mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 9d0ddc0cb5
			
		
	
	
		9d0ddc0cb5
		
	
	
	
	
		
			
			With all users converted to migrate_folio(), remove this operation. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			2614 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2614 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Memory Migration functionality - linux/mm/migrate.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 | |
|  *
 | |
|  * Page migration was first developed in the context of the memory hotplug
 | |
|  * project. The main authors of the migration code are:
 | |
|  *
 | |
|  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 | |
|  * Hirokazu Takahashi <taka@valinux.co.jp>
 | |
|  * Dave Hansen <haveblue@us.ibm.com>
 | |
|  * Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/compaction.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/hugetlb_cgroup.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/balloon_compaction.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/page_owner.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/sched/sysctl.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include <trace/events/migrate.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| int isolate_movable_page(struct page *page, isolate_mode_t mode)
 | |
| {
 | |
| 	const struct movable_operations *mops;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid burning cycles with pages that are yet under __free_pages(),
 | |
| 	 * or just got freed under us.
 | |
| 	 *
 | |
| 	 * In case we 'win' a race for a movable page being freed under us and
 | |
| 	 * raise its refcount preventing __free_pages() from doing its job
 | |
| 	 * the put_page() at the end of this block will take care of
 | |
| 	 * release this page, thus avoiding a nasty leakage.
 | |
| 	 */
 | |
| 	if (unlikely(!get_page_unless_zero(page)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check PageMovable before holding a PG_lock because page's owner
 | |
| 	 * assumes anybody doesn't touch PG_lock of newly allocated page
 | |
| 	 * so unconditionally grabbing the lock ruins page's owner side.
 | |
| 	 */
 | |
| 	if (unlikely(!__PageMovable(page)))
 | |
| 		goto out_putpage;
 | |
| 	/*
 | |
| 	 * As movable pages are not isolated from LRU lists, concurrent
 | |
| 	 * compaction threads can race against page migration functions
 | |
| 	 * as well as race against the releasing a page.
 | |
| 	 *
 | |
| 	 * In order to avoid having an already isolated movable page
 | |
| 	 * being (wrongly) re-isolated while it is under migration,
 | |
| 	 * or to avoid attempting to isolate pages being released,
 | |
| 	 * lets be sure we have the page lock
 | |
| 	 * before proceeding with the movable page isolation steps.
 | |
| 	 */
 | |
| 	if (unlikely(!trylock_page(page)))
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	if (!PageMovable(page) || PageIsolated(page))
 | |
| 		goto out_no_isolated;
 | |
| 
 | |
| 	mops = page_movable_ops(page);
 | |
| 	VM_BUG_ON_PAGE(!mops, page);
 | |
| 
 | |
| 	if (!mops->isolate_page(page, mode))
 | |
| 		goto out_no_isolated;
 | |
| 
 | |
| 	/* Driver shouldn't use PG_isolated bit of page->flags */
 | |
| 	WARN_ON_ONCE(PageIsolated(page));
 | |
| 	SetPageIsolated(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_no_isolated:
 | |
| 	unlock_page(page);
 | |
| out_putpage:
 | |
| 	put_page(page);
 | |
| out:
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static void putback_movable_page(struct page *page)
 | |
| {
 | |
| 	const struct movable_operations *mops = page_movable_ops(page);
 | |
| 
 | |
| 	mops->putback_page(page);
 | |
| 	ClearPageIsolated(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put previously isolated pages back onto the appropriate lists
 | |
|  * from where they were once taken off for compaction/migration.
 | |
|  *
 | |
|  * This function shall be used whenever the isolated pageset has been
 | |
|  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 | |
|  * and isolate_huge_page().
 | |
|  */
 | |
| void putback_movable_pages(struct list_head *l)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, page2, l, lru) {
 | |
| 		if (unlikely(PageHuge(page))) {
 | |
| 			putback_active_hugepage(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 		list_del(&page->lru);
 | |
| 		/*
 | |
| 		 * We isolated non-lru movable page so here we can use
 | |
| 		 * __PageMovable because LRU page's mapping cannot have
 | |
| 		 * PAGE_MAPPING_MOVABLE.
 | |
| 		 */
 | |
| 		if (unlikely(__PageMovable(page))) {
 | |
| 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | |
| 			lock_page(page);
 | |
| 			if (PageMovable(page))
 | |
| 				putback_movable_page(page);
 | |
| 			else
 | |
| 				ClearPageIsolated(page);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 		} else {
 | |
| 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 | |
| 					page_is_file_lru(page), -thp_nr_pages(page));
 | |
| 			putback_lru_page(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore a potential migration pte to a working pte entry
 | |
|  */
 | |
| static bool remove_migration_pte(struct folio *folio,
 | |
| 		struct vm_area_struct *vma, unsigned long addr, void *old)
 | |
| {
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 | |
| 
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| 		rmap_t rmap_flags = RMAP_NONE;
 | |
| 		pte_t pte;
 | |
| 		swp_entry_t entry;
 | |
| 		struct page *new;
 | |
| 		unsigned long idx = 0;
 | |
| 
 | |
| 		/* pgoff is invalid for ksm pages, but they are never large */
 | |
| 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 | |
| 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 | |
| 		new = folio_page(folio, idx);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| 		/* PMD-mapped THP migration entry */
 | |
| 		if (!pvmw.pte) {
 | |
| 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 | |
| 					!folio_test_pmd_mappable(folio), folio);
 | |
| 			remove_migration_pmd(&pvmw, new);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		folio_get(folio);
 | |
| 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 | |
| 		if (pte_swp_soft_dirty(*pvmw.pte))
 | |
| 			pte = pte_mksoft_dirty(pte);
 | |
| 
 | |
| 		/*
 | |
| 		 * Recheck VMA as permissions can change since migration started
 | |
| 		 */
 | |
| 		entry = pte_to_swp_entry(*pvmw.pte);
 | |
| 		if (is_writable_migration_entry(entry))
 | |
| 			pte = maybe_mkwrite(pte, vma);
 | |
| 		else if (pte_swp_uffd_wp(*pvmw.pte))
 | |
| 			pte = pte_mkuffd_wp(pte);
 | |
| 
 | |
| 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 | |
| 			rmap_flags |= RMAP_EXCLUSIVE;
 | |
| 
 | |
| 		if (unlikely(is_device_private_page(new))) {
 | |
| 			if (pte_write(pte))
 | |
| 				entry = make_writable_device_private_entry(
 | |
| 							page_to_pfn(new));
 | |
| 			else
 | |
| 				entry = make_readable_device_private_entry(
 | |
| 							page_to_pfn(new));
 | |
| 			pte = swp_entry_to_pte(entry);
 | |
| 			if (pte_swp_soft_dirty(*pvmw.pte))
 | |
| 				pte = pte_swp_mksoft_dirty(pte);
 | |
| 			if (pte_swp_uffd_wp(*pvmw.pte))
 | |
| 				pte = pte_swp_mkuffd_wp(pte);
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			unsigned int shift = huge_page_shift(hstate_vma(vma));
 | |
| 
 | |
| 			pte = pte_mkhuge(pte);
 | |
| 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 | |
| 			if (folio_test_anon(folio))
 | |
| 				hugepage_add_anon_rmap(new, vma, pvmw.address,
 | |
| 						       rmap_flags);
 | |
| 			else
 | |
| 				page_dup_file_rmap(new, true);
 | |
| 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 | |
| 		} else
 | |
| #endif
 | |
| 		{
 | |
| 			if (folio_test_anon(folio))
 | |
| 				page_add_anon_rmap(new, vma, pvmw.address,
 | |
| 						   rmap_flags);
 | |
| 			else
 | |
| 				page_add_file_rmap(new, vma, false);
 | |
| 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 | |
| 		}
 | |
| 		if (vma->vm_flags & VM_LOCKED)
 | |
| 			mlock_page_drain_local();
 | |
| 
 | |
| 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 | |
| 					   compound_order(new));
 | |
| 
 | |
| 		/* No need to invalidate - it was non-present before */
 | |
| 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get rid of all migration entries and replace them by
 | |
|  * references to the indicated page.
 | |
|  */
 | |
| void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
 | |
| {
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = remove_migration_pte,
 | |
| 		.arg = src,
 | |
| 	};
 | |
| 
 | |
| 	if (locked)
 | |
| 		rmap_walk_locked(dst, &rwc);
 | |
| 	else
 | |
| 		rmap_walk(dst, &rwc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Something used the pte of a page under migration. We need to
 | |
|  * get to the page and wait until migration is finished.
 | |
|  * When we return from this function the fault will be retried.
 | |
|  */
 | |
| void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 | |
| 				spinlock_t *ptl)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	pte = *ptep;
 | |
| 	if (!is_swap_pte(pte))
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = pte_to_swp_entry(pte);
 | |
| 	if (!is_migration_entry(entry))
 | |
| 		goto out;
 | |
| 
 | |
| 	migration_entry_wait_on_locked(entry, ptep, ptl);
 | |
| 	return;
 | |
| out:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| }
 | |
| 
 | |
| void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long address)
 | |
| {
 | |
| 	spinlock_t *ptl = pte_lockptr(mm, pmd);
 | |
| 	pte_t *ptep = pte_offset_map(pmd, address);
 | |
| 	__migration_entry_wait(mm, ptep, ptl);
 | |
| }
 | |
| 
 | |
| void migration_entry_wait_huge(struct vm_area_struct *vma,
 | |
| 		struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 | |
| 	__migration_entry_wait(mm, pte, ptl);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (!is_pmd_migration_entry(*pmd))
 | |
| 		goto unlock;
 | |
| 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
 | |
| 	return;
 | |
| unlock:
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int folio_expected_refs(struct address_space *mapping,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	int refs = 1;
 | |
| 	if (!mapping)
 | |
| 		return refs;
 | |
| 
 | |
| 	refs += folio_nr_pages(folio);
 | |
| 	if (folio_test_private(folio))
 | |
| 		refs++;
 | |
| 
 | |
| 	return refs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the page in the mapping.
 | |
|  *
 | |
|  * The number of remaining references must be:
 | |
|  * 1 for anonymous pages without a mapping
 | |
|  * 2 for pages with a mapping
 | |
|  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 | |
|  */
 | |
| int folio_migrate_mapping(struct address_space *mapping,
 | |
| 		struct folio *newfolio, struct folio *folio, int extra_count)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 | |
| 	struct zone *oldzone, *newzone;
 | |
| 	int dirty;
 | |
| 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 | |
| 	long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 	if (!mapping) {
 | |
| 		/* Anonymous page without mapping */
 | |
| 		if (folio_ref_count(folio) != expected_count)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		/* No turning back from here */
 | |
| 		newfolio->index = folio->index;
 | |
| 		newfolio->mapping = folio->mapping;
 | |
| 		if (folio_test_swapbacked(folio))
 | |
| 			__folio_set_swapbacked(newfolio);
 | |
| 
 | |
| 		return MIGRATEPAGE_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	oldzone = folio_zone(folio);
 | |
| 	newzone = folio_zone(newfolio);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	if (!folio_ref_freeze(folio, expected_count)) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know that no one else is looking at the folio:
 | |
| 	 * no turning back from here.
 | |
| 	 */
 | |
| 	newfolio->index = folio->index;
 | |
| 	newfolio->mapping = folio->mapping;
 | |
| 	folio_ref_add(newfolio, nr); /* add cache reference */
 | |
| 	if (folio_test_swapbacked(folio)) {
 | |
| 		__folio_set_swapbacked(newfolio);
 | |
| 		if (folio_test_swapcache(folio)) {
 | |
| 			folio_set_swapcache(newfolio);
 | |
| 			newfolio->private = folio_get_private(folio);
 | |
| 		}
 | |
| 	} else {
 | |
| 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 | |
| 	}
 | |
| 
 | |
| 	/* Move dirty while page refs frozen and newpage not yet exposed */
 | |
| 	dirty = folio_test_dirty(folio);
 | |
| 	if (dirty) {
 | |
| 		folio_clear_dirty(folio);
 | |
| 		folio_set_dirty(newfolio);
 | |
| 	}
 | |
| 
 | |
| 	xas_store(&xas, newfolio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop cache reference from old page by unfreezing
 | |
| 	 * to one less reference.
 | |
| 	 * We know this isn't the last reference.
 | |
| 	 */
 | |
| 	folio_ref_unfreeze(folio, expected_count - nr);
 | |
| 
 | |
| 	xas_unlock(&xas);
 | |
| 	/* Leave irq disabled to prevent preemption while updating stats */
 | |
| 
 | |
| 	/*
 | |
| 	 * If moved to a different zone then also account
 | |
| 	 * the page for that zone. Other VM counters will be
 | |
| 	 * taken care of when we establish references to the
 | |
| 	 * new page and drop references to the old page.
 | |
| 	 *
 | |
| 	 * Note that anonymous pages are accounted for
 | |
| 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 | |
| 	 * are mapped to swap space.
 | |
| 	 */
 | |
| 	if (newzone != oldzone) {
 | |
| 		struct lruvec *old_lruvec, *new_lruvec;
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		memcg = folio_memcg(folio);
 | |
| 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 | |
| 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 | |
| 
 | |
| 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 | |
| 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 | |
| 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 | |
| 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 | |
| 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 | |
| 		}
 | |
| #ifdef CONFIG_SWAP
 | |
| 		if (folio_test_swapcache(folio)) {
 | |
| 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 | |
| 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 | |
| 		}
 | |
| #endif
 | |
| 		if (dirty && mapping_can_writeback(mapping)) {
 | |
| 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 | |
| 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 | |
| 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 | |
| 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 | |
| 		}
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_migrate_mapping);
 | |
| 
 | |
| /*
 | |
|  * The expected number of remaining references is the same as that
 | |
|  * of folio_migrate_mapping().
 | |
|  */
 | |
| int migrate_huge_page_move_mapping(struct address_space *mapping,
 | |
| 				   struct folio *dst, struct folio *src)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 | |
| 	int expected_count;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	expected_count = 2 + folio_has_private(src);
 | |
| 	if (!folio_ref_freeze(src, expected_count)) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	dst->index = src->index;
 | |
| 	dst->mapping = src->mapping;
 | |
| 
 | |
| 	folio_get(dst);
 | |
| 
 | |
| 	xas_store(&xas, dst);
 | |
| 
 | |
| 	folio_ref_unfreeze(src, expected_count - 1);
 | |
| 
 | |
| 	xas_unlock_irq(&xas);
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the flags and some other ancillary information
 | |
|  */
 | |
| void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 | |
| {
 | |
| 	int cpupid;
 | |
| 
 | |
| 	if (folio_test_error(folio))
 | |
| 		folio_set_error(newfolio);
 | |
| 	if (folio_test_referenced(folio))
 | |
| 		folio_set_referenced(newfolio);
 | |
| 	if (folio_test_uptodate(folio))
 | |
| 		folio_mark_uptodate(newfolio);
 | |
| 	if (folio_test_clear_active(folio)) {
 | |
| 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 | |
| 		folio_set_active(newfolio);
 | |
| 	} else if (folio_test_clear_unevictable(folio))
 | |
| 		folio_set_unevictable(newfolio);
 | |
| 	if (folio_test_workingset(folio))
 | |
| 		folio_set_workingset(newfolio);
 | |
| 	if (folio_test_checked(folio))
 | |
| 		folio_set_checked(newfolio);
 | |
| 	/*
 | |
| 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 | |
| 	 * migration entries. We can still have PG_anon_exclusive set on an
 | |
| 	 * effectively unmapped and unreferenced first sub-pages of an
 | |
| 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 | |
| 	 */
 | |
| 	if (folio_test_mappedtodisk(folio))
 | |
| 		folio_set_mappedtodisk(newfolio);
 | |
| 
 | |
| 	/* Move dirty on pages not done by folio_migrate_mapping() */
 | |
| 	if (folio_test_dirty(folio))
 | |
| 		folio_set_dirty(newfolio);
 | |
| 
 | |
| 	if (folio_test_young(folio))
 | |
| 		folio_set_young(newfolio);
 | |
| 	if (folio_test_idle(folio))
 | |
| 		folio_set_idle(newfolio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy NUMA information to the new page, to prevent over-eager
 | |
| 	 * future migrations of this same page.
 | |
| 	 */
 | |
| 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
 | |
| 	page_cpupid_xchg_last(&newfolio->page, cpupid);
 | |
| 
 | |
| 	folio_migrate_ksm(newfolio, folio);
 | |
| 	/*
 | |
| 	 * Please do not reorder this without considering how mm/ksm.c's
 | |
| 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 | |
| 	 */
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		folio_clear_swapcache(folio);
 | |
| 	folio_clear_private(folio);
 | |
| 
 | |
| 	/* page->private contains hugetlb specific flags */
 | |
| 	if (!folio_test_hugetlb(folio))
 | |
| 		folio->private = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If any waiters have accumulated on the new page then
 | |
| 	 * wake them up.
 | |
| 	 */
 | |
| 	if (folio_test_writeback(newfolio))
 | |
| 		folio_end_writeback(newfolio);
 | |
| 
 | |
| 	/*
 | |
| 	 * PG_readahead shares the same bit with PG_reclaim.  The above
 | |
| 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 | |
| 	 * bit after that.
 | |
| 	 */
 | |
| 	if (folio_test_readahead(folio))
 | |
| 		folio_set_readahead(newfolio);
 | |
| 
 | |
| 	folio_copy_owner(newfolio, folio);
 | |
| 
 | |
| 	if (!folio_test_hugetlb(folio))
 | |
| 		mem_cgroup_migrate(folio, newfolio);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_migrate_flags);
 | |
| 
 | |
| void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
 | |
| {
 | |
| 	folio_copy(newfolio, folio);
 | |
| 	folio_migrate_flags(newfolio, folio);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_migrate_copy);
 | |
| 
 | |
| /************************************************************
 | |
|  *                    Migration functions
 | |
|  ***********************************************************/
 | |
| 
 | |
| /**
 | |
|  * migrate_folio() - Simple folio migration.
 | |
|  * @mapping: The address_space containing the folio.
 | |
|  * @dst: The folio to migrate the data to.
 | |
|  * @src: The folio containing the current data.
 | |
|  * @mode: How to migrate the page.
 | |
|  *
 | |
|  * Common logic to directly migrate a single LRU folio suitable for
 | |
|  * folios that do not use PagePrivate/PagePrivate2.
 | |
|  *
 | |
|  * Folios are locked upon entry and exit.
 | |
|  */
 | |
| int migrate_folio(struct address_space *mapping, struct folio *dst,
 | |
| 		struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 | |
| 
 | |
| 	rc = folio_migrate_mapping(mapping, dst, src, 0);
 | |
| 
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		folio_migrate_copy(dst, src);
 | |
| 	else
 | |
| 		folio_migrate_flags(dst, src);
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_folio);
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| /* Returns true if all buffers are successfully locked */
 | |
| static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 | |
| 							enum migrate_mode mode)
 | |
| {
 | |
| 	struct buffer_head *bh = head;
 | |
| 
 | |
| 	/* Simple case, sync compaction */
 | |
| 	if (mode != MIGRATE_ASYNC) {
 | |
| 		do {
 | |
| 			lock_buffer(bh);
 | |
| 			bh = bh->b_this_page;
 | |
| 
 | |
| 		} while (bh != head);
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 | |
| 	do {
 | |
| 		if (!trylock_buffer(bh)) {
 | |
| 			/*
 | |
| 			 * We failed to lock the buffer and cannot stall in
 | |
| 			 * async migration. Release the taken locks
 | |
| 			 */
 | |
| 			struct buffer_head *failed_bh = bh;
 | |
| 			bh = head;
 | |
| 			while (bh != failed_bh) {
 | |
| 				unlock_buffer(bh);
 | |
| 				bh = bh->b_this_page;
 | |
| 			}
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __buffer_migrate_folio(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode,
 | |
| 		bool check_refs)
 | |
| {
 | |
| 	struct buffer_head *bh, *head;
 | |
| 	int rc;
 | |
| 	int expected_count;
 | |
| 
 | |
| 	head = folio_buffers(src);
 | |
| 	if (!head)
 | |
| 		return migrate_folio(mapping, dst, src, mode);
 | |
| 
 | |
| 	/* Check whether page does not have extra refs before we do more work */
 | |
| 	expected_count = folio_expected_refs(mapping, src);
 | |
| 	if (folio_ref_count(src) != expected_count)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (!buffer_migrate_lock_buffers(head, mode))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (check_refs) {
 | |
| 		bool busy;
 | |
| 		bool invalidated = false;
 | |
| 
 | |
| recheck_buffers:
 | |
| 		busy = false;
 | |
| 		spin_lock(&mapping->private_lock);
 | |
| 		bh = head;
 | |
| 		do {
 | |
| 			if (atomic_read(&bh->b_count)) {
 | |
| 				busy = true;
 | |
| 				break;
 | |
| 			}
 | |
| 			bh = bh->b_this_page;
 | |
| 		} while (bh != head);
 | |
| 		if (busy) {
 | |
| 			if (invalidated) {
 | |
| 				rc = -EAGAIN;
 | |
| 				goto unlock_buffers;
 | |
| 			}
 | |
| 			spin_unlock(&mapping->private_lock);
 | |
| 			invalidate_bh_lrus();
 | |
| 			invalidated = true;
 | |
| 			goto recheck_buffers;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = folio_migrate_mapping(mapping, dst, src, 0);
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		goto unlock_buffers;
 | |
| 
 | |
| 	folio_attach_private(dst, folio_detach_private(src));
 | |
| 
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		set_bh_page(bh, &dst->page, bh_offset(bh));
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		folio_migrate_copy(dst, src);
 | |
| 	else
 | |
| 		folio_migrate_flags(dst, src);
 | |
| 
 | |
| 	rc = MIGRATEPAGE_SUCCESS;
 | |
| unlock_buffers:
 | |
| 	if (check_refs)
 | |
| 		spin_unlock(&mapping->private_lock);
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		unlock_buffer(bh);
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * buffer_migrate_folio() - Migration function for folios with buffers.
 | |
|  * @mapping: The address space containing @src.
 | |
|  * @dst: The folio to migrate to.
 | |
|  * @src: The folio to migrate from.
 | |
|  * @mode: How to migrate the folio.
 | |
|  *
 | |
|  * This function can only be used if the underlying filesystem guarantees
 | |
|  * that no other references to @src exist. For example attached buffer
 | |
|  * heads are accessed only under the folio lock.  If your filesystem cannot
 | |
|  * provide this guarantee, buffer_migrate_folio_norefs() may be more
 | |
|  * appropriate.
 | |
|  *
 | |
|  * Return: 0 on success or a negative errno on failure.
 | |
|  */
 | |
| int buffer_migrate_folio(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 | |
| }
 | |
| EXPORT_SYMBOL(buffer_migrate_folio);
 | |
| 
 | |
| /**
 | |
|  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 | |
|  * @mapping: The address space containing @src.
 | |
|  * @dst: The folio to migrate to.
 | |
|  * @src: The folio to migrate from.
 | |
|  * @mode: How to migrate the folio.
 | |
|  *
 | |
|  * Like buffer_migrate_folio() except that this variant is more careful
 | |
|  * and checks that there are also no buffer head references. This function
 | |
|  * is the right one for mappings where buffer heads are directly looked
 | |
|  * up and referenced (such as block device mappings).
 | |
|  *
 | |
|  * Return: 0 on success or a negative errno on failure.
 | |
|  */
 | |
| int buffer_migrate_folio_norefs(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int filemap_migrate_folio(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = folio_migrate_mapping(mapping, dst, src, 0);
 | |
| 	if (ret != MIGRATEPAGE_SUCCESS)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (folio_get_private(src))
 | |
| 		folio_attach_private(dst, folio_detach_private(src));
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		folio_migrate_copy(dst, src);
 | |
| 	else
 | |
| 		folio_migrate_flags(dst, src);
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 | |
| 
 | |
| /*
 | |
|  * Writeback a folio to clean the dirty state
 | |
|  */
 | |
| static int writeout(struct address_space *mapping, struct folio *folio)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_NONE,
 | |
| 		.nr_to_write = 1,
 | |
| 		.range_start = 0,
 | |
| 		.range_end = LLONG_MAX,
 | |
| 		.for_reclaim = 1
 | |
| 	};
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!mapping->a_ops->writepage)
 | |
| 		/* No write method for the address space */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!folio_clear_dirty_for_io(folio))
 | |
| 		/* Someone else already triggered a write */
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * A dirty folio may imply that the underlying filesystem has
 | |
| 	 * the folio on some queue. So the folio must be clean for
 | |
| 	 * migration. Writeout may mean we lose the lock and the
 | |
| 	 * folio state is no longer what we checked for earlier.
 | |
| 	 * At this point we know that the migration attempt cannot
 | |
| 	 * be successful.
 | |
| 	 */
 | |
| 	remove_migration_ptes(folio, folio, false);
 | |
| 
 | |
| 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 | |
| 
 | |
| 	if (rc != AOP_WRITEPAGE_ACTIVATE)
 | |
| 		/* unlocked. Relock */
 | |
| 		folio_lock(folio);
 | |
| 
 | |
| 	return (rc < 0) ? -EIO : -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default handling if a filesystem does not provide a migration function.
 | |
|  */
 | |
| static int fallback_migrate_folio(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	if (folio_test_dirty(src)) {
 | |
| 		/* Only writeback folios in full synchronous migration */
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		return writeout(mapping, src);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Buffers may be managed in a filesystem specific way.
 | |
| 	 * We must have no buffers or drop them.
 | |
| 	 */
 | |
| 	if (folio_test_private(src) &&
 | |
| 	    !filemap_release_folio(src, GFP_KERNEL))
 | |
| 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 | |
| 
 | |
| 	return migrate_folio(mapping, dst, src, mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a page to a newly allocated page
 | |
|  * The page is locked and all ptes have been successfully removed.
 | |
|  *
 | |
|  * The new page will have replaced the old page if this function
 | |
|  * is successful.
 | |
|  *
 | |
|  * Return value:
 | |
|  *   < 0 - error code
 | |
|  *  MIGRATEPAGE_SUCCESS - success
 | |
|  */
 | |
| static int move_to_new_folio(struct folio *dst, struct folio *src,
 | |
| 				enum migrate_mode mode)
 | |
| {
 | |
| 	int rc = -EAGAIN;
 | |
| 	bool is_lru = !__PageMovable(&src->page);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
 | |
| 
 | |
| 	if (likely(is_lru)) {
 | |
| 		struct address_space *mapping = folio_mapping(src);
 | |
| 
 | |
| 		if (!mapping)
 | |
| 			rc = migrate_folio(mapping, dst, src, mode);
 | |
| 		else if (mapping->a_ops->migrate_folio)
 | |
| 			/*
 | |
| 			 * Most folios have a mapping and most filesystems
 | |
| 			 * provide a migrate_folio callback. Anonymous folios
 | |
| 			 * are part of swap space which also has its own
 | |
| 			 * migrate_folio callback. This is the most common path
 | |
| 			 * for page migration.
 | |
| 			 */
 | |
| 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
 | |
| 								mode);
 | |
| 		else
 | |
| 			rc = fallback_migrate_folio(mapping, dst, src, mode);
 | |
| 	} else {
 | |
| 		const struct movable_operations *mops;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case of non-lru page, it could be released after
 | |
| 		 * isolation step. In that case, we shouldn't try migration.
 | |
| 		 */
 | |
| 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 | |
| 		if (!folio_test_movable(src)) {
 | |
| 			rc = MIGRATEPAGE_SUCCESS;
 | |
| 			folio_clear_isolated(src);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mops = page_movable_ops(&src->page);
 | |
| 		rc = mops->migrate_page(&dst->page, &src->page, mode);
 | |
| 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 | |
| 				!folio_test_isolated(src));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When successful, old pagecache src->mapping must be cleared before
 | |
| 	 * src is freed; but stats require that PageAnon be left as PageAnon.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		if (__PageMovable(&src->page)) {
 | |
| 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 | |
| 
 | |
| 			/*
 | |
| 			 * We clear PG_movable under page_lock so any compactor
 | |
| 			 * cannot try to migrate this page.
 | |
| 			 */
 | |
| 			folio_clear_isolated(src);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Anonymous and movable src->mapping will be cleared by
 | |
| 		 * free_pages_prepare so don't reset it here for keeping
 | |
| 		 * the type to work PageAnon, for example.
 | |
| 		 */
 | |
| 		if (!folio_mapping_flags(src))
 | |
| 			src->mapping = NULL;
 | |
| 
 | |
| 		if (likely(!folio_is_zone_device(dst)))
 | |
| 			flush_dcache_folio(dst);
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int __unmap_and_move(struct page *page, struct page *newpage,
 | |
| 				int force, enum migrate_mode mode)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct folio *dst = page_folio(newpage);
 | |
| 	int rc = -EAGAIN;
 | |
| 	bool page_was_mapped = false;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	bool is_lru = !__PageMovable(page);
 | |
| 
 | |
| 	if (!trylock_page(page)) {
 | |
| 		if (!force || mode == MIGRATE_ASYNC)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * It's not safe for direct compaction to call lock_page.
 | |
| 		 * For example, during page readahead pages are added locked
 | |
| 		 * to the LRU. Later, when the IO completes the pages are
 | |
| 		 * marked uptodate and unlocked. However, the queueing
 | |
| 		 * could be merging multiple pages for one bio (e.g.
 | |
| 		 * mpage_readahead). If an allocation happens for the
 | |
| 		 * second or third page, the process can end up locking
 | |
| 		 * the same page twice and deadlocking. Rather than
 | |
| 		 * trying to be clever about what pages can be locked,
 | |
| 		 * avoid the use of lock_page for direct compaction
 | |
| 		 * altogether.
 | |
| 		 */
 | |
| 		if (current->flags & PF_MEMALLOC)
 | |
| 			goto out;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 	}
 | |
| 
 | |
| 	if (PageWriteback(page)) {
 | |
| 		/*
 | |
| 		 * Only in the case of a full synchronous migration is it
 | |
| 		 * necessary to wait for PageWriteback. In the async case,
 | |
| 		 * the retry loop is too short and in the sync-light case,
 | |
| 		 * the overhead of stalling is too much
 | |
| 		 */
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			rc = -EBUSY;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (!force)
 | |
| 			goto out_unlock;
 | |
| 		wait_on_page_writeback(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
 | |
| 	 * we cannot notice that anon_vma is freed while we migrates a page.
 | |
| 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 | |
| 	 * of migration. File cache pages are no problem because of page_lock()
 | |
| 	 * File Caches may use write_page() or lock_page() in migration, then,
 | |
| 	 * just care Anon page here.
 | |
| 	 *
 | |
| 	 * Only page_get_anon_vma() understands the subtleties of
 | |
| 	 * getting a hold on an anon_vma from outside one of its mms.
 | |
| 	 * But if we cannot get anon_vma, then we won't need it anyway,
 | |
| 	 * because that implies that the anon page is no longer mapped
 | |
| 	 * (and cannot be remapped so long as we hold the page lock).
 | |
| 	 */
 | |
| 	if (PageAnon(page) && !PageKsm(page))
 | |
| 		anon_vma = page_get_anon_vma(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Block others from accessing the new page when we get around to
 | |
| 	 * establishing additional references. We are usually the only one
 | |
| 	 * holding a reference to newpage at this point. We used to have a BUG
 | |
| 	 * here if trylock_page(newpage) fails, but would like to allow for
 | |
| 	 * cases where there might be a race with the previous use of newpage.
 | |
| 	 * This is much like races on refcount of oldpage: just don't BUG().
 | |
| 	 */
 | |
| 	if (unlikely(!trylock_page(newpage)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (unlikely(!is_lru)) {
 | |
| 		rc = move_to_new_folio(dst, folio, mode);
 | |
| 		goto out_unlock_both;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Corner case handling:
 | |
| 	 * 1. When a new swap-cache page is read into, it is added to the LRU
 | |
| 	 * and treated as swapcache but it has no rmap yet.
 | |
| 	 * Calling try_to_unmap() against a page->mapping==NULL page will
 | |
| 	 * trigger a BUG.  So handle it here.
 | |
| 	 * 2. An orphaned page (see truncate_cleanup_page) might have
 | |
| 	 * fs-private metadata. The page can be picked up due to memory
 | |
| 	 * offlining.  Everywhere else except page reclaim, the page is
 | |
| 	 * invisible to the vm, so the page can not be migrated.  So try to
 | |
| 	 * free the metadata, so the page can be freed.
 | |
| 	 */
 | |
| 	if (!page->mapping) {
 | |
| 		VM_BUG_ON_PAGE(PageAnon(page), page);
 | |
| 		if (page_has_private(page)) {
 | |
| 			try_to_free_buffers(folio);
 | |
| 			goto out_unlock_both;
 | |
| 		}
 | |
| 	} else if (page_mapped(page)) {
 | |
| 		/* Establish migration ptes */
 | |
| 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 | |
| 				page);
 | |
| 		try_to_migrate(folio, 0);
 | |
| 		page_was_mapped = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_mapped(page))
 | |
| 		rc = move_to_new_folio(dst, folio, mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * When successful, push newpage to LRU immediately: so that if it
 | |
| 	 * turns out to be an mlocked page, remove_migration_ptes() will
 | |
| 	 * automatically build up the correct newpage->mlock_count for it.
 | |
| 	 *
 | |
| 	 * We would like to do something similar for the old page, when
 | |
| 	 * unsuccessful, and other cases when a page has been temporarily
 | |
| 	 * isolated from the unevictable LRU: but this case is the easiest.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		lru_cache_add(newpage);
 | |
| 		if (page_was_mapped)
 | |
| 			lru_add_drain();
 | |
| 	}
 | |
| 
 | |
| 	if (page_was_mapped)
 | |
| 		remove_migration_ptes(folio,
 | |
| 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
 | |
| 
 | |
| out_unlock_both:
 | |
| 	unlock_page(newpage);
 | |
| out_unlock:
 | |
| 	/* Drop an anon_vma reference if we took one */
 | |
| 	if (anon_vma)
 | |
| 		put_anon_vma(anon_vma);
 | |
| 	unlock_page(page);
 | |
| out:
 | |
| 	/*
 | |
| 	 * If migration is successful, decrease refcount of the newpage,
 | |
| 	 * which will not free the page because new page owner increased
 | |
| 	 * refcounter.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS)
 | |
| 		put_page(newpage);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain the lock on page, remove all ptes and migrate the page
 | |
|  * to the newly allocated page in newpage.
 | |
|  */
 | |
| static int unmap_and_move(new_page_t get_new_page,
 | |
| 				   free_page_t put_new_page,
 | |
| 				   unsigned long private, struct page *page,
 | |
| 				   int force, enum migrate_mode mode,
 | |
| 				   enum migrate_reason reason,
 | |
| 				   struct list_head *ret)
 | |
| {
 | |
| 	int rc = MIGRATEPAGE_SUCCESS;
 | |
| 	struct page *newpage = NULL;
 | |
| 
 | |
| 	if (!thp_migration_supported() && PageTransHuge(page))
 | |
| 		return -ENOSYS;
 | |
| 
 | |
| 	if (page_count(page) == 1) {
 | |
| 		/* page was freed from under us. So we are done. */
 | |
| 		ClearPageActive(page);
 | |
| 		ClearPageUnevictable(page);
 | |
| 		if (unlikely(__PageMovable(page))) {
 | |
| 			lock_page(page);
 | |
| 			if (!PageMovable(page))
 | |
| 				ClearPageIsolated(page);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	newpage = get_new_page(page, private);
 | |
| 	if (!newpage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	newpage->private = 0;
 | |
| 	rc = __unmap_and_move(page, newpage, force, mode);
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS)
 | |
| 		set_page_owner_migrate_reason(newpage, reason);
 | |
| 
 | |
| out:
 | |
| 	if (rc != -EAGAIN) {
 | |
| 		/*
 | |
| 		 * A page that has been migrated has all references
 | |
| 		 * removed and will be freed. A page that has not been
 | |
| 		 * migrated will have kept its references and be restored.
 | |
| 		 */
 | |
| 		list_del(&page->lru);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If migration is successful, releases reference grabbed during
 | |
| 	 * isolation. Otherwise, restore the page to right list unless
 | |
| 	 * we want to retry.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		/*
 | |
| 		 * Compaction can migrate also non-LRU pages which are
 | |
| 		 * not accounted to NR_ISOLATED_*. They can be recognized
 | |
| 		 * as __PageMovable
 | |
| 		 */
 | |
| 		if (likely(!__PageMovable(page)))
 | |
| 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 | |
| 					page_is_file_lru(page), -thp_nr_pages(page));
 | |
| 
 | |
| 		if (reason != MR_MEMORY_FAILURE)
 | |
| 			/*
 | |
| 			 * We release the page in page_handle_poison.
 | |
| 			 */
 | |
| 			put_page(page);
 | |
| 	} else {
 | |
| 		if (rc != -EAGAIN)
 | |
| 			list_add_tail(&page->lru, ret);
 | |
| 
 | |
| 		if (put_new_page)
 | |
| 			put_new_page(newpage, private);
 | |
| 		else
 | |
| 			put_page(newpage);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Counterpart of unmap_and_move_page() for hugepage migration.
 | |
|  *
 | |
|  * This function doesn't wait the completion of hugepage I/O
 | |
|  * because there is no race between I/O and migration for hugepage.
 | |
|  * Note that currently hugepage I/O occurs only in direct I/O
 | |
|  * where no lock is held and PG_writeback is irrelevant,
 | |
|  * and writeback status of all subpages are counted in the reference
 | |
|  * count of the head page (i.e. if all subpages of a 2MB hugepage are
 | |
|  * under direct I/O, the reference of the head page is 512 and a bit more.)
 | |
|  * This means that when we try to migrate hugepage whose subpages are
 | |
|  * doing direct I/O, some references remain after try_to_unmap() and
 | |
|  * hugepage migration fails without data corruption.
 | |
|  *
 | |
|  * There is also no race when direct I/O is issued on the page under migration,
 | |
|  * because then pte is replaced with migration swap entry and direct I/O code
 | |
|  * will wait in the page fault for migration to complete.
 | |
|  */
 | |
| static int unmap_and_move_huge_page(new_page_t get_new_page,
 | |
| 				free_page_t put_new_page, unsigned long private,
 | |
| 				struct page *hpage, int force,
 | |
| 				enum migrate_mode mode, int reason,
 | |
| 				struct list_head *ret)
 | |
| {
 | |
| 	struct folio *dst, *src = page_folio(hpage);
 | |
| 	int rc = -EAGAIN;
 | |
| 	int page_was_mapped = 0;
 | |
| 	struct page *new_hpage;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct address_space *mapping = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Migratability of hugepages depends on architectures and their size.
 | |
| 	 * This check is necessary because some callers of hugepage migration
 | |
| 	 * like soft offline and memory hotremove don't walk through page
 | |
| 	 * tables or check whether the hugepage is pmd-based or not before
 | |
| 	 * kicking migration.
 | |
| 	 */
 | |
| 	if (!hugepage_migration_supported(page_hstate(hpage))) {
 | |
| 		list_move_tail(&hpage->lru, ret);
 | |
| 		return -ENOSYS;
 | |
| 	}
 | |
| 
 | |
| 	if (page_count(hpage) == 1) {
 | |
| 		/* page was freed from under us. So we are done. */
 | |
| 		putback_active_hugepage(hpage);
 | |
| 		return MIGRATEPAGE_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	new_hpage = get_new_page(hpage, private);
 | |
| 	if (!new_hpage)
 | |
| 		return -ENOMEM;
 | |
| 	dst = page_folio(new_hpage);
 | |
| 
 | |
| 	if (!trylock_page(hpage)) {
 | |
| 		if (!force)
 | |
| 			goto out;
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto out;
 | |
| 		}
 | |
| 		lock_page(hpage);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for pages which are in the process of being freed.  Without
 | |
| 	 * page_mapping() set, hugetlbfs specific move page routine will not
 | |
| 	 * be called and we could leak usage counts for subpools.
 | |
| 	 */
 | |
| 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
 | |
| 		rc = -EBUSY;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (PageAnon(hpage))
 | |
| 		anon_vma = page_get_anon_vma(hpage);
 | |
| 
 | |
| 	if (unlikely(!trylock_page(new_hpage)))
 | |
| 		goto put_anon;
 | |
| 
 | |
| 	if (page_mapped(hpage)) {
 | |
| 		enum ttu_flags ttu = 0;
 | |
| 
 | |
| 		if (!PageAnon(hpage)) {
 | |
| 			/*
 | |
| 			 * In shared mappings, try_to_unmap could potentially
 | |
| 			 * call huge_pmd_unshare.  Because of this, take
 | |
| 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
 | |
| 			 * to let lower levels know we have taken the lock.
 | |
| 			 */
 | |
| 			mapping = hugetlb_page_mapping_lock_write(hpage);
 | |
| 			if (unlikely(!mapping))
 | |
| 				goto unlock_put_anon;
 | |
| 
 | |
| 			ttu = TTU_RMAP_LOCKED;
 | |
| 		}
 | |
| 
 | |
| 		try_to_migrate(src, ttu);
 | |
| 		page_was_mapped = 1;
 | |
| 
 | |
| 		if (ttu & TTU_RMAP_LOCKED)
 | |
| 			i_mmap_unlock_write(mapping);
 | |
| 	}
 | |
| 
 | |
| 	if (!page_mapped(hpage))
 | |
| 		rc = move_to_new_folio(dst, src, mode);
 | |
| 
 | |
| 	if (page_was_mapped)
 | |
| 		remove_migration_ptes(src,
 | |
| 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
 | |
| 
 | |
| unlock_put_anon:
 | |
| 	unlock_page(new_hpage);
 | |
| 
 | |
| put_anon:
 | |
| 	if (anon_vma)
 | |
| 		put_anon_vma(anon_vma);
 | |
| 
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		move_hugetlb_state(hpage, new_hpage, reason);
 | |
| 		put_new_page = NULL;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	unlock_page(hpage);
 | |
| out:
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS)
 | |
| 		putback_active_hugepage(hpage);
 | |
| 	else if (rc != -EAGAIN)
 | |
| 		list_move_tail(&hpage->lru, ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * If migration was not successful and there's a freeing callback, use
 | |
| 	 * it.  Otherwise, put_page() will drop the reference grabbed during
 | |
| 	 * isolation.
 | |
| 	 */
 | |
| 	if (put_new_page)
 | |
| 		put_new_page(new_hpage, private);
 | |
| 	else
 | |
| 		putback_active_hugepage(new_hpage);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static inline int try_split_thp(struct page *page, struct page **page2,
 | |
| 				struct list_head *from)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	rc = split_huge_page_to_list(page, from);
 | |
| 	unlock_page(page);
 | |
| 	if (!rc)
 | |
| 		list_safe_reset_next(page, *page2, lru);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_pages - migrate the pages specified in a list, to the free pages
 | |
|  *		   supplied as the target for the page migration
 | |
|  *
 | |
|  * @from:		The list of pages to be migrated.
 | |
|  * @get_new_page:	The function used to allocate free pages to be used
 | |
|  *			as the target of the page migration.
 | |
|  * @put_new_page:	The function used to free target pages if migration
 | |
|  *			fails, or NULL if no special handling is necessary.
 | |
|  * @private:		Private data to be passed on to get_new_page()
 | |
|  * @mode:		The migration mode that specifies the constraints for
 | |
|  *			page migration, if any.
 | |
|  * @reason:		The reason for page migration.
 | |
|  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
 | |
|  *			the caller passes a non-NULL pointer.
 | |
|  *
 | |
|  * The function returns after 10 attempts or if no pages are movable any more
 | |
|  * because the list has become empty or no retryable pages exist any more.
 | |
|  * It is caller's responsibility to call putback_movable_pages() to return pages
 | |
|  * to the LRU or free list only if ret != 0.
 | |
|  *
 | |
|  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
 | |
|  * an error code. The number of THP splits will be considered as the number of
 | |
|  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
 | |
|  */
 | |
| int migrate_pages(struct list_head *from, new_page_t get_new_page,
 | |
| 		free_page_t put_new_page, unsigned long private,
 | |
| 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
 | |
| {
 | |
| 	int retry = 1;
 | |
| 	int thp_retry = 1;
 | |
| 	int nr_failed = 0;
 | |
| 	int nr_failed_pages = 0;
 | |
| 	int nr_succeeded = 0;
 | |
| 	int nr_thp_succeeded = 0;
 | |
| 	int nr_thp_failed = 0;
 | |
| 	int nr_thp_split = 0;
 | |
| 	int pass = 0;
 | |
| 	bool is_thp = false;
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 	int rc, nr_subpages;
 | |
| 	LIST_HEAD(ret_pages);
 | |
| 	LIST_HEAD(thp_split_pages);
 | |
| 	bool nosplit = (reason == MR_NUMA_MISPLACED);
 | |
| 	bool no_subpage_counting = false;
 | |
| 
 | |
| 	trace_mm_migrate_pages_start(mode, reason);
 | |
| 
 | |
| thp_subpage_migration:
 | |
| 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
 | |
| 		retry = 0;
 | |
| 		thp_retry = 0;
 | |
| 
 | |
| 		list_for_each_entry_safe(page, page2, from, lru) {
 | |
| retry:
 | |
| 			/*
 | |
| 			 * THP statistics is based on the source huge page.
 | |
| 			 * Capture required information that might get lost
 | |
| 			 * during migration.
 | |
| 			 */
 | |
| 			is_thp = PageTransHuge(page) && !PageHuge(page);
 | |
| 			nr_subpages = compound_nr(page);
 | |
| 			cond_resched();
 | |
| 
 | |
| 			if (PageHuge(page))
 | |
| 				rc = unmap_and_move_huge_page(get_new_page,
 | |
| 						put_new_page, private, page,
 | |
| 						pass > 2, mode, reason,
 | |
| 						&ret_pages);
 | |
| 			else
 | |
| 				rc = unmap_and_move(get_new_page, put_new_page,
 | |
| 						private, page, pass > 2, mode,
 | |
| 						reason, &ret_pages);
 | |
| 			/*
 | |
| 			 * The rules are:
 | |
| 			 *	Success: non hugetlb page will be freed, hugetlb
 | |
| 			 *		 page will be put back
 | |
| 			 *	-EAGAIN: stay on the from list
 | |
| 			 *	-ENOMEM: stay on the from list
 | |
| 			 *	Other errno: put on ret_pages list then splice to
 | |
| 			 *		     from list
 | |
| 			 */
 | |
| 			switch(rc) {
 | |
| 			/*
 | |
| 			 * THP migration might be unsupported or the
 | |
| 			 * allocation could've failed so we should
 | |
| 			 * retry on the same page with the THP split
 | |
| 			 * to base pages.
 | |
| 			 *
 | |
| 			 * Head page is retried immediately and tail
 | |
| 			 * pages are added to the tail of the list so
 | |
| 			 * we encounter them after the rest of the list
 | |
| 			 * is processed.
 | |
| 			 */
 | |
| 			case -ENOSYS:
 | |
| 				/* THP migration is unsupported */
 | |
| 				if (is_thp) {
 | |
| 					nr_thp_failed++;
 | |
| 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
 | |
| 						nr_thp_split++;
 | |
| 						goto retry;
 | |
| 					}
 | |
| 				/* Hugetlb migration is unsupported */
 | |
| 				} else if (!no_subpage_counting) {
 | |
| 					nr_failed++;
 | |
| 				}
 | |
| 
 | |
| 				nr_failed_pages += nr_subpages;
 | |
| 				break;
 | |
| 			case -ENOMEM:
 | |
| 				/*
 | |
| 				 * When memory is low, don't bother to try to migrate
 | |
| 				 * other pages, just exit.
 | |
| 				 * THP NUMA faulting doesn't split THP to retry.
 | |
| 				 */
 | |
| 				if (is_thp && !nosplit) {
 | |
| 					nr_thp_failed++;
 | |
| 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
 | |
| 						nr_thp_split++;
 | |
| 						goto retry;
 | |
| 					}
 | |
| 				} else if (!no_subpage_counting) {
 | |
| 					nr_failed++;
 | |
| 				}
 | |
| 
 | |
| 				nr_failed_pages += nr_subpages;
 | |
| 				/*
 | |
| 				 * There might be some subpages of fail-to-migrate THPs
 | |
| 				 * left in thp_split_pages list. Move them back to migration
 | |
| 				 * list so that they could be put back to the right list by
 | |
| 				 * the caller otherwise the page refcnt will be leaked.
 | |
| 				 */
 | |
| 				list_splice_init(&thp_split_pages, from);
 | |
| 				nr_thp_failed += thp_retry;
 | |
| 				goto out;
 | |
| 			case -EAGAIN:
 | |
| 				if (is_thp)
 | |
| 					thp_retry++;
 | |
| 				else
 | |
| 					retry++;
 | |
| 				break;
 | |
| 			case MIGRATEPAGE_SUCCESS:
 | |
| 				nr_succeeded += nr_subpages;
 | |
| 				if (is_thp)
 | |
| 					nr_thp_succeeded++;
 | |
| 				break;
 | |
| 			default:
 | |
| 				/*
 | |
| 				 * Permanent failure (-EBUSY, etc.):
 | |
| 				 * unlike -EAGAIN case, the failed page is
 | |
| 				 * removed from migration page list and not
 | |
| 				 * retried in the next outer loop.
 | |
| 				 */
 | |
| 				if (is_thp)
 | |
| 					nr_thp_failed++;
 | |
| 				else if (!no_subpage_counting)
 | |
| 					nr_failed++;
 | |
| 
 | |
| 				nr_failed_pages += nr_subpages;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	nr_failed += retry;
 | |
| 	nr_thp_failed += thp_retry;
 | |
| 	/*
 | |
| 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
 | |
| 	 * counting in this round, since all subpages of a THP is counted
 | |
| 	 * as 1 failure in the first round.
 | |
| 	 */
 | |
| 	if (!list_empty(&thp_split_pages)) {
 | |
| 		/*
 | |
| 		 * Move non-migrated pages (after 10 retries) to ret_pages
 | |
| 		 * to avoid migrating them again.
 | |
| 		 */
 | |
| 		list_splice_init(from, &ret_pages);
 | |
| 		list_splice_init(&thp_split_pages, from);
 | |
| 		no_subpage_counting = true;
 | |
| 		retry = 1;
 | |
| 		goto thp_subpage_migration;
 | |
| 	}
 | |
| 
 | |
| 	rc = nr_failed + nr_thp_failed;
 | |
| out:
 | |
| 	/*
 | |
| 	 * Put the permanent failure page back to migration list, they
 | |
| 	 * will be put back to the right list by the caller.
 | |
| 	 */
 | |
| 	list_splice(&ret_pages, from);
 | |
| 
 | |
| 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
 | |
| 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
 | |
| 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
 | |
| 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
 | |
| 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
 | |
| 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
 | |
| 			       nr_thp_failed, nr_thp_split, mode, reason);
 | |
| 
 | |
| 	if (ret_succeeded)
 | |
| 		*ret_succeeded = nr_succeeded;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| struct page *alloc_migration_target(struct page *page, unsigned long private)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct migration_target_control *mtc;
 | |
| 	gfp_t gfp_mask;
 | |
| 	unsigned int order = 0;
 | |
| 	struct folio *new_folio = NULL;
 | |
| 	int nid;
 | |
| 	int zidx;
 | |
| 
 | |
| 	mtc = (struct migration_target_control *)private;
 | |
| 	gfp_mask = mtc->gfp_mask;
 | |
| 	nid = mtc->nid;
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		nid = folio_nid(folio);
 | |
| 
 | |
| 	if (folio_test_hugetlb(folio)) {
 | |
| 		struct hstate *h = page_hstate(&folio->page);
 | |
| 
 | |
| 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
 | |
| 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_large(folio)) {
 | |
| 		/*
 | |
| 		 * clear __GFP_RECLAIM to make the migration callback
 | |
| 		 * consistent with regular THP allocations.
 | |
| 		 */
 | |
| 		gfp_mask &= ~__GFP_RECLAIM;
 | |
| 		gfp_mask |= GFP_TRANSHUGE;
 | |
| 		order = folio_order(folio);
 | |
| 	}
 | |
| 	zidx = zone_idx(folio_zone(folio));
 | |
| 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
 | |
| 		gfp_mask |= __GFP_HIGHMEM;
 | |
| 
 | |
| 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
 | |
| 
 | |
| 	return &new_folio->page;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| static int store_status(int __user *status, int start, int value, int nr)
 | |
| {
 | |
| 	while (nr-- > 0) {
 | |
| 		if (put_user(value, status + start))
 | |
| 			return -EFAULT;
 | |
| 		start++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_move_pages_to_node(struct mm_struct *mm,
 | |
| 		struct list_head *pagelist, int node)
 | |
| {
 | |
| 	int err;
 | |
| 	struct migration_target_control mtc = {
 | |
| 		.nid = node,
 | |
| 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
 | |
| 	};
 | |
| 
 | |
| 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
 | |
| 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
 | |
| 	if (err)
 | |
| 		putback_movable_pages(pagelist);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resolves the given address to a struct page, isolates it from the LRU and
 | |
|  * puts it to the given pagelist.
 | |
|  * Returns:
 | |
|  *     errno - if the page cannot be found/isolated
 | |
|  *     0 - when it doesn't have to be migrated because it is already on the
 | |
|  *         target node
 | |
|  *     1 - when it has been queued
 | |
|  */
 | |
| static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
 | |
| 		int node, struct list_head *pagelist, bool migrate_all)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	err = -EFAULT;
 | |
| 	vma = vma_lookup(mm, addr);
 | |
| 	if (!vma || !vma_migratable(vma))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* FOLL_DUMP to ignore special (like zero) pages */
 | |
| 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 | |
| 
 | |
| 	err = PTR_ERR(page);
 | |
| 	if (IS_ERR(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	if (!page)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (page_to_nid(page) == node)
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	err = -EACCES;
 | |
| 	if (page_mapcount(page) > 1 && !migrate_all)
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	if (PageHuge(page)) {
 | |
| 		if (PageHead(page)) {
 | |
| 			isolate_huge_page(page, pagelist);
 | |
| 			err = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct page *head;
 | |
| 
 | |
| 		head = compound_head(page);
 | |
| 		err = isolate_lru_page(head);
 | |
| 		if (err)
 | |
| 			goto out_putpage;
 | |
| 
 | |
| 		err = 1;
 | |
| 		list_add_tail(&head->lru, pagelist);
 | |
| 		mod_node_page_state(page_pgdat(head),
 | |
| 			NR_ISOLATED_ANON + page_is_file_lru(head),
 | |
| 			thp_nr_pages(head));
 | |
| 	}
 | |
| out_putpage:
 | |
| 	/*
 | |
| 	 * Either remove the duplicate refcount from
 | |
| 	 * isolate_lru_page() or drop the page ref if it was
 | |
| 	 * not isolated.
 | |
| 	 */
 | |
| 	put_page(page);
 | |
| out:
 | |
| 	mmap_read_unlock(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int move_pages_and_store_status(struct mm_struct *mm, int node,
 | |
| 		struct list_head *pagelist, int __user *status,
 | |
| 		int start, int i, unsigned long nr_pages)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (list_empty(pagelist))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = do_move_pages_to_node(mm, pagelist, node);
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * Positive err means the number of failed
 | |
| 		 * pages to migrate.  Since we are going to
 | |
| 		 * abort and return the number of non-migrated
 | |
| 		 * pages, so need to include the rest of the
 | |
| 		 * nr_pages that have not been attempted as
 | |
| 		 * well.
 | |
| 		 */
 | |
| 		if (err > 0)
 | |
| 			err += nr_pages - i - 1;
 | |
| 		return err;
 | |
| 	}
 | |
| 	return store_status(status, start, node, i - start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate an array of page address onto an array of nodes and fill
 | |
|  * the corresponding array of status.
 | |
|  */
 | |
| static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
 | |
| 			 unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 const int __user *nodes,
 | |
| 			 int __user *status, int flags)
 | |
| {
 | |
| 	int current_node = NUMA_NO_NODE;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	int start, i;
 | |
| 	int err = 0, err1;
 | |
| 
 | |
| 	lru_cache_disable();
 | |
| 
 | |
| 	for (i = start = 0; i < nr_pages; i++) {
 | |
| 		const void __user *p;
 | |
| 		unsigned long addr;
 | |
| 		int node;
 | |
| 
 | |
| 		err = -EFAULT;
 | |
| 		if (get_user(p, pages + i))
 | |
| 			goto out_flush;
 | |
| 		if (get_user(node, nodes + i))
 | |
| 			goto out_flush;
 | |
| 		addr = (unsigned long)untagged_addr(p);
 | |
| 
 | |
| 		err = -ENODEV;
 | |
| 		if (node < 0 || node >= MAX_NUMNODES)
 | |
| 			goto out_flush;
 | |
| 		if (!node_state(node, N_MEMORY))
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		err = -EACCES;
 | |
| 		if (!node_isset(node, task_nodes))
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		if (current_node == NUMA_NO_NODE) {
 | |
| 			current_node = node;
 | |
| 			start = i;
 | |
| 		} else if (node != current_node) {
 | |
| 			err = move_pages_and_store_status(mm, current_node,
 | |
| 					&pagelist, status, start, i, nr_pages);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			start = i;
 | |
| 			current_node = node;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Errors in the page lookup or isolation are not fatal and we simply
 | |
| 		 * report them via status
 | |
| 		 */
 | |
| 		err = add_page_for_migration(mm, addr, current_node,
 | |
| 				&pagelist, flags & MPOL_MF_MOVE_ALL);
 | |
| 
 | |
| 		if (err > 0) {
 | |
| 			/* The page is successfully queued for migration */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The move_pages() man page does not have an -EEXIST choice, so
 | |
| 		 * use -EFAULT instead.
 | |
| 		 */
 | |
| 		if (err == -EEXIST)
 | |
| 			err = -EFAULT;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the page is already on the target node (!err), store the
 | |
| 		 * node, otherwise, store the err.
 | |
| 		 */
 | |
| 		err = store_status(status, i, err ? : current_node, 1);
 | |
| 		if (err)
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		err = move_pages_and_store_status(mm, current_node, &pagelist,
 | |
| 				status, start, i, nr_pages);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		current_node = NUMA_NO_NODE;
 | |
| 	}
 | |
| out_flush:
 | |
| 	/* Make sure we do not overwrite the existing error */
 | |
| 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
 | |
| 				status, start, i, nr_pages);
 | |
| 	if (err >= 0)
 | |
| 		err = err1;
 | |
| out:
 | |
| 	lru_cache_enable();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of an array of pages and store it in an array of status.
 | |
|  */
 | |
| static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 				const void __user **pages, int *status)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		unsigned long addr = (unsigned long)(*pages);
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct page *page;
 | |
| 		int err = -EFAULT;
 | |
| 
 | |
| 		vma = vma_lookup(mm, addr);
 | |
| 		if (!vma)
 | |
| 			goto set_status;
 | |
| 
 | |
| 		/* FOLL_DUMP to ignore special (like zero) pages */
 | |
| 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 | |
| 
 | |
| 		err = PTR_ERR(page);
 | |
| 		if (IS_ERR(page))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		if (page) {
 | |
| 			err = page_to_nid(page);
 | |
| 			put_page(page);
 | |
| 		} else {
 | |
| 			err = -ENOENT;
 | |
| 		}
 | |
| set_status:
 | |
| 		*status = err;
 | |
| 
 | |
| 		pages++;
 | |
| 		status++;
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| }
 | |
| 
 | |
| static int get_compat_pages_array(const void __user *chunk_pages[],
 | |
| 				  const void __user * __user *pages,
 | |
| 				  unsigned long chunk_nr)
 | |
| {
 | |
| 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
 | |
| 	compat_uptr_t p;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < chunk_nr; i++) {
 | |
| 		if (get_user(p, pages32 + i))
 | |
| 			return -EFAULT;
 | |
| 		chunk_pages[i] = compat_ptr(p);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of a user array of pages and store it in
 | |
|  * a user array of status.
 | |
|  */
 | |
| static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 int __user *status)
 | |
| {
 | |
| #define DO_PAGES_STAT_CHUNK_NR 16UL
 | |
| 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
 | |
| 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
 | |
| 
 | |
| 		if (in_compat_syscall()) {
 | |
| 			if (get_compat_pages_array(chunk_pages, pages,
 | |
| 						   chunk_nr))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (copy_from_user(chunk_pages, pages,
 | |
| 				      chunk_nr * sizeof(*chunk_pages)))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
 | |
| 
 | |
| 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
 | |
| 			break;
 | |
| 
 | |
| 		pages += chunk_nr;
 | |
| 		status += chunk_nr;
 | |
| 		nr_pages -= chunk_nr;
 | |
| 	}
 | |
| 	return nr_pages ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no need to check if current process has the right to modify
 | |
| 	 * the specified process when they are same.
 | |
| 	 */
 | |
| 	if (!pid) {
 | |
| 		mmget(current->mm);
 | |
| 		*mem_nodes = cpuset_mems_allowed(current);
 | |
| 		return current->mm;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	rcu_read_lock();
 | |
| 	task = find_task_by_vpid(pid);
 | |
| 	if (!task) {
 | |
| 		rcu_read_unlock();
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 	}
 | |
| 	get_task_struct(task);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified
 | |
| 	 * process. Use the regular "ptrace_may_access()" checks.
 | |
| 	 */
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mm = ERR_PTR(-EPERM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	mm = ERR_PTR(security_task_movememory(task));
 | |
| 	if (IS_ERR(mm))
 | |
| 		goto out;
 | |
| 	*mem_nodes = cpuset_mems_allowed(task);
 | |
| 	mm = get_task_mm(task);
 | |
| out:
 | |
| 	put_task_struct(task);
 | |
| 	if (!mm)
 | |
| 		mm = ERR_PTR(-EINVAL);
 | |
| 	return mm;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a list of pages in the address space of the currently executing
 | |
|  * process.
 | |
|  */
 | |
| static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
 | |
| 			     const void __user * __user *pages,
 | |
| 			     const int __user *nodes,
 | |
| 			     int __user *status, int flags)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 	nodemask_t task_nodes;
 | |
| 
 | |
| 	/* Check flags */
 | |
| 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	mm = find_mm_struct(pid, &task_nodes);
 | |
| 	if (IS_ERR(mm))
 | |
| 		return PTR_ERR(mm);
 | |
| 
 | |
| 	if (nodes)
 | |
| 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
 | |
| 				    nodes, status, flags);
 | |
| 	else
 | |
| 		err = do_pages_stat(mm, nr_pages, pages, status);
 | |
| 
 | |
| 	mmput(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
 | |
| 		const void __user * __user *, pages,
 | |
| 		const int __user *, nodes,
 | |
| 		int __user *, status, int, flags)
 | |
| {
 | |
| 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Returns true if this is a safe migration target node for misplaced NUMA
 | |
|  * pages. Currently it only checks the watermarks which is crude.
 | |
|  */
 | |
| static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
 | |
| 				   unsigned long nr_migrate_pages)
 | |
| {
 | |
| 	int z;
 | |
| 
 | |
| 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
 | |
| 		struct zone *zone = pgdat->node_zones + z;
 | |
| 
 | |
| 		if (!managed_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
 | |
| 		if (!zone_watermark_ok(zone, 0,
 | |
| 				       high_wmark_pages(zone) +
 | |
| 				       nr_migrate_pages,
 | |
| 				       ZONE_MOVABLE, 0))
 | |
| 			continue;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct page *alloc_misplaced_dst_page(struct page *page,
 | |
| 					   unsigned long data)
 | |
| {
 | |
| 	int nid = (int) data;
 | |
| 	int order = compound_order(page);
 | |
| 	gfp_t gfp = __GFP_THISNODE;
 | |
| 	struct folio *new;
 | |
| 
 | |
| 	if (order > 0)
 | |
| 		gfp |= GFP_TRANSHUGE_LIGHT;
 | |
| 	else {
 | |
| 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
 | |
| 			__GFP_NOWARN;
 | |
| 		gfp &= ~__GFP_RECLAIM;
 | |
| 	}
 | |
| 	new = __folio_alloc_node(gfp, order, nid);
 | |
| 
 | |
| 	return &new->page;
 | |
| }
 | |
| 
 | |
| static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
 | |
| {
 | |
| 	int nr_pages = thp_nr_pages(page);
 | |
| 	int order = compound_order(page);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
 | |
| 
 | |
| 	/* Do not migrate THP mapped by multiple processes */
 | |
| 	if (PageTransHuge(page) && total_mapcount(page) > 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Avoid migrating to a node that is nearly full */
 | |
| 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
 | |
| 		int z;
 | |
| 
 | |
| 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
 | |
| 			return 0;
 | |
| 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
 | |
| 			if (managed_zone(pgdat->node_zones + z))
 | |
| 				break;
 | |
| 		}
 | |
| 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (isolate_lru_page(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
 | |
| 			    nr_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Isolating the page has taken another reference, so the
 | |
| 	 * caller's reference can be safely dropped without the page
 | |
| 	 * disappearing underneath us during migration.
 | |
| 	 */
 | |
| 	put_page(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to migrate a misplaced page to the specified destination
 | |
|  * node. Caller is expected to have an elevated reference count on
 | |
|  * the page that will be dropped by this function before returning.
 | |
|  */
 | |
| int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
 | |
| 			   int node)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 	int isolated;
 | |
| 	int nr_remaining;
 | |
| 	unsigned int nr_succeeded;
 | |
| 	LIST_HEAD(migratepages);
 | |
| 	int nr_pages = thp_nr_pages(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't migrate file pages that are mapped in multiple processes
 | |
| 	 * with execute permissions as they are probably shared libraries.
 | |
| 	 */
 | |
| 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
 | |
| 	    (vma->vm_flags & VM_EXEC))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Also do not migrate dirty pages as not all filesystems can move
 | |
| 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
 | |
| 	 */
 | |
| 	if (page_is_file_lru(page) && PageDirty(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	isolated = numamigrate_isolate_page(pgdat, page);
 | |
| 	if (!isolated)
 | |
| 		goto out;
 | |
| 
 | |
| 	list_add(&page->lru, &migratepages);
 | |
| 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
 | |
| 				     NULL, node, MIGRATE_ASYNC,
 | |
| 				     MR_NUMA_MISPLACED, &nr_succeeded);
 | |
| 	if (nr_remaining) {
 | |
| 		if (!list_empty(&migratepages)) {
 | |
| 			list_del(&page->lru);
 | |
| 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 | |
| 					page_is_file_lru(page), -nr_pages);
 | |
| 			putback_lru_page(page);
 | |
| 		}
 | |
| 		isolated = 0;
 | |
| 	}
 | |
| 	if (nr_succeeded) {
 | |
| 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
 | |
| 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
 | |
| 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
 | |
| 					    nr_succeeded);
 | |
| 	}
 | |
| 	BUG_ON(!list_empty(&migratepages));
 | |
| 	return isolated;
 | |
| 
 | |
| out:
 | |
| 	put_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| /*
 | |
|  * node_demotion[] example:
 | |
|  *
 | |
|  * Consider a system with two sockets.  Each socket has
 | |
|  * three classes of memory attached: fast, medium and slow.
 | |
|  * Each memory class is placed in its own NUMA node.  The
 | |
|  * CPUs are placed in the node with the "fast" memory.  The
 | |
|  * 6 NUMA nodes (0-5) might be split among the sockets like
 | |
|  * this:
 | |
|  *
 | |
|  *	Socket A: 0, 1, 2
 | |
|  *	Socket B: 3, 4, 5
 | |
|  *
 | |
|  * When Node 0 fills up, its memory should be migrated to
 | |
|  * Node 1.  When Node 1 fills up, it should be migrated to
 | |
|  * Node 2.  The migration path start on the nodes with the
 | |
|  * processors (since allocations default to this node) and
 | |
|  * fast memory, progress through medium and end with the
 | |
|  * slow memory:
 | |
|  *
 | |
|  *	0 -> 1 -> 2 -> stop
 | |
|  *	3 -> 4 -> 5 -> stop
 | |
|  *
 | |
|  * This is represented in the node_demotion[] like this:
 | |
|  *
 | |
|  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
 | |
|  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
 | |
|  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
 | |
|  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
 | |
|  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
 | |
|  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
 | |
|  *
 | |
|  * Moreover some systems may have multiple slow memory nodes.
 | |
|  * Suppose a system has one socket with 3 memory nodes, node 0
 | |
|  * is fast memory type, and node 1/2 both are slow memory
 | |
|  * type, and the distance between fast memory node and slow
 | |
|  * memory node is same. So the migration path should be:
 | |
|  *
 | |
|  *	0 -> 1/2 -> stop
 | |
|  *
 | |
|  * This is represented in the node_demotion[] like this:
 | |
|  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
 | |
|  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
 | |
|  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Writes to this array occur without locking.  Cycles are
 | |
|  * not allowed: Node X demotes to Y which demotes to X...
 | |
|  *
 | |
|  * If multiple reads are performed, a single rcu_read_lock()
 | |
|  * must be held over all reads to ensure that no cycles are
 | |
|  * observed.
 | |
|  */
 | |
| #define DEFAULT_DEMOTION_TARGET_NODES 15
 | |
| 
 | |
| #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
 | |
| #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
 | |
| #else
 | |
| #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
 | |
| #endif
 | |
| 
 | |
| struct demotion_nodes {
 | |
| 	unsigned short nr;
 | |
| 	short nodes[DEMOTION_TARGET_NODES];
 | |
| };
 | |
| 
 | |
| static struct demotion_nodes *node_demotion __read_mostly;
 | |
| 
 | |
| /**
 | |
|  * next_demotion_node() - Get the next node in the demotion path
 | |
|  * @node: The starting node to lookup the next node
 | |
|  *
 | |
|  * Return: node id for next memory node in the demotion path hierarchy
 | |
|  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 | |
|  * @node online or guarantee that it *continues* to be the next demotion
 | |
|  * target.
 | |
|  */
 | |
| int next_demotion_node(int node)
 | |
| {
 | |
| 	struct demotion_nodes *nd;
 | |
| 	unsigned short target_nr, index;
 | |
| 	int target;
 | |
| 
 | |
| 	if (!node_demotion)
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	nd = &node_demotion[node];
 | |
| 
 | |
| 	/*
 | |
| 	 * node_demotion[] is updated without excluding this
 | |
| 	 * function from running.  RCU doesn't provide any
 | |
| 	 * compiler barriers, so the READ_ONCE() is required
 | |
| 	 * to avoid compiler reordering or read merging.
 | |
| 	 *
 | |
| 	 * Make sure to use RCU over entire code blocks if
 | |
| 	 * node_demotion[] reads need to be consistent.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	target_nr = READ_ONCE(nd->nr);
 | |
| 
 | |
| 	switch (target_nr) {
 | |
| 	case 0:
 | |
| 		target = NUMA_NO_NODE;
 | |
| 		goto out;
 | |
| 	case 1:
 | |
| 		index = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * If there are multiple target nodes, just select one
 | |
| 		 * target node randomly.
 | |
| 		 *
 | |
| 		 * In addition, we can also use round-robin to select
 | |
| 		 * target node, but we should introduce another variable
 | |
| 		 * for node_demotion[] to record last selected target node,
 | |
| 		 * that may cause cache ping-pong due to the changing of
 | |
| 		 * last target node. Or introducing per-cpu data to avoid
 | |
| 		 * caching issue, which seems more complicated. So selecting
 | |
| 		 * target node randomly seems better until now.
 | |
| 		 */
 | |
| 		index = get_random_int() % target_nr;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	target = READ_ONCE(nd->nodes[index]);
 | |
| 
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| /* Disable reclaim-based migration. */
 | |
| static void __disable_all_migrate_targets(void)
 | |
| {
 | |
| 	int node, i;
 | |
| 
 | |
| 	if (!node_demotion)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		node_demotion[node].nr = 0;
 | |
| 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
 | |
| 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void disable_all_migrate_targets(void)
 | |
| {
 | |
| 	__disable_all_migrate_targets();
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the "disable" is visible across the system.
 | |
| 	 * Readers will see either a combination of before+disable
 | |
| 	 * state or disable+after.  They will never see before and
 | |
| 	 * after state together.
 | |
| 	 *
 | |
| 	 * The before+after state together might have cycles and
 | |
| 	 * could cause readers to do things like loop until this
 | |
| 	 * function finishes.  This ensures they can only see a
 | |
| 	 * single "bad" read and would, for instance, only loop
 | |
| 	 * once.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find an automatic demotion target for 'node'.
 | |
|  * Failing here is OK.  It might just indicate
 | |
|  * being at the end of a chain.
 | |
|  */
 | |
| static int establish_migrate_target(int node, nodemask_t *used,
 | |
| 				    int best_distance)
 | |
| {
 | |
| 	int migration_target, index, val;
 | |
| 	struct demotion_nodes *nd;
 | |
| 
 | |
| 	if (!node_demotion)
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	nd = &node_demotion[node];
 | |
| 
 | |
| 	migration_target = find_next_best_node(node, used);
 | |
| 	if (migration_target == NUMA_NO_NODE)
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node has been set a migration target node before,
 | |
| 	 * which means it's the best distance between them. Still
 | |
| 	 * check if this node can be demoted to other target nodes
 | |
| 	 * if they have a same best distance.
 | |
| 	 */
 | |
| 	if (best_distance != -1) {
 | |
| 		val = node_distance(node, migration_target);
 | |
| 		if (val > best_distance)
 | |
| 			goto out_clear;
 | |
| 	}
 | |
| 
 | |
| 	index = nd->nr;
 | |
| 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
 | |
| 		      "Exceeds maximum demotion target nodes\n"))
 | |
| 		goto out_clear;
 | |
| 
 | |
| 	nd->nodes[index] = migration_target;
 | |
| 	nd->nr++;
 | |
| 
 | |
| 	return migration_target;
 | |
| out_clear:
 | |
| 	node_clear(migration_target, *used);
 | |
| 	return NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When memory fills up on a node, memory contents can be
 | |
|  * automatically migrated to another node instead of
 | |
|  * discarded at reclaim.
 | |
|  *
 | |
|  * Establish a "migration path" which will start at nodes
 | |
|  * with CPUs and will follow the priorities used to build the
 | |
|  * page allocator zonelists.
 | |
|  *
 | |
|  * The difference here is that cycles must be avoided.  If
 | |
|  * node0 migrates to node1, then neither node1, nor anything
 | |
|  * node1 migrates to can migrate to node0. Also one node can
 | |
|  * be migrated to multiple nodes if the target nodes all have
 | |
|  * a same best-distance against the source node.
 | |
|  *
 | |
|  * This function can run simultaneously with readers of
 | |
|  * node_demotion[].  However, it can not run simultaneously
 | |
|  * with itself.  Exclusion is provided by memory hotplug events
 | |
|  * being single-threaded.
 | |
|  */
 | |
| static void __set_migration_target_nodes(void)
 | |
| {
 | |
| 	nodemask_t next_pass;
 | |
| 	nodemask_t this_pass;
 | |
| 	nodemask_t used_targets = NODE_MASK_NONE;
 | |
| 	int node, best_distance;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid any oddities like cycles that could occur
 | |
| 	 * from changes in the topology.  This will leave
 | |
| 	 * a momentary gap when migration is disabled.
 | |
| 	 */
 | |
| 	disable_all_migrate_targets();
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocations go close to CPUs, first.  Assume that
 | |
| 	 * the migration path starts at the nodes with CPUs.
 | |
| 	 */
 | |
| 	next_pass = node_states[N_CPU];
 | |
| again:
 | |
| 	this_pass = next_pass;
 | |
| 	next_pass = NODE_MASK_NONE;
 | |
| 	/*
 | |
| 	 * To avoid cycles in the migration "graph", ensure
 | |
| 	 * that migration sources are not future targets by
 | |
| 	 * setting them in 'used_targets'.  Do this only
 | |
| 	 * once per pass so that multiple source nodes can
 | |
| 	 * share a target node.
 | |
| 	 *
 | |
| 	 * 'used_targets' will become unavailable in future
 | |
| 	 * passes.  This limits some opportunities for
 | |
| 	 * multiple source nodes to share a destination.
 | |
| 	 */
 | |
| 	nodes_or(used_targets, used_targets, this_pass);
 | |
| 
 | |
| 	for_each_node_mask(node, this_pass) {
 | |
| 		best_distance = -1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to set up the migration path for the node, and the target
 | |
| 		 * migration nodes can be multiple, so doing a loop to find all
 | |
| 		 * the target nodes if they all have a best node distance.
 | |
| 		 */
 | |
| 		do {
 | |
| 			int target_node =
 | |
| 				establish_migrate_target(node, &used_targets,
 | |
| 							 best_distance);
 | |
| 
 | |
| 			if (target_node == NUMA_NO_NODE)
 | |
| 				break;
 | |
| 
 | |
| 			if (best_distance == -1)
 | |
| 				best_distance = node_distance(node, target_node);
 | |
| 
 | |
| 			/*
 | |
| 			 * Visit targets from this pass in the next pass.
 | |
| 			 * Eventually, every node will have been part of
 | |
| 			 * a pass, and will become set in 'used_targets'.
 | |
| 			 */
 | |
| 			node_set(target_node, next_pass);
 | |
| 		} while (1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * 'next_pass' contains nodes which became migration
 | |
| 	 * targets in this pass.  Make additional passes until
 | |
| 	 * no more migrations targets are available.
 | |
| 	 */
 | |
| 	if (!nodes_empty(next_pass))
 | |
| 		goto again;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For callers that do not hold get_online_mems() already.
 | |
|  */
 | |
| void set_migration_target_nodes(void)
 | |
| {
 | |
| 	get_online_mems();
 | |
| 	__set_migration_target_nodes();
 | |
| 	put_online_mems();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This leaves migrate-on-reclaim transiently disabled between
 | |
|  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
 | |
|  * whether reclaim-based migration is enabled or not, which
 | |
|  * ensures that the user can turn reclaim-based migration at
 | |
|  * any time without needing to recalculate migration targets.
 | |
|  *
 | |
|  * These callbacks already hold get_online_mems().  That is why
 | |
|  * __set_migration_target_nodes() can be used as opposed to
 | |
|  * set_migration_target_nodes().
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
 | |
| 						 unsigned long action, void *_arg)
 | |
| {
 | |
| 	struct memory_notify *arg = _arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only update the node migration order when a node is
 | |
| 	 * changing status, like online->offline.  This avoids
 | |
| 	 * the overhead of synchronize_rcu() in most cases.
 | |
| 	 */
 | |
| 	if (arg->status_change_nid < 0)
 | |
| 		return notifier_from_errno(0);
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		/*
 | |
| 		 * Make sure there are not transient states where
 | |
| 		 * an offline node is a migration target.  This
 | |
| 		 * will leave migration disabled until the offline
 | |
| 		 * completes and the MEM_OFFLINE case below runs.
 | |
| 		 */
 | |
| 		disable_all_migrate_targets();
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_ONLINE:
 | |
| 		/*
 | |
| 		 * Recalculate the target nodes once the node
 | |
| 		 * reaches its final state (online or offline).
 | |
| 		 */
 | |
| 		__set_migration_target_nodes();
 | |
| 		break;
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		/*
 | |
| 		 * MEM_GOING_OFFLINE disabled all the migration
 | |
| 		 * targets.  Reenable them.
 | |
| 		 */
 | |
| 		__set_migration_target_nodes();
 | |
| 		break;
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return notifier_from_errno(0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init migrate_on_reclaim_init(void)
 | |
| {
 | |
| 	node_demotion = kcalloc(nr_node_ids,
 | |
| 				sizeof(struct demotion_nodes),
 | |
| 				GFP_KERNEL);
 | |
| 	WARN_ON(!node_demotion);
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * At this point, all numa nodes with memory/CPus have their state
 | |
| 	 * properly set, so we can build the demotion order now.
 | |
| 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
 | |
| 	 * CPU hotplug events during boot.
 | |
| 	 */
 | |
| 	cpus_read_lock();
 | |
| 	set_migration_target_nodes();
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| bool numa_demotion_enabled = false;
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%s\n",
 | |
| 			  numa_demotion_enabled ? "true" : "false");
 | |
| }
 | |
| 
 | |
| static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
 | |
| 					   struct kobj_attribute *attr,
 | |
| 					   const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &numa_demotion_enabled);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute numa_demotion_enabled_attr =
 | |
| 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
 | |
| 	       numa_demotion_enabled_store);
 | |
| 
 | |
| static struct attribute *numa_attrs[] = {
 | |
| 	&numa_demotion_enabled_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group numa_attr_group = {
 | |
| 	.attrs = numa_attrs,
 | |
| };
 | |
| 
 | |
| static int __init numa_init_sysfs(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *numa_kobj;
 | |
| 
 | |
| 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
 | |
| 	if (!numa_kobj) {
 | |
| 		pr_err("failed to create numa kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register numa group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| delete_obj:
 | |
| 	kobject_put(numa_kobj);
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(numa_init_sysfs);
 | |
| #endif /* CONFIG_SYSFS */
 | |
| #endif /* CONFIG_NUMA */
 |