mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	As lib/mpi is mostly used by crypto code, move it under lib/crypto so that patches touching it get directed to the right mailing list. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			143 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* mpi-inv.c  -  MPI functions
 | 
						|
 *	Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
 | 
						|
 *
 | 
						|
 * This file is part of Libgcrypt.
 | 
						|
 *
 | 
						|
 * Libgcrypt is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU Lesser General Public License as
 | 
						|
 * published by the Free Software Foundation; either version 2.1 of
 | 
						|
 * the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libgcrypt is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "mpi-internal.h"
 | 
						|
 | 
						|
/****************
 | 
						|
 * Calculate the multiplicative inverse X of A mod N
 | 
						|
 * That is: Find the solution x for
 | 
						|
 *		1 = (a*x) mod n
 | 
						|
 */
 | 
						|
int mpi_invm(MPI x, MPI a, MPI n)
 | 
						|
{
 | 
						|
	/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
 | 
						|
	 * modified according to Michael Penk's solution for Exercise 35
 | 
						|
	 * with further enhancement
 | 
						|
	 */
 | 
						|
	MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3;
 | 
						|
	unsigned int k;
 | 
						|
	int sign;
 | 
						|
	int odd;
 | 
						|
 | 
						|
	if (!mpi_cmp_ui(a, 0))
 | 
						|
		return 0; /* Inverse does not exists.  */
 | 
						|
	if (!mpi_cmp_ui(n, 1))
 | 
						|
		return 0; /* Inverse does not exists.  */
 | 
						|
 | 
						|
	u = mpi_copy(a);
 | 
						|
	v = mpi_copy(n);
 | 
						|
 | 
						|
	for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
 | 
						|
		mpi_rshift(u, u, 1);
 | 
						|
		mpi_rshift(v, v, 1);
 | 
						|
	}
 | 
						|
	odd = mpi_test_bit(v, 0);
 | 
						|
 | 
						|
	u1 = mpi_alloc_set_ui(1);
 | 
						|
	if (!odd)
 | 
						|
		u2 = mpi_alloc_set_ui(0);
 | 
						|
	u3 = mpi_copy(u);
 | 
						|
	v1 = mpi_copy(v);
 | 
						|
	if (!odd) {
 | 
						|
		v2 = mpi_alloc(mpi_get_nlimbs(u));
 | 
						|
		mpi_sub(v2, u1, u); /* U is used as const 1 */
 | 
						|
	}
 | 
						|
	v3 = mpi_copy(v);
 | 
						|
	if (mpi_test_bit(u, 0)) { /* u is odd */
 | 
						|
		t1 = mpi_alloc_set_ui(0);
 | 
						|
		if (!odd) {
 | 
						|
			t2 = mpi_alloc_set_ui(1);
 | 
						|
			t2->sign = 1;
 | 
						|
		}
 | 
						|
		t3 = mpi_copy(v);
 | 
						|
		t3->sign = !t3->sign;
 | 
						|
		goto Y4;
 | 
						|
	} else {
 | 
						|
		t1 = mpi_alloc_set_ui(1);
 | 
						|
		if (!odd)
 | 
						|
			t2 = mpi_alloc_set_ui(0);
 | 
						|
		t3 = mpi_copy(u);
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		do {
 | 
						|
			if (!odd) {
 | 
						|
				if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) {
 | 
						|
					/* one is odd */
 | 
						|
					mpi_add(t1, t1, v);
 | 
						|
					mpi_sub(t2, t2, u);
 | 
						|
				}
 | 
						|
				mpi_rshift(t1, t1, 1);
 | 
						|
				mpi_rshift(t2, t2, 1);
 | 
						|
				mpi_rshift(t3, t3, 1);
 | 
						|
			} else {
 | 
						|
				if (mpi_test_bit(t1, 0))
 | 
						|
					mpi_add(t1, t1, v);
 | 
						|
				mpi_rshift(t1, t1, 1);
 | 
						|
				mpi_rshift(t3, t3, 1);
 | 
						|
			}
 | 
						|
Y4:
 | 
						|
			;
 | 
						|
		} while (!mpi_test_bit(t3, 0)); /* while t3 is even */
 | 
						|
 | 
						|
		if (!t3->sign) {
 | 
						|
			mpi_set(u1, t1);
 | 
						|
			if (!odd)
 | 
						|
				mpi_set(u2, t2);
 | 
						|
			mpi_set(u3, t3);
 | 
						|
		} else {
 | 
						|
			mpi_sub(v1, v, t1);
 | 
						|
			sign = u->sign; u->sign = !u->sign;
 | 
						|
			if (!odd)
 | 
						|
				mpi_sub(v2, u, t2);
 | 
						|
			u->sign = sign;
 | 
						|
			sign = t3->sign; t3->sign = !t3->sign;
 | 
						|
			mpi_set(v3, t3);
 | 
						|
			t3->sign = sign;
 | 
						|
		}
 | 
						|
		mpi_sub(t1, u1, v1);
 | 
						|
		if (!odd)
 | 
						|
			mpi_sub(t2, u2, v2);
 | 
						|
		mpi_sub(t3, u3, v3);
 | 
						|
		if (t1->sign) {
 | 
						|
			mpi_add(t1, t1, v);
 | 
						|
			if (!odd)
 | 
						|
				mpi_sub(t2, t2, u);
 | 
						|
		}
 | 
						|
	} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */
 | 
						|
	/* mpi_lshift( u3, k ); */
 | 
						|
	mpi_set(x, u1);
 | 
						|
 | 
						|
	mpi_free(u1);
 | 
						|
	mpi_free(v1);
 | 
						|
	mpi_free(t1);
 | 
						|
	if (!odd) {
 | 
						|
		mpi_free(u2);
 | 
						|
		mpi_free(v2);
 | 
						|
		mpi_free(t2);
 | 
						|
	}
 | 
						|
	mpi_free(u3);
 | 
						|
	mpi_free(v3);
 | 
						|
	mpi_free(t3);
 | 
						|
 | 
						|
	mpi_free(u);
 | 
						|
	mpi_free(v);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mpi_invm);
 |