linux/drivers/gpu/drm/i915/gt/intel_gt.c
Linus Torvalds 28eb75e178 drm for 6.13-rc1
core:
 - split DSC helpers from DP helpers
 - clang build fixes for drm/mm test
 - drop simple pipeline support for gem vram
 - document submission error signaling
 - move drm_rect to drm core module from kms helper
 - add default client setup to most drivers
 - move to video aperture helpers instead of drm ones
 
 tests:
 - new framebuffer tests
 
 ttm:
 - remove swapped and pinned BOs from TTM lru
 
 panic:
 - fix uninit spinlock
 - add ABGR2101010 support
 
 bridge:
 - add TI TDP158 support
 - use standard PM OPS
 
 dma-fence:
 - use read_trylock instead of read_lock to help lockdep
 
 scheduler:
 - add errno to sched start to report different errors
 - add locking to drm_sched_entity_modify_sched
 - improve documentation
 
 xe:
 - add drm_line_printer
 - lots of refactoring
 - Enable Xe2 + PES disaggregation
 - add new ARL PCI ID
 - SRIOV development work
 - fix exec unnecessary implicit fence
 - define and parse OA sync props
 - forcewake refactoring
 
 i915:
 - Enable BMG/LNL ultra joiner
 - Enable 10bpx + CCS scanout on ICL+, fp16/CCS on TGL+
 - use DSB for plane/color mgmt
 - Arrow lake PCI IDs
 - lots of i915/xe display refactoring
 - enable PXP GuC autoteardown
 - Pantherlake (PTL) Xe3 LPD display enablement
 - Allow fastset HDR infoframe changes
 - write DP source OUI for non-eDP sinks
 - share PCI IDs between i915 and xe
 
 amdgpu:
 - SDMA queue reset support
 - SMU 13.0.6, JPEG 4.0.3 updates
 - Initial runtime repartitioning support
 - rework IP structs for multiple IP instances
 - Fetch EDID from _DDC if available
 - SMU13 zero rpm user control
 - lots of fixes/cleanups
 
 amdkfd:
 - Increase event FIFO size
 - add topology cap flag for per queue reset
 
 msm:
 - DPU:
 - SA8775P support
 - (disabled by default) MSM8917, MSM8937, MSM8953 and MSM8996 support
 - Enable large framebuffer support
 - Drop MSM8998 and SDM845
 - DP:
 - SA8775P support
 - GPU:
 - a7xx preemption support
 - Adreno A663 support
 
 ast:
 - warn about unsupported TX chips
 
 ivpu:
 - add coredump
 - add pantherlake support
 
 rockchip:
 - 4K@60Hz display enablement
 - generate pll programming tables
 
 panthor:
 - add timestamp query API
 - add realtime group priority
 - add fdinfo support
 
 etnaviv:
 - improve handling of DMA address limits
 - improve GPU hangcheck
 
 exynos:
 - Decon Exynos7870 support
 
 mediatek:
 - add OF graph support
 
 omap:
 - locking fixes
 
 bochs:
 - convert to gem/shmem from simpledrm
 
 v3d:
 - support big/super pages
 - add gemfs
 
 vc4:
 - BCM2712 support refactoring
 - add YUV444 format support
 
 udmabuf:
 - folio related fixes
 
 nouveau:
 - add panic support on nv50+
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmc+efwACgkQDHTzWXnE
 hr6Dyg/9HVVI3lxuWAz9MEt3w+BON5KTJAxg5Zhvc5DwiUbDXghu8sfkUfanDWS5
 /MqyPqLt5srXrtKTRDnzEI0Vf8YHeiDEcaydjpshEpCfteHZ7SADpvem8fp6/otV
 iYt8U6tMcGe9I+M2kwDkOTrKJIiyCKPi5hfBIAkxEAh6806ifPRtLkeMGbaSwBxH
 x6kZTE9ygGWAY7bAgbmVmm3JwrXG9mYDl9dW3cbi9gZ6PGAXHPZRUPvZoHhvfC2A
 UVgROH76Spm4rdWYGI3azj+gW3HsdGgUHcysb+lu37i261E+sT7kuV2UYtnOMzr5
 igO1RlQ+rcfPYLG4n+oNXDMu5d1OQXELrlQzXptym4Konpd7b/GSeVctWV0wHWuv
 nG8g7DWAFFnLAdeWqLZpf1Brze33h5+572D3BioWB4LYSEATjwoTwcBKsdRuc4Wk
 RHxjumCidybTdo/8EB1ElGlH39m/mDQA0scMlVhS/BuiIssfgcBRfltI8S3HzHcW
 YQYq6xH7F9E3shs3/TYbWR4clm66ZTnZV6ClDfGJolzyF/hbV0rsbeSpDelpooE8
 1Js7KuwVa+HvA4jtupY9vqxMTdXWwoGPfuUgKpOAreYibnd1T9Q1zVme/B1bUH05
 518IjiMGCxDnBvFWaPT9DcX4zg7pS3yzjw3hGkdz3reUqat0Gy8=
 =8cUI
 -----END PGP SIGNATURE-----

Merge tag 'drm-next-2024-11-21' of https://gitlab.freedesktop.org/drm/kernel

Pull drm updates from Dave Airlie:
 "There's a lot of rework, the panic helper support is being added to
  more drivers, v3d gets support for HW superpages, scheduler
  documentation, drm client and video aperture reworks, some new
  MAINTAINERS added, amdgpu has the usual lots of IP refactors, Intel
  has some Pantherlake enablement and xe is getting some SRIOV bits, but
  just lots of stuff everywhere.

  core:
   - split DSC helpers from DP helpers
   - clang build fixes for drm/mm test
   - drop simple pipeline support for gem vram
   - document submission error signaling
   - move drm_rect to drm core module from kms helper
   - add default client setup to most drivers
   - move to video aperture helpers instead of drm ones

  tests:
   - new framebuffer tests

  ttm:
   - remove swapped and pinned BOs from TTM lru

  panic:
   - fix uninit spinlock
   - add ABGR2101010 support

  bridge:
   - add TI TDP158 support
   - use standard PM OPS

  dma-fence:
   - use read_trylock instead of read_lock to help lockdep

  scheduler:
   - add errno to sched start to report different errors
   - add locking to drm_sched_entity_modify_sched
   - improve documentation

  xe:
   - add drm_line_printer
   - lots of refactoring
   - Enable Xe2 + PES disaggregation
   - add new ARL PCI ID
   - SRIOV development work
   - fix exec unnecessary implicit fence
   - define and parse OA sync props
   - forcewake refactoring

  i915:
   - Enable BMG/LNL ultra joiner
   - Enable 10bpx + CCS scanout on ICL+, fp16/CCS on TGL+
   - use DSB for plane/color mgmt
   - Arrow lake PCI IDs
   - lots of i915/xe display refactoring
   - enable PXP GuC autoteardown
   - Pantherlake (PTL) Xe3 LPD display enablement
   - Allow fastset HDR infoframe changes
   - write DP source OUI for non-eDP sinks
   - share PCI IDs between i915 and xe

  amdgpu:
   - SDMA queue reset support
   - SMU 13.0.6, JPEG 4.0.3 updates
   - Initial runtime repartitioning support
   - rework IP structs for multiple IP instances
   - Fetch EDID from _DDC if available
   - SMU13 zero rpm user control
   - lots of fixes/cleanups

  amdkfd:
   - Increase event FIFO size
   - add topology cap flag for per queue reset

  msm:
   - DPU:
      - SA8775P support
      - (disabled by default) MSM8917, MSM8937, MSM8953 and MSM8996 support
      - Enable large framebuffer support
      - Drop MSM8998 and SDM845
   - DP:
      - SA8775P support
   - GPU:
      - a7xx preemption support
      - Adreno A663 support

  ast:
   - warn about unsupported TX chips

  ivpu:
   - add coredump
   - add pantherlake support

  rockchip:
   - 4K@60Hz display enablement
   - generate pll programming tables

  panthor:
   - add timestamp query API
   - add realtime group priority
   - add fdinfo support

  etnaviv:
   - improve handling of DMA address limits
   - improve GPU hangcheck

  exynos:
   - Decon Exynos7870 support

  mediatek:
   - add OF graph support

  omap:
   - locking fixes

  bochs:
   - convert to gem/shmem from simpledrm

  v3d:
   - support big/super pages
   - add gemfs

  vc4:
   - BCM2712 support refactoring
   - add YUV444 format support

  udmabuf:
   - folio related fixes

  nouveau:
   - add panic support on nv50+"

* tag 'drm-next-2024-11-21' of https://gitlab.freedesktop.org/drm/kernel: (1583 commits)
  drm/xe/guc: Fix dereference before NULL check
  drm/amd: Fix initialization mistake for NBIO 7.7.0
  Revert "drm/amd/display: parse umc_info or vram_info based on ASIC"
  drm/amd/display: Fix failure to read vram info due to static BP_RESULT
  drm/amdgpu: enable GTT fallback handling for dGPUs only
  drm/amd/amdgpu: limit single process inside MES
  drm/fourcc: add AMD_FMT_MOD_TILE_GFX9_4K_D_X
  drm/amdgpu/mes12: correct kiq unmap latency
  drm/amdgpu: Support vcn and jpeg error info parsing
  drm/amd : Update MES API header file for v11 & v12
  drm/amd/amdkfd: add/remove kfd queues on start/stop KFD scheduling
  drm/amdkfd: change kfd process kref count at creation
  drm/amdgpu: Cleanup shift coding style
  drm/amd/amdgpu: Increase MES log buffer to dump mes scratch data
  drm/amdgpu: Implement virt req_ras_err_count
  drm/amdgpu: VF Query RAS Caps from Host if supported
  drm/amdgpu: Add msg handlers for SRIOV RAS Telemetry
  drm/amdgpu: Update SRIOV Exchange Headers for RAS Telemetry Support
  drm/amd/display: 3.2.309
  drm/amd/display: Adjust VSDB parser for replay feature
  ...
2024-11-21 14:56:17 -08:00

1085 lines
26 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_managed.h>
#include <drm/intel/intel-gtt.h>
#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_lmem.h"
#include "i915_drv.h"
#include "i915_perf_oa_regs.h"
#include "i915_reg.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_engine_regs.h"
#include "intel_ggtt_gmch.h"
#include "intel_gt.h"
#include "intel_gt_buffer_pool.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_debugfs.h"
#include "intel_gt_mcr.h"
#include "intel_gt_pm.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_gt_requests.h"
#include "intel_migrate.h"
#include "intel_mocs.h"
#include "intel_pci_config.h"
#include "intel_rc6.h"
#include "intel_renderstate.h"
#include "intel_rps.h"
#include "intel_sa_media.h"
#include "intel_gt_sysfs.h"
#include "intel_tlb.h"
#include "intel_uncore.h"
#include "shmem_utils.h"
void intel_gt_common_init_early(struct intel_gt *gt)
{
spin_lock_init(gt->irq_lock);
INIT_LIST_HEAD(&gt->closed_vma);
spin_lock_init(&gt->closed_lock);
init_llist_head(&gt->watchdog.list);
INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
intel_gt_init_buffer_pool(gt);
intel_gt_init_reset(gt);
intel_gt_init_requests(gt);
intel_gt_init_timelines(gt);
intel_gt_init_tlb(gt);
intel_gt_pm_init_early(gt);
intel_wopcm_init_early(&gt->wopcm);
intel_uc_init_early(&gt->uc);
intel_rps_init_early(&gt->rps);
}
/* Preliminary initialization of Tile 0 */
int intel_root_gt_init_early(struct drm_i915_private *i915)
{
struct intel_gt *gt;
gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
if (!gt)
return -ENOMEM;
i915->gt[0] = gt;
gt->i915 = i915;
gt->uncore = &i915->uncore;
gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
if (!gt->irq_lock)
return -ENOMEM;
intel_gt_common_init_early(gt);
return 0;
}
static int intel_gt_probe_lmem(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
unsigned int instance = gt->info.id;
int id = INTEL_REGION_LMEM_0 + instance;
struct intel_memory_region *mem;
int err;
mem = intel_gt_setup_lmem(gt);
if (IS_ERR(mem)) {
err = PTR_ERR(mem);
if (err == -ENODEV)
return 0;
gt_err(gt, "Failed to setup region(%d) type=%d\n",
err, INTEL_MEMORY_LOCAL);
return err;
}
mem->id = id;
mem->instance = instance;
intel_memory_region_set_name(mem, "local%u", mem->instance);
GEM_BUG_ON(!HAS_REGION(i915, id));
GEM_BUG_ON(i915->mm.regions[id]);
i915->mm.regions[id] = mem;
return 0;
}
int intel_gt_assign_ggtt(struct intel_gt *gt)
{
/* Media GT shares primary GT's GGTT */
if (gt->type == GT_MEDIA) {
gt->ggtt = to_gt(gt->i915)->ggtt;
} else {
gt->ggtt = i915_ggtt_create(gt->i915);
if (IS_ERR(gt->ggtt))
return PTR_ERR(gt->ggtt);
}
list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
return 0;
}
int intel_gt_init_mmio(struct intel_gt *gt)
{
intel_gt_init_clock_frequency(gt);
intel_uc_init_mmio(&gt->uc);
intel_sseu_info_init(gt);
intel_gt_mcr_init(gt);
return intel_engines_init_mmio(gt);
}
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
struct intel_uncore *uncore = gt->uncore;
intel_uncore_write(uncore, RING_CTL(base), 0);
intel_uncore_write(uncore, RING_HEAD(base), 0);
intel_uncore_write(uncore, RING_TAIL(base), 0);
intel_uncore_write(uncore, RING_START(base), 0);
}
static void init_unused_rings(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
if (IS_I830(i915)) {
init_unused_ring(gt, PRB1_BASE);
init_unused_ring(gt, SRB0_BASE);
init_unused_ring(gt, SRB1_BASE);
init_unused_ring(gt, SRB2_BASE);
init_unused_ring(gt, SRB3_BASE);
} else if (GRAPHICS_VER(i915) == 2) {
init_unused_ring(gt, SRB0_BASE);
init_unused_ring(gt, SRB1_BASE);
} else if (GRAPHICS_VER(i915) == 3) {
init_unused_ring(gt, PRB1_BASE);
init_unused_ring(gt, PRB2_BASE);
}
}
int intel_gt_init_hw(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
int ret;
gt->last_init_time = ktime_get();
/* Double layer security blanket, see i915_gem_init() */
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
if (IS_HASWELL(i915))
intel_uncore_write(uncore,
HSW_MI_PREDICATE_RESULT_2,
INTEL_INFO(i915)->gt == 3 ?
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
/* Apply the GT workarounds... */
intel_gt_apply_workarounds(gt);
/* ...and determine whether they are sticking. */
intel_gt_verify_workarounds(gt, "init");
intel_gt_init_swizzling(gt);
/*
* At least 830 can leave some of the unused rings
* "active" (ie. head != tail) after resume which
* will prevent c3 entry. Makes sure all unused rings
* are totally idle.
*/
init_unused_rings(gt);
ret = i915_ppgtt_init_hw(gt);
if (ret) {
gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
goto out;
}
/* We can't enable contexts until all firmware is loaded */
ret = intel_uc_init_hw(&gt->uc);
if (ret) {
gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
goto out;
}
intel_mocs_init(gt);
out:
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
return ret;
}
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
{
GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
GEN6_RING_FAULT_REG_POSTING_READ(engine);
}
i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
{
/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
if (GRAPHICS_VER(gt->i915) < 11)
return INVALID_MMIO_REG;
return gt->type == GT_MEDIA ?
MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
}
void
intel_gt_clear_error_registers(struct intel_gt *gt,
intel_engine_mask_t engine_mask)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
u32 eir;
if (GRAPHICS_VER(i915) != 2)
intel_uncore_write(uncore, PGTBL_ER, 0);
if (GRAPHICS_VER(i915) < 4)
intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
else
intel_uncore_write(uncore, IPEIR_I965, 0);
intel_uncore_write(uncore, EIR, 0);
eir = intel_uncore_read(uncore, EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
intel_uncore_rmw(uncore, EMR, 0, eir);
intel_uncore_write(uncore, GEN2_IIR,
I915_MASTER_ERROR_INTERRUPT);
}
/*
* For the media GT, this ring fault register is not replicated,
* so don't do multicast/replicated register read/write operation on it.
*/
if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG,
RING_FAULT_VALID, 0);
intel_uncore_posting_read(uncore,
XELPMP_RING_FAULT_REG);
} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
RING_FAULT_VALID, 0);
intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
} else if (GRAPHICS_VER(i915) >= 12) {
intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
} else if (GRAPHICS_VER(i915) >= 8) {
intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
} else if (GRAPHICS_VER(i915) >= 6) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine_masked(engine, gt, engine_mask, id)
gen6_clear_engine_error_register(engine);
}
}
static void gen6_check_faults(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned long fault;
for_each_engine(engine, gt, id) {
fault = GEN6_RING_FAULT_REG_READ(engine);
if (fault & RING_FAULT_VALID) {
gt_dbg(gt, "Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %ld\n"
"\tType: %ld\n",
fault & PAGE_MASK,
fault & RING_FAULT_GTTSEL_MASK ?
"GGTT" : "PPGTT",
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
}
static void xehp_check_faults(struct intel_gt *gt)
{
u32 fault;
/*
* Although the fault register now lives in an MCR register range,
* the GAM registers are special and we only truly need to read
* the "primary" GAM instance rather than handling each instance
* individually. intel_gt_mcr_read_any() will automatically steer
* toward the primary instance.
*/
fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
if (fault & RING_FAULT_VALID) {
u32 fault_data0, fault_data1;
u64 fault_addr;
fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
((u64)fault_data0 << 12);
gt_dbg(gt, "Unexpected fault\n"
"\tAddr: 0x%08x_%08x\n"
"\tAddress space: %s\n"
"\tEngine ID: %d\n"
"\tSource ID: %d\n"
"\tType: %d\n",
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
GEN8_RING_FAULT_ENGINE_ID(fault),
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
static void gen8_check_faults(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
u32 fault;
if (GRAPHICS_VER(gt->i915) >= 12) {
fault_reg = GEN12_RING_FAULT_REG;
fault_data0_reg = GEN12_FAULT_TLB_DATA0;
fault_data1_reg = GEN12_FAULT_TLB_DATA1;
} else {
fault_reg = GEN8_RING_FAULT_REG;
fault_data0_reg = GEN8_FAULT_TLB_DATA0;
fault_data1_reg = GEN8_FAULT_TLB_DATA1;
}
fault = intel_uncore_read(uncore, fault_reg);
if (fault & RING_FAULT_VALID) {
u32 fault_data0, fault_data1;
u64 fault_addr;
fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
((u64)fault_data0 << 12);
gt_dbg(gt, "Unexpected fault\n"
"\tAddr: 0x%08x_%08x\n"
"\tAddress space: %s\n"
"\tEngine ID: %d\n"
"\tSource ID: %d\n"
"\tType: %d\n",
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
GEN8_RING_FAULT_ENGINE_ID(fault),
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
xehp_check_faults(gt);
else if (GRAPHICS_VER(i915) >= 8)
gen8_check_faults(gt);
else if (GRAPHICS_VER(i915) >= 6)
gen6_check_faults(gt);
else
return;
intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
intel_wakeref_t wakeref;
/*
* No actual flushing is required for the GTT write domain for reads
* from the GTT domain. Writes to it "immediately" go to main memory
* as far as we know, so there's no chipset flush. It also doesn't
* land in the GPU render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*
* We also have to wait a bit for the writes to land from the GTT.
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
* timing. This issue has only been observed when switching quickly
* between GTT writes and CPU reads from inside the kernel on recent hw,
* and it appears to only affect discrete GTT blocks (i.e. on LLC
* system agents we cannot reproduce this behaviour, until Cannonlake
* that was!).
*/
wmb();
if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
return;
intel_gt_chipset_flush(gt);
with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
unsigned long flags;
spin_lock_irqsave(&uncore->lock, flags);
intel_uncore_posting_read_fw(uncore,
RING_TAIL(RENDER_RING_BASE));
spin_unlock_irqrestore(&uncore->lock, flags);
}
}
void intel_gt_chipset_flush(struct intel_gt *gt)
{
wmb();
if (GRAPHICS_VER(gt->i915) < 6)
intel_ggtt_gmch_flush();
}
void intel_gt_driver_register(struct intel_gt *gt)
{
intel_gsc_init(&gt->gsc, gt->i915);
intel_rps_driver_register(&gt->rps);
intel_gt_debugfs_register(gt);
intel_gt_sysfs_register(gt);
}
static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
{
struct drm_i915_private *i915 = gt->i915;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create_lmem(i915, size,
I915_BO_ALLOC_VOLATILE |
I915_BO_ALLOC_GPU_ONLY);
if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
obj = i915_gem_object_create_stolen(i915, size);
if (IS_ERR(obj))
obj = i915_gem_object_create_internal(i915, size);
if (IS_ERR(obj)) {
gt_err(gt, "Failed to allocate scratch page\n");
return PTR_ERR(obj);
}
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
if (ret)
goto err_unref;
gt->scratch = i915_vma_make_unshrinkable(vma);
return 0;
err_unref:
i915_gem_object_put(obj);
return ret;
}
static void intel_gt_fini_scratch(struct intel_gt *gt)
{
i915_vma_unpin_and_release(&gt->scratch, 0);
}
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
else
return i915_vm_get(&gt->ggtt->vm);
}
static int __engines_record_defaults(struct intel_gt *gt)
{
struct i915_request *requests[I915_NUM_ENGINES] = {};
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* As we reset the gpu during very early sanitisation, the current
* register state on the GPU should reflect its defaults values.
* We load a context onto the hw (with restore-inhibit), then switch
* over to a second context to save that default register state. We
* can then prime every new context with that state so they all start
* from the same default HW values.
*/
for_each_engine(engine, gt, id) {
struct intel_renderstate so;
struct intel_context *ce;
struct i915_request *rq;
/* We must be able to switch to something! */
GEM_BUG_ON(!engine->kernel_context);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
err = intel_renderstate_init(&so, ce);
if (err)
goto err;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_fini;
}
err = intel_engine_emit_ctx_wa(rq);
if (err)
goto err_rq;
err = intel_renderstate_emit(&so, rq);
if (err)
goto err_rq;
err_rq:
requests[id] = i915_request_get(rq);
i915_request_add(rq);
err_fini:
intel_renderstate_fini(&so, ce);
err:
if (err) {
intel_context_put(ce);
goto out;
}
}
/* Flush the default context image to memory, and enable powersaving. */
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
err = -EIO;
goto out;
}
for (id = 0; id < ARRAY_SIZE(requests); id++) {
struct i915_request *rq;
struct file *state;
rq = requests[id];
if (!rq)
continue;
if (rq->fence.error) {
err = -EIO;
goto out;
}
GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
if (!rq->context->state)
continue;
/* Keep a copy of the state's backing pages; free the obj */
state = shmem_create_from_object(rq->context->state->obj);
if (IS_ERR(state)) {
err = PTR_ERR(state);
goto out;
}
rq->engine->default_state = state;
}
out:
/*
* If we have to abandon now, we expect the engines to be idle
* and ready to be torn-down. The quickest way we can accomplish
* this is by declaring ourselves wedged.
*/
if (err)
intel_gt_set_wedged(gt);
for (id = 0; id < ARRAY_SIZE(requests); id++) {
struct intel_context *ce;
struct i915_request *rq;
rq = requests[id];
if (!rq)
continue;
ce = rq->context;
i915_request_put(rq);
intel_context_put(ce);
}
return err;
}
static int __engines_verify_workarounds(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return 0;
for_each_engine(engine, gt, id) {
if (intel_engine_verify_workarounds(engine, "load"))
err = -EIO;
}
/* Flush and restore the kernel context for safety */
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
err = -EIO;
return err;
}
static void __intel_gt_disable(struct intel_gt *gt)
{
intel_gt_set_wedged_on_fini(gt);
intel_gt_suspend_prepare(gt);
intel_gt_suspend_late(gt);
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
{
long remaining_timeout;
/* If the device is asleep, we have no requests outstanding */
if (!intel_gt_pm_is_awake(gt))
return 0;
while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
&remaining_timeout)) > 0) {
cond_resched();
if (signal_pending(current))
return -EINTR;
}
if (timeout)
return timeout;
if (remaining_timeout < 0)
remaining_timeout = 0;
return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
}
int intel_gt_init(struct intel_gt *gt)
{
int err;
err = i915_inject_probe_error(gt->i915, -ENODEV);
if (err)
return err;
intel_gt_init_workarounds(gt);
/*
* This is just a security blanket to placate dragons.
* On some systems, we very sporadically observe that the first TLBs
* used by the CS may be stale, despite us poking the TLB reset. If
* we hold the forcewake during initialisation these problems
* just magically go away.
*/
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
err = intel_gt_init_scratch(gt,
GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
if (err)
goto out_fw;
intel_gt_pm_init(gt);
gt->vm = kernel_vm(gt);
if (!gt->vm) {
err = -ENOMEM;
goto err_pm;
}
intel_set_mocs_index(gt);
err = intel_engines_init(gt);
if (err)
goto err_engines;
err = intel_uc_init(&gt->uc);
if (err)
goto err_engines;
err = intel_gt_resume(gt);
if (err)
goto err_uc_init;
err = intel_gt_init_hwconfig(gt);
if (err)
gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
err = __engines_record_defaults(gt);
if (err)
goto err_gt;
err = __engines_verify_workarounds(gt);
if (err)
goto err_gt;
err = i915_inject_probe_error(gt->i915, -EIO);
if (err)
goto err_gt;
intel_uc_init_late(&gt->uc);
intel_migrate_init(&gt->migrate, gt);
goto out_fw;
err_gt:
__intel_gt_disable(gt);
intel_uc_fini_hw(&gt->uc);
err_uc_init:
intel_uc_fini(&gt->uc);
err_engines:
intel_engines_release(gt);
i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
intel_gt_pm_fini(gt);
intel_gt_fini_scratch(gt);
out_fw:
if (err)
intel_gt_set_wedged_on_init(gt);
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
return err;
}
void intel_gt_driver_remove(struct intel_gt *gt)
{
__intel_gt_disable(gt);
intel_migrate_fini(&gt->migrate);
intel_uc_driver_remove(&gt->uc);
intel_engines_release(gt);
intel_gt_flush_buffer_pool(gt);
}
void intel_gt_driver_unregister(struct intel_gt *gt)
{
intel_wakeref_t wakeref;
intel_gt_sysfs_unregister(gt);
intel_rps_driver_unregister(&gt->rps);
intel_gsc_fini(&gt->gsc);
/*
* If we unload the driver and wedge before the GSC worker is complete,
* the worker will hit an error on its submission to the GSC engine and
* then exit. This is hard to hit for a user, but it is reproducible
* with skipping selftests. The error is handled gracefully by the
* worker, so there are no functional issues, but we still end up with
* an error message in dmesg, which is something we want to avoid as
* this is a supported scenario. We could modify the worker to better
* handle a wedging occurring during its execution, but that gets
* complicated for a couple of reasons:
* - We do want the error on runtime wedging, because there are
* implications for subsystems outside of GT (i.e., PXP, HDCP), it's
* only the error on driver unload that we want to silence.
* - The worker is responsible for multiple submissions (GSC FW load,
* HuC auth, SW proxy), so all of those will have to be adapted to
* handle the wedged_on_fini scenario.
* Therefore, it's much simpler to just wait for the worker to be done
* before wedging on driver removal, also considering that the worker
* will likely already be idle in the great majority of non-selftest
* scenarios.
*/
intel_gsc_uc_flush_work(&gt->uc.gsc);
/*
* Upon unregistering the device to prevent any new users, cancel
* all in-flight requests so that we can quickly unbind the active
* resources.
*/
intel_gt_set_wedged_on_fini(gt);
/* Scrub all HW state upon release */
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
intel_gt_reset_all_engines(gt);
}
void intel_gt_driver_release(struct intel_gt *gt)
{
struct i915_address_space *vm;
vm = fetch_and_zero(&gt->vm);
if (vm) /* FIXME being called twice on error paths :( */
i915_vm_put(vm);
intel_wa_list_free(&gt->wa_list);
intel_gt_pm_fini(gt);
intel_gt_fini_scratch(gt);
intel_gt_fini_buffer_pool(gt);
intel_gt_fini_hwconfig(gt);
}
void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
{
struct intel_gt *gt;
unsigned int id;
/* We need to wait for inflight RCU frees to release their grip */
rcu_barrier();
for_each_gt(gt, i915, id) {
intel_uc_driver_late_release(&gt->uc);
intel_gt_fini_requests(gt);
intel_gt_fini_reset(gt);
intel_gt_fini_timelines(gt);
intel_gt_fini_tlb(gt);
intel_engines_free(gt);
}
}
static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
{
int ret;
if (!gt_is_root(gt)) {
struct intel_uncore *uncore;
spinlock_t *irq_lock;
uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
if (!uncore)
return -ENOMEM;
irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
if (!irq_lock)
return -ENOMEM;
gt->uncore = uncore;
gt->irq_lock = irq_lock;
intel_gt_common_init_early(gt);
}
intel_uncore_init_early(gt->uncore, gt);
ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
if (ret)
return ret;
gt->phys_addr = phys_addr;
return 0;
}
int intel_gt_probe_all(struct drm_i915_private *i915)
{
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
struct intel_gt *gt = to_gt(i915);
const struct intel_gt_definition *gtdef;
phys_addr_t phys_addr;
unsigned int mmio_bar;
unsigned int i;
int ret;
mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
phys_addr = pci_resource_start(pdev, mmio_bar);
/*
* We always have at least one primary GT on any device
* and it has been already initialized early during probe
* in i915_driver_probe()
*/
gt->i915 = i915;
gt->name = "Primary GT";
gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
gt_dbg(gt, "Setting up %s\n", gt->name);
ret = intel_gt_tile_setup(gt, phys_addr);
if (ret)
return ret;
if (!HAS_EXTRA_GT_LIST(i915))
return 0;
for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
gtdef->name != NULL;
i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
if (!gt) {
ret = -ENOMEM;
goto err;
}
gt->i915 = i915;
gt->name = gtdef->name;
gt->type = gtdef->type;
gt->info.engine_mask = gtdef->engine_mask;
gt->info.id = i;
gt_dbg(gt, "Setting up %s\n", gt->name);
if (GEM_WARN_ON(range_overflows_t(resource_size_t,
gtdef->mapping_base,
SZ_16M,
pci_resource_len(pdev, mmio_bar)))) {
ret = -ENODEV;
goto err;
}
switch (gtdef->type) {
case GT_TILE:
ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
break;
case GT_MEDIA:
ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
gtdef->gsi_offset);
break;
case GT_PRIMARY:
/* Primary GT should not appear in extra GT list */
default:
MISSING_CASE(gtdef->type);
ret = -ENODEV;
}
if (ret)
goto err;
i915->gt[i] = gt;
}
return 0;
err:
i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
return ret;
}
int intel_gt_tiles_init(struct drm_i915_private *i915)
{
struct intel_gt *gt;
unsigned int id;
int ret;
for_each_gt(gt, i915, id) {
ret = intel_gt_probe_lmem(gt);
if (ret)
return ret;
}
return 0;
}
void intel_gt_info_print(const struct intel_gt_info *info,
struct drm_printer *p)
{
drm_printf(p, "available engines: %x\n", info->engine_mask);
intel_sseu_dump(&info->sseu, p);
}
enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
struct drm_i915_gem_object *obj,
bool always_coherent)
{
/*
* Wa_22016122933: always return I915_MAP_WC for Media
* version 13.0 when the object is on the Media GT
*/
if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
return I915_MAP_WC;
if (HAS_LLC(gt->i915) || always_coherent)
return I915_MAP_WB;
else
return I915_MAP_WC;
}
bool intel_gt_needs_wa_16018031267(struct intel_gt *gt)
{
/* Wa_16018031267, Wa_16018063123 */
return IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 55), IP_VER(12, 71));
}
bool intel_gt_needs_wa_22016122933(struct intel_gt *gt)
{
return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA;
}
static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready)
{
struct intel_engine_cs *engine = gt->engine[BCS0];
if (engine && engine->bind_context)
engine->bind_context_ready = ready;
}
/**
* intel_gt_bind_context_set_ready - Set the context binding as ready
*
* @gt: GT structure
*
* This function marks the binder context as ready.
*/
void intel_gt_bind_context_set_ready(struct intel_gt *gt)
{
__intel_gt_bind_context_set_ready(gt, true);
}
/**
* intel_gt_bind_context_set_unready - Set the context binding as ready
* @gt: GT structure
*
* This function marks the binder context as not ready.
*/
void intel_gt_bind_context_set_unready(struct intel_gt *gt)
{
__intel_gt_bind_context_set_ready(gt, false);
}
/**
* intel_gt_is_bind_context_ready - Check if context binding is ready
*
* @gt: GT structure
*
* This function returns binder context's ready status.
*/
bool intel_gt_is_bind_context_ready(struct intel_gt *gt)
{
struct intel_engine_cs *engine = gt->engine[BCS0];
if (engine)
return engine->bind_context_ready;
return false;
}