mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 97a77ab14f
			
		
	
	
		97a77ab14f
		
	
	
	
	
		
			
			- Enable mirrored memory for arm64 - Fix up several abuses of the efivar API - Refactor the efivar API in preparation for moving the 'business logic' part of it into efivarfs - Enable ACPI PRM on arm64 -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmLhuDIACgkQw08iOZLZ jyS9IQv/Wc2nhjN50S3gfrL+68/el/hGdP/J0FK5BOOjNosG2t1ZNYZtSthXqpPH hRrTU2m6PpQUalRpFDyLiHkJvdBFQe4VmvrzBa3TIBIzyflLQPJzkWrqThPchV+B qi4lmCtTDNIEJmayewqx1wWA+QmUiyI5zJ8wrZp84LTctBPL75seVv0SB20nqai0 3/I73omB2RLVGpCpeWvb++vePXL8euFW3FEwCTM8hRboICjORTyIZPy8Y5os+3xT UgrIgVDOtn1Xwd4tK0qVwjOVA51east4Fcn3yGOrL40t+3SFm2jdpAJOO3UvyNPl vkbtjvXsIjt3/oxreKxXHLbamKyueWIfZRyCLsrg6wrr96oypPk6ID4iDCQoen/X Zf0VjM2vmvSd4YgnEIblOfSBxVg48cHJA4iVHVxFodNTrVnzGGFYPTmNKmJqo+Xn JeUILM7jlR4h/t0+cTTK3Busu24annTuuz5L5rjf4bUm6pPf4crb1yJaFWtGhlpa er233D6O =zI0R -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: - Enable mirrored memory for arm64 - Fix up several abuses of the efivar API - Refactor the efivar API in preparation for moving the 'business logic' part of it into efivarfs - Enable ACPI PRM on arm64 * tag 'efi-next-for-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits) ACPI: Move PRM config option under the main ACPI config ACPI: Enable Platform Runtime Mechanism(PRM) support on ARM64 ACPI: PRM: Change handler_addr type to void pointer efi: Simplify arch_efi_call_virt() macro drivers: fix typo in firmware/efi/memmap.c efi: vars: Drop __efivar_entry_iter() helper which is no longer used efi: vars: Use locking version to iterate over efivars linked lists efi: pstore: Omit efivars caching EFI varstore access layer efi: vars: Add thin wrapper around EFI get/set variable interface efi: vars: Don't drop lock in the middle of efivar_init() pstore: Add priv field to pstore_record for backend specific use Input: applespi - avoid efivars API and invoke EFI services directly selftests/kexec: remove broken EFI_VARS secure boot fallback check brcmfmac: Switch to appropriate helper to load EFI variable contents iwlwifi: Switch to proper EFI variable store interface media: atomisp_gmin_platform: stop abusing efivar API efi: efibc: avoid efivar API for setting variables efi: avoid efivars layer when loading SSDTs from variables efi: Correct comment on efi_memmap_alloc memblock: Disable mirror feature if kernelcore is not specified ...
		
			
				
	
	
		
			797 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Virtual Memory Map support
 | |
|  *
 | |
|  * (C) 2007 sgi. Christoph Lameter.
 | |
|  *
 | |
|  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 | |
|  * virt_to_page, page_address() to be implemented as a base offset
 | |
|  * calculation without memory access.
 | |
|  *
 | |
|  * However, virtual mappings need a page table and TLBs. Many Linux
 | |
|  * architectures already map their physical space using 1-1 mappings
 | |
|  * via TLBs. For those arches the virtual memory map is essentially
 | |
|  * for free if we use the same page size as the 1-1 mappings. In that
 | |
|  * case the overhead consists of a few additional pages that are
 | |
|  * allocated to create a view of memory for vmemmap.
 | |
|  *
 | |
|  * The architecture is expected to provide a vmemmap_populate() function
 | |
|  * to instantiate the mapping.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/bootmem_info.h>
 | |
| 
 | |
| #include <asm/dma.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
 | |
| /**
 | |
|  * struct vmemmap_remap_walk - walk vmemmap page table
 | |
|  *
 | |
|  * @remap_pte:		called for each lowest-level entry (PTE).
 | |
|  * @nr_walked:		the number of walked pte.
 | |
|  * @reuse_page:		the page which is reused for the tail vmemmap pages.
 | |
|  * @reuse_addr:		the virtual address of the @reuse_page page.
 | |
|  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 | |
|  *			or is mapped from.
 | |
|  */
 | |
| struct vmemmap_remap_walk {
 | |
| 	void (*remap_pte)(pte_t *pte, unsigned long addr,
 | |
| 			  struct vmemmap_remap_walk *walk);
 | |
| 	unsigned long nr_walked;
 | |
| 	struct page *reuse_page;
 | |
| 	unsigned long reuse_addr;
 | |
| 	struct list_head *vmemmap_pages;
 | |
| };
 | |
| 
 | |
| static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
 | |
| {
 | |
| 	pmd_t __pmd;
 | |
| 	int i;
 | |
| 	unsigned long addr = start;
 | |
| 	struct page *page = pmd_page(*pmd);
 | |
| 	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
 | |
| 
 | |
| 	if (!pgtable)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t entry, *pte;
 | |
| 		pgprot_t pgprot = PAGE_KERNEL;
 | |
| 
 | |
| 		entry = mk_pte(page + i, pgprot);
 | |
| 		pte = pte_offset_kernel(&__pmd, addr);
 | |
| 		set_pte_at(&init_mm, addr, pte, entry);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	if (likely(pmd_leaf(*pmd))) {
 | |
| 		/*
 | |
| 		 * Higher order allocations from buddy allocator must be able to
 | |
| 		 * be treated as indepdenent small pages (as they can be freed
 | |
| 		 * individually).
 | |
| 		 */
 | |
| 		if (!PageReserved(page))
 | |
| 			split_page(page, get_order(PMD_SIZE));
 | |
| 
 | |
| 		/* Make pte visible before pmd. See comment in pmd_install(). */
 | |
| 		smp_wmb();
 | |
| 		pmd_populate_kernel(&init_mm, pmd, pgtable);
 | |
| 		flush_tlb_kernel_range(start, start + PMD_SIZE);
 | |
| 	} else {
 | |
| 		pte_free_kernel(&init_mm, pgtable);
 | |
| 	}
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
 | |
| {
 | |
| 	int leaf;
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	leaf = pmd_leaf(*pmd);
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 	if (!leaf)
 | |
| 		return 0;
 | |
| 
 | |
| 	return __split_vmemmap_huge_pmd(pmd, start);
 | |
| }
 | |
| 
 | |
| static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
 | |
| 			      unsigned long end,
 | |
| 			      struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pte_t *pte = pte_offset_kernel(pmd, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * The reuse_page is found 'first' in table walk before we start
 | |
| 	 * remapping (which is calling @walk->remap_pte).
 | |
| 	 */
 | |
| 	if (!walk->reuse_page) {
 | |
| 		walk->reuse_page = pte_page(*pte);
 | |
| 		/*
 | |
| 		 * Because the reuse address is part of the range that we are
 | |
| 		 * walking, skip the reuse address range.
 | |
| 		 */
 | |
| 		addr += PAGE_SIZE;
 | |
| 		pte++;
 | |
| 		walk->nr_walked++;
 | |
| 	}
 | |
| 
 | |
| 	for (; addr != end; addr += PAGE_SIZE, pte++) {
 | |
| 		walk->remap_pte(pte, addr, walk);
 | |
| 		walk->nr_walked++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
 | |
| 			     unsigned long end,
 | |
| 			     struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		vmemmap_pte_range(pmd, addr, next, walk);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
 | |
| 			     unsigned long end,
 | |
| 			     struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		ret = vmemmap_pmd_range(pud, addr, next, walk);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
 | |
| 			     unsigned long end,
 | |
| 			     struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		ret = vmemmap_pud_range(p4d, addr, next, walk);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmemmap_remap_range(unsigned long start, unsigned long end,
 | |
| 			       struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	unsigned long addr = start;
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
 | |
| 	VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		ret = vmemmap_p4d_range(pgd, addr, next, walk);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only change the mapping of the vmemmap virtual address range
 | |
| 	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
 | |
| 	 * belongs to the range.
 | |
| 	 */
 | |
| 	flush_tlb_kernel_range(start + PAGE_SIZE, end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
 | |
|  * allocator or buddy allocator. If the PG_reserved flag is set, it means
 | |
|  * that it allocated from the memblock allocator, just free it via the
 | |
|  * free_bootmem_page(). Otherwise, use __free_page().
 | |
|  */
 | |
| static inline void free_vmemmap_page(struct page *page)
 | |
| {
 | |
| 	if (PageReserved(page))
 | |
| 		free_bootmem_page(page);
 | |
| 	else
 | |
| 		__free_page(page);
 | |
| }
 | |
| 
 | |
| /* Free a list of the vmemmap pages */
 | |
| static void free_vmemmap_page_list(struct list_head *list)
 | |
| {
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, next, list, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		free_vmemmap_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
 | |
| 			      struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remap the tail pages as read-only to catch illegal write operation
 | |
| 	 * to the tail pages.
 | |
| 	 */
 | |
| 	pgprot_t pgprot = PAGE_KERNEL_RO;
 | |
| 	pte_t entry = mk_pte(walk->reuse_page, pgprot);
 | |
| 	struct page *page = pte_page(*pte);
 | |
| 
 | |
| 	list_add_tail(&page->lru, walk->vmemmap_pages);
 | |
| 	set_pte_at(&init_mm, addr, pte, entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many struct page structs need to be reset. When we reuse the head
 | |
|  * struct page, the special metadata (e.g. page->flags or page->mapping)
 | |
|  * cannot copy to the tail struct page structs. The invalid value will be
 | |
|  * checked in the free_tail_pages_check(). In order to avoid the message
 | |
|  * of "corrupted mapping in tail page". We need to reset at least 3 (one
 | |
|  * head struct page struct and two tail struct page structs) struct page
 | |
|  * structs.
 | |
|  */
 | |
| #define NR_RESET_STRUCT_PAGE		3
 | |
| 
 | |
| static inline void reset_struct_pages(struct page *start)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *from = start + NR_RESET_STRUCT_PAGE;
 | |
| 
 | |
| 	for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
 | |
| 		memcpy(start + i, from, sizeof(*from));
 | |
| }
 | |
| 
 | |
| static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
 | |
| 				struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pgprot_t pgprot = PAGE_KERNEL;
 | |
| 	struct page *page;
 | |
| 	void *to;
 | |
| 
 | |
| 	BUG_ON(pte_page(*pte) != walk->reuse_page);
 | |
| 
 | |
| 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
 | |
| 	list_del(&page->lru);
 | |
| 	to = page_to_virt(page);
 | |
| 	copy_page(to, (void *)walk->reuse_addr);
 | |
| 	reset_struct_pages(to);
 | |
| 
 | |
| 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
 | |
|  *			to the page which @reuse is mapped to, then free vmemmap
 | |
|  *			which the range are mapped to.
 | |
|  * @start:	start address of the vmemmap virtual address range that we want
 | |
|  *		to remap.
 | |
|  * @end:	end address of the vmemmap virtual address range that we want to
 | |
|  *		remap.
 | |
|  * @reuse:	reuse address.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int vmemmap_remap_free(unsigned long start, unsigned long end,
 | |
| 		       unsigned long reuse)
 | |
| {
 | |
| 	int ret;
 | |
| 	LIST_HEAD(vmemmap_pages);
 | |
| 	struct vmemmap_remap_walk walk = {
 | |
| 		.remap_pte	= vmemmap_remap_pte,
 | |
| 		.reuse_addr	= reuse,
 | |
| 		.vmemmap_pages	= &vmemmap_pages,
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to make remapping routine most efficient for the huge pages,
 | |
| 	 * the routine of vmemmap page table walking has the following rules
 | |
| 	 * (see more details from the vmemmap_pte_range()):
 | |
| 	 *
 | |
| 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
 | |
| 	 *   should be continuous.
 | |
| 	 * - The @reuse address is part of the range [@reuse, @end) that we are
 | |
| 	 *   walking which is passed to vmemmap_remap_range().
 | |
| 	 * - The @reuse address is the first in the complete range.
 | |
| 	 *
 | |
| 	 * So we need to make sure that @start and @reuse meet the above rules.
 | |
| 	 */
 | |
| 	BUG_ON(start - reuse != PAGE_SIZE);
 | |
| 
 | |
| 	mmap_read_lock(&init_mm);
 | |
| 	ret = vmemmap_remap_range(reuse, end, &walk);
 | |
| 	if (ret && walk.nr_walked) {
 | |
| 		end = reuse + walk.nr_walked * PAGE_SIZE;
 | |
| 		/*
 | |
| 		 * vmemmap_pages contains pages from the previous
 | |
| 		 * vmemmap_remap_range call which failed.  These
 | |
| 		 * are pages which were removed from the vmemmap.
 | |
| 		 * They will be restored in the following call.
 | |
| 		 */
 | |
| 		walk = (struct vmemmap_remap_walk) {
 | |
| 			.remap_pte	= vmemmap_restore_pte,
 | |
| 			.reuse_addr	= reuse,
 | |
| 			.vmemmap_pages	= &vmemmap_pages,
 | |
| 		};
 | |
| 
 | |
| 		vmemmap_remap_range(reuse, end, &walk);
 | |
| 	}
 | |
| 	mmap_read_unlock(&init_mm);
 | |
| 
 | |
| 	free_vmemmap_page_list(&vmemmap_pages);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
 | |
| 				   gfp_t gfp_mask, struct list_head *list)
 | |
| {
 | |
| 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
 | |
| 	int nid = page_to_nid((struct page *)start);
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	while (nr_pages--) {
 | |
| 		page = alloc_pages_node(nid, gfp_mask, 0);
 | |
| 		if (!page)
 | |
| 			goto out;
 | |
| 		list_add_tail(&page->lru, list);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	list_for_each_entry_safe(page, next, list, lru)
 | |
| 		__free_pages(page, 0);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
 | |
|  *			 to the page which is from the @vmemmap_pages
 | |
|  *			 respectively.
 | |
|  * @start:	start address of the vmemmap virtual address range that we want
 | |
|  *		to remap.
 | |
|  * @end:	end address of the vmemmap virtual address range that we want to
 | |
|  *		remap.
 | |
|  * @reuse:	reuse address.
 | |
|  * @gfp_mask:	GFP flag for allocating vmemmap pages.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int vmemmap_remap_alloc(unsigned long start, unsigned long end,
 | |
| 			unsigned long reuse, gfp_t gfp_mask)
 | |
| {
 | |
| 	LIST_HEAD(vmemmap_pages);
 | |
| 	struct vmemmap_remap_walk walk = {
 | |
| 		.remap_pte	= vmemmap_restore_pte,
 | |
| 		.reuse_addr	= reuse,
 | |
| 		.vmemmap_pages	= &vmemmap_pages,
 | |
| 	};
 | |
| 
 | |
| 	/* See the comment in the vmemmap_remap_free(). */
 | |
| 	BUG_ON(start - reuse != PAGE_SIZE);
 | |
| 
 | |
| 	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mmap_read_lock(&init_mm);
 | |
| 	vmemmap_remap_range(reuse, end, &walk);
 | |
| 	mmap_read_unlock(&init_mm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */
 | |
| 
 | |
| /*
 | |
|  * Allocate a block of memory to be used to back the virtual memory map
 | |
|  * or to back the page tables that are used to create the mapping.
 | |
|  * Uses the main allocators if they are available, else bootmem.
 | |
|  */
 | |
| 
 | |
| static void * __ref __earlyonly_bootmem_alloc(int node,
 | |
| 				unsigned long size,
 | |
| 				unsigned long align,
 | |
| 				unsigned long goal)
 | |
| {
 | |
| 	return memblock_alloc_try_nid_raw(size, align, goal,
 | |
| 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
 | |
| }
 | |
| 
 | |
| void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 | |
| {
 | |
| 	/* If the main allocator is up use that, fallback to bootmem. */
 | |
| 	if (slab_is_available()) {
 | |
| 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
 | |
| 		int order = get_order(size);
 | |
| 		static bool warned;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = alloc_pages_node(node, gfp_mask, order);
 | |
| 		if (page)
 | |
| 			return page_address(page);
 | |
| 
 | |
| 		if (!warned) {
 | |
| 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
 | |
| 				   "vmemmap alloc failure: order:%u", order);
 | |
| 			warned = true;
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	} else
 | |
| 		return __earlyonly_bootmem_alloc(node, size, size,
 | |
| 				__pa(MAX_DMA_ADDRESS));
 | |
| }
 | |
| 
 | |
| static void * __meminit altmap_alloc_block_buf(unsigned long size,
 | |
| 					       struct vmem_altmap *altmap);
 | |
| 
 | |
| /* need to make sure size is all the same during early stage */
 | |
| void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
 | |
| 					 struct vmem_altmap *altmap)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (altmap)
 | |
| 		return altmap_alloc_block_buf(size, altmap);
 | |
| 
 | |
| 	ptr = sparse_buffer_alloc(size);
 | |
| 	if (!ptr)
 | |
| 		ptr = vmemmap_alloc_block(size, node);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
 | |
| {
 | |
| 	return altmap->base_pfn + altmap->reserve + altmap->alloc
 | |
| 		+ altmap->align;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long allocated = altmap->alloc + altmap->align;
 | |
| 
 | |
| 	if (altmap->free > allocated)
 | |
| 		return altmap->free - allocated;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void * __meminit altmap_alloc_block_buf(unsigned long size,
 | |
| 					       struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long pfn, nr_pfns, nr_align;
 | |
| 
 | |
| 	if (size & ~PAGE_MASK) {
 | |
| 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
 | |
| 				__func__, size);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	pfn = vmem_altmap_next_pfn(altmap);
 | |
| 	nr_pfns = size >> PAGE_SHIFT;
 | |
| 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
 | |
| 	nr_align = ALIGN(pfn, nr_align) - pfn;
 | |
| 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
 | |
| 		return NULL;
 | |
| 
 | |
| 	altmap->alloc += nr_pfns;
 | |
| 	altmap->align += nr_align;
 | |
| 	pfn += nr_align;
 | |
| 
 | |
| 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
 | |
| 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
 | |
| 	return __va(__pfn_to_phys(pfn));
 | |
| }
 | |
| 
 | |
| void __meminit vmemmap_verify(pte_t *pte, int node,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn = pte_pfn(*pte);
 | |
| 	int actual_node = early_pfn_to_nid(pfn);
 | |
| 
 | |
| 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 | |
| 		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
 | |
| 			start, end - 1);
 | |
| }
 | |
| 
 | |
| pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
 | |
| 				       struct vmem_altmap *altmap,
 | |
| 				       struct page *reuse)
 | |
| {
 | |
| 	pte_t *pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte)) {
 | |
| 		pte_t entry;
 | |
| 		void *p;
 | |
| 
 | |
| 		if (!reuse) {
 | |
| 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
 | |
| 			if (!p)
 | |
| 				return NULL;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * When a PTE/PMD entry is freed from the init_mm
 | |
| 			 * there's a a free_pages() call to this page allocated
 | |
| 			 * above. Thus this get_page() is paired with the
 | |
| 			 * put_page_testzero() on the freeing path.
 | |
| 			 * This can only called by certain ZONE_DEVICE path,
 | |
| 			 * and through vmemmap_populate_compound_pages() when
 | |
| 			 * slab is available.
 | |
| 			 */
 | |
| 			get_page(reuse);
 | |
| 			p = page_to_virt(reuse);
 | |
| 		}
 | |
| 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
 | |
| 		set_pte_at(&init_mm, addr, pte, entry);
 | |
| 	}
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
 | |
| {
 | |
| 	void *p = vmemmap_alloc_block(size, node);
 | |
| 
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	memset(p, 0, size);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pmd_populate_kernel(&init_mm, pmd, p);
 | |
| 	}
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(p4d, addr);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pud_populate(&init_mm, pud, p);
 | |
| 	}
 | |
| 	return pud;
 | |
| }
 | |
| 
 | |
| p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
 | |
| {
 | |
| 	p4d_t *p4d = p4d_offset(pgd, addr);
 | |
| 	if (p4d_none(*p4d)) {
 | |
| 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		p4d_populate(&init_mm, p4d, p);
 | |
| 	}
 | |
| 	return p4d;
 | |
| }
 | |
| 
 | |
| pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pgd_populate(&init_mm, pgd, p);
 | |
| 	}
 | |
| 	return pgd;
 | |
| }
 | |
| 
 | |
| static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
 | |
| 					      struct vmem_altmap *altmap,
 | |
| 					      struct page *reuse)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pgd = vmemmap_pgd_populate(addr, node);
 | |
| 	if (!pgd)
 | |
| 		return NULL;
 | |
| 	p4d = vmemmap_p4d_populate(pgd, addr, node);
 | |
| 	if (!p4d)
 | |
| 		return NULL;
 | |
| 	pud = vmemmap_pud_populate(p4d, addr, node);
 | |
| 	if (!pud)
 | |
| 		return NULL;
 | |
| 	pmd = vmemmap_pmd_populate(pud, addr, node);
 | |
| 	if (!pmd)
 | |
| 		return NULL;
 | |
| 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
 | |
| 	if (!pte)
 | |
| 		return NULL;
 | |
| 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static int __meminit vmemmap_populate_range(unsigned long start,
 | |
| 					    unsigned long end, int node,
 | |
| 					    struct vmem_altmap *altmap,
 | |
| 					    struct page *reuse)
 | |
| {
 | |
| 	unsigned long addr = start;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE) {
 | |
| 		pte = vmemmap_populate_address(addr, node, altmap, reuse);
 | |
| 		if (!pte)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
 | |
| 					 int node, struct vmem_altmap *altmap)
 | |
| {
 | |
| 	return vmemmap_populate_range(start, end, node, altmap, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For compound pages bigger than section size (e.g. x86 1G compound
 | |
|  * pages with 2M subsection size) fill the rest of sections as tail
 | |
|  * pages.
 | |
|  *
 | |
|  * Note that memremap_pages() resets @nr_range value and will increment
 | |
|  * it after each range successful onlining. Thus the value or @nr_range
 | |
|  * at section memmap populate corresponds to the in-progress range
 | |
|  * being onlined here.
 | |
|  */
 | |
| static bool __meminit reuse_compound_section(unsigned long start_pfn,
 | |
| 					     struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
 | |
| 	unsigned long offset = start_pfn -
 | |
| 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
 | |
| 
 | |
| 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
 | |
| }
 | |
| 
 | |
| static pte_t * __meminit compound_section_tail_page(unsigned long addr)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	addr -= PAGE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assuming sections are populated sequentially, the previous section's
 | |
| 	 * page data can be reused.
 | |
| 	 */
 | |
| 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
 | |
| 	if (!pte)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
 | |
| 						     unsigned long start,
 | |
| 						     unsigned long end, int node,
 | |
| 						     struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	unsigned long size, addr;
 | |
| 	pte_t *pte;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (reuse_compound_section(start_pfn, pgmap)) {
 | |
| 		pte = compound_section_tail_page(start);
 | |
| 		if (!pte)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/*
 | |
| 		 * Reuse the page that was populated in the prior iteration
 | |
| 		 * with just tail struct pages.
 | |
| 		 */
 | |
| 		return vmemmap_populate_range(start, end, node, NULL,
 | |
| 					      pte_page(*pte));
 | |
| 	}
 | |
| 
 | |
| 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
 | |
| 	for (addr = start; addr < end; addr += size) {
 | |
| 		unsigned long next = addr, last = addr + size;
 | |
| 
 | |
| 		/* Populate the head page vmemmap page */
 | |
| 		pte = vmemmap_populate_address(addr, node, NULL, NULL);
 | |
| 		if (!pte)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Populate the tail pages vmemmap page */
 | |
| 		next = addr + PAGE_SIZE;
 | |
| 		pte = vmemmap_populate_address(next, node, NULL, NULL);
 | |
| 		if (!pte)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/*
 | |
| 		 * Reuse the previous page for the rest of tail pages
 | |
| 		 * See layout diagram in Documentation/vm/vmemmap_dedup.rst
 | |
| 		 */
 | |
| 		next += PAGE_SIZE;
 | |
| 		rc = vmemmap_populate_range(next, last, node, NULL,
 | |
| 					    pte_page(*pte));
 | |
| 		if (rc)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct page * __meminit __populate_section_memmap(unsigned long pfn,
 | |
| 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
 | |
| 		struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	unsigned long start = (unsigned long) pfn_to_page(pfn);
 | |
| 	unsigned long end = start + nr_pages * sizeof(struct page);
 | |
| 	int r;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
 | |
| 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (is_power_of_2(sizeof(struct page)) &&
 | |
| 	    pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
 | |
| 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
 | |
| 	else
 | |
| 		r = vmemmap_populate(start, end, nid, altmap);
 | |
| 
 | |
| 	if (r < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return pfn_to_page(pfn);
 | |
| }
 |