mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 8291eaafed
			
		
	
	
		8291eaafed
		
	
	
	
	
		
			
			and alloc_contig_range alignment", from Zi Yan.
 
 A series of z3fold cleanups and fixes from Miaohe Lin.
 
 Some memcg selftests work from Michal Koutný <mkoutny@suse.com>
 
 Some swap fixes and cleanups from Miaohe Lin.
 
 Several individual minor fixups.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYpEE7QAKCRDdBJ7gKXxA
 jlamAP9WmjNdx+5Pz5OkkaSjBO7y7vBrBTcQ9e5pz8bUWRoQhwEA+WtsssLmq9aI
 7DBDmBKYCMTbzOQTqaMRHkB+JWZo+Ao=
 =L3f1
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-05-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more MM updates from Andrew Morton:
 - Two follow-on fixes for the post-5.19 series "Use pageblock_order for
   cma and alloc_contig_range alignment", from Zi Yan.
 - A series of z3fold cleanups and fixes from Miaohe Lin.
 - Some memcg selftests work from Michal Koutný <mkoutny@suse.com>
 - Some swap fixes and cleanups from Miaohe Lin
 - Several individual minor fixups
* tag 'mm-stable-2022-05-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (25 commits)
  mm/shmem.c: suppress shift warning
  mm: Kconfig: reorganize misplaced mm options
  mm: kasan: fix input of vmalloc_to_page()
  mm: fix is_pinnable_page against a cma page
  mm: filter out swapin error entry in shmem mapping
  mm/shmem: fix infinite loop when swap in shmem error at swapoff time
  mm/madvise: free hwpoison and swapin error entry in madvise_free_pte_range
  mm/swapfile: fix lost swap bits in unuse_pte()
  mm/swapfile: unuse_pte can map random data if swap read fails
  selftests: memcg: factor out common parts of memory.{low,min} tests
  selftests: memcg: remove protection from top level memcg
  selftests: memcg: adjust expected reclaim values of protected cgroups
  selftests: memcg: expect no low events in unprotected sibling
  selftests: memcg: fix compilation
  mm/z3fold: fix z3fold_page_migrate races with z3fold_map
  mm/z3fold: fix z3fold_reclaim_page races with z3fold_free
  mm/z3fold: always clear PAGE_CLAIMED under z3fold page lock
  mm/z3fold: put z3fold page back into unbuddied list when reclaim or migration fails
  revert "mm/z3fold.c: allow __GFP_HIGHMEM in z3fold_alloc"
  mm/z3fold: throw warning on failure of trylock_page in z3fold_alloc
  ...
		
	
			
		
			
				
	
	
		
			3683 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3683 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/mm/swapfile.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/blk-cgroup.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/frontswap.h>
 | |
| #include <linux/swapfile.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap_slots.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/completion.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include "swap.h"
 | |
| 
 | |
| static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
 | |
| 				 unsigned char);
 | |
| static void free_swap_count_continuations(struct swap_info_struct *);
 | |
| 
 | |
| static DEFINE_SPINLOCK(swap_lock);
 | |
| static unsigned int nr_swapfiles;
 | |
| atomic_long_t nr_swap_pages;
 | |
| /*
 | |
|  * Some modules use swappable objects and may try to swap them out under
 | |
|  * memory pressure (via the shrinker). Before doing so, they may wish to
 | |
|  * check to see if any swap space is available.
 | |
|  */
 | |
| EXPORT_SYMBOL_GPL(nr_swap_pages);
 | |
| /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
 | |
| long total_swap_pages;
 | |
| static int least_priority = -1;
 | |
| 
 | |
| static const char Bad_file[] = "Bad swap file entry ";
 | |
| static const char Unused_file[] = "Unused swap file entry ";
 | |
| static const char Bad_offset[] = "Bad swap offset entry ";
 | |
| static const char Unused_offset[] = "Unused swap offset entry ";
 | |
| 
 | |
| /*
 | |
|  * all active swap_info_structs
 | |
|  * protected with swap_lock, and ordered by priority.
 | |
|  */
 | |
| static PLIST_HEAD(swap_active_head);
 | |
| 
 | |
| /*
 | |
|  * all available (active, not full) swap_info_structs
 | |
|  * protected with swap_avail_lock, ordered by priority.
 | |
|  * This is used by folio_alloc_swap() instead of swap_active_head
 | |
|  * because swap_active_head includes all swap_info_structs,
 | |
|  * but folio_alloc_swap() doesn't need to look at full ones.
 | |
|  * This uses its own lock instead of swap_lock because when a
 | |
|  * swap_info_struct changes between not-full/full, it needs to
 | |
|  * add/remove itself to/from this list, but the swap_info_struct->lock
 | |
|  * is held and the locking order requires swap_lock to be taken
 | |
|  * before any swap_info_struct->lock.
 | |
|  */
 | |
| static struct plist_head *swap_avail_heads;
 | |
| static DEFINE_SPINLOCK(swap_avail_lock);
 | |
| 
 | |
| struct swap_info_struct *swap_info[MAX_SWAPFILES];
 | |
| 
 | |
| static DEFINE_MUTEX(swapon_mutex);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 | |
| /* Activity counter to indicate that a swapon or swapoff has occurred */
 | |
| static atomic_t proc_poll_event = ATOMIC_INIT(0);
 | |
| 
 | |
| atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 | |
| 
 | |
| static struct swap_info_struct *swap_type_to_swap_info(int type)
 | |
| {
 | |
| 	if (type >= MAX_SWAPFILES)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 | |
| }
 | |
| 
 | |
| static inline unsigned char swap_count(unsigned char ent)
 | |
| {
 | |
| 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 | |
| }
 | |
| 
 | |
| /* Reclaim the swap entry anyway if possible */
 | |
| #define TTRS_ANYWAY		0x1
 | |
| /*
 | |
|  * Reclaim the swap entry if there are no more mappings of the
 | |
|  * corresponding page
 | |
|  */
 | |
| #define TTRS_UNMAPPED		0x2
 | |
| /* Reclaim the swap entry if swap is getting full*/
 | |
| #define TTRS_FULL		0x4
 | |
| 
 | |
| /* returns 1 if swap entry is freed */
 | |
| static int __try_to_reclaim_swap(struct swap_info_struct *si,
 | |
| 				 unsigned long offset, unsigned long flags)
 | |
| {
 | |
| 	swp_entry_t entry = swp_entry(si->type, offset);
 | |
| 	struct page *page;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	page = find_get_page(swap_address_space(entry), offset);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * When this function is called from scan_swap_map_slots() and it's
 | |
| 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 | |
| 	 * here. We have to use trylock for avoiding deadlock. This is a special
 | |
| 	 * case and you should use try_to_free_swap() with explicit lock_page()
 | |
| 	 * in usual operations.
 | |
| 	 */
 | |
| 	if (trylock_page(page)) {
 | |
| 		if ((flags & TTRS_ANYWAY) ||
 | |
| 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 | |
| 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 | |
| 			ret = try_to_free_swap(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	put_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 | |
| {
 | |
| 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 | |
| 	return rb_entry(rb, struct swap_extent, rb_node);
 | |
| }
 | |
| 
 | |
| static inline struct swap_extent *next_se(struct swap_extent *se)
 | |
| {
 | |
| 	struct rb_node *rb = rb_next(&se->rb_node);
 | |
| 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swapon tell device that all the old swap contents can be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static int discard_swap(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	sector_t start_block;
 | |
| 	sector_t nr_blocks;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* Do not discard the swap header page! */
 | |
| 	se = first_se(si);
 | |
| 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 | |
| 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 | |
| 	if (nr_blocks) {
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	for (se = next_se(se); se; se = next_se(se)) {
 | |
| 		start_block = se->start_block << (PAGE_SHIFT - 9);
 | |
| 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return err;		/* That will often be -EOPNOTSUPP */
 | |
| }
 | |
| 
 | |
| static struct swap_extent *
 | |
| offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	struct rb_node *rb;
 | |
| 
 | |
| 	rb = sis->swap_extent_root.rb_node;
 | |
| 	while (rb) {
 | |
| 		se = rb_entry(rb, struct swap_extent, rb_node);
 | |
| 		if (offset < se->start_page)
 | |
| 			rb = rb->rb_left;
 | |
| 		else if (offset >= se->start_page + se->nr_pages)
 | |
| 			rb = rb->rb_right;
 | |
| 		else
 | |
| 			return se;
 | |
| 	}
 | |
| 	/* It *must* be present */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| sector_t swap_page_sector(struct page *page)
 | |
| {
 | |
| 	struct swap_info_struct *sis = page_swap_info(page);
 | |
| 	struct swap_extent *se;
 | |
| 	sector_t sector;
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	offset = __page_file_index(page);
 | |
| 	se = offset_to_swap_extent(sis, offset);
 | |
| 	sector = se->start_block + (offset - se->start_page);
 | |
| 	return sector << (PAGE_SHIFT - 9);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap allocation tell device that a cluster of swap can now be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static void discard_swap_cluster(struct swap_info_struct *si,
 | |
| 				 pgoff_t start_page, pgoff_t nr_pages)
 | |
| {
 | |
| 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		pgoff_t offset = start_page - se->start_page;
 | |
| 		sector_t start_block = se->start_block + offset;
 | |
| 		sector_t nr_blocks = se->nr_pages - offset;
 | |
| 
 | |
| 		if (nr_blocks > nr_pages)
 | |
| 			nr_blocks = nr_pages;
 | |
| 		start_page += nr_blocks;
 | |
| 		nr_pages -= nr_blocks;
 | |
| 
 | |
| 		start_block <<= PAGE_SHIFT - 9;
 | |
| 		nr_blocks <<= PAGE_SHIFT - 9;
 | |
| 		if (blkdev_issue_discard(si->bdev, start_block,
 | |
| 					nr_blocks, GFP_NOIO))
 | |
| 			break;
 | |
| 
 | |
| 		se = next_se(se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_THP_SWAP
 | |
| #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 | |
| 
 | |
| #define swap_entry_size(size)	(size)
 | |
| #else
 | |
| #define SWAPFILE_CLUSTER	256
 | |
| 
 | |
| /*
 | |
|  * Define swap_entry_size() as constant to let compiler to optimize
 | |
|  * out some code if !CONFIG_THP_SWAP
 | |
|  */
 | |
| #define swap_entry_size(size)	1
 | |
| #endif
 | |
| #define LATENCY_LIMIT		256
 | |
| 
 | |
| static inline void cluster_set_flag(struct swap_cluster_info *info,
 | |
| 	unsigned int flag)
 | |
| {
 | |
| 	info->flags = flag;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_count(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->data;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_count(struct swap_cluster_info *info,
 | |
| 				     unsigned int c)
 | |
| {
 | |
| 	info->data = c;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 | |
| 					 unsigned int c, unsigned int f)
 | |
| {
 | |
| 	info->flags = f;
 | |
| 	info->data = c;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_next(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->data;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_next(struct swap_cluster_info *info,
 | |
| 				    unsigned int n)
 | |
| {
 | |
| 	info->data = n;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 | |
| 					 unsigned int n, unsigned int f)
 | |
| {
 | |
| 	info->flags = f;
 | |
| 	info->data = n;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_free(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->flags & CLUSTER_FLAG_FREE;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_null(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_null(struct swap_cluster_info *info)
 | |
| {
 | |
| 	info->flags = CLUSTER_FLAG_NEXT_NULL;
 | |
| 	info->data = 0;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_huge(struct swap_cluster_info *info)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_THP_SWAP))
 | |
| 		return info->flags & CLUSTER_FLAG_HUGE;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void cluster_clear_huge(struct swap_cluster_info *info)
 | |
| {
 | |
| 	info->flags &= ~CLUSTER_FLAG_HUGE;
 | |
| }
 | |
| 
 | |
| static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 | |
| 						     unsigned long offset)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	ci = si->cluster_info;
 | |
| 	if (ci) {
 | |
| 		ci += offset / SWAPFILE_CLUSTER;
 | |
| 		spin_lock(&ci->lock);
 | |
| 	}
 | |
| 	return ci;
 | |
| }
 | |
| 
 | |
| static inline void unlock_cluster(struct swap_cluster_info *ci)
 | |
| {
 | |
| 	if (ci)
 | |
| 		spin_unlock(&ci->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the locking method in use for this device.  Return
 | |
|  * swap_cluster_info if SSD-style cluster-based locking is in place.
 | |
|  */
 | |
| static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 | |
| 		struct swap_info_struct *si, unsigned long offset)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	/* Try to use fine-grained SSD-style locking if available: */
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	/* Otherwise, fall back to traditional, coarse locking: */
 | |
| 	if (!ci)
 | |
| 		spin_lock(&si->lock);
 | |
| 
 | |
| 	return ci;
 | |
| }
 | |
| 
 | |
| static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 | |
| 					       struct swap_cluster_info *ci)
 | |
| {
 | |
| 	if (ci)
 | |
| 		unlock_cluster(ci);
 | |
| 	else
 | |
| 		spin_unlock(&si->lock);
 | |
| }
 | |
| 
 | |
| static inline bool cluster_list_empty(struct swap_cluster_list *list)
 | |
| {
 | |
| 	return cluster_is_null(&list->head);
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 | |
| {
 | |
| 	return cluster_next(&list->head);
 | |
| }
 | |
| 
 | |
| static void cluster_list_init(struct swap_cluster_list *list)
 | |
| {
 | |
| 	cluster_set_null(&list->head);
 | |
| 	cluster_set_null(&list->tail);
 | |
| }
 | |
| 
 | |
| static void cluster_list_add_tail(struct swap_cluster_list *list,
 | |
| 				  struct swap_cluster_info *ci,
 | |
| 				  unsigned int idx)
 | |
| {
 | |
| 	if (cluster_list_empty(list)) {
 | |
| 		cluster_set_next_flag(&list->head, idx, 0);
 | |
| 		cluster_set_next_flag(&list->tail, idx, 0);
 | |
| 	} else {
 | |
| 		struct swap_cluster_info *ci_tail;
 | |
| 		unsigned int tail = cluster_next(&list->tail);
 | |
| 
 | |
| 		/*
 | |
| 		 * Nested cluster lock, but both cluster locks are
 | |
| 		 * only acquired when we held swap_info_struct->lock
 | |
| 		 */
 | |
| 		ci_tail = ci + tail;
 | |
| 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 | |
| 		cluster_set_next(ci_tail, idx);
 | |
| 		spin_unlock(&ci_tail->lock);
 | |
| 		cluster_set_next_flag(&list->tail, idx, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 | |
| 					   struct swap_cluster_info *ci)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	idx = cluster_next(&list->head);
 | |
| 	if (cluster_next(&list->tail) == idx) {
 | |
| 		cluster_set_null(&list->head);
 | |
| 		cluster_set_null(&list->tail);
 | |
| 	} else
 | |
| 		cluster_set_next_flag(&list->head,
 | |
| 				      cluster_next(&ci[idx]), 0);
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| /* Add a cluster to discard list and schedule it to do discard */
 | |
| static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 | |
| 		unsigned int idx)
 | |
| {
 | |
| 	/*
 | |
| 	 * If scan_swap_map_slots() can't find a free cluster, it will check
 | |
| 	 * si->swap_map directly. To make sure the discarding cluster isn't
 | |
| 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 | |
| 	 * It will be cleared after discard
 | |
| 	 */
 | |
| 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 | |
| 
 | |
| 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 | |
| 
 | |
| 	schedule_work(&si->discard_work);
 | |
| }
 | |
| 
 | |
| static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 | |
| {
 | |
| 	struct swap_cluster_info *ci = si->cluster_info;
 | |
| 
 | |
| 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 | |
| 	cluster_list_add_tail(&si->free_clusters, ci, idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Doing discard actually. After a cluster discard is finished, the cluster
 | |
|  * will be added to free cluster list. caller should hold si->lock.
 | |
| */
 | |
| static void swap_do_scheduled_discard(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_cluster_info *info, *ci;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	info = si->cluster_info;
 | |
| 
 | |
| 	while (!cluster_list_empty(&si->discard_clusters)) {
 | |
| 		idx = cluster_list_del_first(&si->discard_clusters, info);
 | |
| 		spin_unlock(&si->lock);
 | |
| 
 | |
| 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 | |
| 				SWAPFILE_CLUSTER);
 | |
| 
 | |
| 		spin_lock(&si->lock);
 | |
| 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 | |
| 		__free_cluster(si, idx);
 | |
| 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 				0, SWAPFILE_CLUSTER);
 | |
| 		unlock_cluster(ci);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void swap_discard_work(struct work_struct *work)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(work, struct swap_info_struct, discard_work);
 | |
| 
 | |
| 	spin_lock(&si->lock);
 | |
| 	swap_do_scheduled_discard(si);
 | |
| 	spin_unlock(&si->lock);
 | |
| }
 | |
| 
 | |
| static void swap_users_ref_free(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(ref, struct swap_info_struct, users);
 | |
| 	complete(&si->comp);
 | |
| }
 | |
| 
 | |
| static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 | |
| {
 | |
| 	struct swap_cluster_info *ci = si->cluster_info;
 | |
| 
 | |
| 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 | |
| 	cluster_list_del_first(&si->free_clusters, ci);
 | |
| 	cluster_set_count_flag(ci + idx, 0, 0);
 | |
| }
 | |
| 
 | |
| static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 | |
| {
 | |
| 	struct swap_cluster_info *ci = si->cluster_info + idx;
 | |
| 
 | |
| 	VM_BUG_ON(cluster_count(ci) != 0);
 | |
| 	/*
 | |
| 	 * If the swap is discardable, prepare discard the cluster
 | |
| 	 * instead of free it immediately. The cluster will be freed
 | |
| 	 * after discard.
 | |
| 	 */
 | |
| 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 | |
| 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 | |
| 		swap_cluster_schedule_discard(si, idx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__free_cluster(si, idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cluster corresponding to page_nr will be used. The cluster will be
 | |
|  * removed from free cluster list and its usage counter will be increased.
 | |
|  */
 | |
| static void inc_cluster_info_page(struct swap_info_struct *p,
 | |
| 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 | |
| {
 | |
| 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return;
 | |
| 	if (cluster_is_free(&cluster_info[idx]))
 | |
| 		alloc_cluster(p, idx);
 | |
| 
 | |
| 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 | |
| 	cluster_set_count(&cluster_info[idx],
 | |
| 		cluster_count(&cluster_info[idx]) + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cluster corresponding to page_nr decreases one usage. If the usage
 | |
|  * counter becomes 0, which means no page in the cluster is in using, we can
 | |
|  * optionally discard the cluster and add it to free cluster list.
 | |
|  */
 | |
| static void dec_cluster_info_page(struct swap_info_struct *p,
 | |
| 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 | |
| {
 | |
| 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return;
 | |
| 
 | |
| 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 | |
| 	cluster_set_count(&cluster_info[idx],
 | |
| 		cluster_count(&cluster_info[idx]) - 1);
 | |
| 
 | |
| 	if (cluster_count(&cluster_info[idx]) == 0)
 | |
| 		free_cluster(p, idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 | |
|  * cluster list. Avoiding such abuse to avoid list corruption.
 | |
|  */
 | |
| static bool
 | |
| scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 | |
| 	unsigned long offset)
 | |
| {
 | |
| 	struct percpu_cluster *percpu_cluster;
 | |
| 	bool conflict;
 | |
| 
 | |
| 	offset /= SWAPFILE_CLUSTER;
 | |
| 	conflict = !cluster_list_empty(&si->free_clusters) &&
 | |
| 		offset != cluster_list_first(&si->free_clusters) &&
 | |
| 		cluster_is_free(&si->cluster_info[offset]);
 | |
| 
 | |
| 	if (!conflict)
 | |
| 		return false;
 | |
| 
 | |
| 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 | |
| 	cluster_set_null(&percpu_cluster->index);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 | |
|  * might involve allocating a new cluster for current CPU too.
 | |
|  */
 | |
| static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 | |
| 	unsigned long *offset, unsigned long *scan_base)
 | |
| {
 | |
| 	struct percpu_cluster *cluster;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long tmp, max;
 | |
| 
 | |
| new_cluster:
 | |
| 	cluster = this_cpu_ptr(si->percpu_cluster);
 | |
| 	if (cluster_is_null(&cluster->index)) {
 | |
| 		if (!cluster_list_empty(&si->free_clusters)) {
 | |
| 			cluster->index = si->free_clusters.head;
 | |
| 			cluster->next = cluster_next(&cluster->index) *
 | |
| 					SWAPFILE_CLUSTER;
 | |
| 		} else if (!cluster_list_empty(&si->discard_clusters)) {
 | |
| 			/*
 | |
| 			 * we don't have free cluster but have some clusters in
 | |
| 			 * discarding, do discard now and reclaim them, then
 | |
| 			 * reread cluster_next_cpu since we dropped si->lock
 | |
| 			 */
 | |
| 			swap_do_scheduled_discard(si);
 | |
| 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 | |
| 			*offset = *scan_base;
 | |
| 			goto new_cluster;
 | |
| 		} else
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Other CPUs can use our cluster if they can't find a free cluster,
 | |
| 	 * check if there is still free entry in the cluster
 | |
| 	 */
 | |
| 	tmp = cluster->next;
 | |
| 	max = min_t(unsigned long, si->max,
 | |
| 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 | |
| 	if (tmp < max) {
 | |
| 		ci = lock_cluster(si, tmp);
 | |
| 		while (tmp < max) {
 | |
| 			if (!si->swap_map[tmp])
 | |
| 				break;
 | |
| 			tmp++;
 | |
| 		}
 | |
| 		unlock_cluster(ci);
 | |
| 	}
 | |
| 	if (tmp >= max) {
 | |
| 		cluster_set_null(&cluster->index);
 | |
| 		goto new_cluster;
 | |
| 	}
 | |
| 	cluster->next = tmp + 1;
 | |
| 	*offset = tmp;
 | |
| 	*scan_base = tmp;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __del_from_avail_list(struct swap_info_struct *p)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 | |
| }
 | |
| 
 | |
| static void del_from_avail_list(struct swap_info_struct *p)
 | |
| {
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 	__del_from_avail_list(p);
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| 
 | |
| static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 | |
| 			     unsigned int nr_entries)
 | |
| {
 | |
| 	unsigned int end = offset + nr_entries - 1;
 | |
| 
 | |
| 	if (offset == si->lowest_bit)
 | |
| 		si->lowest_bit += nr_entries;
 | |
| 	if (end == si->highest_bit)
 | |
| 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 | |
| 	si->inuse_pages += nr_entries;
 | |
| 	if (si->inuse_pages == si->pages) {
 | |
| 		si->lowest_bit = si->max;
 | |
| 		si->highest_bit = 0;
 | |
| 		del_from_avail_list(si);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void add_to_avail_list(struct swap_info_struct *p)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 	for_each_node(nid) {
 | |
| 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 | |
| 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 | |
| 	}
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| 
 | |
| static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 | |
| 			    unsigned int nr_entries)
 | |
| {
 | |
| 	unsigned long begin = offset;
 | |
| 	unsigned long end = offset + nr_entries - 1;
 | |
| 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 | |
| 
 | |
| 	if (offset < si->lowest_bit)
 | |
| 		si->lowest_bit = offset;
 | |
| 	if (end > si->highest_bit) {
 | |
| 		bool was_full = !si->highest_bit;
 | |
| 
 | |
| 		WRITE_ONCE(si->highest_bit, end);
 | |
| 		if (was_full && (si->flags & SWP_WRITEOK))
 | |
| 			add_to_avail_list(si);
 | |
| 	}
 | |
| 	atomic_long_add(nr_entries, &nr_swap_pages);
 | |
| 	si->inuse_pages -= nr_entries;
 | |
| 	if (si->flags & SWP_BLKDEV)
 | |
| 		swap_slot_free_notify =
 | |
| 			si->bdev->bd_disk->fops->swap_slot_free_notify;
 | |
| 	else
 | |
| 		swap_slot_free_notify = NULL;
 | |
| 	while (offset <= end) {
 | |
| 		arch_swap_invalidate_page(si->type, offset);
 | |
| 		frontswap_invalidate_page(si->type, offset);
 | |
| 		if (swap_slot_free_notify)
 | |
| 			swap_slot_free_notify(si->bdev, offset);
 | |
| 		offset++;
 | |
| 	}
 | |
| 	clear_shadow_from_swap_cache(si->type, begin, end);
 | |
| }
 | |
| 
 | |
| static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 | |
| {
 | |
| 	unsigned long prev;
 | |
| 
 | |
| 	if (!(si->flags & SWP_SOLIDSTATE)) {
 | |
| 		si->cluster_next = next;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	prev = this_cpu_read(*si->cluster_next_cpu);
 | |
| 	/*
 | |
| 	 * Cross the swap address space size aligned trunk, choose
 | |
| 	 * another trunk randomly to avoid lock contention on swap
 | |
| 	 * address space if possible.
 | |
| 	 */
 | |
| 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 | |
| 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 | |
| 		/* No free swap slots available */
 | |
| 		if (si->highest_bit <= si->lowest_bit)
 | |
| 			return;
 | |
| 		next = si->lowest_bit +
 | |
| 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
 | |
| 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 | |
| 		next = max_t(unsigned int, next, si->lowest_bit);
 | |
| 	}
 | |
| 	this_cpu_write(*si->cluster_next_cpu, next);
 | |
| }
 | |
| 
 | |
| static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 | |
| 					     unsigned long offset)
 | |
| {
 | |
| 	if (data_race(!si->swap_map[offset])) {
 | |
| 		spin_lock(&si->lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 | |
| 		spin_lock(&si->lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int scan_swap_map_slots(struct swap_info_struct *si,
 | |
| 			       unsigned char usage, int nr,
 | |
| 			       swp_entry_t slots[])
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset;
 | |
| 	unsigned long scan_base;
 | |
| 	unsigned long last_in_cluster = 0;
 | |
| 	int latency_ration = LATENCY_LIMIT;
 | |
| 	int n_ret = 0;
 | |
| 	bool scanned_many = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to cluster swap pages by allocating them sequentially
 | |
| 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 | |
| 	 * way, however, we resort to first-free allocation, starting
 | |
| 	 * a new cluster.  This prevents us from scattering swap pages
 | |
| 	 * all over the entire swap partition, so that we reduce
 | |
| 	 * overall disk seek times between swap pages.  -- sct
 | |
| 	 * But we do now try to find an empty cluster.  -Andrea
 | |
| 	 * And we let swap pages go all over an SSD partition.  Hugh
 | |
| 	 */
 | |
| 
 | |
| 	si->flags += SWP_SCANNING;
 | |
| 	/*
 | |
| 	 * Use percpu scan base for SSD to reduce lock contention on
 | |
| 	 * cluster and swap cache.  For HDD, sequential access is more
 | |
| 	 * important.
 | |
| 	 */
 | |
| 	if (si->flags & SWP_SOLIDSTATE)
 | |
| 		scan_base = this_cpu_read(*si->cluster_next_cpu);
 | |
| 	else
 | |
| 		scan_base = si->cluster_next;
 | |
| 	offset = scan_base;
 | |
| 
 | |
| 	/* SSD algorithm */
 | |
| 	if (si->cluster_info) {
 | |
| 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 | |
| 			goto scan;
 | |
| 	} else if (unlikely(!si->cluster_nr--)) {
 | |
| 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 | |
| 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 			goto checks;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&si->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If seek is expensive, start searching for new cluster from
 | |
| 		 * start of partition, to minimize the span of allocated swap.
 | |
| 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 | |
| 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 | |
| 		 */
 | |
| 		scan_base = offset = si->lowest_bit;
 | |
| 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | |
| 
 | |
| 		/* Locate the first empty (unaligned) cluster */
 | |
| 		for (; last_in_cluster <= si->highest_bit; offset++) {
 | |
| 			if (si->swap_map[offset])
 | |
| 				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | |
| 			else if (offset == last_in_cluster) {
 | |
| 				spin_lock(&si->lock);
 | |
| 				offset -= SWAPFILE_CLUSTER - 1;
 | |
| 				si->cluster_next = offset;
 | |
| 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 				goto checks;
 | |
| 			}
 | |
| 			if (unlikely(--latency_ration < 0)) {
 | |
| 				cond_resched();
 | |
| 				latency_ration = LATENCY_LIMIT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = scan_base;
 | |
| 		spin_lock(&si->lock);
 | |
| 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 	}
 | |
| 
 | |
| checks:
 | |
| 	if (si->cluster_info) {
 | |
| 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 | |
| 		/* take a break if we already got some slots */
 | |
| 			if (n_ret)
 | |
| 				goto done;
 | |
| 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 | |
| 							&scan_base))
 | |
| 				goto scan;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!(si->flags & SWP_WRITEOK))
 | |
| 		goto no_page;
 | |
| 	if (!si->highest_bit)
 | |
| 		goto no_page;
 | |
| 	if (offset > si->highest_bit)
 | |
| 		scan_base = offset = si->lowest_bit;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	/* reuse swap entry of cache-only swap if not busy. */
 | |
| 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | |
| 		int swap_was_freed;
 | |
| 		unlock_cluster(ci);
 | |
| 		spin_unlock(&si->lock);
 | |
| 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 | |
| 		spin_lock(&si->lock);
 | |
| 		/* entry was freed successfully, try to use this again */
 | |
| 		if (swap_was_freed)
 | |
| 			goto checks;
 | |
| 		goto scan; /* check next one */
 | |
| 	}
 | |
| 
 | |
| 	if (si->swap_map[offset]) {
 | |
| 		unlock_cluster(ci);
 | |
| 		if (!n_ret)
 | |
| 			goto scan;
 | |
| 		else
 | |
| 			goto done;
 | |
| 	}
 | |
| 	WRITE_ONCE(si->swap_map[offset], usage);
 | |
| 	inc_cluster_info_page(si, si->cluster_info, offset);
 | |
| 	unlock_cluster(ci);
 | |
| 
 | |
| 	swap_range_alloc(si, offset, 1);
 | |
| 	slots[n_ret++] = swp_entry(si->type, offset);
 | |
| 
 | |
| 	/* got enough slots or reach max slots? */
 | |
| 	if ((n_ret == nr) || (offset >= si->highest_bit))
 | |
| 		goto done;
 | |
| 
 | |
| 	/* search for next available slot */
 | |
| 
 | |
| 	/* time to take a break? */
 | |
| 	if (unlikely(--latency_ration < 0)) {
 | |
| 		if (n_ret)
 | |
| 			goto done;
 | |
| 		spin_unlock(&si->lock);
 | |
| 		cond_resched();
 | |
| 		spin_lock(&si->lock);
 | |
| 		latency_ration = LATENCY_LIMIT;
 | |
| 	}
 | |
| 
 | |
| 	/* try to get more slots in cluster */
 | |
| 	if (si->cluster_info) {
 | |
| 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 | |
| 			goto checks;
 | |
| 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 | |
| 		/* non-ssd case, still more slots in cluster? */
 | |
| 		--si->cluster_nr;
 | |
| 		goto checks;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if there's no free clusters available (fragmented),
 | |
| 	 * try to scan a little more quickly with lock held unless we
 | |
| 	 * have scanned too many slots already.
 | |
| 	 */
 | |
| 	if (!scanned_many) {
 | |
| 		unsigned long scan_limit;
 | |
| 
 | |
| 		if (offset < scan_base)
 | |
| 			scan_limit = scan_base;
 | |
| 		else
 | |
| 			scan_limit = si->highest_bit;
 | |
| 		for (; offset <= scan_limit && --latency_ration > 0;
 | |
| 		     offset++) {
 | |
| 			if (!si->swap_map[offset])
 | |
| 				goto checks;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	set_cluster_next(si, offset + 1);
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 	return n_ret;
 | |
| 
 | |
| scan:
 | |
| 	spin_unlock(&si->lock);
 | |
| 	while (++offset <= READ_ONCE(si->highest_bit)) {
 | |
| 		if (swap_offset_available_and_locked(si, offset))
 | |
| 			goto checks;
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 			scanned_many = true;
 | |
| 		}
 | |
| 	}
 | |
| 	offset = si->lowest_bit;
 | |
| 	while (offset < scan_base) {
 | |
| 		if (swap_offset_available_and_locked(si, offset))
 | |
| 			goto checks;
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 			scanned_many = true;
 | |
| 		}
 | |
| 		offset++;
 | |
| 	}
 | |
| 	spin_lock(&si->lock);
 | |
| 
 | |
| no_page:
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 	return n_ret;
 | |
| }
 | |
| 
 | |
| static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should not even be attempting cluster allocations when huge
 | |
| 	 * page swap is disabled.  Warn and fail the allocation.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 | |
| 		VM_WARN_ON_ONCE(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cluster_list_empty(&si->free_clusters))
 | |
| 		return 0;
 | |
| 
 | |
| 	idx = cluster_list_first(&si->free_clusters);
 | |
| 	offset = idx * SWAPFILE_CLUSTER;
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	alloc_cluster(si, idx);
 | |
| 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 | |
| 
 | |
| 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
 | |
| 	unlock_cluster(ci);
 | |
| 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 | |
| 	*slot = swp_entry(si->type, offset);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 | |
| {
 | |
| 	unsigned long offset = idx * SWAPFILE_CLUSTER;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
 | |
| 	cluster_set_count_flag(ci, 0, 0);
 | |
| 	free_cluster(si, idx);
 | |
| 	unlock_cluster(ci);
 | |
| 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
 | |
| }
 | |
| 
 | |
| int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 | |
| {
 | |
| 	unsigned long size = swap_entry_size(entry_size);
 | |
| 	struct swap_info_struct *si, *next;
 | |
| 	long avail_pgs;
 | |
| 	int n_ret = 0;
 | |
| 	int node;
 | |
| 
 | |
| 	/* Only single cluster request supported */
 | |
| 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 
 | |
| 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
 | |
| 	if (avail_pgs <= 0) {
 | |
| 		spin_unlock(&swap_avail_lock);
 | |
| 		goto noswap;
 | |
| 	}
 | |
| 
 | |
| 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 | |
| 
 | |
| 	atomic_long_sub(n_goal * size, &nr_swap_pages);
 | |
| 
 | |
| start_over:
 | |
| 	node = numa_node_id();
 | |
| 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
 | |
| 		/* requeue si to after same-priority siblings */
 | |
| 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
 | |
| 		spin_unlock(&swap_avail_lock);
 | |
| 		spin_lock(&si->lock);
 | |
| 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 | |
| 			spin_lock(&swap_avail_lock);
 | |
| 			if (plist_node_empty(&si->avail_lists[node])) {
 | |
| 				spin_unlock(&si->lock);
 | |
| 				goto nextsi;
 | |
| 			}
 | |
| 			WARN(!si->highest_bit,
 | |
| 			     "swap_info %d in list but !highest_bit\n",
 | |
| 			     si->type);
 | |
| 			WARN(!(si->flags & SWP_WRITEOK),
 | |
| 			     "swap_info %d in list but !SWP_WRITEOK\n",
 | |
| 			     si->type);
 | |
| 			__del_from_avail_list(si);
 | |
| 			spin_unlock(&si->lock);
 | |
| 			goto nextsi;
 | |
| 		}
 | |
| 		if (size == SWAPFILE_CLUSTER) {
 | |
| 			if (si->flags & SWP_BLKDEV)
 | |
| 				n_ret = swap_alloc_cluster(si, swp_entries);
 | |
| 		} else
 | |
| 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 | |
| 						    n_goal, swp_entries);
 | |
| 		spin_unlock(&si->lock);
 | |
| 		if (n_ret || size == SWAPFILE_CLUSTER)
 | |
| 			goto check_out;
 | |
| 		pr_debug("scan_swap_map of si %d failed to find offset\n",
 | |
| 			si->type);
 | |
| 
 | |
| 		spin_lock(&swap_avail_lock);
 | |
| nextsi:
 | |
| 		/*
 | |
| 		 * if we got here, it's likely that si was almost full before,
 | |
| 		 * and since scan_swap_map_slots() can drop the si->lock,
 | |
| 		 * multiple callers probably all tried to get a page from the
 | |
| 		 * same si and it filled up before we could get one; or, the si
 | |
| 		 * filled up between us dropping swap_avail_lock and taking
 | |
| 		 * si->lock. Since we dropped the swap_avail_lock, the
 | |
| 		 * swap_avail_head list may have been modified; so if next is
 | |
| 		 * still in the swap_avail_head list then try it, otherwise
 | |
| 		 * start over if we have not gotten any slots.
 | |
| 		 */
 | |
| 		if (plist_node_empty(&next->avail_lists[node]))
 | |
| 			goto start_over;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| 
 | |
| check_out:
 | |
| 	if (n_ret < n_goal)
 | |
| 		atomic_long_add((long)(n_goal - n_ret) * size,
 | |
| 				&nr_swap_pages);
 | |
| noswap:
 | |
| 	return n_ret;
 | |
| }
 | |
| 
 | |
| static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	p = swp_swap_info(entry);
 | |
| 	if (!p)
 | |
| 		goto bad_nofile;
 | |
| 	if (data_race(!(p->flags & SWP_USED)))
 | |
| 		goto bad_device;
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= p->max)
 | |
| 		goto bad_offset;
 | |
| 	if (data_race(!p->swap_map[swp_offset(entry)]))
 | |
| 		goto bad_free;
 | |
| 	return p;
 | |
| 
 | |
| bad_free:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_offset:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_device:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
 | |
| 	goto out;
 | |
| bad_nofile:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
 | |
| 					struct swap_info_struct *q)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 
 | |
| 	p = _swap_info_get(entry);
 | |
| 
 | |
| 	if (p != q) {
 | |
| 		if (q != NULL)
 | |
| 			spin_unlock(&q->lock);
 | |
| 		if (p != NULL)
 | |
| 			spin_lock(&p->lock);
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
 | |
| 					      unsigned long offset,
 | |
| 					      unsigned char usage)
 | |
| {
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 
 | |
| 	count = p->swap_map[offset];
 | |
| 
 | |
| 	has_cache = count & SWAP_HAS_CACHE;
 | |
| 	count &= ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 	if (usage == SWAP_HAS_CACHE) {
 | |
| 		VM_BUG_ON(!has_cache);
 | |
| 		has_cache = 0;
 | |
| 	} else if (count == SWAP_MAP_SHMEM) {
 | |
| 		/*
 | |
| 		 * Or we could insist on shmem.c using a special
 | |
| 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 | |
| 		 */
 | |
| 		count = 0;
 | |
| 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 | |
| 		if (count == COUNT_CONTINUED) {
 | |
| 			if (swap_count_continued(p, offset, count))
 | |
| 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 | |
| 			else
 | |
| 				count = SWAP_MAP_MAX;
 | |
| 		} else
 | |
| 			count--;
 | |
| 	}
 | |
| 
 | |
| 	usage = count | has_cache;
 | |
| 	if (usage)
 | |
| 		WRITE_ONCE(p->swap_map[offset], usage);
 | |
| 	else
 | |
| 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
 | |
| 
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether swap entry is valid in the swap device.  If so,
 | |
|  * return pointer to swap_info_struct, and keep the swap entry valid
 | |
|  * via preventing the swap device from being swapoff, until
 | |
|  * put_swap_device() is called.  Otherwise return NULL.
 | |
|  *
 | |
|  * Notice that swapoff or swapoff+swapon can still happen before the
 | |
|  * percpu_ref_tryget_live() in get_swap_device() or after the
 | |
|  * percpu_ref_put() in put_swap_device() if there isn't any other way
 | |
|  * to prevent swapoff, such as page lock, page table lock, etc.  The
 | |
|  * caller must be prepared for that.  For example, the following
 | |
|  * situation is possible.
 | |
|  *
 | |
|  *   CPU1				CPU2
 | |
|  *   do_swap_page()
 | |
|  *     ...				swapoff+swapon
 | |
|  *     __read_swap_cache_async()
 | |
|  *       swapcache_prepare()
 | |
|  *         __swap_duplicate()
 | |
|  *           // check swap_map
 | |
|  *     // verify PTE not changed
 | |
|  *
 | |
|  * In __swap_duplicate(), the swap_map need to be checked before
 | |
|  * changing partly because the specified swap entry may be for another
 | |
|  * swap device which has been swapoff.  And in do_swap_page(), after
 | |
|  * the page is read from the swap device, the PTE is verified not
 | |
|  * changed with the page table locked to check whether the swap device
 | |
|  * has been swapoff or swapoff+swapon.
 | |
|  */
 | |
| struct swap_info_struct *get_swap_device(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	si = swp_swap_info(entry);
 | |
| 	if (!si)
 | |
| 		goto bad_nofile;
 | |
| 	if (!percpu_ref_tryget_live(&si->users))
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Guarantee the si->users are checked before accessing other
 | |
| 	 * fields of swap_info_struct.
 | |
| 	 *
 | |
| 	 * Paired with the spin_unlock() after setup_swap_info() in
 | |
| 	 * enable_swap_info().
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= si->max)
 | |
| 		goto put_out;
 | |
| 
 | |
| 	return si;
 | |
| bad_nofile:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| put_out:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
 | |
| 	percpu_ref_put(&si->users);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned char __swap_entry_free(struct swap_info_struct *p,
 | |
| 				       swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned char usage;
 | |
| 
 | |
| 	ci = lock_cluster_or_swap_info(p, offset);
 | |
| 	usage = __swap_entry_free_locked(p, offset, 1);
 | |
| 	unlock_cluster_or_swap_info(p, ci);
 | |
| 	if (!usage)
 | |
| 		free_swap_slot(entry);
 | |
| 
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	ci = lock_cluster(p, offset);
 | |
| 	count = p->swap_map[offset];
 | |
| 	VM_BUG_ON(count != SWAP_HAS_CACHE);
 | |
| 	p->swap_map[offset] = 0;
 | |
| 	dec_cluster_info_page(p, p->cluster_info, offset);
 | |
| 	unlock_cluster(ci);
 | |
| 
 | |
| 	mem_cgroup_uncharge_swap(entry, 1);
 | |
| 	swap_range_free(p, offset, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller has made sure that the swap device corresponding to entry
 | |
|  * is still around or has not been recycled.
 | |
|  */
 | |
| void swap_free(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 
 | |
| 	p = _swap_info_get(entry);
 | |
| 	if (p)
 | |
| 		__swap_entry_free(p, entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after dropping swapcache to decrease refcnt to swap entries.
 | |
|  */
 | |
| void put_swap_page(struct page *page, swp_entry_t entry)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned long idx = offset / SWAPFILE_CLUSTER;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct swap_info_struct *si;
 | |
| 	unsigned char *map;
 | |
| 	unsigned int i, free_entries = 0;
 | |
| 	unsigned char val;
 | |
| 	int size = swap_entry_size(thp_nr_pages(page));
 | |
| 
 | |
| 	si = _swap_info_get(entry);
 | |
| 	if (!si)
 | |
| 		return;
 | |
| 
 | |
| 	ci = lock_cluster_or_swap_info(si, offset);
 | |
| 	if (size == SWAPFILE_CLUSTER) {
 | |
| 		VM_BUG_ON(!cluster_is_huge(ci));
 | |
| 		map = si->swap_map + offset;
 | |
| 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
 | |
| 			val = map[i];
 | |
| 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
 | |
| 			if (val == SWAP_HAS_CACHE)
 | |
| 				free_entries++;
 | |
| 		}
 | |
| 		cluster_clear_huge(ci);
 | |
| 		if (free_entries == SWAPFILE_CLUSTER) {
 | |
| 			unlock_cluster_or_swap_info(si, ci);
 | |
| 			spin_lock(&si->lock);
 | |
| 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
 | |
| 			swap_free_cluster(si, idx);
 | |
| 			spin_unlock(&si->lock);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < size; i++, entry.val++) {
 | |
| 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
 | |
| 			unlock_cluster_or_swap_info(si, ci);
 | |
| 			free_swap_slot(entry);
 | |
| 			if (i == size - 1)
 | |
| 				return;
 | |
| 			lock_cluster_or_swap_info(si, offset);
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_cluster_or_swap_info(si, ci);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_THP_SWAP
 | |
| int split_swap_cluster(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 
 | |
| 	si = _swap_info_get(entry);
 | |
| 	if (!si)
 | |
| 		return -EBUSY;
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	cluster_clear_huge(ci);
 | |
| 	unlock_cluster(ci);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int swp_entry_cmp(const void *ent1, const void *ent2)
 | |
| {
 | |
| 	const swp_entry_t *e1 = ent1, *e2 = ent2;
 | |
| 
 | |
| 	return (int)swp_type(*e1) - (int)swp_type(*e2);
 | |
| }
 | |
| 
 | |
| void swapcache_free_entries(swp_entry_t *entries, int n)
 | |
| {
 | |
| 	struct swap_info_struct *p, *prev;
 | |
| 	int i;
 | |
| 
 | |
| 	if (n <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	prev = NULL;
 | |
| 	p = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort swap entries by swap device, so each lock is only taken once.
 | |
| 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
 | |
| 	 * so low that it isn't necessary to optimize further.
 | |
| 	 */
 | |
| 	if (nr_swapfiles > 1)
 | |
| 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		p = swap_info_get_cont(entries[i], prev);
 | |
| 		if (p)
 | |
| 			swap_entry_free(p, entries[i]);
 | |
| 		prev = p;
 | |
| 	}
 | |
| 	if (p)
 | |
| 		spin_unlock(&p->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to page are currently swapped out?
 | |
|  * This does not give an exact answer when swap count is continued,
 | |
|  * but does include the high COUNT_CONTINUED flag to allow for that.
 | |
|  */
 | |
| static int page_swapcount(struct page *page)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	swp_entry_t entry;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	entry.val = page_private(page);
 | |
| 	p = _swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		offset = swp_offset(entry);
 | |
| 		ci = lock_cluster_or_swap_info(p, offset);
 | |
| 		count = swap_count(p->swap_map[offset]);
 | |
| 		unlock_cluster_or_swap_info(p, ci);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| int __swap_count(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	pgoff_t offset = swp_offset(entry);
 | |
| 	int count = 0;
 | |
| 
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (si) {
 | |
| 		count = swap_count(si->swap_map[offset]);
 | |
| 		put_swap_device(si);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	pgoff_t offset = swp_offset(entry);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	ci = lock_cluster_or_swap_info(si, offset);
 | |
| 	count = swap_count(si->swap_map[offset]);
 | |
| 	unlock_cluster_or_swap_info(si, ci);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to @entry are currently swapped out?
 | |
|  * This does not give an exact answer when swap count is continued,
 | |
|  * but does include the high COUNT_CONTINUED flag to allow for that.
 | |
|  */
 | |
| int __swp_swapcount(swp_entry_t entry)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (si) {
 | |
| 		count = swap_swapcount(si, entry);
 | |
| 		put_swap_device(si);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to @entry are currently swapped out?
 | |
|  * This considers COUNT_CONTINUED so it returns exact answer.
 | |
|  */
 | |
| int swp_swapcount(swp_entry_t entry)
 | |
| {
 | |
| 	int count, tmp_count, n;
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct page *page;
 | |
| 	pgoff_t offset;
 | |
| 	unsigned char *map;
 | |
| 
 | |
| 	p = _swap_info_get(entry);
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	ci = lock_cluster_or_swap_info(p, offset);
 | |
| 
 | |
| 	count = swap_count(p->swap_map[offset]);
 | |
| 	if (!(count & COUNT_CONTINUED))
 | |
| 		goto out;
 | |
| 
 | |
| 	count &= ~COUNT_CONTINUED;
 | |
| 	n = SWAP_MAP_MAX + 1;
 | |
| 
 | |
| 	page = vmalloc_to_page(p->swap_map + offset);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
 | |
| 
 | |
| 	do {
 | |
| 		page = list_next_entry(page, lru);
 | |
| 		map = kmap_atomic(page);
 | |
| 		tmp_count = map[offset];
 | |
| 		kunmap_atomic(map);
 | |
| 
 | |
| 		count += (tmp_count & ~COUNT_CONTINUED) * n;
 | |
| 		n *= (SWAP_CONT_MAX + 1);
 | |
| 	} while (tmp_count & COUNT_CONTINUED);
 | |
| out:
 | |
| 	unlock_cluster_or_swap_info(p, ci);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
 | |
| 					 swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned char *map = si->swap_map;
 | |
| 	unsigned long roffset = swp_offset(entry);
 | |
| 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
 | |
| 	int i;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	ci = lock_cluster_or_swap_info(si, offset);
 | |
| 	if (!ci || !cluster_is_huge(ci)) {
 | |
| 		if (swap_count(map[roffset]))
 | |
| 			ret = true;
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
 | |
| 		if (swap_count(map[offset + i])) {
 | |
| 			ret = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| unlock_out:
 | |
| 	unlock_cluster_or_swap_info(si, ci);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool page_swapped(struct page *page)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
 | |
| 		return page_swapcount(page) != 0;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 	entry.val = page_private(page);
 | |
| 	si = _swap_info_get(entry);
 | |
| 	if (si)
 | |
| 		return swap_page_trans_huge_swapped(si, entry);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If swap is getting full, or if there are no more mappings of this page,
 | |
|  * then try_to_free_swap is called to free its swap space.
 | |
|  */
 | |
| int try_to_free_swap(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 
 | |
| 	if (!PageSwapCache(page))
 | |
| 		return 0;
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 	if (page_swapped(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once hibernation has begun to create its image of memory,
 | |
| 	 * there's a danger that one of the calls to try_to_free_swap()
 | |
| 	 * - most probably a call from __try_to_reclaim_swap() while
 | |
| 	 * hibernation is allocating its own swap pages for the image,
 | |
| 	 * but conceivably even a call from memory reclaim - will free
 | |
| 	 * the swap from a page which has already been recorded in the
 | |
| 	 * image as a clean swapcache page, and then reuse its swap for
 | |
| 	 * another page of the image.  On waking from hibernation, the
 | |
| 	 * original page might be freed under memory pressure, then
 | |
| 	 * later read back in from swap, now with the wrong data.
 | |
| 	 *
 | |
| 	 * Hibernation suspends storage while it is writing the image
 | |
| 	 * to disk so check that here.
 | |
| 	 */
 | |
| 	if (pm_suspended_storage())
 | |
| 		return 0;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 	delete_from_swap_cache(page);
 | |
| 	SetPageDirty(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the swap entry like above, but also try to
 | |
|  * free the page cache entry if it is the last user.
 | |
|  */
 | |
| int free_swap_and_cache(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	if (non_swap_entry(entry))
 | |
| 		return 1;
 | |
| 
 | |
| 	p = _swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		count = __swap_entry_free(p, entry);
 | |
| 		if (count == SWAP_HAS_CACHE &&
 | |
| 		    !swap_page_trans_huge_swapped(p, entry))
 | |
| 			__try_to_reclaim_swap(p, swp_offset(entry),
 | |
| 					      TTRS_UNMAPPED | TTRS_FULL);
 | |
| 	}
 | |
| 	return p != NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| swp_entry_t get_swap_page_of_type(int type)
 | |
| {
 | |
| 	struct swap_info_struct *si = swap_type_to_swap_info(type);
 | |
| 	swp_entry_t entry = {0};
 | |
| 
 | |
| 	if (!si)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* This is called for allocating swap entry, not cache */
 | |
| 	spin_lock(&si->lock);
 | |
| 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
 | |
| 		atomic_long_dec(&nr_swap_pages);
 | |
| 	spin_unlock(&si->lock);
 | |
| fail:
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the swap type that corresponds to given device (if any).
 | |
|  *
 | |
|  * @offset - number of the PAGE_SIZE-sized block of the device, starting
 | |
|  * from 0, in which the swap header is expected to be located.
 | |
|  *
 | |
|  * This is needed for the suspend to disk (aka swsusp).
 | |
|  */
 | |
| int swap_type_of(dev_t device, sector_t offset)
 | |
| {
 | |
| 	int type;
 | |
| 
 | |
| 	if (!device)
 | |
| 		return -1;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 
 | |
| 		if (device == sis->bdev->bd_dev) {
 | |
| 			struct swap_extent *se = first_se(sis);
 | |
| 
 | |
| 			if (se->start_block == offset) {
 | |
| 				spin_unlock(&swap_lock);
 | |
| 				return type;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| int find_first_swap(dev_t *device)
 | |
| {
 | |
| 	int type;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 		*device = sis->bdev->bd_dev;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		return type;
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 | |
|  * corresponding to given index in swap_info (swap type).
 | |
|  */
 | |
| sector_t swapdev_block(int type, pgoff_t offset)
 | |
| {
 | |
| 	struct swap_info_struct *si = swap_type_to_swap_info(type);
 | |
| 	struct swap_extent *se;
 | |
| 
 | |
| 	if (!si || !(si->flags & SWP_WRITEOK))
 | |
| 		return 0;
 | |
| 	se = offset_to_swap_extent(si, offset);
 | |
| 	return se->start_block + (offset - se->start_page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return either the total number of swap pages of given type, or the number
 | |
|  * of free pages of that type (depending on @free)
 | |
|  *
 | |
|  * This is needed for software suspend
 | |
|  */
 | |
| unsigned int count_swap_pages(int type, int free)
 | |
| {
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if ((unsigned int)type < nr_swapfiles) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		spin_lock(&sis->lock);
 | |
| 		if (sis->flags & SWP_WRITEOK) {
 | |
| 			n = sis->pages;
 | |
| 			if (free)
 | |
| 				n -= sis->inuse_pages;
 | |
| 		}
 | |
| 		spin_unlock(&sis->lock);
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return n;
 | |
| }
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
 | |
| {
 | |
| 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No need to decide whether this PTE shares the swap entry with others,
 | |
|  * just let do_wp_page work it out if a write is requested later - to
 | |
|  * force COW, vm_page_prot omits write permission from any private vma.
 | |
|  */
 | |
| static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct page *swapcache;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *pte, new_pte;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	swapcache = page;
 | |
| 	page = ksm_might_need_to_copy(page, vma, addr);
 | |
| 	if (unlikely(!page))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!PageUptodate(page))) {
 | |
| 		pte_t pteval;
 | |
| 
 | |
| 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | |
| 		pteval = swp_entry_to_pte(make_swapin_error_entry(page));
 | |
| 		set_pte_at(vma->vm_mm, addr, pte, pteval);
 | |
| 		swap_free(entry);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* See do_swap_page() */
 | |
| 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
 | |
| 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
 | |
| 
 | |
| 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | |
| 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 | |
| 	get_page(page);
 | |
| 	if (page == swapcache) {
 | |
| 		rmap_t rmap_flags = RMAP_NONE;
 | |
| 
 | |
| 		/*
 | |
| 		 * See do_swap_page(): PageWriteback() would be problematic.
 | |
| 		 * However, we do a wait_on_page_writeback() just before this
 | |
| 		 * call and have the page locked.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(PageWriteback(page), page);
 | |
| 		if (pte_swp_exclusive(*pte))
 | |
| 			rmap_flags |= RMAP_EXCLUSIVE;
 | |
| 
 | |
| 		page_add_anon_rmap(page, vma, addr, rmap_flags);
 | |
| 	} else { /* ksm created a completely new copy */
 | |
| 		page_add_new_anon_rmap(page, vma, addr);
 | |
| 		lru_cache_add_inactive_or_unevictable(page, vma);
 | |
| 	}
 | |
| 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
 | |
| 	if (pte_swp_soft_dirty(*pte))
 | |
| 		new_pte = pte_mksoft_dirty(new_pte);
 | |
| 	if (pte_swp_uffd_wp(*pte))
 | |
| 		new_pte = pte_mkuffd_wp(new_pte);
 | |
| 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
 | |
| 	swap_free(entry);
 | |
| out:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| 	if (page != swapcache) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned int type)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	swp_entry_t entry;
 | |
| 	pte_t *pte;
 | |
| 	struct swap_info_struct *si;
 | |
| 	unsigned long offset;
 | |
| 	int ret = 0;
 | |
| 	volatile unsigned char *swap_map;
 | |
| 
 | |
| 	si = swap_info[type];
 | |
| 	pte = pte_offset_map(pmd, addr);
 | |
| 	do {
 | |
| 		if (!is_swap_pte(*pte))
 | |
| 			continue;
 | |
| 
 | |
| 		entry = pte_to_swp_entry(*pte);
 | |
| 		if (swp_type(entry) != type)
 | |
| 			continue;
 | |
| 
 | |
| 		offset = swp_offset(entry);
 | |
| 		pte_unmap(pte);
 | |
| 		swap_map = &si->swap_map[offset];
 | |
| 		page = lookup_swap_cache(entry, vma, addr);
 | |
| 		if (!page) {
 | |
| 			struct vm_fault vmf = {
 | |
| 				.vma = vma,
 | |
| 				.address = addr,
 | |
| 				.real_address = addr,
 | |
| 				.pmd = pmd,
 | |
| 			};
 | |
| 
 | |
| 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
 | |
| 						&vmf);
 | |
| 		}
 | |
| 		if (!page) {
 | |
| 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
 | |
| 				goto try_next;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		lock_page(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 		ret = unuse_pte(vma, pmd, addr, entry, page);
 | |
| 		if (ret < 0) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		try_to_free_swap(page);
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| try_next:
 | |
| 		pte = pte_offset_map(pmd, addr);
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		ret = unuse_pte_range(vma, pmd, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		ret = unuse_pmd_range(vma, pud, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (p4d_none_or_clear_bad(p4d))
 | |
| 			continue;
 | |
| 		ret = unuse_pud_range(vma, p4d, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr, end, next;
 | |
| 	int ret;
 | |
| 
 | |
| 	addr = vma->vm_start;
 | |
| 	end = vma->vm_end;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_mm(struct mm_struct *mm, unsigned int type)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		if (vma->anon_vma) {
 | |
| 			ret = unuse_vma(vma, type);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	mmap_read_unlock(mm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan swap_map from current position to next entry still in use.
 | |
|  * Return 0 if there are no inuse entries after prev till end of
 | |
|  * the map.
 | |
|  */
 | |
| static unsigned int find_next_to_unuse(struct swap_info_struct *si,
 | |
| 					unsigned int prev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for swap_lock here: we're just looking
 | |
| 	 * for whether an entry is in use, not modifying it; false
 | |
| 	 * hits are okay, and sys_swapoff() has already prevented new
 | |
| 	 * allocations from this area (while holding swap_lock).
 | |
| 	 */
 | |
| 	for (i = prev + 1; i < si->max; i++) {
 | |
| 		count = READ_ONCE(si->swap_map[i]);
 | |
| 		if (count && swap_count(count) != SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 		if ((i % LATENCY_LIMIT) == 0)
 | |
| 			cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (i == si->max)
 | |
| 		i = 0;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int try_to_unuse(unsigned int type)
 | |
| {
 | |
| 	struct mm_struct *prev_mm;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct list_head *p;
 | |
| 	int retval = 0;
 | |
| 	struct swap_info_struct *si = swap_info[type];
 | |
| 	struct page *page;
 | |
| 	swp_entry_t entry;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!READ_ONCE(si->inuse_pages))
 | |
| 		return 0;
 | |
| 
 | |
| retry:
 | |
| 	retval = shmem_unuse(type);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	prev_mm = &init_mm;
 | |
| 	mmget(prev_mm);
 | |
| 
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	p = &init_mm.mmlist;
 | |
| 	while (READ_ONCE(si->inuse_pages) &&
 | |
| 	       !signal_pending(current) &&
 | |
| 	       (p = p->next) != &init_mm.mmlist) {
 | |
| 
 | |
| 		mm = list_entry(p, struct mm_struct, mmlist);
 | |
| 		if (!mmget_not_zero(mm))
 | |
| 			continue;
 | |
| 		spin_unlock(&mmlist_lock);
 | |
| 		mmput(prev_mm);
 | |
| 		prev_mm = mm;
 | |
| 		retval = unuse_mm(mm, type);
 | |
| 		if (retval) {
 | |
| 			mmput(prev_mm);
 | |
| 			return retval;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that we aren't completely killing
 | |
| 		 * interactive performance.
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 		spin_lock(&mmlist_lock);
 | |
| 	}
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| 
 | |
| 	mmput(prev_mm);
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (READ_ONCE(si->inuse_pages) &&
 | |
| 	       !signal_pending(current) &&
 | |
| 	       (i = find_next_to_unuse(si, i)) != 0) {
 | |
| 
 | |
| 		entry = swp_entry(type, i);
 | |
| 		page = find_get_page(swap_address_space(entry), i);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * It is conceivable that a racing task removed this page from
 | |
| 		 * swap cache just before we acquired the page lock. The page
 | |
| 		 * might even be back in swap cache on another swap area. But
 | |
| 		 * that is okay, try_to_free_swap() only removes stale pages.
 | |
| 		 */
 | |
| 		lock_page(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 		try_to_free_swap(page);
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lets check again to see if there are still swap entries in the map.
 | |
| 	 * If yes, we would need to do retry the unuse logic again.
 | |
| 	 * Under global memory pressure, swap entries can be reinserted back
 | |
| 	 * into process space after the mmlist loop above passes over them.
 | |
| 	 *
 | |
| 	 * Limit the number of retries? No: when mmget_not_zero()
 | |
| 	 * above fails, that mm is likely to be freeing swap from
 | |
| 	 * exit_mmap(), which proceeds at its own independent pace;
 | |
| 	 * and even shmem_writepage() could have been preempted after
 | |
| 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
 | |
| 	 * and robust (though cpu-intensive) just to keep retrying.
 | |
| 	 */
 | |
| 	if (READ_ONCE(si->inuse_pages)) {
 | |
| 		if (!signal_pending(current))
 | |
| 			goto retry;
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a successful try_to_unuse, if no swap is now in use, we know
 | |
|  * we can empty the mmlist.  swap_lock must be held on entry and exit.
 | |
|  * Note that mmlist_lock nests inside swap_lock, and an mm must be
 | |
|  * added to the mmlist just after page_duplicate - before would be racy.
 | |
|  */
 | |
| static void drain_mmlist(void)
 | |
| {
 | |
| 	struct list_head *p, *next;
 | |
| 	unsigned int type;
 | |
| 
 | |
| 	for (type = 0; type < nr_swapfiles; type++)
 | |
| 		if (swap_info[type]->inuse_pages)
 | |
| 			return;
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	list_for_each_safe(p, next, &init_mm.mmlist)
 | |
| 		list_del_init(p);
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all of a swapdev's extent information
 | |
|  */
 | |
| static void destroy_swap_extents(struct swap_info_struct *sis)
 | |
| {
 | |
| 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
 | |
| 		struct rb_node *rb = sis->swap_extent_root.rb_node;
 | |
| 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
 | |
| 
 | |
| 		rb_erase(rb, &sis->swap_extent_root);
 | |
| 		kfree(se);
 | |
| 	}
 | |
| 
 | |
| 	if (sis->flags & SWP_ACTIVATED) {
 | |
| 		struct file *swap_file = sis->swap_file;
 | |
| 		struct address_space *mapping = swap_file->f_mapping;
 | |
| 
 | |
| 		sis->flags &= ~SWP_ACTIVATED;
 | |
| 		if (mapping->a_ops->swap_deactivate)
 | |
| 			mapping->a_ops->swap_deactivate(swap_file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a block range (and the corresponding page range) into this swapdev's
 | |
|  * extent tree.
 | |
|  *
 | |
|  * This function rather assumes that it is called in ascending page order.
 | |
|  */
 | |
| int
 | |
| add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 | |
| 		unsigned long nr_pages, sector_t start_block)
 | |
| {
 | |
| 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
 | |
| 	struct swap_extent *se;
 | |
| 	struct swap_extent *new_se;
 | |
| 
 | |
| 	/*
 | |
| 	 * place the new node at the right most since the
 | |
| 	 * function is called in ascending page order.
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		link = &parent->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	if (parent) {
 | |
| 		se = rb_entry(parent, struct swap_extent, rb_node);
 | |
| 		BUG_ON(se->start_page + se->nr_pages != start_page);
 | |
| 		if (se->start_block + se->nr_pages == start_block) {
 | |
| 			/* Merge it */
 | |
| 			se->nr_pages += nr_pages;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No merge, insert a new extent. */
 | |
| 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 | |
| 	if (new_se == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	new_se->start_page = start_page;
 | |
| 	new_se->nr_pages = nr_pages;
 | |
| 	new_se->start_block = start_block;
 | |
| 
 | |
| 	rb_link_node(&new_se->rb_node, parent, link);
 | |
| 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_swap_extent);
 | |
| 
 | |
| /*
 | |
|  * A `swap extent' is a simple thing which maps a contiguous range of pages
 | |
|  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
 | |
|  * built at swapon time and is then used at swap_writepage/swap_readpage
 | |
|  * time for locating where on disk a page belongs.
 | |
|  *
 | |
|  * If the swapfile is an S_ISBLK block device, a single extent is installed.
 | |
|  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 | |
|  * swap files identically.
 | |
|  *
 | |
|  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 | |
|  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 | |
|  * swapfiles are handled *identically* after swapon time.
 | |
|  *
 | |
|  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 | |
|  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
 | |
|  * blocks are found which do not fall within the PAGE_SIZE alignment
 | |
|  * requirements, they are simply tossed out - we will never use those blocks
 | |
|  * for swapping.
 | |
|  *
 | |
|  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
 | |
|  * prevents users from writing to the swap device, which will corrupt memory.
 | |
|  *
 | |
|  * The amount of disk space which a single swap extent represents varies.
 | |
|  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 | |
|  * extents in the rbtree. - akpm.
 | |
|  */
 | |
| static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 | |
| {
 | |
| 	struct file *swap_file = sis->swap_file;
 | |
| 	struct address_space *mapping = swap_file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		ret = add_swap_extent(sis, 0, sis->max, 0);
 | |
| 		*span = sis->pages;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (mapping->a_ops->swap_activate) {
 | |
| 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		sis->flags |= SWP_ACTIVATED;
 | |
| 		if ((sis->flags & SWP_FS_OPS) &&
 | |
| 		    sio_pool_init() != 0) {
 | |
| 			destroy_swap_extents(sis);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return generic_swapfile_activate(sis, swap_file, span);
 | |
| }
 | |
| 
 | |
| static int swap_node(struct swap_info_struct *p)
 | |
| {
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	if (p->bdev)
 | |
| 		bdev = p->bdev;
 | |
| 	else
 | |
| 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
 | |
| 
 | |
| 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| static void setup_swap_info(struct swap_info_struct *p, int prio,
 | |
| 			    unsigned char *swap_map,
 | |
| 			    struct swap_cluster_info *cluster_info)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (prio >= 0)
 | |
| 		p->prio = prio;
 | |
| 	else
 | |
| 		p->prio = --least_priority;
 | |
| 	/*
 | |
| 	 * the plist prio is negated because plist ordering is
 | |
| 	 * low-to-high, while swap ordering is high-to-low
 | |
| 	 */
 | |
| 	p->list.prio = -p->prio;
 | |
| 	for_each_node(i) {
 | |
| 		if (p->prio >= 0)
 | |
| 			p->avail_lists[i].prio = -p->prio;
 | |
| 		else {
 | |
| 			if (swap_node(p) == i)
 | |
| 				p->avail_lists[i].prio = 1;
 | |
| 			else
 | |
| 				p->avail_lists[i].prio = -p->prio;
 | |
| 		}
 | |
| 	}
 | |
| 	p->swap_map = swap_map;
 | |
| 	p->cluster_info = cluster_info;
 | |
| }
 | |
| 
 | |
| static void _enable_swap_info(struct swap_info_struct *p)
 | |
| {
 | |
| 	p->flags |= SWP_WRITEOK;
 | |
| 	atomic_long_add(p->pages, &nr_swap_pages);
 | |
| 	total_swap_pages += p->pages;
 | |
| 
 | |
| 	assert_spin_locked(&swap_lock);
 | |
| 	/*
 | |
| 	 * both lists are plists, and thus priority ordered.
 | |
| 	 * swap_active_head needs to be priority ordered for swapoff(),
 | |
| 	 * which on removal of any swap_info_struct with an auto-assigned
 | |
| 	 * (i.e. negative) priority increments the auto-assigned priority
 | |
| 	 * of any lower-priority swap_info_structs.
 | |
| 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
 | |
| 	 * which allocates swap pages from the highest available priority
 | |
| 	 * swap_info_struct.
 | |
| 	 */
 | |
| 	plist_add(&p->list, &swap_active_head);
 | |
| 	add_to_avail_list(p);
 | |
| }
 | |
| 
 | |
| static void enable_swap_info(struct swap_info_struct *p, int prio,
 | |
| 				unsigned char *swap_map,
 | |
| 				struct swap_cluster_info *cluster_info,
 | |
| 				unsigned long *frontswap_map)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_FRONTSWAP))
 | |
| 		frontswap_init(p->type, frontswap_map);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	setup_swap_info(p, prio, swap_map, cluster_info);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	/*
 | |
| 	 * Finished initializing swap device, now it's safe to reference it.
 | |
| 	 */
 | |
| 	percpu_ref_resurrect(&p->users);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	_enable_swap_info(p);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| static void reinsert_swap_info(struct swap_info_struct *p)
 | |
| {
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
 | |
| 	_enable_swap_info(p);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| bool has_usable_swap(void)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (plist_head_empty(&swap_active_head))
 | |
| 		ret = false;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 | |
| {
 | |
| 	struct swap_info_struct *p = NULL;
 | |
| 	unsigned char *swap_map;
 | |
| 	struct swap_cluster_info *cluster_info;
 | |
| 	unsigned long *frontswap_map;
 | |
| 	struct file *swap_file, *victim;
 | |
| 	struct address_space *mapping;
 | |
| 	struct inode *inode;
 | |
| 	struct filename *pathname;
 | |
| 	int err, found = 0;
 | |
| 	unsigned int old_block_size;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	BUG_ON(!current->mm);
 | |
| 
 | |
| 	pathname = getname(specialfile);
 | |
| 	if (IS_ERR(pathname))
 | |
| 		return PTR_ERR(pathname);
 | |
| 
 | |
| 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 | |
| 	err = PTR_ERR(victim);
 | |
| 	if (IS_ERR(victim))
 | |
| 		goto out;
 | |
| 
 | |
| 	mapping = victim->f_mapping;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	plist_for_each_entry(p, &swap_active_head, list) {
 | |
| 		if (p->flags & SWP_WRITEOK) {
 | |
| 			if (p->swap_file->f_mapping == mapping) {
 | |
| 				found = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		err = -EINVAL;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
 | |
| 		vm_unacct_memory(p->pages);
 | |
| 	else {
 | |
| 		err = -ENOMEM;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	del_from_avail_list(p);
 | |
| 	spin_lock(&p->lock);
 | |
| 	if (p->prio < 0) {
 | |
| 		struct swap_info_struct *si = p;
 | |
| 		int nid;
 | |
| 
 | |
| 		plist_for_each_entry_continue(si, &swap_active_head, list) {
 | |
| 			si->prio++;
 | |
| 			si->list.prio--;
 | |
| 			for_each_node(nid) {
 | |
| 				if (si->avail_lists[nid].prio != 1)
 | |
| 					si->avail_lists[nid].prio--;
 | |
| 			}
 | |
| 		}
 | |
| 		least_priority++;
 | |
| 	}
 | |
| 	plist_del(&p->list, &swap_active_head);
 | |
| 	atomic_long_sub(p->pages, &nr_swap_pages);
 | |
| 	total_swap_pages -= p->pages;
 | |
| 	p->flags &= ~SWP_WRITEOK;
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	disable_swap_slots_cache_lock();
 | |
| 
 | |
| 	set_current_oom_origin();
 | |
| 	err = try_to_unuse(p->type);
 | |
| 	clear_current_oom_origin();
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* re-insert swap space back into swap_list */
 | |
| 		reinsert_swap_info(p);
 | |
| 		reenable_swap_slots_cache_unlock();
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 
 | |
| 	reenable_swap_slots_cache_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for swap operations protected by get/put_swap_device()
 | |
| 	 * to complete.
 | |
| 	 *
 | |
| 	 * We need synchronize_rcu() here to protect the accessing to
 | |
| 	 * the swap cache data structure.
 | |
| 	 */
 | |
| 	percpu_ref_kill(&p->users);
 | |
| 	synchronize_rcu();
 | |
| 	wait_for_completion(&p->comp);
 | |
| 
 | |
| 	flush_work(&p->discard_work);
 | |
| 
 | |
| 	destroy_swap_extents(p);
 | |
| 	if (p->flags & SWP_CONTINUED)
 | |
| 		free_swap_count_continuations(p);
 | |
| 
 | |
| 	if (!p->bdev || !bdev_nonrot(p->bdev))
 | |
| 		atomic_dec(&nr_rotate_swap);
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	drain_mmlist();
 | |
| 
 | |
| 	/* wait for anyone still in scan_swap_map_slots */
 | |
| 	p->highest_bit = 0;		/* cuts scans short */
 | |
| 	while (p->flags >= SWP_SCANNING) {
 | |
| 		spin_unlock(&p->lock);
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		spin_lock(&swap_lock);
 | |
| 		spin_lock(&p->lock);
 | |
| 	}
 | |
| 
 | |
| 	swap_file = p->swap_file;
 | |
| 	old_block_size = p->old_block_size;
 | |
| 	p->swap_file = NULL;
 | |
| 	p->max = 0;
 | |
| 	swap_map = p->swap_map;
 | |
| 	p->swap_map = NULL;
 | |
| 	cluster_info = p->cluster_info;
 | |
| 	p->cluster_info = NULL;
 | |
| 	frontswap_map = frontswap_map_get(p);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	arch_swap_invalidate_area(p->type);
 | |
| 	frontswap_invalidate_area(p->type);
 | |
| 	frontswap_map_set(p, NULL);
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	free_percpu(p->percpu_cluster);
 | |
| 	p->percpu_cluster = NULL;
 | |
| 	free_percpu(p->cluster_next_cpu);
 | |
| 	p->cluster_next_cpu = NULL;
 | |
| 	vfree(swap_map);
 | |
| 	kvfree(cluster_info);
 | |
| 	kvfree(frontswap_map);
 | |
| 	/* Destroy swap account information */
 | |
| 	swap_cgroup_swapoff(p->type);
 | |
| 	exit_swap_address_space(p->type);
 | |
| 
 | |
| 	inode = mapping->host;
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		struct block_device *bdev = I_BDEV(inode);
 | |
| 
 | |
| 		set_blocksize(bdev, old_block_size);
 | |
| 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | |
| 	}
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	inode->i_flags &= ~S_SWAPFILE;
 | |
| 	inode_unlock(inode);
 | |
| 	filp_close(swap_file, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the SWP_USED flag after all resources are freed so that swapon
 | |
| 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
 | |
| 	 * not hold p->lock after we cleared its SWP_WRITEOK.
 | |
| 	 */
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	err = 0;
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| out_dput:
 | |
| 	filp_close(victim, NULL);
 | |
| out:
 | |
| 	putname(pathname);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static __poll_t swaps_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct seq_file *seq = file->private_data;
 | |
| 
 | |
| 	poll_wait(file, &proc_poll_wait, wait);
 | |
| 
 | |
| 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
 | |
| 		seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
 | |
| 	}
 | |
| 
 | |
| 	return EPOLLIN | EPOLLRDNORM;
 | |
| }
 | |
| 
 | |
| /* iterator */
 | |
| static void *swap_start(struct seq_file *swap, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	int type;
 | |
| 	loff_t l = *pos;
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 
 | |
| 	if (!l)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 
 | |
| 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		if (!--l)
 | |
| 			return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	int type;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		type = 0;
 | |
| 	else
 | |
| 		type = si->type + 1;
 | |
| 
 | |
| 	++(*pos);
 | |
| 	for (; (si = swap_type_to_swap_info(type)); type++) {
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void swap_stop(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| }
 | |
| 
 | |
| static int swap_show(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	struct file *file;
 | |
| 	int len;
 | |
| 	unsigned long bytes, inuse;
 | |
| 
 | |
| 	if (si == SEQ_START_TOKEN) {
 | |
| 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bytes = si->pages << (PAGE_SHIFT - 10);
 | |
| 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	file = si->swap_file;
 | |
| 	len = seq_file_path(swap, file, " \t\n\\");
 | |
| 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
 | |
| 			len < 40 ? 40 - len : 1, " ",
 | |
| 			S_ISBLK(file_inode(file)->i_mode) ?
 | |
| 				"partition" : "file\t",
 | |
| 			bytes, bytes < 10000000 ? "\t" : "",
 | |
| 			inuse, inuse < 10000000 ? "\t" : "",
 | |
| 			si->prio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations swaps_op = {
 | |
| 	.start =	swap_start,
 | |
| 	.next =		swap_next,
 | |
| 	.stop =		swap_stop,
 | |
| 	.show =		swap_show
 | |
| };
 | |
| 
 | |
| static int swaps_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = seq_open(file, &swaps_op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	seq = file->private_data;
 | |
| 	seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct proc_ops swaps_proc_ops = {
 | |
| 	.proc_flags	= PROC_ENTRY_PERMANENT,
 | |
| 	.proc_open	= swaps_open,
 | |
| 	.proc_read	= seq_read,
 | |
| 	.proc_lseek	= seq_lseek,
 | |
| 	.proc_release	= seq_release,
 | |
| 	.proc_poll	= swaps_poll,
 | |
| };
 | |
| 
 | |
| static int __init procswaps_init(void)
 | |
| {
 | |
| 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(procswaps_init);
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| #ifdef MAX_SWAPFILES_CHECK
 | |
| static int __init max_swapfiles_check(void)
 | |
| {
 | |
| 	MAX_SWAPFILES_CHECK();
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(max_swapfiles_check);
 | |
| #endif
 | |
| 
 | |
| static struct swap_info_struct *alloc_swap_info(void)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct swap_info_struct *defer = NULL;
 | |
| 	unsigned int type;
 | |
| 	int i;
 | |
| 
 | |
| 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (percpu_ref_init(&p->users, swap_users_ref_free,
 | |
| 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		if (!(swap_info[type]->flags & SWP_USED))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (type >= MAX_SWAPFILES) {
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		percpu_ref_exit(&p->users);
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 	}
 | |
| 	if (type >= nr_swapfiles) {
 | |
| 		p->type = type;
 | |
| 		/*
 | |
| 		 * Publish the swap_info_struct after initializing it.
 | |
| 		 * Note that kvzalloc() above zeroes all its fields.
 | |
| 		 */
 | |
| 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
 | |
| 		nr_swapfiles++;
 | |
| 	} else {
 | |
| 		defer = p;
 | |
| 		p = swap_info[type];
 | |
| 		/*
 | |
| 		 * Do not memset this entry: a racing procfs swap_next()
 | |
| 		 * would be relying on p->type to remain valid.
 | |
| 		 */
 | |
| 	}
 | |
| 	p->swap_extent_root = RB_ROOT;
 | |
| 	plist_node_init(&p->list, 0);
 | |
| 	for_each_node(i)
 | |
| 		plist_node_init(&p->avail_lists[i], 0);
 | |
| 	p->flags = SWP_USED;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	if (defer) {
 | |
| 		percpu_ref_exit(&defer->users);
 | |
| 		kvfree(defer);
 | |
| 	}
 | |
| 	spin_lock_init(&p->lock);
 | |
| 	spin_lock_init(&p->cont_lock);
 | |
| 	init_completion(&p->comp);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
 | |
| 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
 | |
| 		if (IS_ERR(p->bdev)) {
 | |
| 			error = PTR_ERR(p->bdev);
 | |
| 			p->bdev = NULL;
 | |
| 			return error;
 | |
| 		}
 | |
| 		p->old_block_size = block_size(p->bdev);
 | |
| 		error = set_blocksize(p->bdev, PAGE_SIZE);
 | |
| 		if (error < 0)
 | |
| 			return error;
 | |
| 		/*
 | |
| 		 * Zoned block devices contain zones that have a sequential
 | |
| 		 * write only restriction.  Hence zoned block devices are not
 | |
| 		 * suitable for swapping.  Disallow them here.
 | |
| 		 */
 | |
| 		if (bdev_is_zoned(p->bdev))
 | |
| 			return -EINVAL;
 | |
| 		p->flags |= SWP_BLKDEV;
 | |
| 	} else if (S_ISREG(inode->i_mode)) {
 | |
| 		p->bdev = inode->i_sb->s_bdev;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Find out how many pages are allowed for a single swap device. There
 | |
|  * are two limiting factors:
 | |
|  * 1) the number of bits for the swap offset in the swp_entry_t type, and
 | |
|  * 2) the number of bits in the swap pte, as defined by the different
 | |
|  * architectures.
 | |
|  *
 | |
|  * In order to find the largest possible bit mask, a swap entry with
 | |
|  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
 | |
|  * decoded to a swp_entry_t again, and finally the swap offset is
 | |
|  * extracted.
 | |
|  *
 | |
|  * This will mask all the bits from the initial ~0UL mask that can't
 | |
|  * be encoded in either the swp_entry_t or the architecture definition
 | |
|  * of a swap pte.
 | |
|  */
 | |
| unsigned long generic_max_swapfile_size(void)
 | |
| {
 | |
| 	return swp_offset(pte_to_swp_entry(
 | |
| 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
 | |
| }
 | |
| 
 | |
| /* Can be overridden by an architecture for additional checks. */
 | |
| __weak unsigned long max_swapfile_size(void)
 | |
| {
 | |
| 	return generic_max_swapfile_size();
 | |
| }
 | |
| 
 | |
| static unsigned long read_swap_header(struct swap_info_struct *p,
 | |
| 					union swap_header *swap_header,
 | |
| 					struct inode *inode)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned long swapfilepages;
 | |
| 	unsigned long last_page;
 | |
| 
 | |
| 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 | |
| 		pr_err("Unable to find swap-space signature\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* swap partition endianness hack... */
 | |
| 	if (swab32(swap_header->info.version) == 1) {
 | |
| 		swab32s(&swap_header->info.version);
 | |
| 		swab32s(&swap_header->info.last_page);
 | |
| 		swab32s(&swap_header->info.nr_badpages);
 | |
| 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 			return 0;
 | |
| 		for (i = 0; i < swap_header->info.nr_badpages; i++)
 | |
| 			swab32s(&swap_header->info.badpages[i]);
 | |
| 	}
 | |
| 	/* Check the swap header's sub-version */
 | |
| 	if (swap_header->info.version != 1) {
 | |
| 		pr_warn("Unable to handle swap header version %d\n",
 | |
| 			swap_header->info.version);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	p->lowest_bit  = 1;
 | |
| 	p->cluster_next = 1;
 | |
| 	p->cluster_nr = 0;
 | |
| 
 | |
| 	maxpages = max_swapfile_size();
 | |
| 	last_page = swap_header->info.last_page;
 | |
| 	if (!last_page) {
 | |
| 		pr_warn("Empty swap-file\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (last_page > maxpages) {
 | |
| 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
 | |
| 			maxpages << (PAGE_SHIFT - 10),
 | |
| 			last_page << (PAGE_SHIFT - 10));
 | |
| 	}
 | |
| 	if (maxpages > last_page) {
 | |
| 		maxpages = last_page + 1;
 | |
| 		/* p->max is an unsigned int: don't overflow it */
 | |
| 		if ((unsigned int)maxpages == 0)
 | |
| 			maxpages = UINT_MAX;
 | |
| 	}
 | |
| 	p->highest_bit = maxpages - 1;
 | |
| 
 | |
| 	if (!maxpages)
 | |
| 		return 0;
 | |
| 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 | |
| 	if (swapfilepages && maxpages > swapfilepages) {
 | |
| 		pr_warn("Swap area shorter than signature indicates\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 		return 0;
 | |
| 
 | |
| 	return maxpages;
 | |
| }
 | |
| 
 | |
| #define SWAP_CLUSTER_INFO_COLS						\
 | |
| 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
 | |
| #define SWAP_CLUSTER_SPACE_COLS						\
 | |
| 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
 | |
| #define SWAP_CLUSTER_COLS						\
 | |
| 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
 | |
| 
 | |
| static int setup_swap_map_and_extents(struct swap_info_struct *p,
 | |
| 					union swap_header *swap_header,
 | |
| 					unsigned char *swap_map,
 | |
| 					struct swap_cluster_info *cluster_info,
 | |
| 					unsigned long maxpages,
 | |
| 					sector_t *span)
 | |
| {
 | |
| 	unsigned int j, k;
 | |
| 	unsigned int nr_good_pages;
 | |
| 	int nr_extents;
 | |
| 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
 | |
| 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
 | |
| 	unsigned long i, idx;
 | |
| 
 | |
| 	nr_good_pages = maxpages - 1;	/* omit header page */
 | |
| 
 | |
| 	cluster_list_init(&p->free_clusters);
 | |
| 	cluster_list_init(&p->discard_clusters);
 | |
| 
 | |
| 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
 | |
| 		unsigned int page_nr = swap_header->info.badpages[i];
 | |
| 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
 | |
| 			return -EINVAL;
 | |
| 		if (page_nr < maxpages) {
 | |
| 			swap_map[page_nr] = SWAP_MAP_BAD;
 | |
| 			nr_good_pages--;
 | |
| 			/*
 | |
| 			 * Haven't marked the cluster free yet, no list
 | |
| 			 * operation involved
 | |
| 			 */
 | |
| 			inc_cluster_info_page(p, cluster_info, page_nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Haven't marked the cluster free yet, no list operation involved */
 | |
| 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
 | |
| 		inc_cluster_info_page(p, cluster_info, i);
 | |
| 
 | |
| 	if (nr_good_pages) {
 | |
| 		swap_map[0] = SWAP_MAP_BAD;
 | |
| 		/*
 | |
| 		 * Not mark the cluster free yet, no list
 | |
| 		 * operation involved
 | |
| 		 */
 | |
| 		inc_cluster_info_page(p, cluster_info, 0);
 | |
| 		p->max = maxpages;
 | |
| 		p->pages = nr_good_pages;
 | |
| 		nr_extents = setup_swap_extents(p, span);
 | |
| 		if (nr_extents < 0)
 | |
| 			return nr_extents;
 | |
| 		nr_good_pages = p->pages;
 | |
| 	}
 | |
| 	if (!nr_good_pages) {
 | |
| 		pr_warn("Empty swap-file\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return nr_extents;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce false cache line sharing between cluster_info and
 | |
| 	 * sharing same address space.
 | |
| 	 */
 | |
| 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
 | |
| 		j = (k + col) % SWAP_CLUSTER_COLS;
 | |
| 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
 | |
| 			idx = i * SWAP_CLUSTER_COLS + j;
 | |
| 			if (idx >= nr_clusters)
 | |
| 				continue;
 | |
| 			if (cluster_count(&cluster_info[idx]))
 | |
| 				continue;
 | |
| 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 | |
| 			cluster_list_add_tail(&p->free_clusters, cluster_info,
 | |
| 					      idx);
 | |
| 		}
 | |
| 	}
 | |
| 	return nr_extents;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct filename *name;
 | |
| 	struct file *swap_file = NULL;
 | |
| 	struct address_space *mapping;
 | |
| 	struct dentry *dentry;
 | |
| 	int prio;
 | |
| 	int error;
 | |
| 	union swap_header *swap_header;
 | |
| 	int nr_extents;
 | |
| 	sector_t span;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned char *swap_map = NULL;
 | |
| 	struct swap_cluster_info *cluster_info = NULL;
 | |
| 	unsigned long *frontswap_map = NULL;
 | |
| 	struct page *page = NULL;
 | |
| 	struct inode *inode = NULL;
 | |
| 	bool inced_nr_rotate_swap = false;
 | |
| 
 | |
| 	if (swap_flags & ~SWAP_FLAGS_VALID)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!swap_avail_heads)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p = alloc_swap_info();
 | |
| 	if (IS_ERR(p))
 | |
| 		return PTR_ERR(p);
 | |
| 
 | |
| 	INIT_WORK(&p->discard_work, swap_discard_work);
 | |
| 
 | |
| 	name = getname(specialfile);
 | |
| 	if (IS_ERR(name)) {
 | |
| 		error = PTR_ERR(name);
 | |
| 		name = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
 | |
| 	if (IS_ERR(swap_file)) {
 | |
| 		error = PTR_ERR(swap_file);
 | |
| 		swap_file = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	p->swap_file = swap_file;
 | |
| 	mapping = swap_file->f_mapping;
 | |
| 	dentry = swap_file->f_path.dentry;
 | |
| 	inode = mapping->host;
 | |
| 
 | |
| 	error = claim_swapfile(p, inode);
 | |
| 	if (unlikely(error))
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	if (d_unlinked(dentry) || cant_mount(dentry)) {
 | |
| 		error = -ENOENT;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	if (IS_SWAPFILE(inode)) {
 | |
| 		error = -EBUSY;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the swap header.
 | |
| 	 */
 | |
| 	if (!mapping->a_ops->read_folio) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	page = read_mapping_page(mapping, 0, swap_file);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		error = PTR_ERR(page);
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	swap_header = kmap(page);
 | |
| 
 | |
| 	maxpages = read_swap_header(p, swap_header, inode);
 | |
| 	if (unlikely(!maxpages)) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	/* OK, set up the swap map and apply the bad block list */
 | |
| 	swap_map = vzalloc(maxpages);
 | |
| 	if (!swap_map) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	if (p->bdev && bdev_stable_writes(p->bdev))
 | |
| 		p->flags |= SWP_STABLE_WRITES;
 | |
| 
 | |
| 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
 | |
| 		p->flags |= SWP_SYNCHRONOUS_IO;
 | |
| 
 | |
| 	if (p->bdev && bdev_nonrot(p->bdev)) {
 | |
| 		int cpu;
 | |
| 		unsigned long ci, nr_cluster;
 | |
| 
 | |
| 		p->flags |= SWP_SOLIDSTATE;
 | |
| 		p->cluster_next_cpu = alloc_percpu(unsigned int);
 | |
| 		if (!p->cluster_next_cpu) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto bad_swap_unlock_inode;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * select a random position to start with to help wear leveling
 | |
| 		 * SSD
 | |
| 		 */
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			per_cpu(*p->cluster_next_cpu, cpu) =
 | |
| 				1 + prandom_u32_max(p->highest_bit);
 | |
| 		}
 | |
| 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
 | |
| 
 | |
| 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
 | |
| 					GFP_KERNEL);
 | |
| 		if (!cluster_info) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto bad_swap_unlock_inode;
 | |
| 		}
 | |
| 
 | |
| 		for (ci = 0; ci < nr_cluster; ci++)
 | |
| 			spin_lock_init(&((cluster_info + ci)->lock));
 | |
| 
 | |
| 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
 | |
| 		if (!p->percpu_cluster) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto bad_swap_unlock_inode;
 | |
| 		}
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct percpu_cluster *cluster;
 | |
| 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
 | |
| 			cluster_set_null(&cluster->index);
 | |
| 		}
 | |
| 	} else {
 | |
| 		atomic_inc(&nr_rotate_swap);
 | |
| 		inced_nr_rotate_swap = true;
 | |
| 	}
 | |
| 
 | |
| 	error = swap_cgroup_swapon(p->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 
 | |
| 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
 | |
| 		cluster_info, maxpages, &span);
 | |
| 	if (unlikely(nr_extents < 0)) {
 | |
| 		error = nr_extents;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	/* frontswap enabled? set up bit-per-page map for frontswap */
 | |
| 	if (IS_ENABLED(CONFIG_FRONTSWAP))
 | |
| 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
 | |
| 					 sizeof(long),
 | |
| 					 GFP_KERNEL);
 | |
| 
 | |
| 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
 | |
| 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
 | |
| 		/*
 | |
| 		 * When discard is enabled for swap with no particular
 | |
| 		 * policy flagged, we set all swap discard flags here in
 | |
| 		 * order to sustain backward compatibility with older
 | |
| 		 * swapon(8) releases.
 | |
| 		 */
 | |
| 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
 | |
| 			     SWP_PAGE_DISCARD);
 | |
| 
 | |
| 		/*
 | |
| 		 * By flagging sys_swapon, a sysadmin can tell us to
 | |
| 		 * either do single-time area discards only, or to just
 | |
| 		 * perform discards for released swap page-clusters.
 | |
| 		 * Now it's time to adjust the p->flags accordingly.
 | |
| 		 */
 | |
| 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
 | |
| 			p->flags &= ~SWP_PAGE_DISCARD;
 | |
| 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
 | |
| 			p->flags &= ~SWP_AREA_DISCARD;
 | |
| 
 | |
| 		/* issue a swapon-time discard if it's still required */
 | |
| 		if (p->flags & SWP_AREA_DISCARD) {
 | |
| 			int err = discard_swap(p);
 | |
| 			if (unlikely(err))
 | |
| 				pr_err("swapon: discard_swap(%p): %d\n",
 | |
| 					p, err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = init_swap_address_space(p->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush any pending IO and dirty mappings before we start using this
 | |
| 	 * swap device.
 | |
| 	 */
 | |
| 	inode->i_flags |= S_SWAPFILE;
 | |
| 	error = inode_drain_writes(inode);
 | |
| 	if (error) {
 | |
| 		inode->i_flags &= ~S_SWAPFILE;
 | |
| 		goto free_swap_address_space;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	prio = -1;
 | |
| 	if (swap_flags & SWAP_FLAG_PREFER)
 | |
| 		prio =
 | |
| 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 | |
| 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
 | |
| 
 | |
| 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
 | |
| 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 | |
| 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
 | |
| 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
 | |
| 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
 | |
| 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
 | |
| 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
 | |
| 		(frontswap_map) ? "FS" : "");
 | |
| 
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| 	error = 0;
 | |
| 	goto out;
 | |
| free_swap_address_space:
 | |
| 	exit_swap_address_space(p->type);
 | |
| bad_swap_unlock_inode:
 | |
| 	inode_unlock(inode);
 | |
| bad_swap:
 | |
| 	free_percpu(p->percpu_cluster);
 | |
| 	p->percpu_cluster = NULL;
 | |
| 	free_percpu(p->cluster_next_cpu);
 | |
| 	p->cluster_next_cpu = NULL;
 | |
| 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 | |
| 		set_blocksize(p->bdev, p->old_block_size);
 | |
| 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | |
| 	}
 | |
| 	inode = NULL;
 | |
| 	destroy_swap_extents(p);
 | |
| 	swap_cgroup_swapoff(p->type);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->swap_file = NULL;
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	vfree(swap_map);
 | |
| 	kvfree(cluster_info);
 | |
| 	kvfree(frontswap_map);
 | |
| 	if (inced_nr_rotate_swap)
 | |
| 		atomic_dec(&nr_rotate_swap);
 | |
| 	if (swap_file)
 | |
| 		filp_close(swap_file, NULL);
 | |
| out:
 | |
| 	if (page && !IS_ERR(page)) {
 | |
| 		kunmap(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	if (name)
 | |
| 		putname(name);
 | |
| 	if (inode)
 | |
| 		inode_unlock(inode);
 | |
| 	if (!error)
 | |
| 		enable_swap_slots_cache();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void si_swapinfo(struct sysinfo *val)
 | |
| {
 | |
| 	unsigned int type;
 | |
| 	unsigned long nr_to_be_unused = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *si = swap_info[type];
 | |
| 
 | |
| 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
 | |
| 			nr_to_be_unused += si->inuse_pages;
 | |
| 	}
 | |
| 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
 | |
| 	val->totalswap = total_swap_pages + nr_to_be_unused;
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that a swap entry is valid and increment its swap map count.
 | |
|  *
 | |
|  * Returns error code in following case.
 | |
|  * - success -> 0
 | |
|  * - swp_entry is invalid -> EINVAL
 | |
|  * - swp_entry is migration entry -> EINVAL
 | |
|  * - swap-cache reference is requested but there is already one. -> EEXIST
 | |
|  * - swap-cache reference is requested but the entry is not used. -> ENOENT
 | |
|  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
 | |
|  */
 | |
| static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset;
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 	int err;
 | |
| 
 | |
| 	p = get_swap_device(entry);
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 	ci = lock_cluster_or_swap_info(p, offset);
 | |
| 
 | |
| 	count = p->swap_map[offset];
 | |
| 
 | |
| 	/*
 | |
| 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
 | |
| 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
 | |
| 	 */
 | |
| 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
 | |
| 		err = -ENOENT;
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 
 | |
| 	has_cache = count & SWAP_HAS_CACHE;
 | |
| 	count &= ~SWAP_HAS_CACHE;
 | |
| 	err = 0;
 | |
| 
 | |
| 	if (usage == SWAP_HAS_CACHE) {
 | |
| 
 | |
| 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
 | |
| 		if (!has_cache && count)
 | |
| 			has_cache = SWAP_HAS_CACHE;
 | |
| 		else if (has_cache)		/* someone else added cache */
 | |
| 			err = -EEXIST;
 | |
| 		else				/* no users remaining */
 | |
| 			err = -ENOENT;
 | |
| 
 | |
| 	} else if (count || has_cache) {
 | |
| 
 | |
| 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 | |
| 			count += usage;
 | |
| 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
 | |
| 			err = -EINVAL;
 | |
| 		else if (swap_count_continued(p, offset, count))
 | |
| 			count = COUNT_CONTINUED;
 | |
| 		else
 | |
| 			err = -ENOMEM;
 | |
| 	} else
 | |
| 		err = -ENOENT;			/* unused swap entry */
 | |
| 
 | |
| 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
 | |
| 
 | |
| unlock_out:
 | |
| 	unlock_cluster_or_swap_info(p, ci);
 | |
| 	put_swap_device(p);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
 | |
|  * (in which case its reference count is never incremented).
 | |
|  */
 | |
| void swap_shmem_alloc(swp_entry_t entry)
 | |
| {
 | |
| 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase reference count of swap entry by 1.
 | |
|  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
 | |
|  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
 | |
|  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
 | |
|  * might occur if a page table entry has got corrupted.
 | |
|  */
 | |
| int swap_duplicate(swp_entry_t entry)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
 | |
| 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @entry: swap entry for which we allocate swap cache.
 | |
|  *
 | |
|  * Called when allocating swap cache for existing swap entry,
 | |
|  * This can return error codes. Returns 0 at success.
 | |
|  * -EEXIST means there is a swap cache.
 | |
|  * Note: return code is different from swap_duplicate().
 | |
|  */
 | |
| int swapcache_prepare(swp_entry_t entry)
 | |
| {
 | |
| 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
 | |
| }
 | |
| 
 | |
| struct swap_info_struct *swp_swap_info(swp_entry_t entry)
 | |
| {
 | |
| 	return swap_type_to_swap_info(swp_type(entry));
 | |
| }
 | |
| 
 | |
| struct swap_info_struct *page_swap_info(struct page *page)
 | |
| {
 | |
| 	swp_entry_t entry = { .val = page_private(page) };
 | |
| 	return swp_swap_info(entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * out-of-line methods to avoid include hell.
 | |
|  */
 | |
| struct address_space *swapcache_mapping(struct folio *folio)
 | |
| {
 | |
| 	return page_swap_info(&folio->page)->swap_file->f_mapping;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(swapcache_mapping);
 | |
| 
 | |
| pgoff_t __page_file_index(struct page *page)
 | |
| {
 | |
| 	swp_entry_t swap = { .val = page_private(page) };
 | |
| 	return swp_offset(swap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__page_file_index);
 | |
| 
 | |
| /*
 | |
|  * add_swap_count_continuation - called when a swap count is duplicated
 | |
|  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
 | |
|  * page of the original vmalloc'ed swap_map, to hold the continuation count
 | |
|  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
 | |
|  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
 | |
|  *
 | |
|  * These continuation pages are seldom referenced: the common paths all work
 | |
|  * on the original swap_map, only referring to a continuation page when the
 | |
|  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
 | |
|  *
 | |
|  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
 | |
|  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
 | |
|  * can be called after dropping locks.
 | |
|  */
 | |
| int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	struct page *list_page;
 | |
| 	pgoff_t offset;
 | |
| 	unsigned char count;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
 | |
| 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
 | |
| 	 */
 | |
| 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
 | |
| 
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (!si) {
 | |
| 		/*
 | |
| 		 * An acceptable race has occurred since the failing
 | |
| 		 * __swap_duplicate(): the swap device may be swapoff
 | |
| 		 */
 | |
| 		goto outer;
 | |
| 	}
 | |
| 	spin_lock(&si->lock);
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 
 | |
| 	count = swap_count(si->swap_map[offset]);
 | |
| 
 | |
| 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
 | |
| 		/*
 | |
| 		 * The higher the swap count, the more likely it is that tasks
 | |
| 		 * will race to add swap count continuation: we need to avoid
 | |
| 		 * over-provisioning.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!page) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
 | |
| 	 * no architecture is using highmem pages for kernel page tables: so it
 | |
| 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
 | |
| 	 */
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 
 | |
| 	spin_lock(&si->cont_lock);
 | |
| 	/*
 | |
| 	 * Page allocation does not initialize the page's lru field,
 | |
| 	 * but it does always reset its private field.
 | |
| 	 */
 | |
| 	if (!page_private(head)) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		INIT_LIST_HEAD(&head->lru);
 | |
| 		set_page_private(head, SWP_CONTINUED);
 | |
| 		si->flags |= SWP_CONTINUED;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(list_page, &head->lru, lru) {
 | |
| 		unsigned char *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the previous map said no continuation, but we've found
 | |
| 		 * a continuation page, free our allocation and use this one.
 | |
| 		 */
 | |
| 		if (!(count & COUNT_CONTINUED))
 | |
| 			goto out_unlock_cont;
 | |
| 
 | |
| 		map = kmap_atomic(list_page) + offset;
 | |
| 		count = *map;
 | |
| 		kunmap_atomic(map);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this continuation count now has some space in it,
 | |
| 		 * free our allocation and use this one.
 | |
| 		 */
 | |
| 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
 | |
| 			goto out_unlock_cont;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&page->lru, &head->lru);
 | |
| 	page = NULL;			/* now it's attached, don't free it */
 | |
| out_unlock_cont:
 | |
| 	spin_unlock(&si->cont_lock);
 | |
| out:
 | |
| 	unlock_cluster(ci);
 | |
| 	spin_unlock(&si->lock);
 | |
| 	put_swap_device(si);
 | |
| outer:
 | |
| 	if (page)
 | |
| 		__free_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap_count_continued - when the original swap_map count is incremented
 | |
|  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
 | |
|  * into, carry if so, or else fail until a new continuation page is allocated;
 | |
|  * when the original swap_map count is decremented from 0 with continuation,
 | |
|  * borrow from the continuation and report whether it still holds more.
 | |
|  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
 | |
|  * lock.
 | |
|  */
 | |
| static bool swap_count_continued(struct swap_info_struct *si,
 | |
| 				 pgoff_t offset, unsigned char count)
 | |
| {
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	unsigned char *map;
 | |
| 	bool ret;
 | |
| 
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	if (page_private(head) != SWP_CONTINUED) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		return false;		/* need to add count continuation */
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&si->cont_lock);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 	page = list_next_entry(head, lru);
 | |
| 	map = kmap_atomic(page) + offset;
 | |
| 
 | |
| 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
 | |
| 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
 | |
| 
 | |
| 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
 | |
| 		/*
 | |
| 		 * Think of how you add 1 to 999
 | |
| 		 */
 | |
| 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 		}
 | |
| 		if (*map == SWAP_CONT_MAX) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			if (page == head) {
 | |
| 				ret = false;	/* add count continuation */
 | |
| 				goto out;
 | |
| 			}
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| init_map:		*map = 0;		/* we didn't zero the page */
 | |
| 		}
 | |
| 		*map += 1;
 | |
| 		kunmap_atomic(map);
 | |
| 		while ((page = list_prev_entry(page, lru)) != head) {
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 			*map = COUNT_CONTINUED;
 | |
| 			kunmap_atomic(map);
 | |
| 		}
 | |
| 		ret = true;			/* incremented */
 | |
| 
 | |
| 	} else {				/* decrementing */
 | |
| 		/*
 | |
| 		 * Think of how you subtract 1 from 1000
 | |
| 		 */
 | |
| 		BUG_ON(count != COUNT_CONTINUED);
 | |
| 		while (*map == COUNT_CONTINUED) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 		}
 | |
| 		BUG_ON(*map == 0);
 | |
| 		*map -= 1;
 | |
| 		if (*map == 0)
 | |
| 			count = 0;
 | |
| 		kunmap_atomic(map);
 | |
| 		while ((page = list_prev_entry(page, lru)) != head) {
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 			*map = SWAP_CONT_MAX | count;
 | |
| 			count = COUNT_CONTINUED;
 | |
| 			kunmap_atomic(map);
 | |
| 		}
 | |
| 		ret = count == COUNT_CONTINUED;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&si->cont_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free_swap_count_continuations - swapoff free all the continuation pages
 | |
|  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
 | |
|  */
 | |
| static void free_swap_count_continuations(struct swap_info_struct *si)
 | |
| {
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
 | |
| 		struct page *head;
 | |
| 		head = vmalloc_to_page(si->swap_map + offset);
 | |
| 		if (page_private(head)) {
 | |
| 			struct page *page, *next;
 | |
| 
 | |
| 			list_for_each_entry_safe(page, next, &head->lru, lru) {
 | |
| 				list_del(&page->lru);
 | |
| 				__free_page(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
 | |
| void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct swap_info_struct *si, *next;
 | |
| 	int nid = page_to_nid(page);
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_IO))
 | |
| 		return;
 | |
| 
 | |
| 	if (!blk_cgroup_congested())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We've already scheduled a throttle, avoid taking the global swap
 | |
| 	 * lock.
 | |
| 	 */
 | |
| 	if (current->throttle_queue)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
 | |
| 				  avail_lists[nid]) {
 | |
| 		if (si->bdev) {
 | |
| 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __init swapfile_init(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!swap_avail_heads) {
 | |
| 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		plist_head_init(&swap_avail_heads[nid]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(swapfile_init);
 |