_running;
 | |
| 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 | |
| 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 | |
| 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 | |
| 
 | |
| 	u64			exec_clock;
 | |
| 	u64			min_vruntime;
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	unsigned int		forceidle_seq;
 | |
| 	u64			min_vruntime_fi;
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64			min_vruntime_copy;
 | |
| #endif
 | |
| 
 | |
| 	struct rb_root_cached	tasks_timeline;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'curr' points to currently running entity on this cfs_rq.
 | |
| 	 * It is set to NULL otherwise (i.e when none are currently running).
 | |
| 	 */
 | |
| 	struct sched_entity	*curr;
 | |
| 	struct sched_entity	*next;
 | |
| 	struct sched_entity	*last;
 | |
| 	struct sched_entity	*skip;
 | |
| 
 | |
| #ifdef	CONFIG_SCHED_DEBUG
 | |
| 	unsigned int		nr_spread_over;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * CFS load tracking
 | |
| 	 */
 | |
| 	struct sched_avg	avg;
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64			last_update_time_copy;
 | |
| #endif
 | |
| 	struct {
 | |
| 		raw_spinlock_t	lock ____cacheline_aligned;
 | |
| 		int		nr;
 | |
| 		unsigned long	load_avg;
 | |
| 		unsigned long	util_avg;
 | |
| 		unsigned long	runnable_avg;
 | |
| 	} removed;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	unsigned long		tg_load_avg_contrib;
 | |
| 	long			propagate;
 | |
| 	long			prop_runnable_sum;
 | |
| 
 | |
| 	/*
 | |
| 	 *   h_load = weight * f(tg)
 | |
| 	 *
 | |
| 	 * Where f(tg) is the recursive weight fraction assigned to
 | |
| 	 * this group.
 | |
| 	 */
 | |
| 	unsigned long		h_load;
 | |
| 	u64			last_h_load_update;
 | |
| 	struct sched_entity	*h_load_next;
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 | |
| 
 | |
| 	/*
 | |
| 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 | |
| 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 | |
| 	 * (like users, containers etc.)
 | |
| 	 *
 | |
| 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 | |
| 	 * This list is used during load balance.
 | |
| 	 */
 | |
| 	int			on_list;
 | |
| 	struct list_head	leaf_cfs_rq_list;
 | |
| 	struct task_group	*tg;	/* group that "owns" this runqueue */
 | |
| 
 | |
| 	/* Locally cached copy of our task_group's idle value */
 | |
| 	int			idle;
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	int			runtime_enabled;
 | |
| 	s64			runtime_remaining;
 | |
| 
 | |
| 	u64			throttled_pelt_idle;
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64                     throttled_pelt_idle_copy;
 | |
| #endif
 | |
| 	u64			throttled_clock;
 | |
| 	u64			throttled_clock_pelt;
 | |
| 	u64			throttled_clock_pelt_time;
 | |
| 	int			throttled;
 | |
| 	int			throttle_count;
 | |
| 	struct list_head	throttled_list;
 | |
| #endif /* CONFIG_CFS_BANDWIDTH */
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| };
 | |
| 
 | |
| static inline int rt_bandwidth_enabled(void)
 | |
| {
 | |
| 	return sysctl_sched_rt_runtime >= 0;
 | |
| }
 | |
| 
 | |
| /* RT IPI pull logic requires IRQ_WORK */
 | |
| #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 | |
| # define HAVE_RT_PUSH_IPI
 | |
| #endif
 | |
| 
 | |
| /* Real-Time classes' related field in a runqueue: */
 | |
| struct rt_rq {
 | |
| 	struct rt_prio_array	active;
 | |
| 	unsigned int		rt_nr_running;
 | |
| 	unsigned int		rr_nr_running;
 | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | |
| 	struct {
 | |
| 		int		curr; /* highest queued rt task prio */
 | |
| #ifdef CONFIG_SMP
 | |
| 		int		next; /* next highest */
 | |
| #endif
 | |
| 	} highest_prio;
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned int		rt_nr_migratory;
 | |
| 	unsigned int		rt_nr_total;
 | |
| 	int			overloaded;
 | |
| 	struct plist_head	pushable_tasks;
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 	int			rt_queued;
 | |
| 
 | |
| 	int			rt_throttled;
 | |
| 	u64			rt_time;
 | |
| 	u64			rt_runtime;
 | |
| 	/* Nests inside the rq lock: */
 | |
| 	raw_spinlock_t		rt_runtime_lock;
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	unsigned int		rt_nr_boosted;
 | |
| 
 | |
| 	struct rq		*rq;
 | |
| 	struct task_group	*tg;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 | |
| }
 | |
| 
 | |
| /* Deadline class' related fields in a runqueue */
 | |
| struct dl_rq {
 | |
| 	/* runqueue is an rbtree, ordered by deadline */
 | |
| 	struct rb_root_cached	root;
 | |
| 
 | |
| 	unsigned int		dl_nr_running;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Deadline values of the currently executing and the
 | |
| 	 * earliest ready task on this rq. Caching these facilitates
 | |
| 	 * the decision whether or not a ready but not running task
 | |
| 	 * should migrate somewhere else.
 | |
| 	 */
 | |
| 	struct {
 | |
| 		u64		curr;
 | |
| 		u64		next;
 | |
| 	} earliest_dl;
 | |
| 
 | |
| 	unsigned int		dl_nr_migratory;
 | |
| 	int			overloaded;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks on this rq that can be pushed away. They are kept in
 | |
| 	 * an rb-tree, ordered by tasks' deadlines, with caching
 | |
| 	 * of the leftmost (earliest deadline) element.
 | |
| 	 */
 | |
| 	struct rb_root_cached	pushable_dl_tasks_root;
 | |
| #else
 | |
| 	struct dl_bw		dl_bw;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * "Active utilization" for this runqueue: increased when a
 | |
| 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 | |
| 	 * task blocks
 | |
| 	 */
 | |
| 	u64			running_bw;
 | |
| 
 | |
| 	/*
 | |
| 	 * Utilization of the tasks "assigned" to this runqueue (including
 | |
| 	 * the tasks that are in runqueue and the tasks that executed on this
 | |
| 	 * CPU and blocked). Increased when a task moves to this runqueue, and
 | |
| 	 * decreased when the task moves away (migrates, changes scheduling
 | |
| 	 * policy, or terminates).
 | |
| 	 * This is needed to compute the "inactive utilization" for the
 | |
| 	 * runqueue (inactive utilization = this_bw - running_bw).
 | |
| 	 */
 | |
| 	u64			this_bw;
 | |
| 	u64			extra_bw;
 | |
| 
 | |
| 	/*
 | |
| 	 * Inverse of the fraction of CPU utilization that can be reclaimed
 | |
| 	 * by the GRUB algorithm.
 | |
| 	 */
 | |
| 	u64			bw_ratio;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /* An entity is a task if it doesn't "own" a runqueue */
 | |
| #define entity_is_task(se)	(!se->my_q)
 | |
| 
 | |
| static inline void se_update_runnable(struct sched_entity *se)
 | |
| {
 | |
| 	if (!entity_is_task(se))
 | |
| 		se->runnable_weight = se->my_q->h_nr_running;
 | |
| }
 | |
| 
 | |
| static inline long se_runnable(struct sched_entity *se)
 | |
| {
 | |
| 	if (entity_is_task(se))
 | |
| 		return !!se->on_rq;
 | |
| 	else
 | |
| 		return se->runnable_weight;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define entity_is_task(se)	1
 | |
| 
 | |
| static inline void se_update_runnable(struct sched_entity *se) {}
 | |
| 
 | |
| static inline long se_runnable(struct sched_entity *se)
 | |
| {
 | |
| 	return !!se->on_rq;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * XXX we want to get rid of these helpers and use the full load resolution.
 | |
|  */
 | |
| static inline long se_weight(struct sched_entity *se)
 | |
| {
 | |
| 	return scale_load_down(se->load.weight);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline bool sched_asym_prefer(int a, int b)
 | |
| {
 | |
| 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 | |
| }
 | |
| 
 | |
| struct perf_domain {
 | |
| 	struct em_perf_domain *em_pd;
 | |
| 	struct perf_domain *next;
 | |
| 	struct rcu_head rcu;
 | |
| };
 | |
| 
 | |
| /* Scheduling group status flags */
 | |
| #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 | |
| #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 | |
| 
 | |
| /*
 | |
|  * We add the notion of a root-domain which will be used to define per-domain
 | |
|  * variables. Each exclusive cpuset essentially defines an island domain by
 | |
|  * fully partitioning the member CPUs from any other cpuset. Whenever a new
 | |
|  * exclusive cpuset is created, we also create and attach a new root-domain
 | |
|  * object.
 | |
|  *
 | |
|  */
 | |
| struct root_domain {
 | |
| 	atomic_t		refcount;
 | |
| 	atomic_t		rto_count;
 | |
| 	struct rcu_head		rcu;
 | |
| 	cpumask_var_t		span;
 | |
| 	cpumask_var_t		online;
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate pullable load on at least one CPU, e.g:
 | |
| 	 * - More than one runnable task
 | |
| 	 * - Running task is misfit
 | |
| 	 */
 | |
| 	int			overload;
 | |
| 
 | |
| 	/* Indicate one or more cpus over-utilized (tipping point) */
 | |
| 	int			overutilized;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bit corresponding to a CPU gets set here if such CPU has more
 | |
| 	 * than one runnable -deadline task (as it is below for RT tasks).
 | |
| 	 */
 | |
| 	cpumask_var_t		dlo_mask;
 | |
| 	atomic_t		dlo_count;
 | |
| 	struct dl_bw		dl_bw;
 | |
| 	struct cpudl		cpudl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate whether a root_domain's dl_bw has been checked or
 | |
| 	 * updated. It's monotonously increasing value.
 | |
| 	 *
 | |
| 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 | |
| 	 * that u64 is 'big enough'. So that shouldn't be a concern.
 | |
| 	 */
 | |
| 	u64 visit_gen;
 | |
| 
 | |
| #ifdef HAVE_RT_PUSH_IPI
 | |
| 	/*
 | |
| 	 * For IPI pull requests, loop across the rto_mask.
 | |
| 	 */
 | |
| 	struct irq_work		rto_push_work;
 | |
| 	raw_spinlock_t		rto_lock;
 | |
| 	/* These are only updated and read within rto_lock */
 | |
| 	int			rto_loop;
 | |
| 	int			rto_cpu;
 | |
| 	/* These atomics are updated outside of a lock */
 | |
| 	atomic_t		rto_loop_next;
 | |
| 	atomic_t		rto_loop_start;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * The "RT overload" flag: it gets set if a CPU has more than
 | |
| 	 * one runnable RT task.
 | |
| 	 */
 | |
| 	cpumask_var_t		rto_mask;
 | |
| 	struct cpupri		cpupri;
 | |
| 
 | |
| 	unsigned long		max_cpu_capacity;
 | |
| 
 | |
| 	/*
 | |
| 	 * NULL-terminated list of performance domains intersecting with the
 | |
| 	 * CPUs of the rd. Protected by RCU.
 | |
| 	 */
 | |
| 	struct perf_domain __rcu *pd;
 | |
| };
 | |
| 
 | |
| extern void init_defrootdomain(void);
 | |
| extern int sched_init_domains(const struct cpumask *cpu_map);
 | |
| extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 | |
| extern void sched_get_rd(struct root_domain *rd);
 | |
| extern void sched_put_rd(struct root_domain *rd);
 | |
| 
 | |
| #ifdef HAVE_RT_PUSH_IPI
 | |
| extern void rto_push_irq_work_func(struct irq_work *work);
 | |
| #endif
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| /*
 | |
|  * struct uclamp_bucket - Utilization clamp bucket
 | |
|  * @value: utilization clamp value for tasks on this clamp bucket
 | |
|  * @tasks: number of RUNNABLE tasks on this clamp bucket
 | |
|  *
 | |
|  * Keep track of how many tasks are RUNNABLE for a given utilization
 | |
|  * clamp value.
 | |
|  */
 | |
| struct uclamp_bucket {
 | |
| 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 | |
| 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct uclamp_rq - rq's utilization clamp
 | |
|  * @value: currently active clamp values for a rq
 | |
|  * @bucket: utilization clamp buckets affecting a rq
 | |
|  *
 | |
|  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 | |
|  * A clamp value is affecting a rq when there is at least one task RUNNABLE
 | |
|  * (or actually running) with that value.
 | |
|  *
 | |
|  * There are up to UCLAMP_CNT possible different clamp values, currently there
 | |
|  * are only two: minimum utilization and maximum utilization.
 | |
|  *
 | |
|  * All utilization clamping values are MAX aggregated, since:
 | |
|  * - for util_min: we want to run the CPU at least at the max of the minimum
 | |
|  *   utilization required by its currently RUNNABLE tasks.
 | |
|  * - for util_max: we want to allow the CPU to run up to the max of the
 | |
|  *   maximum utilization allowed by its currently RUNNABLE tasks.
 | |
|  *
 | |
|  * Since on each system we expect only a limited number of different
 | |
|  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 | |
|  * the metrics required to compute all the per-rq utilization clamp values.
 | |
|  */
 | |
| struct uclamp_rq {
 | |
| 	unsigned int value;
 | |
| 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 | |
| };
 | |
| 
 | |
| DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 | |
| #endif /* CONFIG_UCLAMP_TASK */
 | |
| 
 | |
| /*
 | |
|  * This is the main, per-CPU runqueue data structure.
 | |
|  *
 | |
|  * Locking rule: those places that want to lock multiple runqueues
 | |
|  * (such as the load balancing or the thread migration code), lock
 | |
|  * acquire operations must be ordered by ascending &runqueue.
 | |
|  */
 | |
| struct rq {
 | |
| 	/* runqueue lock: */
 | |
| 	raw_spinlock_t		__lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr_running and cpu_load should be in the same cacheline because
 | |
| 	 * remote CPUs use both these fields when doing load calculation.
 | |
| 	 */
 | |
| 	unsigned int		nr_running;
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	unsigned int		nr_numa_running;
 | |
| 	unsigned int		nr_preferred_running;
 | |
| 	unsigned int		numa_migrate_on;
 | |
| #endif
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long		last_blocked_load_update_tick;
 | |
| 	unsigned int		has_blocked_load;
 | |
| 	call_single_data_t	nohz_csd;
 | |
| #endif /* CONFIG_SMP */
 | |
| 	unsigned int		nohz_tick_stopped;
 | |
| 	atomic_t		nohz_flags;
 | |
| #endif /* CONFIG_NO_HZ_COMMON */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned int		ttwu_pending;
 | |
| #endif
 | |
| 	u64			nr_switches;
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 | |
| 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 | |
| 	unsigned int		uclamp_flags;
 | |
| #define UCLAMP_FLAG_IDLE 0x01
 | |
| #endif
 | |
| 
 | |
| 	struct cfs_rq		cfs;
 | |
| 	struct rt_rq		rt;
 | |
| 	struct dl_rq		dl;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* list of leaf cfs_rq on this CPU: */
 | |
| 	struct list_head	leaf_cfs_rq_list;
 | |
| 	struct list_head	*tmp_alone_branch;
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 	/*
 | |
| 	 * This is part of a global counter where only the total sum
 | |
| 	 * over all CPUs matters. A task can increase this counter on
 | |
| 	 * one CPU and if it got migrated afterwards it may decrease
 | |
| 	 * it on another CPU. Always updated under the runqueue lock:
 | |
| 	 */
 | |
| 	unsigned int		nr_uninterruptible;
 | |
| 
 | |
| 	struct task_struct __rcu	*curr;
 | |
| 	struct task_struct	*idle;
 | |
| 	struct task_struct	*stop;
 | |
| 	unsigned long		next_balance;
 | |
| 	struct mm_struct	*prev_mm;
 | |
| 
 | |
| 	unsigned int		clock_update_flags;
 | |
| 	u64			clock;
 | |
| 	/* Ensure that all clocks are in the same cache line */
 | |
| 	u64			clock_task ____cacheline_aligned;
 | |
| 	u64			clock_pelt;
 | |
| 	unsigned long		lost_idle_time;
 | |
| 	u64			clock_pelt_idle;
 | |
| 	u64			clock_idle;
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64			clock_pelt_idle_copy;
 | |
| 	u64			clock_idle_copy;
 | |
| #endif
 | |
| 
 | |
| 	atomic_t		nr_iowait;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	u64 last_seen_need_resched_ns;
 | |
| 	int ticks_without_resched;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMBARRIER
 | |
| 	int membarrier_state;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct root_domain		*rd;
 | |
| 	struct sched_domain __rcu	*sd;
 | |
| 
 | |
| 	unsigned long		cpu_capacity;
 | |
| 	unsigned long		cpu_capacity_orig;
 | |
| 
 | |
| 	struct callback_head	*balance_callback;
 | |
| 
 | |
| 	unsigned char		nohz_idle_balance;
 | |
| 	unsigned char		idle_balance;
 | |
| 
 | |
| 	unsigned long		misfit_task_load;
 | |
| 
 | |
| 	/* For active balancing */
 | |
| 	int			active_balance;
 | |
| 	int			push_cpu;
 | |
| 	struct cpu_stop_work	active_balance_work;
 | |
| 
 | |
| 	/* CPU of this runqueue: */
 | |
| 	int			cpu;
 | |
| 	int			online;
 | |
| 
 | |
| 	struct list_head cfs_tasks;
 | |
| 
 | |
| 	struct sched_avg	avg_rt;
 | |
| 	struct sched_avg	avg_dl;
 | |
| #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 | |
| 	struct sched_avg	avg_irq;
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_THERMAL_PRESSURE
 | |
| 	struct sched_avg	avg_thermal;
 | |
| #endif
 | |
| 	u64			idle_stamp;
 | |
| 	u64			avg_idle;
 | |
| 
 | |
| 	unsigned long		wake_stamp;
 | |
| 	u64			wake_avg_idle;
 | |
| 
 | |
| 	/* This is used to determine avg_idle's max value */
 | |
| 	u64			max_idle_balance_cost;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	struct rcuwait		hotplug_wait;
 | |
| #endif
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 	u64			prev_irq_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	u64			prev_steal_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 | |
| 	u64			prev_steal_time_rq;
 | |
| #endif
 | |
| 
 | |
| 	/* calc_load related fields */
 | |
| 	unsigned long		calc_load_update;
 | |
| 	long			calc_load_active;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| #ifdef CONFIG_SMP
 | |
| 	call_single_data_t	hrtick_csd;
 | |
| #endif
 | |
| 	struct hrtimer		hrtick_timer;
 | |
| 	ktime_t 		hrtick_time;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/* latency stats */
 | |
| 	struct sched_info	rq_sched_info;
 | |
| 	unsigned long long	rq_cpu_time;
 | |
| 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 | |
| 
 | |
| 	/* sys_sched_yield() stats */
 | |
| 	unsigned int		yld_count;
 | |
| 
 | |
| 	/* schedule() stats */
 | |
| 	unsigned int		sched_count;
 | |
| 	unsigned int		sched_goidle;
 | |
| 
 | |
| 	/* try_to_wake_up() stats */
 | |
| 	unsigned int		ttwu_count;
 | |
| 	unsigned int		ttwu_local;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| 	/* Must be inspected within a rcu lock section */
 | |
| 	struct cpuidle_state	*idle_state;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned int		nr_pinned;
 | |
| #endif
 | |
| 	unsigned int		push_busy;
 | |
| 	struct cpu_stop_work	push_work;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	/* per rq */
 | |
| 	struct rq		*core;
 | |
| 	struct task_struct	*core_pick;
 | |
| 	unsigned int		core_enabled;
 | |
| 	unsigned int		core_sched_seq;
 | |
| 	struct rb_root		core_tree;
 | |
| 
 | |
| 	/* shared state -- careful with sched_core_cpu_deactivate() */
 | |
| 	unsigned int		core_task_seq;
 | |
| 	unsigned int		core_pick_seq;
 | |
| 	unsigned long		core_cookie;
 | |
| 	unsigned int		core_forceidle_count;
 | |
| 	unsigned int		core_forceidle_seq;
 | |
| 	unsigned int		core_forceidle_occupation;
 | |
| 	u64			core_forceidle_start;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| /* CPU runqueue to which this cfs_rq is attached */
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->rq;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return container_of(cfs_rq, struct rq, cfs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int cpu_of(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return rq->cpu;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define MDF_PUSH	0x01
 | |
| 
 | |
| static inline bool is_migration_disabled(struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return p->migration_disabled;
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct sched_group;
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| static inline struct cpumask *sched_group_span(struct sched_group *sg);
 | |
| 
 | |
| DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
 | |
| 
 | |
| static inline bool sched_core_enabled(struct rq *rq)
 | |
| {
 | |
| 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
 | |
| }
 | |
| 
 | |
| static inline bool sched_core_disabled(void)
 | |
| {
 | |
| 	return !static_branch_unlikely(&__sched_core_enabled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Be careful with this function; not for general use. The return value isn't
 | |
|  * stable unless you actually hold a relevant rq->__lock.
 | |
|  */
 | |
| static inline raw_spinlock_t *rq_lockp(struct rq *rq)
 | |
| {
 | |
| 	if (sched_core_enabled(rq))
 | |
| 		return &rq->core->__lock;
 | |
| 
 | |
| 	return &rq->__lock;
 | |
| }
 | |
| 
 | |
| static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
 | |
| {
 | |
| 	if (rq->core_enabled)
 | |
| 		return &rq->core->__lock;
 | |
| 
 | |
| 	return &rq->__lock;
 | |
| }
 | |
| 
 | |
| bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
 | |
| 
 | |
| /*
 | |
|  * Helpers to check if the CPU's core cookie matches with the task's cookie
 | |
|  * when core scheduling is enabled.
 | |
|  * A special case is that the task's cookie always matches with CPU's core
 | |
|  * cookie if the CPU is in an idle core.
 | |
|  */
 | |
| static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
 | |
| 	if (!sched_core_enabled(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	return rq->core->core_cookie == p->core_cookie;
 | |
| }
 | |
| 
 | |
| static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	bool idle_core = true;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
 | |
| 	if (!sched_core_enabled(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
 | |
| 		if (!available_idle_cpu(cpu)) {
 | |
| 			idle_core = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A CPU in an idle core is always the best choice for tasks with
 | |
| 	 * cookies.
 | |
| 	 */
 | |
| 	return idle_core || rq->core->core_cookie == p->core_cookie;
 | |
| }
 | |
| 
 | |
| static inline bool sched_group_cookie_match(struct rq *rq,
 | |
| 					    struct task_struct *p,
 | |
| 					    struct sched_group *group)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
 | |
| 	if (!sched_core_enabled(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
 | |
| 		if (sched_core_cookie_match(rq, p))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool sched_core_enqueued(struct task_struct *p)
 | |
| {
 | |
| 	return !RB_EMPTY_NODE(&p->core_node);
 | |
| }
 | |
| 
 | |
| extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
 | |
| extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| extern void sched_core_get(void);
 | |
| extern void sched_core_put(void);
 | |
| 
 | |
| #else /* !CONFIG_SCHED_CORE */
 | |
| 
 | |
| static inline bool sched_core_enabled(struct rq *rq)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool sched_core_disabled(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline raw_spinlock_t *rq_lockp(struct rq *rq)
 | |
| {
 | |
| 	return &rq->__lock;
 | |
| }
 | |
| 
 | |
| static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
 | |
| {
 | |
| 	return &rq->__lock;
 | |
| }
 | |
| 
 | |
| static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool sched_group_cookie_match(struct rq *rq,
 | |
| 					    struct task_struct *p,
 | |
| 					    struct sched_group *group)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif /* CONFIG_SCHED_CORE */
 | |
| 
 | |
| static inline void lockdep_assert_rq_held(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_held(__rq_lockp(rq));
 | |
| }
 | |
| 
 | |
| extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
 | |
| extern bool raw_spin_rq_trylock(struct rq *rq);
 | |
| extern void raw_spin_rq_unlock(struct rq *rq);
 | |
| 
 | |
| static inline void raw_spin_rq_lock(struct rq *rq)
 | |
| {
 | |
| 	raw_spin_rq_lock_nested(rq, 0);
 | |
| }
 | |
| 
 | |
| static inline void raw_spin_rq_lock_irq(struct rq *rq)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	raw_spin_rq_lock(rq);
 | |
| }
 | |
| 
 | |
| static inline void raw_spin_rq_unlock_irq(struct rq *rq)
 | |
| {
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	local_irq_save(flags);
 | |
| 	raw_spin_rq_lock(rq);
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
 | |
| {
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #define raw_spin_rq_lock_irqsave(rq, flags)	\
 | |
| do {						\
 | |
| 	flags = _raw_spin_rq_lock_irqsave(rq);	\
 | |
| } while (0)
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| extern void __update_idle_core(struct rq *rq);
 | |
| 
 | |
| static inline void update_idle_core(struct rq *rq)
 | |
| {
 | |
| 	if (static_branch_unlikely(&sched_smt_present))
 | |
| 		__update_idle_core(rq);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void update_idle_core(struct rq *rq) { }
 | |
| #endif
 | |
| 
 | |
| DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 | |
| 
 | |
| #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 | |
| #define this_rq()		this_cpu_ptr(&runqueues)
 | |
| #define task_rq(p)		cpu_rq(task_cpu(p))
 | |
| #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 | |
| #define raw_rq()		raw_cpu_ptr(&runqueues)
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| 	SCHED_WARN_ON(!entity_is_task(se));
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue on which this entity is (to be) queued */
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	return se->cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return grp->my_q;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return &task_rq(p)->cfs;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	struct task_struct *p = task_of(se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->cfs;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void update_rq_clock(struct rq *rq);
 | |
| 
 | |
| /*
 | |
|  * rq::clock_update_flags bits
 | |
|  *
 | |
|  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 | |
|  *  call to __schedule(). This is an optimisation to avoid
 | |
|  *  neighbouring rq clock updates.
 | |
|  *
 | |
|  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 | |
|  *  in effect and calls to update_rq_clock() are being ignored.
 | |
|  *
 | |
|  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 | |
|  *  made to update_rq_clock() since the last time rq::lock was pinned.
 | |
|  *
 | |
|  * If inside of __schedule(), clock_update_flags will have been
 | |
|  * shifted left (a left shift is a cheap operation for the fast path
 | |
|  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 | |
|  *
 | |
|  *	if (rq-clock_update_flags >= RQCF_UPDATED)
 | |
|  *
 | |
|  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
 | |
|  * one position though, because the next rq_unpin_lock() will shift it
 | |
|  * back.
 | |
|  */
 | |
| #define RQCF_REQ_SKIP		0x01
 | |
| #define RQCF_ACT_SKIP		0x02
 | |
| #define RQCF_UPDATED		0x04
 | |
| 
 | |
| static inline void assert_clock_updated(struct rq *rq)
 | |
| {
 | |
| 	/*
 | |
| 	 * The only reason for not seeing a clock update since the
 | |
| 	 * last rq_pin_lock() is if we're currently skipping updates.
 | |
| 	 */
 | |
| 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
 | |
| }
 | |
| 
 | |
| static inline u64 rq_clock(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 	assert_clock_updated(rq);
 | |
| 
 | |
| 	return rq->clock;
 | |
| }
 | |
| 
 | |
| static inline u64 rq_clock_task(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 	assert_clock_updated(rq);
 | |
| 
 | |
| 	return rq->clock_task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * By default the decay is the default pelt decay period.
 | |
|  * The decay shift can change the decay period in
 | |
|  * multiples of 32.
 | |
|  *  Decay shift		Decay period(ms)
 | |
|  *	0			32
 | |
|  *	1			64
 | |
|  *	2			128
 | |
|  *	3			256
 | |
|  *	4			512
 | |
|  */
 | |
| extern int sched_thermal_decay_shift;
 | |
| 
 | |
| static inline u64 rq_clock_thermal(struct rq *rq)
 | |
| {
 | |
| 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
 | |
| }
 | |
| 
 | |
| static inline void rq_clock_skip_update(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 	rq->clock_update_flags |= RQCF_REQ_SKIP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See rt task throttling, which is the only time a skip
 | |
|  * request is canceled.
 | |
|  */
 | |
| static inline void rq_clock_cancel_skipupdate(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
 | |
| }
 | |
| 
 | |
| struct rq_flags {
 | |
| 	unsigned long flags;
 | |
| 	struct pin_cookie cookie;
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	/*
 | |
| 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
 | |
| 	 * current pin context is stashed here in case it needs to be
 | |
| 	 * restored in rq_repin_lock().
 | |
| 	 */
 | |
| 	unsigned int clock_update_flags;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| extern struct callback_head balance_push_callback;
 | |
| 
 | |
| /*
 | |
|  * Lockdep annotation that avoids accidental unlocks; it's like a
 | |
|  * sticky/continuous lockdep_assert_held().
 | |
|  *
 | |
|  * This avoids code that has access to 'struct rq *rq' (basically everything in
 | |
|  * the scheduler) from accidentally unlocking the rq if they do not also have a
 | |
|  * copy of the (on-stack) 'struct rq_flags rf'.
 | |
|  *
 | |
|  * Also see Documentation/locking/lockdep-design.rst.
 | |
|  */
 | |
| static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
 | |
| {
 | |
| 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
 | |
| 	rf->clock_update_flags = 0;
 | |
| #ifdef CONFIG_SMP
 | |
| 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
 | |
| 		rf->clock_update_flags = RQCF_UPDATED;
 | |
| #endif
 | |
| 
 | |
| 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
 | |
| }
 | |
| 
 | |
| static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
 | |
| {
 | |
| 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	/*
 | |
| 	 * Restore the value we stashed in @rf for this pin context.
 | |
| 	 */
 | |
| 	rq->clock_update_flags |= rf->clock_update_flags;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 | |
| 	__acquires(rq->lock);
 | |
| 
 | |
| struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 | |
| 	__acquires(p->pi_lock)
 | |
| 	__acquires(rq->lock);
 | |
| 
 | |
| static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
 | |
| 	__releases(rq->lock)
 | |
| 	__releases(p->pi_lock)
 | |
| {
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	raw_spin_rq_lock_irqsave(rq, rf->flags);
 | |
| 	rq_pin_lock(rq, rf);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_lock_irq(struct rq *rq, struct rq_flags *rf)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	raw_spin_rq_lock_irq(rq);
 | |
| 	rq_pin_lock(rq, rf);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_lock(struct rq *rq, struct rq_flags *rf)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	raw_spin_rq_lock(rq);
 | |
| 	rq_pin_lock(rq, rf);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 	raw_spin_rq_unlock_irq(rq);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_unlock(struct rq *rq, struct rq_flags *rf)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	rq_unpin_lock(rq, rf);
 | |
| 	raw_spin_rq_unlock(rq);
 | |
| }
 | |
| 
 | |
| static inline struct rq *
 | |
| this_rq_lock_irq(struct rq_flags *rf)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	rq = this_rq();
 | |
| 	rq_lock(rq, rf);
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| enum numa_topology_type {
 | |
| 	NUMA_DIRECT,
 | |
| 	NUMA_GLUELESS_MESH,
 | |
| 	NUMA_BACKPLANE,
 | |
| };
 | |
| extern enum numa_topology_type sched_numa_topology_type;
 | |
| extern int sched_max_numa_distance;
 | |
| extern bool find_numa_distance(int distance);
 | |
| extern void sched_init_numa(int offline_node);
 | |
| extern void sched_update_numa(int cpu, bool online);
 | |
| extern void sched_domains_numa_masks_set(unsigned int cpu);
 | |
| extern void sched_domains_numa_masks_clear(unsigned int cpu);
 | |
| extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
 | |
| #else
 | |
| static inline void sched_init_numa(int offline_node) { }
 | |
| static inline void sched_update_numa(int cpu, bool online) { }
 | |
| static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
 | |
| static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
 | |
| static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
 | |
| {
 | |
| 	return nr_cpu_ids;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /* The regions in numa_faults array from task_struct */
 | |
| enum numa_faults_stats {
 | |
| 	NUMA_MEM = 0,
 | |
| 	NUMA_CPU,
 | |
| 	NUMA_MEMBUF,
 | |
| 	NUMA_CPUBUF
 | |
| };
 | |
| extern void sched_setnuma(struct task_struct *p, int node);
 | |
| extern int migrate_task_to(struct task_struct *p, int cpu);
 | |
| extern int migrate_swap(struct task_struct *p, struct task_struct *t,
 | |
| 			int cpu, int scpu);
 | |
| extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
 | |
| #else
 | |
| static inline void
 | |
| init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline void
 | |
| queue_balance_callback(struct rq *rq,
 | |
| 		       struct callback_head *head,
 | |
| 		       void (*func)(struct rq *rq))
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't (re)queue an already queued item; nor queue anything when
 | |
| 	 * balance_push() is active, see the comment with
 | |
| 	 * balance_push_callback.
 | |
| 	 */
 | |
| 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
 | |
| 		return;
 | |
| 
 | |
| 	head->func = (void (*)(struct callback_head *))func;
 | |
| 	head->next = rq->balance_callback;
 | |
| 	rq->balance_callback = head;
 | |
| }
 | |
| 
 | |
| #define rcu_dereference_check_sched_domain(p) \
 | |
| 	rcu_dereference_check((p), \
 | |
| 			      lockdep_is_held(&sched_domains_mutex))
 | |
| 
 | |
| /*
 | |
|  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 | |
|  * See destroy_sched_domains: call_rcu for details.
 | |
|  *
 | |
|  * The domain tree of any CPU may only be accessed from within
 | |
|  * preempt-disabled sections.
 | |
|  */
 | |
| #define for_each_domain(cpu, __sd) \
 | |
| 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 | |
| 			__sd; __sd = __sd->parent)
 | |
| 
 | |
| /**
 | |
|  * highest_flag_domain - Return highest sched_domain containing flag.
 | |
|  * @cpu:	The CPU whose highest level of sched domain is to
 | |
|  *		be returned.
 | |
|  * @flag:	The flag to check for the highest sched_domain
 | |
|  *		for the given CPU.
 | |
|  *
 | |
|  * Returns the highest sched_domain of a CPU which contains the given flag.
 | |
|  */
 | |
| static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 | |
| {
 | |
| 	struct sched_domain *sd, *hsd = NULL;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (!(sd->flags & flag))
 | |
| 			break;
 | |
| 		hsd = sd;
 | |
| 	}
 | |
| 
 | |
| 	return hsd;
 | |
| }
 | |
| 
 | |
| static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & flag)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return sd;
 | |
| }
 | |
| 
 | |
| DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 | |
| DECLARE_PER_CPU(int, sd_llc_size);
 | |
| DECLARE_PER_CPU(int, sd_llc_id);
 | |
| DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 | |
| DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 | |
| DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 | |
| DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 | |
| extern struct static_key_false sched_asym_cpucapacity;
 | |
| 
 | |
| struct sched_group_capacity {
 | |
| 	atomic_t		ref;
 | |
| 	/*
 | |
| 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
 | |
| 	 * for a single CPU.
 | |
| 	 */
 | |
| 	unsigned long		capacity;
 | |
| 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
 | |
| 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
 | |
| 	unsigned long		next_update;
 | |
| 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	int			id;
 | |
| #endif
 | |
| 
 | |
| 	unsigned long		cpumask[];		/* Balance mask */
 | |
| };
 | |
| 
 | |
| struct sched_group {
 | |
| 	struct sched_group	*next;			/* Must be a circular list */
 | |
| 	atomic_t		ref;
 | |
| 
 | |
| 	unsigned int		group_weight;
 | |
| 	struct sched_group_capacity *sgc;
 | |
| 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
 | |
| 	int			flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * The CPUs this group covers.
 | |
| 	 *
 | |
| 	 * NOTE: this field is variable length. (Allocated dynamically
 | |
| 	 * by attaching extra space to the end of the structure,
 | |
| 	 * depending on how many CPUs the kernel has booted up with)
 | |
| 	 */
 | |
| 	unsigned long		cpumask[];
 | |
| };
 | |
| 
 | |
| static inline struct cpumask *sched_group_span(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->cpumask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See build_balance_mask().
 | |
|  */
 | |
| static inline struct cpumask *group_balance_mask(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->sgc->cpumask);
 | |
| }
 | |
| 
 | |
| extern int group_balance_cpu(struct sched_group *sg);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| void update_sched_domain_debugfs(void);
 | |
| void dirty_sched_domain_sysctl(int cpu);
 | |
| #else
 | |
| static inline void update_sched_domain_debugfs(void)
 | |
| {
 | |
| }
 | |
| static inline void dirty_sched_domain_sysctl(int cpu)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern int sched_update_scaling(void);
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #include "stats.h"
 | |
| 
 | |
| #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
 | |
| 
 | |
| extern void __sched_core_account_forceidle(struct rq *rq);
 | |
| 
 | |
| static inline void sched_core_account_forceidle(struct rq *rq)
 | |
| {
 | |
| 	if (schedstat_enabled())
 | |
| 		__sched_core_account_forceidle(rq);
 | |
| }
 | |
| 
 | |
| extern void __sched_core_tick(struct rq *rq);
 | |
| 
 | |
| static inline void sched_core_tick(struct rq *rq)
 | |
| {
 | |
| 	if (sched_core_enabled(rq) && schedstat_enabled())
 | |
| 		__sched_core_tick(rq);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void sched_core_account_forceidle(struct rq *rq) {}
 | |
| 
 | |
| static inline void sched_core_tick(struct rq *rq) {}
 | |
| 
 | |
| #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| /*
 | |
|  * Return the group to which this tasks belongs.
 | |
|  *
 | |
|  * We cannot use task_css() and friends because the cgroup subsystem
 | |
|  * changes that value before the cgroup_subsys::attach() method is called,
 | |
|  * therefore we cannot pin it and might observe the wrong value.
 | |
|  *
 | |
|  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 | |
|  * core changes this before calling sched_move_task().
 | |
|  *
 | |
|  * Instead we use a 'copy' which is updated from sched_move_task() while
 | |
|  * holding both task_struct::pi_lock and rq::lock.
 | |
|  */
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	return p->sched_task_group;
 | |
| }
 | |
| 
 | |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 | |
| 	struct task_group *tg = task_group(p);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
 | |
| 	p->se.cfs_rq = tg->cfs_rq[cpu];
 | |
| 	p->se.parent = tg->se[cpu];
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	p->rt.rt_rq  = tg->rt_rq[cpu];
 | |
| 	p->rt.parent = tg->rt_se[cpu];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| 	set_task_rq(p, cpu);
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 | |
| 	 * successfully executed on another CPU. We must ensure that updates of
 | |
| 	 * per-task data have been completed by this moment.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
 | |
| 	p->wake_cpu = cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 | |
|  */
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # define const_debug __read_mostly
 | |
| #else
 | |
| # define const_debug const
 | |
| #endif
 | |
| 
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	__SCHED_FEAT_##name ,
 | |
| 
 | |
| enum {
 | |
| #include "features.h"
 | |
| 	__SCHED_FEAT_NR,
 | |
| };
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 
 | |
| /*
 | |
|  * To support run-time toggling of sched features, all the translation units
 | |
|  * (but core.c) reference the sysctl_sched_features defined in core.c.
 | |
|  */
 | |
| extern const_debug unsigned int sysctl_sched_features;
 | |
| 
 | |
| #ifdef CONFIG_JUMP_LABEL
 | |
| #define SCHED_FEAT(name, enabled)					\
 | |
| static __always_inline bool static_branch_##name(struct static_key *key) \
 | |
| {									\
 | |
| 	return static_key_##enabled(key);				\
 | |
| }
 | |
| 
 | |
| #include "features.h"
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 | |
| #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 | |
| 
 | |
| #else /* !CONFIG_JUMP_LABEL */
 | |
| 
 | |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 | |
| 
 | |
| #endif /* CONFIG_JUMP_LABEL */
 | |
| 
 | |
| #else /* !SCHED_DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Each translation unit has its own copy of sysctl_sched_features to allow
 | |
|  * constants propagation at compile time and compiler optimization based on
 | |
|  * features default.
 | |
|  */
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	(1UL << __SCHED_FEAT_##name) * enabled |
 | |
| static const_debug __maybe_unused unsigned int sysctl_sched_features =
 | |
| #include "features.h"
 | |
| 	0;
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 | |
| 
 | |
| #endif /* SCHED_DEBUG */
 | |
| 
 | |
| extern struct static_key_false sched_numa_balancing;
 | |
| extern struct static_key_false sched_schedstats;
 | |
| 
 | |
| static inline u64 global_rt_period(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline u64 global_rt_runtime(void)
 | |
| {
 | |
| 	if (sysctl_sched_rt_runtime < 0)
 | |
| 		return RUNTIME_INF;
 | |
| 
 | |
| 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline int task_current(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return rq->curr == p;
 | |
| }
 | |
| 
 | |
| static inline int task_running(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return p->on_cpu;
 | |
| #else
 | |
| 	return task_current(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int task_on_rq_queued(struct task_struct *p)
 | |
| {
 | |
| 	return p->on_rq == TASK_ON_RQ_QUEUED;
 | |
| }
 | |
| 
 | |
| static inline int task_on_rq_migrating(struct task_struct *p)
 | |
| {
 | |
| 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
 | |
| }
 | |
| 
 | |
| /* Wake flags. The first three directly map to some SD flag value */
 | |
| #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
 | |
| #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
 | |
| #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
 | |
| 
 | |
| #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
 | |
| #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static_assert(WF_EXEC == SD_BALANCE_EXEC);
 | |
| static_assert(WF_FORK == SD_BALANCE_FORK);
 | |
| static_assert(WF_TTWU == SD_BALANCE_WAKE);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * To aid in avoiding the subversion of "niceness" due to uneven distribution
 | |
|  * of tasks with abnormal "nice" values across CPUs the contribution that
 | |
|  * each task makes to its run queue's load is weighted according to its
 | |
|  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 | |
|  * scaled version of the new time slice allocation that they receive on time
 | |
|  * slice expiry etc.
 | |
|  */
 | |
| 
 | |
| #define WEIGHT_IDLEPRIO		3
 | |
| #define WMULT_IDLEPRIO		1431655765
 | |
| 
 | |
| extern const int		sched_prio_to_weight[40];
 | |
| extern const u32		sched_prio_to_wmult[40];
 | |
| 
 | |
| /*
 | |
|  * {de,en}queue flags:
 | |
|  *
 | |
|  * DEQUEUE_SLEEP  - task is no longer runnable
 | |
|  * ENQUEUE_WAKEUP - task just became runnable
 | |
|  *
 | |
|  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 | |
|  *                are in a known state which allows modification. Such pairs
 | |
|  *                should preserve as much state as possible.
 | |
|  *
 | |
|  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 | |
|  *        in the runqueue.
 | |
|  *
 | |
|  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 | |
|  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
 | |
|  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define DEQUEUE_SLEEP		0x01
 | |
| #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
 | |
| #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
 | |
| #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
 | |
| 
 | |
| #define ENQUEUE_WAKEUP		0x01
 | |
| #define ENQUEUE_RESTORE		0x02
 | |
| #define ENQUEUE_MOVE		0x04
 | |
| #define ENQUEUE_NOCLOCK		0x08
 | |
| 
 | |
| #define ENQUEUE_HEAD		0x10
 | |
| #define ENQUEUE_REPLENISH	0x20
 | |
| #ifdef CONFIG_SMP
 | |
| #define ENQUEUE_MIGRATED	0x40
 | |
| #else
 | |
| #define ENQUEUE_MIGRATED	0x00
 | |
| #endif
 | |
| 
 | |
| #define RETRY_TASK		((void *)-1UL)
 | |
| 
 | |
| struct sched_class {
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 	int uclamp_enabled;
 | |
| #endif
 | |
| 
 | |
| 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*yield_task)   (struct rq *rq);
 | |
| 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
 | |
| 
 | |
| 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| 	struct task_struct *(*pick_next_task)(struct rq *rq);
 | |
| 
 | |
| 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
 | |
| 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
 | |
| 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
 | |
| 
 | |
| 	struct task_struct * (*pick_task)(struct rq *rq);
 | |
| 
 | |
| 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
 | |
| 
 | |
| 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
 | |
| 
 | |
| 	void (*set_cpus_allowed)(struct task_struct *p,
 | |
| 				 const struct cpumask *newmask,
 | |
| 				 u32 flags);
 | |
| 
 | |
| 	void (*rq_online)(struct rq *rq);
 | |
| 	void (*rq_offline)(struct rq *rq);
 | |
| 
 | |
| 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
 | |
| #endif
 | |
| 
 | |
| 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
 | |
| 	void (*task_fork)(struct task_struct *p);
 | |
| 	void (*task_dead)(struct task_struct *p);
 | |
| 
 | |
| 	/*
 | |
| 	 * The switched_from() call is allowed to drop rq->lock, therefore we
 | |
| 	 * cannot assume the switched_from/switched_to pair is serialized by
 | |
| 	 * rq->lock. They are however serialized by p->pi_lock.
 | |
| 	 */
 | |
| 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 | |
| 			      int oldprio);
 | |
| 
 | |
| 	unsigned int (*get_rr_interval)(struct rq *rq,
 | |
| 					struct task_struct *task);
 | |
| 
 | |
| 	void (*update_curr)(struct rq *rq);
 | |
| 
 | |
| #define TASK_SET_GROUP		0
 | |
| #define TASK_MOVE_GROUP		1
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	void (*task_change_group)(struct task_struct *p, int type);
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	WARN_ON_ONCE(rq->curr != prev);
 | |
| 	prev->sched_class->put_prev_task(rq, prev);
 | |
| }
 | |
| 
 | |
| static inline void set_next_task(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| 	next->sched_class->set_next_task(rq, next, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Helper to define a sched_class instance; each one is placed in a separate
 | |
|  * section which is ordered by the linker script:
 | |
|  *
 | |
|  *   include/asm-generic/vmlinux.lds.h
 | |
|  *
 | |
|  * *CAREFUL* they are laid out in *REVERSE* order!!!
 | |
|  *
 | |
|  * Also enforce alignment on the instance, not the type, to guarantee layout.
 | |
|  */
 | |
| #define DEFINE_SCHED_CLASS(name) \
 | |
| const struct sched_class name##_sched_class \
 | |
| 	__aligned(__alignof__(struct sched_class)) \
 | |
| 	__section("__" #name "_sched_class")
 | |
| 
 | |
| /* Defined in include/asm-generic/vmlinux.lds.h */
 | |
| extern struct sched_class __sched_class_highest[];
 | |
| extern struct sched_class __sched_class_lowest[];
 | |
| 
 | |
| #define for_class_range(class, _from, _to) \
 | |
| 	for (class = (_from); class < (_to); class++)
 | |
| 
 | |
| #define for_each_class(class) \
 | |
| 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
 | |
| 
 | |
| #define sched_class_above(_a, _b)	((_a) < (_b))
 | |
| 
 | |
| extern const struct sched_class stop_sched_class;
 | |
| extern const struct sched_class dl_sched_class;
 | |
| extern const struct sched_class rt_sched_class;
 | |
| extern const struct sched_class fair_sched_class;
 | |
| extern const struct sched_class idle_sched_class;
 | |
| 
 | |
| static inline bool sched_stop_runnable(struct rq *rq)
 | |
| {
 | |
| 	return rq->stop && task_on_rq_queued(rq->stop);
 | |
| }
 | |
| 
 | |
| static inline bool sched_dl_runnable(struct rq *rq)
 | |
| {
 | |
| 	return rq->dl.dl_nr_running > 0;
 | |
| }
 | |
| 
 | |
| static inline bool sched_rt_runnable(struct rq *rq)
 | |
| {
 | |
| 	return rq->rt.rt_queued > 0;
 | |
| }
 | |
| 
 | |
| static inline bool sched_fair_runnable(struct rq *rq)
 | |
| {
 | |
| 	return rq->cfs.nr_running > 0;
 | |
| }
 | |
| 
 | |
| extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
 | |
| extern struct task_struct *pick_next_task_idle(struct rq *rq);
 | |
| 
 | |
| #define SCA_CHECK		0x01
 | |
| #define SCA_MIGRATE_DISABLE	0x02
 | |
| #define SCA_MIGRATE_ENABLE	0x04
 | |
| #define SCA_USER		0x08
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| extern void update_group_capacity(struct sched_domain *sd, int cpu);
 | |
| 
 | |
| extern void trigger_load_balance(struct rq *rq);
 | |
| 
 | |
| extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
 | |
| 
 | |
| static inline struct task_struct *get_push_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	if (rq->push_busy)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (p->nr_cpus_allowed == 1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (p->migration_disabled)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rq->push_busy = true;
 | |
| 	return get_task_struct(p);
 | |
| }
 | |
| 
 | |
| extern int push_cpu_stop(void *arg);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| static inline void idle_set_state(struct rq *rq,
 | |
| 				  struct cpuidle_state *idle_state)
 | |
| {
 | |
| 	rq->idle_state = idle_state;
 | |
| }
 | |
| 
 | |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 | |
| {
 | |
| 	SCHED_WARN_ON(!rcu_read_lock_held());
 | |
| 
 | |
| 	return rq->idle_state;
 | |
| }
 | |
| #else
 | |
| static inline void idle_set_state(struct rq *rq,
 | |
| 				  struct cpuidle_state *idle_state)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void schedule_idle(void);
 | |
| 
 | |
| extern void sysrq_sched_debug_show(void);
 | |
| extern void sched_init_granularity(void);
 | |
| extern void update_max_interval(void);
 | |
| 
 | |
| extern void init_sched_dl_class(void);
 | |
| extern void init_sched_rt_class(void);
 | |
| extern void init_sched_fair_class(void);
 | |
| 
 | |
| extern void reweight_task(struct task_struct *p, int prio);
 | |
| 
 | |
| extern void resched_curr(struct rq *rq);
 | |
| extern void resched_cpu(int cpu);
 | |
| 
 | |
| extern struct rt_bandwidth def_rt_bandwidth;
 | |
| extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 | |
| extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 | |
| 
 | |
| extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
 | |
| extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 | |
| extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
 | |
| 
 | |
| #define BW_SHIFT		20
 | |
| #define BW_UNIT			(1 << BW_SHIFT)
 | |
| #define RATIO_SHIFT		8
 | |
| #define MAX_BW_BITS		(64 - BW_SHIFT)
 | |
| #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
 | |
| unsigned long to_ratio(u64 period, u64 runtime);
 | |
| 
 | |
| extern void init_entity_runnable_average(struct sched_entity *se);
 | |
| extern void post_init_entity_util_avg(struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| extern bool sched_can_stop_tick(struct rq *rq);
 | |
| extern int __init sched_tick_offload_init(void);
 | |
| 
 | |
| /*
 | |
|  * Tick may be needed by tasks in the runqueue depending on their policy and
 | |
|  * requirements. If tick is needed, lets send the target an IPI to kick it out of
 | |
|  * nohz mode if necessary.
 | |
|  */
 | |
| static inline void sched_update_tick_dependency(struct rq *rq)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (!tick_nohz_full_cpu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_can_stop_tick(rq))
 | |
| 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
 | |
| 	else
 | |
| 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
 | |
| }
 | |
| #else
 | |
| static inline int sched_tick_offload_init(void) { return 0; }
 | |
| static inline void sched_update_tick_dependency(struct rq *rq) { }
 | |
| #endif
 | |
| 
 | |
| static inline void add_nr_running(struct rq *rq, unsigned count)
 | |
| {
 | |
| 	unsigned prev_nr = rq->nr_running;
 | |
| 
 | |
| 	rq->nr_running = prev_nr + count;
 | |
| 	if (trace_sched_update_nr_running_tp_enabled()) {
 | |
| 		call_trace_sched_update_nr_running(rq, count);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (prev_nr < 2 && rq->nr_running >= 2) {
 | |
| 		if (!READ_ONCE(rq->rd->overload))
 | |
| 			WRITE_ONCE(rq->rd->overload, 1);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	sched_update_tick_dependency(rq);
 | |
| }
 | |
| 
 | |
| static inline void sub_nr_running(struct rq *rq, unsigned count)
 | |
| {
 | |
| 	rq->nr_running -= count;
 | |
| 	if (trace_sched_update_nr_running_tp_enabled()) {
 | |
| 		call_trace_sched_update_nr_running(rq, -count);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we still need preemption */
 | |
| 	sched_update_tick_dependency(rq);
 | |
| }
 | |
| 
 | |
| extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
 | |
| extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| extern const_debug unsigned int sysctl_sched_nr_migrate;
 | |
| extern const_debug unsigned int sysctl_sched_migration_cost;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| extern unsigned int sysctl_sched_latency;
 | |
| extern unsigned int sysctl_sched_min_granularity;
 | |
| extern unsigned int sysctl_sched_idle_min_granularity;
 | |
| extern unsigned int sysctl_sched_wakeup_granularity;
 | |
| extern int sysctl_resched_latency_warn_ms;
 | |
| extern int sysctl_resched_latency_warn_once;
 | |
| 
 | |
| extern unsigned int sysctl_sched_tunable_scaling;
 | |
| 
 | |
| extern unsigned int sysctl_numa_balancing_scan_delay;
 | |
| extern unsigned int sysctl_numa_balancing_scan_period_min;
 | |
| extern unsigned int sysctl_numa_balancing_scan_period_max;
 | |
| extern unsigned int sysctl_numa_balancing_scan_size;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 
 | |
| /*
 | |
|  * Use hrtick when:
 | |
|  *  - enabled by features
 | |
|  *  - hrtimer is actually high res
 | |
|  */
 | |
| static inline int hrtick_enabled(struct rq *rq)
 | |
| {
 | |
| 	if (!cpu_active(cpu_of(rq)))
 | |
| 		return 0;
 | |
| 	return hrtimer_is_hres_active(&rq->hrtick_timer);
 | |
| }
 | |
| 
 | |
| static inline int hrtick_enabled_fair(struct rq *rq)
 | |
| {
 | |
| 	if (!sched_feat(HRTICK))
 | |
| 		return 0;
 | |
| 	return hrtick_enabled(rq);
 | |
| }
 | |
| 
 | |
| static inline int hrtick_enabled_dl(struct rq *rq)
 | |
| {
 | |
| 	if (!sched_feat(HRTICK_DL))
 | |
| 		return 0;
 | |
| 	return hrtick_enabled(rq);
 | |
| }
 | |
| 
 | |
| void hrtick_start(struct rq *rq, u64 delay);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int hrtick_enabled_fair(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hrtick_enabled_dl(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hrtick_enabled(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SCHED_HRTICK */
 | |
| 
 | |
| #ifndef arch_scale_freq_tick
 | |
| static __always_inline
 | |
| void arch_scale_freq_tick(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_scale_freq_capacity
 | |
| /**
 | |
|  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
 | |
|  * @cpu: the CPU in question.
 | |
|  *
 | |
|  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
 | |
|  *
 | |
|  *     f_curr
 | |
|  *     ------ * SCHED_CAPACITY_SCALE
 | |
|  *     f_max
 | |
|  */
 | |
| static __always_inline
 | |
| unsigned long arch_scale_freq_capacity(int cpu)
 | |
| {
 | |
| 	return SCHED_CAPACITY_SCALE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| /*
 | |
|  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
 | |
|  * acquire rq lock instead of rq_lock(). So at the end of these two functions
 | |
|  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
 | |
|  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
 | |
|  */
 | |
| static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
 | |
| {
 | |
| 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
 | |
| 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
 | |
| #ifdef CONFIG_SMP
 | |
| 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
 | |
| #endif
 | |
| }
 | |
| #else
 | |
| static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	/*
 | |
| 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
 | |
| 	 * order by core-id first and cpu-id second.
 | |
| 	 *
 | |
| 	 * Notably:
 | |
| 	 *
 | |
| 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
 | |
| 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
 | |
| 	 *
 | |
| 	 * when only cpu-id is considered.
 | |
| 	 */
 | |
| 	if (rq1->core->cpu < rq2->core->cpu)
 | |
| 		return true;
 | |
| 	if (rq1->core->cpu > rq2->core->cpu)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
 | |
| 	 */
 | |
| #endif
 | |
| 	return rq1->cpu < rq2->cpu;
 | |
| }
 | |
| 
 | |
| extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| 
 | |
| /*
 | |
|  * fair double_lock_balance: Safely acquires both rq->locks in a fair
 | |
|  * way at the expense of forcing extra atomic operations in all
 | |
|  * invocations.  This assures that the double_lock is acquired using the
 | |
|  * same underlying policy as the spinlock_t on this architecture, which
 | |
|  * reduces latency compared to the unfair variant below.  However, it
 | |
|  * also adds more overhead and therefore may reduce throughput.
 | |
|  */
 | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	raw_spin_rq_unlock(this_rq);
 | |
| 	double_rq_lock(this_rq, busiest);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /*
 | |
|  * Unfair double_lock_balance: Optimizes throughput at the expense of
 | |
|  * latency by eliminating extra atomic operations when the locks are
 | |
|  * already in proper order on entry.  This favors lower CPU-ids and will
 | |
|  * grant the double lock to lower CPUs over higher ids under contention,
 | |
|  * regardless of entry order into the function.
 | |
|  */
 | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
 | |
| 	    likely(raw_spin_rq_trylock(busiest))) {
 | |
| 		double_rq_clock_clear_update(this_rq, busiest);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (rq_order_less(this_rq, busiest)) {
 | |
| 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
 | |
| 		double_rq_clock_clear_update(this_rq, busiest);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_rq_unlock(this_rq);
 | |
| 	double_rq_lock(this_rq, busiest);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPTION */
 | |
| 
 | |
| /*
 | |
|  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 | |
|  */
 | |
| static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	return _double_lock_balance(this_rq, busiest);
 | |
| }
 | |
| 
 | |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(busiest->lock)
 | |
| {
 | |
| 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
 | |
| 		raw_spin_rq_unlock(busiest);
 | |
| 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
 | |
| }
 | |
| 
 | |
| static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	spin_lock(l1);
 | |
| 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	spin_lock_irq(l1);
 | |
| 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	raw_spin_lock(l1);
 | |
| 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
 | |
| 		raw_spin_rq_unlock(rq2);
 | |
| 	else
 | |
| 		__release(rq2->lock);
 | |
| 	raw_spin_rq_unlock(rq1);
 | |
| }
 | |
| 
 | |
| extern void set_rq_online (struct rq *rq);
 | |
| extern void set_rq_offline(struct rq *rq);
 | |
| extern bool sched_smp_initialized;
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_rq_lock(rq1);
 | |
| 	__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| 	double_rq_clock_clear_update(rq1, rq2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_rq_unlock(rq1);
 | |
| 	__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
 | |
| extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| #ifdef	CONFIG_SCHED_DEBUG
 | |
| extern bool sched_debug_verbose;
 | |
| 
 | |
| extern void print_cfs_stats(struct seq_file *m, int cpu);
 | |
| extern void print_rt_stats(struct seq_file *m, int cpu);
 | |
| extern void print_dl_stats(struct seq_file *m, int cpu);
 | |
| extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 | |
| extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
 | |
| extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
 | |
| 
 | |
| extern void resched_latency_warn(int cpu, u64 latency);
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| extern void
 | |
| show_numa_stats(struct task_struct *p, struct seq_file *m);
 | |
| extern void
 | |
| print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 | |
| 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| #else
 | |
| static inline void resched_latency_warn(int cpu, u64 latency) {}
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 | |
| 
 | |
| extern void init_cfs_rq(struct cfs_rq *cfs_rq);
 | |
| extern void init_rt_rq(struct rt_rq *rt_rq);
 | |
| extern void init_dl_rq(struct dl_rq *dl_rq);
 | |
| 
 | |
| extern void cfs_bandwidth_usage_inc(void);
 | |
| extern void cfs_bandwidth_usage_dec(void);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| #define NOHZ_BALANCE_KICK_BIT	0
 | |
| #define NOHZ_STATS_KICK_BIT	1
 | |
| #define NOHZ_NEWILB_KICK_BIT	2
 | |
| #define NOHZ_NEXT_KICK_BIT	3
 | |
| 
 | |
| /* Run rebalance_domains() */
 | |
| #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
 | |
| /* Update blocked load */
 | |
| #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
 | |
| /* Update blocked load when entering idle */
 | |
| #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
 | |
| /* Update nohz.next_balance */
 | |
| #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
 | |
| 
 | |
| #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
 | |
| 
 | |
| #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
 | |
| 
 | |
| extern void nohz_balance_exit_idle(struct rq *rq);
 | |
| #else
 | |
| static inline void nohz_balance_exit_idle(struct rq *rq) { }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 | |
| extern void nohz_run_idle_balance(int cpu);
 | |
| #else
 | |
| static inline void nohz_run_idle_balance(int cpu) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| struct irqtime {
 | |
| 	u64			total;
 | |
| 	u64			tick_delta;
 | |
| 	u64			irq_start_time;
 | |
| 	struct u64_stats_sync	sync;
 | |
| };
 | |
| 
 | |
| DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
 | |
| 
 | |
| /*
 | |
|  * Returns the irqtime minus the softirq time computed by ksoftirqd.
 | |
|  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
 | |
|  * and never move forward.
 | |
|  */
 | |
| static inline u64 irq_time_read(int cpu)
 | |
| {
 | |
| 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
 | |
| 	unsigned int seq;
 | |
| 	u64 total;
 | |
| 
 | |
| 	do {
 | |
| 		seq = __u64_stats_fetch_begin(&irqtime->sync);
 | |
| 		total = irqtime->total;
 | |
| 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
 | |
| 
 | |
| /**
 | |
|  * cpufreq_update_util - Take a note about CPU utilization changes.
 | |
|  * @rq: Runqueue to carry out the update for.
 | |
|  * @flags: Update reason flags.
 | |
|  *
 | |
|  * This function is called by the scheduler on the CPU whose utilization is
 | |
|  * being updated.
 | |
|  *
 | |
|  * It can only be called from RCU-sched read-side critical sections.
 | |
|  *
 | |
|  * The way cpufreq is currently arranged requires it to evaluate the CPU
 | |
|  * performance state (frequency/voltage) on a regular basis to prevent it from
 | |
|  * being stuck in a completely inadequate performance level for too long.
 | |
|  * That is not guaranteed to happen if the updates are only triggered from CFS
 | |
|  * and DL, though, because they may not be coming in if only RT tasks are
 | |
|  * active all the time (or there are RT tasks only).
 | |
|  *
 | |
|  * As a workaround for that issue, this function is called periodically by the
 | |
|  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
 | |
|  * but that really is a band-aid.  Going forward it should be replaced with
 | |
|  * solutions targeted more specifically at RT tasks.
 | |
|  */
 | |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
 | |
| {
 | |
| 	struct update_util_data *data;
 | |
| 
 | |
| 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
 | |
| 						  cpu_of(rq)));
 | |
| 	if (data)
 | |
| 		data->func(data, rq_clock(rq), flags);
 | |
| }
 | |
| #else
 | |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 | |
| #endif /* CONFIG_CPU_FREQ */
 | |
| 
 | |
| #ifdef arch_scale_freq_capacity
 | |
| # ifndef arch_scale_freq_invariant
 | |
| #  define arch_scale_freq_invariant()	true
 | |
| # endif
 | |
| #else
 | |
| # define arch_scale_freq_invariant()	false
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline unsigned long capacity_orig_of(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cpu_capacity_orig;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * enum cpu_util_type - CPU utilization type
 | |
|  * @FREQUENCY_UTIL:	Utilization used to select frequency
 | |
|  * @ENERGY_UTIL:	Utilization used during energy calculation
 | |
|  *
 | |
|  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
 | |
|  * need to be aggregated differently depending on the usage made of them. This
 | |
|  * enum is used within effective_cpu_util() to differentiate the types of
 | |
|  * utilization expected by the callers, and adjust the aggregation accordingly.
 | |
|  */
 | |
| enum cpu_util_type {
 | |
| 	FREQUENCY_UTIL,
 | |
| 	ENERGY_UTIL,
 | |
| };
 | |
| 
 | |
| unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 | |
| 				 enum cpu_util_type type,
 | |
| 				 struct task_struct *p);
 | |
| 
 | |
| static inline unsigned long cpu_bw_dl(struct rq *rq)
 | |
| {
 | |
| 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long cpu_util_dl(struct rq *rq)
 | |
| {
 | |
| 	return READ_ONCE(rq->avg_dl.util_avg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
 | |
|  * @cpu: the CPU to get the utilization for.
 | |
|  *
 | |
|  * The unit of the return value must be the same as the one of CPU capacity
 | |
|  * so that CPU utilization can be compared with CPU capacity.
 | |
|  *
 | |
|  * CPU utilization is the sum of running time of runnable tasks plus the
 | |
|  * recent utilization of currently non-runnable tasks on that CPU.
 | |
|  * It represents the amount of CPU capacity currently used by CFS tasks in
 | |
|  * the range [0..max CPU capacity] with max CPU capacity being the CPU
 | |
|  * capacity at f_max.
 | |
|  *
 | |
|  * The estimated CPU utilization is defined as the maximum between CPU
 | |
|  * utilization and sum of the estimated utilization of the currently
 | |
|  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
 | |
|  * previously-executed tasks, which helps better deduce how busy a CPU will
 | |
|  * be when a long-sleeping task wakes up. The contribution to CPU utilization
 | |
|  * of such a task would be significantly decayed at this point of time.
 | |
|  *
 | |
|  * CPU utilization can be higher than the current CPU capacity
 | |
|  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
 | |
|  * of rounding errors as well as task migrations or wakeups of new tasks.
 | |
|  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
 | |
|  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
 | |
|  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
 | |
|  * capacity. CPU utilization is allowed to overshoot current CPU capacity
 | |
|  * though since this is useful for predicting the CPU capacity required
 | |
|  * after task migrations (scheduler-driven DVFS).
 | |
|  *
 | |
|  * Return: (Estimated) utilization for the specified CPU.
 | |
|  */
 | |
| static inline unsigned long cpu_util_cfs(int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	unsigned long util;
 | |
| 
 | |
| 	cfs_rq = &cpu_rq(cpu)->cfs;
 | |
| 	util = READ_ONCE(cfs_rq->avg.util_avg);
 | |
| 
 | |
| 	if (sched_feat(UTIL_EST)) {
 | |
| 		util = max_t(unsigned long, util,
 | |
| 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
 | |
| 	}
 | |
| 
 | |
| 	return min(util, capacity_orig_of(cpu));
 | |
| }
 | |
| 
 | |
| static inline unsigned long cpu_util_rt(struct rq *rq)
 | |
| {
 | |
| 	return READ_ONCE(rq->avg_rt.util_avg);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
 | |
| 
 | |
| /**
 | |
|  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
 | |
|  * @rq:		The rq to clamp against. Must not be NULL.
 | |
|  * @util:	The util value to clamp.
 | |
|  * @p:		The task to clamp against. Can be NULL if you want to clamp
 | |
|  *		against @rq only.
 | |
|  *
 | |
|  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
 | |
|  *
 | |
|  * If sched_uclamp_used static key is disabled, then just return the util
 | |
|  * without any clamping since uclamp aggregation at the rq level in the fast
 | |
|  * path is disabled, rendering this operation a NOP.
 | |
|  *
 | |
|  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
 | |
|  * will return the correct effective uclamp value of the task even if the
 | |
|  * static key is disabled.
 | |
|  */
 | |
| static __always_inline
 | |
| unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
 | |
| 				  struct task_struct *p)
 | |
| {
 | |
| 	unsigned long min_util = 0;
 | |
| 	unsigned long max_util = 0;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_uclamp_used))
 | |
| 		return util;
 | |
| 
 | |
| 	if (p) {
 | |
| 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
 | |
| 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ignore last runnable task's max clamp, as this task will
 | |
| 		 * reset it. Similarly, no need to read the rq's min clamp.
 | |
| 		 */
 | |
| 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
 | |
| 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
 | |
| out:
 | |
| 	/*
 | |
| 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
 | |
| 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
 | |
| 	 * inversion. Fix it now when the clamps are applied.
 | |
| 	 */
 | |
| 	if (unlikely(min_util >= max_util))
 | |
| 		return min_util;
 | |
| 
 | |
| 	return clamp(util, min_util, max_util);
 | |
| }
 | |
| 
 | |
| /* Is the rq being capped/throttled by uclamp_max? */
 | |
| static inline bool uclamp_rq_is_capped(struct rq *rq)
 | |
| {
 | |
| 	unsigned long rq_util;
 | |
| 	unsigned long max_util;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_uclamp_used))
 | |
| 		return false;
 | |
| 
 | |
| 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
 | |
| 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
 | |
| 
 | |
| 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
 | |
|  * by default in the fast path and only gets turned on once userspace performs
 | |
|  * an operation that requires it.
 | |
|  *
 | |
|  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
 | |
|  * hence is active.
 | |
|  */
 | |
| static inline bool uclamp_is_used(void)
 | |
| {
 | |
| 	return static_branch_likely(&sched_uclamp_used);
 | |
| }
 | |
| #else /* CONFIG_UCLAMP_TASK */
 | |
| static inline
 | |
| unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
 | |
| 				  struct task_struct *p)
 | |
| {
 | |
| 	return util;
 | |
| }
 | |
| 
 | |
| static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
 | |
| 
 | |
| static inline bool uclamp_is_used(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_UCLAMP_TASK */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 | |
| static inline unsigned long cpu_util_irq(struct rq *rq)
 | |
| {
 | |
| 	return rq->avg_irq.util_avg;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
 | |
| {
 | |
| 	util *= (max - irq);
 | |
| 	util /= max;
 | |
| 
 | |
| 	return util;
 | |
| 
 | |
| }
 | |
| #else
 | |
| static inline unsigned long cpu_util_irq(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
 | |
| {
 | |
| 	return util;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 | |
| 
 | |
| #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
 | |
| 
 | |
| DECLARE_STATIC_KEY_FALSE(sched_energy_present);
 | |
| 
 | |
| static inline bool sched_energy_enabled(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&sched_energy_present);
 | |
| }
 | |
| 
 | |
| #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
 | |
| 
 | |
| #define perf_domain_span(pd) NULL
 | |
| static inline bool sched_energy_enabled(void) { return false; }
 | |
| 
 | |
| #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
 | |
| 
 | |
| #ifdef CONFIG_MEMBARRIER
 | |
| /*
 | |
|  * The scheduler provides memory barriers required by membarrier between:
 | |
|  * - prior user-space memory accesses and store to rq->membarrier_state,
 | |
|  * - store to rq->membarrier_state and following user-space memory accesses.
 | |
|  * In the same way it provides those guarantees around store to rq->curr.
 | |
|  */
 | |
| static inline void membarrier_switch_mm(struct rq *rq,
 | |
| 					struct mm_struct *prev_mm,
 | |
| 					struct mm_struct *next_mm)
 | |
| {
 | |
| 	int membarrier_state;
 | |
| 
 | |
| 	if (prev_mm == next_mm)
 | |
| 		return;
 | |
| 
 | |
| 	membarrier_state = atomic_read(&next_mm->membarrier_state);
 | |
| 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
 | |
| 		return;
 | |
| 
 | |
| 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
 | |
| }
 | |
| #else
 | |
| static inline void membarrier_switch_mm(struct rq *rq,
 | |
| 					struct mm_struct *prev_mm,
 | |
| 					struct mm_struct *next_mm)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline bool is_per_cpu_kthread(struct task_struct *p)
 | |
| {
 | |
| 	if (!(p->flags & PF_KTHREAD))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->nr_cpus_allowed != 1)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void swake_up_all_locked(struct swait_queue_head *q);
 | |
| extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_DYNAMIC
 | |
| extern int preempt_dynamic_mode;
 | |
| extern int sched_dynamic_mode(const char *str);
 | |
| extern void sched_dynamic_update(int mode);
 | |
| #endif
 | |
| 
 | |
| #endif /* _KERNEL_SCHED_SCHED_H */
 |