mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	This patch implements a union-find data structure in the kernel library, which includes operations for allocating nodes, freeing nodes, finding the root of a node, and merging two nodes. Signed-off-by: Xavier <xavier_qy@163.com> Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			49 lines
		
	
	
	
		
			1.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
	
		
			1.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#include <linux/union_find.h>
 | 
						|
 | 
						|
/**
 | 
						|
 * uf_find - Find the root of a node and perform path compression
 | 
						|
 * @node: the node to find the root of
 | 
						|
 *
 | 
						|
 * This function returns the root of the node by following the parent
 | 
						|
 * pointers. It also performs path compression, making the tree shallower.
 | 
						|
 *
 | 
						|
 * Returns the root node of the set containing node.
 | 
						|
 */
 | 
						|
struct uf_node *uf_find(struct uf_node *node)
 | 
						|
{
 | 
						|
	struct uf_node *parent;
 | 
						|
 | 
						|
	while (node->parent != node) {
 | 
						|
		parent = node->parent;
 | 
						|
		node->parent = parent->parent;
 | 
						|
		node = parent;
 | 
						|
	}
 | 
						|
	return node;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * uf_union - Merge two sets, using union by rank
 | 
						|
 * @node1: the first node
 | 
						|
 * @node2: the second node
 | 
						|
 *
 | 
						|
 * This function merges the sets containing node1 and node2, by comparing
 | 
						|
 * the ranks to keep the tree balanced.
 | 
						|
 */
 | 
						|
void uf_union(struct uf_node *node1, struct uf_node *node2)
 | 
						|
{
 | 
						|
	struct uf_node *root1 = uf_find(node1);
 | 
						|
	struct uf_node *root2 = uf_find(node2);
 | 
						|
 | 
						|
	if (root1 == root2)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (root1->rank < root2->rank) {
 | 
						|
		root1->parent = root2;
 | 
						|
	} else if (root1->rank > root2->rank) {
 | 
						|
		root2->parent = root1;
 | 
						|
	} else {
 | 
						|
		root2->parent = root1;
 | 
						|
		root1->rank++;
 | 
						|
	}
 | 
						|
}
 |