mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 c7dfb2591b
			
		
	
	
		c7dfb2591b
		
	
	
	
	
		
			
			A CPU will not show up in virtualized environment which includes an Enclave. The VM splits its resources into a primary VM and a Enclave VM. While the Enclave is active, the hypervisor will ignore all requests to bring up a CPU and this CPU will remain in CPU_UP_PREPARE state. The kernel will wait up to ten seconds for CPU to show up (do_boot_cpu()) and then rollback the hotplug state back to CPUHP_OFFLINE leaving the CPU state in CPU_UP_PREPARE. The CPU state is set back to CPUHP_TEARDOWN_CPU during the CPU_POST_DEAD stage. After the Enclave VM terminates, the primary VM can bring up the CPU again. Allow to bring up the CPU if it is in the CPU_UP_PREPARE state. [bigeasy: Rewrite commit description.] Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Dongli Zhang <dongli.zhang@oracle.com> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Henry Wang <Henry.Wang@arm.com> Link: https://lore.kernel.org/r/20220209080214.1439408-3-bigeasy@linutronix.de
		
			
				
	
	
		
			489 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			489 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Common SMP CPU bringup/teardown functions
 | |
|  */
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/smpboot.h>
 | |
| 
 | |
| #include "smpboot.h"
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 | |
| /*
 | |
|  * For the hotplug case we keep the task structs around and reuse
 | |
|  * them.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 | |
| 
 | |
| struct task_struct *idle_thread_get(unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 | |
| 
 | |
| 	if (!tsk)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	return tsk;
 | |
| }
 | |
| 
 | |
| void __init idle_thread_set_boot_cpu(void)
 | |
| {
 | |
| 	per_cpu(idle_threads, smp_processor_id()) = current;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_init - Initialize the idle thread for a cpu
 | |
|  * @cpu:	The cpu for which the idle thread should be initialized
 | |
|  *
 | |
|  * Creates the thread if it does not exist.
 | |
|  */
 | |
| static __always_inline void idle_init(unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 | |
| 
 | |
| 	if (!tsk) {
 | |
| 		tsk = fork_idle(cpu);
 | |
| 		if (IS_ERR(tsk))
 | |
| 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 | |
| 		else
 | |
| 			per_cpu(idle_threads, cpu) = tsk;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_threads_init - Initialize idle threads for all cpus
 | |
|  */
 | |
| void __init idle_threads_init(void)
 | |
| {
 | |
| 	unsigned int cpu, boot_cpu;
 | |
| 
 | |
| 	boot_cpu = smp_processor_id();
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (cpu != boot_cpu)
 | |
| 			idle_init(cpu);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* #ifdef CONFIG_SMP */
 | |
| 
 | |
| static LIST_HEAD(hotplug_threads);
 | |
| static DEFINE_MUTEX(smpboot_threads_lock);
 | |
| 
 | |
| struct smpboot_thread_data {
 | |
| 	unsigned int			cpu;
 | |
| 	unsigned int			status;
 | |
| 	struct smp_hotplug_thread	*ht;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	HP_THREAD_NONE = 0,
 | |
| 	HP_THREAD_ACTIVE,
 | |
| 	HP_THREAD_PARKED,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * smpboot_thread_fn - percpu hotplug thread loop function
 | |
|  * @data:	thread data pointer
 | |
|  *
 | |
|  * Checks for thread stop and park conditions. Calls the necessary
 | |
|  * setup, cleanup, park and unpark functions for the registered
 | |
|  * thread.
 | |
|  *
 | |
|  * Returns 1 when the thread should exit, 0 otherwise.
 | |
|  */
 | |
| static int smpboot_thread_fn(void *data)
 | |
| {
 | |
| 	struct smpboot_thread_data *td = data;
 | |
| 	struct smp_hotplug_thread *ht = td->ht;
 | |
| 
 | |
| 	while (1) {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		preempt_disable();
 | |
| 		if (kthread_should_stop()) {
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			preempt_enable();
 | |
| 			/* cleanup must mirror setup */
 | |
| 			if (ht->cleanup && td->status != HP_THREAD_NONE)
 | |
| 				ht->cleanup(td->cpu, cpu_online(td->cpu));
 | |
| 			kfree(td);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (kthread_should_park()) {
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			preempt_enable();
 | |
| 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
 | |
| 				BUG_ON(td->cpu != smp_processor_id());
 | |
| 				ht->park(td->cpu);
 | |
| 				td->status = HP_THREAD_PARKED;
 | |
| 			}
 | |
| 			kthread_parkme();
 | |
| 			/* We might have been woken for stop */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(td->cpu != smp_processor_id());
 | |
| 
 | |
| 		/* Check for state change setup */
 | |
| 		switch (td->status) {
 | |
| 		case HP_THREAD_NONE:
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			preempt_enable();
 | |
| 			if (ht->setup)
 | |
| 				ht->setup(td->cpu);
 | |
| 			td->status = HP_THREAD_ACTIVE;
 | |
| 			continue;
 | |
| 
 | |
| 		case HP_THREAD_PARKED:
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			preempt_enable();
 | |
| 			if (ht->unpark)
 | |
| 				ht->unpark(td->cpu);
 | |
| 			td->status = HP_THREAD_ACTIVE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!ht->thread_should_run(td->cpu)) {
 | |
| 			preempt_enable_no_resched();
 | |
| 			schedule();
 | |
| 		} else {
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			preempt_enable();
 | |
| 			ht->thread_fn(td->cpu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 | |
| 	struct smpboot_thread_data *td;
 | |
| 
 | |
| 	if (tsk)
 | |
| 		return 0;
 | |
| 
 | |
| 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 | |
| 	if (!td)
 | |
| 		return -ENOMEM;
 | |
| 	td->cpu = cpu;
 | |
| 	td->ht = ht;
 | |
| 
 | |
| 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 | |
| 				    ht->thread_comm);
 | |
| 	if (IS_ERR(tsk)) {
 | |
| 		kfree(td);
 | |
| 		return PTR_ERR(tsk);
 | |
| 	}
 | |
| 	kthread_set_per_cpu(tsk, cpu);
 | |
| 	/*
 | |
| 	 * Park the thread so that it could start right on the CPU
 | |
| 	 * when it is available.
 | |
| 	 */
 | |
| 	kthread_park(tsk);
 | |
| 	get_task_struct(tsk);
 | |
| 	*per_cpu_ptr(ht->store, cpu) = tsk;
 | |
| 	if (ht->create) {
 | |
| 		/*
 | |
| 		 * Make sure that the task has actually scheduled out
 | |
| 		 * into park position, before calling the create
 | |
| 		 * callback. At least the migration thread callback
 | |
| 		 * requires that the task is off the runqueue.
 | |
| 		 */
 | |
| 		if (!wait_task_inactive(tsk, TASK_PARKED))
 | |
| 			WARN_ON(1);
 | |
| 		else
 | |
| 			ht->create(cpu);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int smpboot_create_threads(unsigned int cpu)
 | |
| {
 | |
| 	struct smp_hotplug_thread *cur;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&smpboot_threads_lock);
 | |
| 	list_for_each_entry(cur, &hotplug_threads, list) {
 | |
| 		ret = __smpboot_create_thread(cur, cpu);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	mutex_unlock(&smpboot_threads_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 | |
| 
 | |
| 	if (!ht->selfparking)
 | |
| 		kthread_unpark(tsk);
 | |
| }
 | |
| 
 | |
| int smpboot_unpark_threads(unsigned int cpu)
 | |
| {
 | |
| 	struct smp_hotplug_thread *cur;
 | |
| 
 | |
| 	mutex_lock(&smpboot_threads_lock);
 | |
| 	list_for_each_entry(cur, &hotplug_threads, list)
 | |
| 		smpboot_unpark_thread(cur, cpu);
 | |
| 	mutex_unlock(&smpboot_threads_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 | |
| 
 | |
| 	if (tsk && !ht->selfparking)
 | |
| 		kthread_park(tsk);
 | |
| }
 | |
| 
 | |
| int smpboot_park_threads(unsigned int cpu)
 | |
| {
 | |
| 	struct smp_hotplug_thread *cur;
 | |
| 
 | |
| 	mutex_lock(&smpboot_threads_lock);
 | |
| 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
 | |
| 		smpboot_park_thread(cur, cpu);
 | |
| 	mutex_unlock(&smpboot_threads_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	/* We need to destroy also the parked threads of offline cpus */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			kthread_stop(tsk);
 | |
| 			put_task_struct(tsk);
 | |
| 			*per_cpu_ptr(ht->store, cpu) = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * smpboot_register_percpu_thread - Register a per_cpu thread related
 | |
|  * 					    to hotplug
 | |
|  * @plug_thread:	Hotplug thread descriptor
 | |
|  *
 | |
|  * Creates and starts the threads on all online cpus.
 | |
|  */
 | |
| int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&smpboot_threads_lock);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		ret = __smpboot_create_thread(plug_thread, cpu);
 | |
| 		if (ret) {
 | |
| 			smpboot_destroy_threads(plug_thread);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		smpboot_unpark_thread(plug_thread, cpu);
 | |
| 	}
 | |
| 	list_add(&plug_thread->list, &hotplug_threads);
 | |
| out:
 | |
| 	mutex_unlock(&smpboot_threads_lock);
 | |
| 	cpus_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
 | |
| 
 | |
| /**
 | |
|  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 | |
|  * @plug_thread:	Hotplug thread descriptor
 | |
|  *
 | |
|  * Stops all threads on all possible cpus.
 | |
|  */
 | |
| void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&smpboot_threads_lock);
 | |
| 	list_del(&plug_thread->list);
 | |
| 	smpboot_destroy_threads(plug_thread);
 | |
| 	mutex_unlock(&smpboot_threads_lock);
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 | |
| 
 | |
| static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 | |
| 
 | |
| /*
 | |
|  * Called to poll specified CPU's state, for example, when waiting for
 | |
|  * a CPU to come online.
 | |
|  */
 | |
| int cpu_report_state(int cpu)
 | |
| {
 | |
| 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If CPU has died properly, set its state to CPU_UP_PREPARE and
 | |
|  * return success.  Otherwise, return -EBUSY if the CPU died after
 | |
|  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 | |
|  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 | |
|  * to dying.  In the latter two cases, the CPU might not be set up
 | |
|  * properly, but it is up to the arch-specific code to decide.
 | |
|  * Finally, -EIO indicates an unanticipated problem.
 | |
|  *
 | |
|  * Note that it is permissible to omit this call entirely, as is
 | |
|  * done in architectures that do no CPU-hotplug error checking.
 | |
|  */
 | |
| int cpu_check_up_prepare(int cpu)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 | |
| 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 | |
| 
 | |
| 	case CPU_POST_DEAD:
 | |
| 
 | |
| 		/* The CPU died properly, so just start it up again. */
 | |
| 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 | |
| 		return 0;
 | |
| 
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 
 | |
| 		/*
 | |
| 		 * Timeout during CPU death, so let caller know.
 | |
| 		 * The outgoing CPU completed its processing, but after
 | |
| 		 * cpu_wait_death() timed out and reported the error. The
 | |
| 		 * caller is free to proceed, in which case the state
 | |
| 		 * will be reset properly by cpu_set_state_online().
 | |
| 		 * Proceeding despite this -EBUSY return makes sense
 | |
| 		 * for systems where the outgoing CPUs take themselves
 | |
| 		 * offline, with no post-death manipulation required from
 | |
| 		 * a surviving CPU.
 | |
| 		 */
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	case CPU_BROKEN:
 | |
| 
 | |
| 		/*
 | |
| 		 * The most likely reason we got here is that there was
 | |
| 		 * a timeout during CPU death, and the outgoing CPU never
 | |
| 		 * did complete its processing.  This could happen on
 | |
| 		 * a virtualized system if the outgoing VCPU gets preempted
 | |
| 		 * for more than five seconds, and the user attempts to
 | |
| 		 * immediately online that same CPU.  Trying again later
 | |
| 		 * might return -EBUSY above, hence -EAGAIN.
 | |
| 		 */
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		/*
 | |
| 		 * Timeout while waiting for the CPU to show up. Allow to try
 | |
| 		 * again later.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 
 | |
| 		/* Should not happen.  Famous last words. */
 | |
| 		return -EIO;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the specified CPU online.
 | |
|  *
 | |
|  * Note that it is permissible to omit this call entirely, as is
 | |
|  * done in architectures that do no CPU-hotplug error checking.
 | |
|  */
 | |
| void cpu_set_state_online(int cpu)
 | |
| {
 | |
| 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Wait for the specified CPU to exit the idle loop and die.
 | |
|  */
 | |
| bool cpu_wait_death(unsigned int cpu, int seconds)
 | |
| {
 | |
| 	int jf_left = seconds * HZ;
 | |
| 	int oldstate;
 | |
| 	bool ret = true;
 | |
| 	int sleep_jf = 1;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	/* The outgoing CPU will normally get done quite quickly. */
 | |
| 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 | |
| 		goto update_state;
 | |
| 	udelay(5);
 | |
| 
 | |
| 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
 | |
| 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 | |
| 		schedule_timeout_uninterruptible(sleep_jf);
 | |
| 		jf_left -= sleep_jf;
 | |
| 		if (jf_left <= 0)
 | |
| 			break;
 | |
| 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 | |
| 	}
 | |
| update_state:
 | |
| 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 | |
| 	if (oldstate == CPU_DEAD) {
 | |
| 		/* Outgoing CPU died normally, update state. */
 | |
| 		smp_mb(); /* atomic_read() before update. */
 | |
| 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 | |
| 	} else {
 | |
| 		/* Outgoing CPU still hasn't died, set state accordingly. */
 | |
| 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 | |
| 				   oldstate, CPU_BROKEN) != oldstate)
 | |
| 			goto update_state;
 | |
| 		ret = false;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by the outgoing CPU to report its successful death.  Return
 | |
|  * false if this report follows the surviving CPU's timing out.
 | |
|  *
 | |
|  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 | |
|  * timed out.  This approach allows architectures to omit calls to
 | |
|  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 | |
|  * the next cpu_wait_death()'s polling loop.
 | |
|  */
 | |
| bool cpu_report_death(void)
 | |
| {
 | |
| 	int oldstate;
 | |
| 	int newstate;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	do {
 | |
| 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 | |
| 		if (oldstate != CPU_BROKEN)
 | |
| 			newstate = CPU_DEAD;
 | |
| 		else
 | |
| 			newstate = CPU_DEAD_FROZEN;
 | |
| 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 | |
| 				oldstate, newstate) != oldstate);
 | |
| 	return newstate == CPU_DEAD;
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 |