mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 a13467ee7a
			
		
	
	
		a13467ee7a
		
	
	
	
	
		
			
			[SUSPICIOUS CODE] When refactoring scrub code, I noticed a very strange behavior around scrub_remap_extent(): if (sctx->is_dev_replace) scrub_remap_extent(fs_info, cur_logical, scrub_len, &cur_physical, &target_dev, &cur_mirror); As replace target is a 1:1 copy of the source device, thus physical offset inside the target should be the same as physical inside source, thus this remap call makes no sense to me. [REAL FUNCTIONALITY] After more investigation, the function name scrub_remap_extent() doesn't tell anything of the truth, nor does its if () condition. The real story behind this function is that, for scrub_pages() we never expect missing device, even for replacing missing device. What scrub_remap_extent() is really doing is to find a live mirror, and make later scrub_pages() to read data from the good copy, other than from the missing device and increase error counters unnecessarily. [IMPROVEMENT] We have no need to bother scrub_remap_extent() in scrub_simple_mirror() at all, we only need to call it before we call scrub_pages(). And rename the function to scrub_find_live_copy(), add extra comments on them. By this we can remove one parameter from scrub_extent(), and reduce the unnecessary calls to scrub_remap_extent() for regular replace. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			4376 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4376 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <crypto/hash.h>
 | |
| #include "ctree.h"
 | |
| #include "discard.h"
 | |
| #include "volumes.h"
 | |
| #include "disk-io.h"
 | |
| #include "ordered-data.h"
 | |
| #include "transaction.h"
 | |
| #include "backref.h"
 | |
| #include "extent_io.h"
 | |
| #include "dev-replace.h"
 | |
| #include "check-integrity.h"
 | |
| #include "rcu-string.h"
 | |
| #include "raid56.h"
 | |
| #include "block-group.h"
 | |
| #include "zoned.h"
 | |
| 
 | |
| /*
 | |
|  * This is only the first step towards a full-features scrub. It reads all
 | |
|  * extent and super block and verifies the checksums. In case a bad checksum
 | |
|  * is found or the extent cannot be read, good data will be written back if
 | |
|  * any can be found.
 | |
|  *
 | |
|  * Future enhancements:
 | |
|  *  - In case an unrepairable extent is encountered, track which files are
 | |
|  *    affected and report them
 | |
|  *  - track and record media errors, throw out bad devices
 | |
|  *  - add a mode to also read unallocated space
 | |
|  */
 | |
| 
 | |
| struct scrub_block;
 | |
| struct scrub_ctx;
 | |
| 
 | |
| /*
 | |
|  * The following three values only influence the performance.
 | |
|  *
 | |
|  * The last one configures the number of parallel and outstanding I/O
 | |
|  * operations. The first one configures an upper limit for the number
 | |
|  * of (dynamically allocated) pages that are added to a bio.
 | |
|  */
 | |
| #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
 | |
| #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
 | |
| 
 | |
| /*
 | |
|  * The following value times PAGE_SIZE needs to be large enough to match the
 | |
|  * largest node/leaf/sector size that shall be supported.
 | |
|  */
 | |
| #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
 | |
| 
 | |
| struct scrub_recover {
 | |
| 	refcount_t		refs;
 | |
| 	struct btrfs_io_context	*bioc;
 | |
| 	u64			map_length;
 | |
| };
 | |
| 
 | |
| struct scrub_sector {
 | |
| 	struct scrub_block	*sblock;
 | |
| 	struct page		*page;
 | |
| 	struct btrfs_device	*dev;
 | |
| 	struct list_head	list;
 | |
| 	u64			flags;  /* extent flags */
 | |
| 	u64			generation;
 | |
| 	u64			logical;
 | |
| 	u64			physical;
 | |
| 	u64			physical_for_dev_replace;
 | |
| 	atomic_t		refs;
 | |
| 	u8			mirror_num;
 | |
| 	unsigned int		have_csum:1;
 | |
| 	unsigned int		io_error:1;
 | |
| 	u8			csum[BTRFS_CSUM_SIZE];
 | |
| 
 | |
| 	struct scrub_recover	*recover;
 | |
| };
 | |
| 
 | |
| struct scrub_bio {
 | |
| 	int			index;
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 	struct btrfs_device	*dev;
 | |
| 	struct bio		*bio;
 | |
| 	blk_status_t		status;
 | |
| 	u64			logical;
 | |
| 	u64			physical;
 | |
| 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
 | |
| 	int			sector_count;
 | |
| 	int			next_free;
 | |
| 	struct work_struct	work;
 | |
| };
 | |
| 
 | |
| struct scrub_block {
 | |
| 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
 | |
| 	int			sector_count;
 | |
| 	atomic_t		outstanding_sectors;
 | |
| 	refcount_t		refs; /* free mem on transition to zero */
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 	struct scrub_parity	*sparity;
 | |
| 	struct {
 | |
| 		unsigned int	header_error:1;
 | |
| 		unsigned int	checksum_error:1;
 | |
| 		unsigned int	no_io_error_seen:1;
 | |
| 		unsigned int	generation_error:1; /* also sets header_error */
 | |
| 
 | |
| 		/* The following is for the data used to check parity */
 | |
| 		/* It is for the data with checksum */
 | |
| 		unsigned int	data_corrected:1;
 | |
| 	};
 | |
| 	struct work_struct	work;
 | |
| };
 | |
| 
 | |
| /* Used for the chunks with parity stripe such RAID5/6 */
 | |
| struct scrub_parity {
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 
 | |
| 	struct btrfs_device	*scrub_dev;
 | |
| 
 | |
| 	u64			logic_start;
 | |
| 
 | |
| 	u64			logic_end;
 | |
| 
 | |
| 	int			nsectors;
 | |
| 
 | |
| 	u32			stripe_len;
 | |
| 
 | |
| 	refcount_t		refs;
 | |
| 
 | |
| 	struct list_head	sectors_list;
 | |
| 
 | |
| 	/* Work of parity check and repair */
 | |
| 	struct work_struct	work;
 | |
| 
 | |
| 	/* Mark the parity blocks which have data */
 | |
| 	unsigned long		*dbitmap;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the parity blocks which have data, but errors happen when
 | |
| 	 * read data or check data
 | |
| 	 */
 | |
| 	unsigned long		*ebitmap;
 | |
| 
 | |
| 	unsigned long		bitmap[];
 | |
| };
 | |
| 
 | |
| struct scrub_ctx {
 | |
| 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 | |
| 	struct btrfs_fs_info	*fs_info;
 | |
| 	int			first_free;
 | |
| 	int			curr;
 | |
| 	atomic_t		bios_in_flight;
 | |
| 	atomic_t		workers_pending;
 | |
| 	spinlock_t		list_lock;
 | |
| 	wait_queue_head_t	list_wait;
 | |
| 	struct list_head	csum_list;
 | |
| 	atomic_t		cancel_req;
 | |
| 	int			readonly;
 | |
| 	int			sectors_per_bio;
 | |
| 
 | |
| 	/* State of IO submission throttling affecting the associated device */
 | |
| 	ktime_t			throttle_deadline;
 | |
| 	u64			throttle_sent;
 | |
| 
 | |
| 	int			is_dev_replace;
 | |
| 	u64			write_pointer;
 | |
| 
 | |
| 	struct scrub_bio        *wr_curr_bio;
 | |
| 	struct mutex            wr_lock;
 | |
| 	struct btrfs_device     *wr_tgtdev;
 | |
| 	bool                    flush_all_writes;
 | |
| 
 | |
| 	/*
 | |
| 	 * statistics
 | |
| 	 */
 | |
| 	struct btrfs_scrub_progress stat;
 | |
| 	spinlock_t		stat_lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 | |
| 	 * decrement bios_in_flight and workers_pending and then do a wakeup
 | |
| 	 * on the list_wait wait queue. We must ensure the main scrub task
 | |
| 	 * doesn't free the scrub context before or while the workers are
 | |
| 	 * doing the wakeup() call.
 | |
| 	 */
 | |
| 	refcount_t              refs;
 | |
| };
 | |
| 
 | |
| struct scrub_warning {
 | |
| 	struct btrfs_path	*path;
 | |
| 	u64			extent_item_size;
 | |
| 	const char		*errstr;
 | |
| 	u64			physical;
 | |
| 	u64			logical;
 | |
| 	struct btrfs_device	*dev;
 | |
| };
 | |
| 
 | |
| struct full_stripe_lock {
 | |
| 	struct rb_node node;
 | |
| 	u64 logical;
 | |
| 	u64 refs;
 | |
| 	struct mutex mutex;
 | |
| };
 | |
| 
 | |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 | |
| 				     struct scrub_block *sblocks_for_recheck);
 | |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 | |
| 				struct scrub_block *sblock,
 | |
| 				int retry_failed_mirror);
 | |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 | |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					     struct scrub_block *sblock_good);
 | |
| static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					    struct scrub_block *sblock_good,
 | |
| 					    int sector_num, int force_write);
 | |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 | |
| static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
 | |
| 					     int sector_num);
 | |
| static int scrub_checksum_data(struct scrub_block *sblock);
 | |
| static int scrub_checksum_tree_block(struct scrub_block *sblock);
 | |
| static int scrub_checksum_super(struct scrub_block *sblock);
 | |
| static void scrub_block_put(struct scrub_block *sblock);
 | |
| static void scrub_sector_get(struct scrub_sector *sector);
 | |
| static void scrub_sector_put(struct scrub_sector *sector);
 | |
| static void scrub_parity_get(struct scrub_parity *sparity);
 | |
| static void scrub_parity_put(struct scrub_parity *sparity);
 | |
| static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
 | |
| 			 u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 			 u64 gen, int mirror_num, u8 *csum,
 | |
| 			 u64 physical_for_dev_replace);
 | |
| static void scrub_bio_end_io(struct bio *bio);
 | |
| static void scrub_bio_end_io_worker(struct work_struct *work);
 | |
| static void scrub_block_complete(struct scrub_block *sblock);
 | |
| static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
 | |
| 				 u64 extent_logical, u32 extent_len,
 | |
| 				 u64 *extent_physical,
 | |
| 				 struct btrfs_device **extent_dev,
 | |
| 				 int *extent_mirror_num);
 | |
| static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
 | |
| 				      struct scrub_sector *sector);
 | |
| static void scrub_wr_submit(struct scrub_ctx *sctx);
 | |
| static void scrub_wr_bio_end_io(struct bio *bio);
 | |
| static void scrub_wr_bio_end_io_worker(struct work_struct *work);
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx);
 | |
| 
 | |
| static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
 | |
| {
 | |
| 	return sector->recover &&
 | |
| 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 | |
| }
 | |
| 
 | |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	refcount_inc(&sctx->refs);
 | |
| 	atomic_inc(&sctx->bios_in_flight);
 | |
| }
 | |
| 
 | |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	atomic_dec(&sctx->bios_in_flight);
 | |
| 	wake_up(&sctx->list_wait);
 | |
| 	scrub_put_ctx(sctx);
 | |
| }
 | |
| 
 | |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	while (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 		   atomic_read(&fs_info->scrub_pause_req) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_inc(&fs_info->scrubs_paused);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_dec(&fs_info->scrubs_paused);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	scrub_pause_on(fs_info);
 | |
| 	scrub_pause_off(fs_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert new full stripe lock into full stripe locks tree
 | |
|  *
 | |
|  * Return pointer to existing or newly inserted full_stripe_lock structure if
 | |
|  * everything works well.
 | |
|  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 | |
|  *
 | |
|  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 | |
|  * function
 | |
|  */
 | |
| static struct full_stripe_lock *insert_full_stripe_lock(
 | |
| 		struct btrfs_full_stripe_locks_tree *locks_root,
 | |
| 		u64 fstripe_logical)
 | |
| {
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct full_stripe_lock *entry;
 | |
| 	struct full_stripe_lock *ret;
 | |
| 
 | |
| 	lockdep_assert_held(&locks_root->lock);
 | |
| 
 | |
| 	p = &locks_root->root.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct full_stripe_lock, node);
 | |
| 		if (fstripe_logical < entry->logical) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (fstripe_logical > entry->logical) {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			entry->refs++;
 | |
| 			return entry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert new lock.
 | |
| 	 */
 | |
| 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	ret->logical = fstripe_logical;
 | |
| 	ret->refs = 1;
 | |
| 	mutex_init(&ret->mutex);
 | |
| 
 | |
| 	rb_link_node(&ret->node, parent, p);
 | |
| 	rb_insert_color(&ret->node, &locks_root->root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for a full stripe lock of a block group
 | |
|  *
 | |
|  * Return pointer to existing full stripe lock if found
 | |
|  * Return NULL if not found
 | |
|  */
 | |
| static struct full_stripe_lock *search_full_stripe_lock(
 | |
| 		struct btrfs_full_stripe_locks_tree *locks_root,
 | |
| 		u64 fstripe_logical)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct full_stripe_lock *entry;
 | |
| 
 | |
| 	lockdep_assert_held(&locks_root->lock);
 | |
| 
 | |
| 	node = locks_root->root.rb_node;
 | |
| 	while (node) {
 | |
| 		entry = rb_entry(node, struct full_stripe_lock, node);
 | |
| 		if (fstripe_logical < entry->logical)
 | |
| 			node = node->rb_left;
 | |
| 		else if (fstripe_logical > entry->logical)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			return entry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to get full stripe logical from a normal bytenr.
 | |
|  *
 | |
|  * Caller must ensure @cache is a RAID56 block group.
 | |
|  */
 | |
| static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 | |
| {
 | |
| 	u64 ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to chunk item size limit, full stripe length should not be
 | |
| 	 * larger than U32_MAX. Just a sanity check here.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * round_down() can only handle power of 2, while RAID56 full
 | |
| 	 * stripe length can be 64KiB * n, so we need to manually round down.
 | |
| 	 */
 | |
| 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 | |
| 			cache->full_stripe_len + cache->start;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock a full stripe to avoid concurrency of recovery and read
 | |
|  *
 | |
|  * It's only used for profiles with parities (RAID5/6), for other profiles it
 | |
|  * does nothing.
 | |
|  *
 | |
|  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 | |
|  * So caller must call unlock_full_stripe() at the same context.
 | |
|  *
 | |
|  * Return <0 if encounters error.
 | |
|  */
 | |
| static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			    bool *locked_ret)
 | |
| {
 | |
| 	struct btrfs_block_group *bg_cache;
 | |
| 	struct btrfs_full_stripe_locks_tree *locks_root;
 | |
| 	struct full_stripe_lock *existing;
 | |
| 	u64 fstripe_start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	*locked_ret = false;
 | |
| 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!bg_cache) {
 | |
| 		ASSERT(0);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	/* Profiles not based on parity don't need full stripe lock */
 | |
| 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 | |
| 		goto out;
 | |
| 	locks_root = &bg_cache->full_stripe_locks_root;
 | |
| 
 | |
| 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 | |
| 
 | |
| 	/* Now insert the full stripe lock */
 | |
| 	mutex_lock(&locks_root->lock);
 | |
| 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 | |
| 	mutex_unlock(&locks_root->lock);
 | |
| 	if (IS_ERR(existing)) {
 | |
| 		ret = PTR_ERR(existing);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_lock(&existing->mutex);
 | |
| 	*locked_ret = true;
 | |
| out:
 | |
| 	btrfs_put_block_group(bg_cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock a full stripe.
 | |
|  *
 | |
|  * NOTE: Caller must ensure it's the same context calling corresponding
 | |
|  * lock_full_stripe().
 | |
|  *
 | |
|  * Return 0 if we unlock full stripe without problem.
 | |
|  * Return <0 for error
 | |
|  */
 | |
| static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			      bool locked)
 | |
| {
 | |
| 	struct btrfs_block_group *bg_cache;
 | |
| 	struct btrfs_full_stripe_locks_tree *locks_root;
 | |
| 	struct full_stripe_lock *fstripe_lock;
 | |
| 	u64 fstripe_start;
 | |
| 	bool freeit = false;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* If we didn't acquire full stripe lock, no need to continue */
 | |
| 	if (!locked)
 | |
| 		return 0;
 | |
| 
 | |
| 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!bg_cache) {
 | |
| 		ASSERT(0);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 | |
| 		goto out;
 | |
| 
 | |
| 	locks_root = &bg_cache->full_stripe_locks_root;
 | |
| 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 | |
| 
 | |
| 	mutex_lock(&locks_root->lock);
 | |
| 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 | |
| 	/* Unpaired unlock_full_stripe() detected */
 | |
| 	if (!fstripe_lock) {
 | |
| 		WARN_ON(1);
 | |
| 		ret = -ENOENT;
 | |
| 		mutex_unlock(&locks_root->lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (fstripe_lock->refs == 0) {
 | |
| 		WARN_ON(1);
 | |
| 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 | |
| 			fstripe_lock->logical);
 | |
| 	} else {
 | |
| 		fstripe_lock->refs--;
 | |
| 	}
 | |
| 
 | |
| 	if (fstripe_lock->refs == 0) {
 | |
| 		rb_erase(&fstripe_lock->node, &locks_root->root);
 | |
| 		freeit = true;
 | |
| 	}
 | |
| 	mutex_unlock(&locks_root->lock);
 | |
| 
 | |
| 	mutex_unlock(&fstripe_lock->mutex);
 | |
| 	if (freeit)
 | |
| 		kfree(fstripe_lock);
 | |
| out:
 | |
| 	btrfs_put_block_group(bg_cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void scrub_free_csums(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	while (!list_empty(&sctx->csum_list)) {
 | |
| 		struct btrfs_ordered_sum *sum;
 | |
| 		sum = list_first_entry(&sctx->csum_list,
 | |
| 				       struct btrfs_ordered_sum, list);
 | |
| 		list_del(&sum->list);
 | |
| 		kfree(sum);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sctx)
 | |
| 		return;
 | |
| 
 | |
| 	/* this can happen when scrub is cancelled */
 | |
| 	if (sctx->curr != -1) {
 | |
| 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 | |
| 
 | |
| 		for (i = 0; i < sbio->sector_count; i++) {
 | |
| 			WARN_ON(!sbio->sectors[i]->page);
 | |
| 			scrub_block_put(sbio->sectors[i]->sblock);
 | |
| 		}
 | |
| 		bio_put(sbio->bio);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 | |
| 		struct scrub_bio *sbio = sctx->bios[i];
 | |
| 
 | |
| 		if (!sbio)
 | |
| 			break;
 | |
| 		kfree(sbio);
 | |
| 	}
 | |
| 
 | |
| 	kfree(sctx->wr_curr_bio);
 | |
| 	scrub_free_csums(sctx);
 | |
| 	kfree(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sctx->refs))
 | |
| 		scrub_free_ctx(sctx);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 | |
| 		struct btrfs_fs_info *fs_info, int is_dev_replace)
 | |
| {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int		i;
 | |
| 
 | |
| 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 | |
| 	if (!sctx)
 | |
| 		goto nomem;
 | |
| 	refcount_set(&sctx->refs, 1);
 | |
| 	sctx->is_dev_replace = is_dev_replace;
 | |
| 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
 | |
| 	sctx->curr = -1;
 | |
| 	sctx->fs_info = fs_info;
 | |
| 	INIT_LIST_HEAD(&sctx->csum_list);
 | |
| 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 | |
| 		struct scrub_bio *sbio;
 | |
| 
 | |
| 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 | |
| 		if (!sbio)
 | |
| 			goto nomem;
 | |
| 		sctx->bios[i] = sbio;
 | |
| 
 | |
| 		sbio->index = i;
 | |
| 		sbio->sctx = sctx;
 | |
| 		sbio->sector_count = 0;
 | |
| 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
 | |
| 
 | |
| 		if (i != SCRUB_BIOS_PER_SCTX - 1)
 | |
| 			sctx->bios[i]->next_free = i + 1;
 | |
| 		else
 | |
| 			sctx->bios[i]->next_free = -1;
 | |
| 	}
 | |
| 	sctx->first_free = 0;
 | |
| 	atomic_set(&sctx->bios_in_flight, 0);
 | |
| 	atomic_set(&sctx->workers_pending, 0);
 | |
| 	atomic_set(&sctx->cancel_req, 0);
 | |
| 
 | |
| 	spin_lock_init(&sctx->list_lock);
 | |
| 	spin_lock_init(&sctx->stat_lock);
 | |
| 	init_waitqueue_head(&sctx->list_wait);
 | |
| 	sctx->throttle_deadline = 0;
 | |
| 
 | |
| 	WARN_ON(sctx->wr_curr_bio != NULL);
 | |
| 	mutex_init(&sctx->wr_lock);
 | |
| 	sctx->wr_curr_bio = NULL;
 | |
| 	if (is_dev_replace) {
 | |
| 		WARN_ON(!fs_info->dev_replace.tgtdev);
 | |
| 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 | |
| 		sctx->flush_all_writes = false;
 | |
| 	}
 | |
| 
 | |
| 	return sctx;
 | |
| 
 | |
| nomem:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 | |
| 				     void *warn_ctx)
 | |
| {
 | |
| 	u32 nlink;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	unsigned nofs_flag;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct scrub_warning *swarn = warn_ctx;
 | |
| 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 | |
| 	struct inode_fs_paths *ipath = NULL;
 | |
| 	struct btrfs_root *local_root;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	local_root = btrfs_get_fs_root(fs_info, root, true);
 | |
| 	if (IS_ERR(local_root)) {
 | |
| 		ret = PTR_ERR(local_root);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * this makes the path point to (inum INODE_ITEM ioff)
 | |
| 	 */
 | |
| 	key.objectid = inum;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_put_root(local_root);
 | |
| 		btrfs_release_path(swarn->path);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	eb = swarn->path->nodes[0];
 | |
| 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 | |
| 					struct btrfs_inode_item);
 | |
| 	nlink = btrfs_inode_nlink(eb, inode_item);
 | |
| 	btrfs_release_path(swarn->path);
 | |
| 
 | |
| 	/*
 | |
| 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 | |
| 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 | |
| 	 * not seem to be strictly necessary.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ipath = init_ipath(4096, local_root, swarn->path);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (IS_ERR(ipath)) {
 | |
| 		btrfs_put_root(local_root);
 | |
| 		ret = PTR_ERR(ipath);
 | |
| 		ipath = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	ret = paths_from_inode(inum, ipath);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * we deliberately ignore the bit ipath might have been too small to
 | |
| 	 * hold all of the paths here
 | |
| 	 */
 | |
| 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 | |
| 		btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 | |
| 				  swarn->errstr, swarn->logical,
 | |
| 				  rcu_str_deref(swarn->dev->name),
 | |
| 				  swarn->physical,
 | |
| 				  root, inum, offset,
 | |
| 				  fs_info->sectorsize, nlink,
 | |
| 				  (char *)(unsigned long)ipath->fspath->val[i]);
 | |
| 
 | |
| 	btrfs_put_root(local_root);
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	btrfs_warn_in_rcu(fs_info,
 | |
| 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 | |
| 			  swarn->errstr, swarn->logical,
 | |
| 			  rcu_str_deref(swarn->dev->name),
 | |
| 			  swarn->physical,
 | |
| 			  root, inum, offset, ret);
 | |
| 
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct scrub_warning swarn;
 | |
| 	unsigned long ptr = 0;
 | |
| 	u64 extent_item_pos;
 | |
| 	u64 flags = 0;
 | |
| 	u64 ref_root;
 | |
| 	u32 item_size;
 | |
| 	u8 ref_level = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON(sblock->sector_count < 1);
 | |
| 	dev = sblock->sectors[0]->dev;
 | |
| 	fs_info = sblock->sctx->fs_info;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return;
 | |
| 
 | |
| 	swarn.physical = sblock->sectors[0]->physical;
 | |
| 	swarn.logical = sblock->sectors[0]->logical;
 | |
| 	swarn.errstr = errstr;
 | |
| 	swarn.dev = NULL;
 | |
| 
 | |
| 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 | |
| 				  &flags);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	extent_item_pos = swarn.logical - found_key.objectid;
 | |
| 	swarn.extent_item_size = found_key.offset;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 | |
| 	item_size = btrfs_item_size(eb, path->slots[0]);
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		do {
 | |
| 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 | |
| 						      item_size, &ref_root,
 | |
| 						      &ref_level);
 | |
| 			btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 | |
| 				errstr, swarn.logical,
 | |
| 				rcu_str_deref(dev->name),
 | |
| 				swarn.physical,
 | |
| 				ref_level ? "node" : "leaf",
 | |
| 				ret < 0 ? -1 : ref_level,
 | |
| 				ret < 0 ? -1 : ref_root);
 | |
| 		} while (ret != 1);
 | |
| 		btrfs_release_path(path);
 | |
| 	} else {
 | |
| 		btrfs_release_path(path);
 | |
| 		swarn.path = path;
 | |
| 		swarn.dev = dev;
 | |
| 		iterate_extent_inodes(fs_info, found_key.objectid,
 | |
| 					extent_item_pos, 1,
 | |
| 					scrub_print_warning_inode, &swarn, false);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| }
 | |
| 
 | |
| static inline void scrub_get_recover(struct scrub_recover *recover)
 | |
| {
 | |
| 	refcount_inc(&recover->refs);
 | |
| }
 | |
| 
 | |
| static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 | |
| 				     struct scrub_recover *recover)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&recover->refs)) {
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		btrfs_put_bioc(recover->bioc);
 | |
| 		kfree(recover);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scrub_handle_errored_block gets called when either verification of the
 | |
|  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 | |
|  * case, this function handles all sectors in the bio, even though only one
 | |
|  * may be bad.
 | |
|  * The goal of this function is to repair the errored block by using the
 | |
|  * contents of one of the mirrors.
 | |
|  */
 | |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock_to_check->sctx;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	u64 logical;
 | |
| 	unsigned int failed_mirror_index;
 | |
| 	unsigned int is_metadata;
 | |
| 	unsigned int have_csum;
 | |
| 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 | |
| 	struct scrub_block *sblock_bad;
 | |
| 	int ret;
 | |
| 	int mirror_index;
 | |
| 	int sector_num;
 | |
| 	int success;
 | |
| 	bool full_stripe_locked;
 | |
| 	unsigned int nofs_flag;
 | |
| 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| 	BUG_ON(sblock_to_check->sector_count < 1);
 | |
| 	fs_info = sctx->fs_info;
 | |
| 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 | |
| 		/*
 | |
| 		 * if we find an error in a super block, we just report it.
 | |
| 		 * They will get written with the next transaction commit
 | |
| 		 * anyway
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		++sctx->stat.super_errors;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	logical = sblock_to_check->sectors[0]->logical;
 | |
| 	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
 | |
| 	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
 | |
| 	is_metadata = !(sblock_to_check->sectors[0]->flags &
 | |
| 			BTRFS_EXTENT_FLAG_DATA);
 | |
| 	have_csum = sblock_to_check->sectors[0]->have_csum;
 | |
| 	dev = sblock_to_check->sectors[0]->dev;
 | |
| 
 | |
| 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must use GFP_NOFS because the scrub task might be waiting for a
 | |
| 	 * worker task executing this function and in turn a transaction commit
 | |
| 	 * might be waiting the scrub task to pause (which needs to wait for all
 | |
| 	 * the worker tasks to complete before pausing).
 | |
| 	 * We do allocations in the workers through insert_full_stripe_lock()
 | |
| 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
 | |
| 	 * this function.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	/*
 | |
| 	 * For RAID5/6, race can happen for a different device scrub thread.
 | |
| 	 * For data corruption, Parity and Data threads will both try
 | |
| 	 * to recovery the data.
 | |
| 	 * Race can lead to doubly added csum error, or even unrecoverable
 | |
| 	 * error.
 | |
| 	 */
 | |
| 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 | |
| 	if (ret < 0) {
 | |
| 		memalloc_nofs_restore(nofs_flag);
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		if (ret == -ENOMEM)
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * read all mirrors one after the other. This includes to
 | |
| 	 * re-read the extent or metadata block that failed (that was
 | |
| 	 * the cause that this fixup code is called) another time,
 | |
| 	 * sector by sector this time in order to know which sectors
 | |
| 	 * caused I/O errors and which ones are good (for all mirrors).
 | |
| 	 * It is the goal to handle the situation when more than one
 | |
| 	 * mirror contains I/O errors, but the errors do not
 | |
| 	 * overlap, i.e. the data can be repaired by selecting the
 | |
| 	 * sectors from those mirrors without I/O error on the
 | |
| 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
 | |
| 	 * would be that mirror #1 has an I/O error on the first sector,
 | |
| 	 * the second sector is good, and mirror #2 has an I/O error on
 | |
| 	 * the second sector, but the first sector is good.
 | |
| 	 * Then the first sector of the first mirror can be repaired by
 | |
| 	 * taking the first sector of the second mirror, and the
 | |
| 	 * second sector of the second mirror can be repaired by
 | |
| 	 * copying the contents of the 2nd sector of the 1st mirror.
 | |
| 	 * One more note: if the sectors of one mirror contain I/O
 | |
| 	 * errors, the checksum cannot be verified. In order to get
 | |
| 	 * the best data for repairing, the first attempt is to find
 | |
| 	 * a mirror without I/O errors and with a validated checksum.
 | |
| 	 * Only if this is not possible, the sectors are picked from
 | |
| 	 * mirrors with I/O errors without considering the checksum.
 | |
| 	 * If the latter is the case, at the end, the checksum of the
 | |
| 	 * repaired area is verified in order to correctly maintain
 | |
| 	 * the statistics.
 | |
| 	 */
 | |
| 
 | |
| 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 | |
| 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 | |
| 	if (!sblocks_for_recheck) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the context, map the logical blocks and alloc the sectors */
 | |
| 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 | |
| 	if (ret) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 | |
| 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 | |
| 
 | |
| 	/* build and submit the bios for the failed mirror, check checksums */
 | |
| 	scrub_recheck_block(fs_info, sblock_bad, 1);
 | |
| 
 | |
| 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 | |
| 	    sblock_bad->no_io_error_seen) {
 | |
| 		/*
 | |
| 		 * The error disappeared after reading sector by sector, or
 | |
| 		 * the area was part of a huge bio and other parts of the
 | |
| 		 * bio caused I/O errors, or the block layer merged several
 | |
| 		 * read requests into one and the error is caused by a
 | |
| 		 * different bio (usually one of the two latter cases is
 | |
| 		 * the cause)
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.unverified_errors++;
 | |
| 		sblock_to_check->data_corrected = 1;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 
 | |
| 		if (sctx->is_dev_replace)
 | |
| 			scrub_write_block_to_dev_replace(sblock_bad);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!sblock_bad->no_io_error_seen) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&rs))
 | |
| 			scrub_print_warning("i/o error", sblock_to_check);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 	} else if (sblock_bad->checksum_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.csum_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&rs))
 | |
| 			scrub_print_warning("checksum error", sblock_to_check);
 | |
| 		btrfs_dev_stat_inc_and_print(dev,
 | |
| 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 	} else if (sblock_bad->header_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.verify_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&rs))
 | |
| 			scrub_print_warning("checksum/header error",
 | |
| 					    sblock_to_check);
 | |
| 		if (sblock_bad->generation_error)
 | |
| 			btrfs_dev_stat_inc_and_print(dev,
 | |
| 				BTRFS_DEV_STAT_GENERATION_ERRS);
 | |
| 		else
 | |
| 			btrfs_dev_stat_inc_and_print(dev,
 | |
| 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 	}
 | |
| 
 | |
| 	if (sctx->readonly) {
 | |
| 		ASSERT(!sctx->is_dev_replace);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * now build and submit the bios for the other mirrors, check
 | |
| 	 * checksums.
 | |
| 	 * First try to pick the mirror which is completely without I/O
 | |
| 	 * errors and also does not have a checksum error.
 | |
| 	 * If one is found, and if a checksum is present, the full block
 | |
| 	 * that is known to contain an error is rewritten. Afterwards
 | |
| 	 * the block is known to be corrected.
 | |
| 	 * If a mirror is found which is completely correct, and no
 | |
| 	 * checksum is present, only those sectors are rewritten that had
 | |
| 	 * an I/O error in the block to be repaired, since it cannot be
 | |
| 	 * determined, which copy of the other sectors is better (and it
 | |
| 	 * could happen otherwise that a correct sector would be
 | |
| 	 * overwritten by a bad one).
 | |
| 	 */
 | |
| 	for (mirror_index = 0; ;mirror_index++) {
 | |
| 		struct scrub_block *sblock_other;
 | |
| 
 | |
| 		if (mirror_index == failed_mirror_index)
 | |
| 			continue;
 | |
| 
 | |
| 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
 | |
| 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
 | |
| 			if (mirror_index >= BTRFS_MAX_MIRRORS)
 | |
| 				break;
 | |
| 			if (!sblocks_for_recheck[mirror_index].sector_count)
 | |
| 				break;
 | |
| 
 | |
| 			sblock_other = sblocks_for_recheck + mirror_index;
 | |
| 		} else {
 | |
| 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
 | |
| 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
 | |
| 
 | |
| 			if (mirror_index >= max_allowed)
 | |
| 				break;
 | |
| 			if (!sblocks_for_recheck[1].sector_count)
 | |
| 				break;
 | |
| 
 | |
| 			ASSERT(failed_mirror_index == 0);
 | |
| 			sblock_other = sblocks_for_recheck + 1;
 | |
| 			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
 | |
| 		}
 | |
| 
 | |
| 		/* build and submit the bios, check checksums */
 | |
| 		scrub_recheck_block(fs_info, sblock_other, 0);
 | |
| 
 | |
| 		if (!sblock_other->header_error &&
 | |
| 		    !sblock_other->checksum_error &&
 | |
| 		    sblock_other->no_io_error_seen) {
 | |
| 			if (sctx->is_dev_replace) {
 | |
| 				scrub_write_block_to_dev_replace(sblock_other);
 | |
| 				goto corrected_error;
 | |
| 			} else {
 | |
| 				ret = scrub_repair_block_from_good_copy(
 | |
| 						sblock_bad, sblock_other);
 | |
| 				if (!ret)
 | |
| 					goto corrected_error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
 | |
| 		goto did_not_correct_error;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of I/O errors in the area that is supposed to be
 | |
| 	 * repaired, continue by picking good copies of those sectors.
 | |
| 	 * Select the good sectors from mirrors to rewrite bad sectors from
 | |
| 	 * the area to fix. Afterwards verify the checksum of the block
 | |
| 	 * that is supposed to be repaired. This verification step is
 | |
| 	 * only done for the purpose of statistic counting and for the
 | |
| 	 * final scrub report, whether errors remain.
 | |
| 	 * A perfect algorithm could make use of the checksum and try
 | |
| 	 * all possible combinations of sectors from the different mirrors
 | |
| 	 * until the checksum verification succeeds. For example, when
 | |
| 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
 | |
| 	 * of mirror #2 is readable but the final checksum test fails,
 | |
| 	 * then the 2nd sector of mirror #3 could be tried, whether now
 | |
| 	 * the final checksum succeeds. But this would be a rare
 | |
| 	 * exception and is therefore not implemented. At least it is
 | |
| 	 * avoided that the good copy is overwritten.
 | |
| 	 * A more useful improvement would be to pick the sectors
 | |
| 	 * without I/O error based on sector sizes (512 bytes on legacy
 | |
| 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
 | |
| 	 * mirror could be repaired by taking 512 byte of a different
 | |
| 	 * mirror, even if other 512 byte sectors in the same sectorsize
 | |
| 	 * area are unreadable.
 | |
| 	 */
 | |
| 	success = 1;
 | |
| 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
 | |
| 	     sector_num++) {
 | |
| 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
 | |
| 		struct scrub_block *sblock_other = NULL;
 | |
| 
 | |
| 		/* Skip no-io-error sectors in scrub */
 | |
| 		if (!sector_bad->io_error && !sctx->is_dev_replace)
 | |
| 			continue;
 | |
| 
 | |
| 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
 | |
| 			/*
 | |
| 			 * In case of dev replace, if raid56 rebuild process
 | |
| 			 * didn't work out correct data, then copy the content
 | |
| 			 * in sblock_bad to make sure target device is identical
 | |
| 			 * to source device, instead of writing garbage data in
 | |
| 			 * sblock_for_recheck array to target device.
 | |
| 			 */
 | |
| 			sblock_other = NULL;
 | |
| 		} else if (sector_bad->io_error) {
 | |
| 			/* Try to find no-io-error sector in mirrors */
 | |
| 			for (mirror_index = 0;
 | |
| 			     mirror_index < BTRFS_MAX_MIRRORS &&
 | |
| 			     sblocks_for_recheck[mirror_index].sector_count > 0;
 | |
| 			     mirror_index++) {
 | |
| 				if (!sblocks_for_recheck[mirror_index].
 | |
| 				    sectors[sector_num]->io_error) {
 | |
| 					sblock_other = sblocks_for_recheck +
 | |
| 						       mirror_index;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!sblock_other)
 | |
| 				success = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (sctx->is_dev_replace) {
 | |
| 			/*
 | |
| 			 * Did not find a mirror to fetch the sector from.
 | |
| 			 * scrub_write_sector_to_dev_replace() handles this
 | |
| 			 * case (sector->io_error), by filling the block with
 | |
| 			 * zeros before submitting the write request
 | |
| 			 */
 | |
| 			if (!sblock_other)
 | |
| 				sblock_other = sblock_bad;
 | |
| 
 | |
| 			if (scrub_write_sector_to_dev_replace(sblock_other,
 | |
| 							      sector_num) != 0) {
 | |
| 				atomic64_inc(
 | |
| 					&fs_info->dev_replace.num_write_errors);
 | |
| 				success = 0;
 | |
| 			}
 | |
| 		} else if (sblock_other) {
 | |
| 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
 | |
| 								 sblock_other,
 | |
| 								 sector_num, 0);
 | |
| 			if (0 == ret)
 | |
| 				sector_bad->io_error = 0;
 | |
| 			else
 | |
| 				success = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (success && !sctx->is_dev_replace) {
 | |
| 		if (is_metadata || have_csum) {
 | |
| 			/*
 | |
| 			 * need to verify the checksum now that all
 | |
| 			 * sectors on disk are repaired (the write
 | |
| 			 * request for data to be repaired is on its way).
 | |
| 			 * Just be lazy and use scrub_recheck_block()
 | |
| 			 * which re-reads the data before the checksum
 | |
| 			 * is verified, but most likely the data comes out
 | |
| 			 * of the page cache.
 | |
| 			 */
 | |
| 			scrub_recheck_block(fs_info, sblock_bad, 1);
 | |
| 			if (!sblock_bad->header_error &&
 | |
| 			    !sblock_bad->checksum_error &&
 | |
| 			    sblock_bad->no_io_error_seen)
 | |
| 				goto corrected_error;
 | |
| 			else
 | |
| 				goto did_not_correct_error;
 | |
| 		} else {
 | |
| corrected_error:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.corrected_errors++;
 | |
| 			sblock_to_check->data_corrected = 1;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			btrfs_err_rl_in_rcu(fs_info,
 | |
| 				"fixed up error at logical %llu on dev %s",
 | |
| 				logical, rcu_str_deref(dev->name));
 | |
| 		}
 | |
| 	} else {
 | |
| did_not_correct_error:
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"unable to fixup (regular) error at logical %llu on dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (sblocks_for_recheck) {
 | |
| 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 | |
| 		     mirror_index++) {
 | |
| 			struct scrub_block *sblock = sblocks_for_recheck +
 | |
| 						     mirror_index;
 | |
| 			struct scrub_recover *recover;
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < sblock->sector_count; i++) {
 | |
| 				sblock->sectors[i]->sblock = NULL;
 | |
| 				recover = sblock->sectors[i]->recover;
 | |
| 				if (recover) {
 | |
| 					scrub_put_recover(fs_info, recover);
 | |
| 					sblock->sectors[i]->recover = NULL;
 | |
| 				}
 | |
| 				scrub_sector_put(sblock->sectors[i]);
 | |
| 			}
 | |
| 		}
 | |
| 		kfree(sblocks_for_recheck);
 | |
| 	}
 | |
| 
 | |
| 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
 | |
| {
 | |
| 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		return 2;
 | |
| 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		return 3;
 | |
| 	else
 | |
| 		return (int)bioc->num_stripes;
 | |
| }
 | |
| 
 | |
| static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
 | |
| 						 u64 *raid_map,
 | |
| 						 u64 mapped_length,
 | |
| 						 int nstripes, int mirror,
 | |
| 						 int *stripe_index,
 | |
| 						 u64 *stripe_offset)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		/* RAID5/6 */
 | |
| 		for (i = 0; i < nstripes; i++) {
 | |
| 			if (raid_map[i] == RAID6_Q_STRIPE ||
 | |
| 			    raid_map[i] == RAID5_P_STRIPE)
 | |
| 				continue;
 | |
| 
 | |
| 			if (logical >= raid_map[i] &&
 | |
| 			    logical < raid_map[i] + mapped_length)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		*stripe_index = i;
 | |
| 		*stripe_offset = logical - raid_map[i];
 | |
| 	} else {
 | |
| 		/* The other RAID type */
 | |
| 		*stripe_index = mirror;
 | |
| 		*stripe_offset = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 | |
| 				     struct scrub_block *sblocks_for_recheck)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = original_sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
 | |
| 	u64 logical = original_sblock->sectors[0]->logical;
 | |
| 	u64 generation = original_sblock->sectors[0]->generation;
 | |
| 	u64 flags = original_sblock->sectors[0]->flags;
 | |
| 	u64 have_csum = original_sblock->sectors[0]->have_csum;
 | |
| 	struct scrub_recover *recover;
 | |
| 	struct btrfs_io_context *bioc;
 | |
| 	u64 sublen;
 | |
| 	u64 mapped_length;
 | |
| 	u64 stripe_offset;
 | |
| 	int stripe_index;
 | |
| 	int sector_index = 0;
 | |
| 	int mirror_index;
 | |
| 	int nmirrors;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: the two members refs and outstanding_sectors are not used (and
 | |
| 	 * not set) in the blocks that are used for the recheck procedure.
 | |
| 	 */
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		sublen = min_t(u64, length, fs_info->sectorsize);
 | |
| 		mapped_length = sublen;
 | |
| 		bioc = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * With a length of sectorsize, each returned stripe represents
 | |
| 		 * one mirror
 | |
| 		 */
 | |
| 		btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 | |
| 				       logical, &mapped_length, &bioc);
 | |
| 		if (ret || !bioc || mapped_length < sublen) {
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
 | |
| 		if (!recover) {
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		refcount_set(&recover->refs, 1);
 | |
| 		recover->bioc = bioc;
 | |
| 		recover->map_length = mapped_length;
 | |
| 
 | |
| 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
 | |
| 
 | |
| 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
 | |
| 
 | |
| 		for (mirror_index = 0; mirror_index < nmirrors;
 | |
| 		     mirror_index++) {
 | |
| 			struct scrub_block *sblock;
 | |
| 			struct scrub_sector *sector;
 | |
| 
 | |
| 			sblock = sblocks_for_recheck + mirror_index;
 | |
| 			sblock->sctx = sctx;
 | |
| 
 | |
| 			sector = kzalloc(sizeof(*sector), GFP_NOFS);
 | |
| 			if (!sector) {
 | |
| leave_nomem:
 | |
| 				spin_lock(&sctx->stat_lock);
 | |
| 				sctx->stat.malloc_errors++;
 | |
| 				spin_unlock(&sctx->stat_lock);
 | |
| 				scrub_put_recover(fs_info, recover);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			scrub_sector_get(sector);
 | |
| 			sblock->sectors[sector_index] = sector;
 | |
| 			sector->sblock = sblock;
 | |
| 			sector->flags = flags;
 | |
| 			sector->generation = generation;
 | |
| 			sector->logical = logical;
 | |
| 			sector->have_csum = have_csum;
 | |
| 			if (have_csum)
 | |
| 				memcpy(sector->csum,
 | |
| 				       original_sblock->sectors[0]->csum,
 | |
| 				       sctx->fs_info->csum_size);
 | |
| 
 | |
| 			scrub_stripe_index_and_offset(logical,
 | |
| 						      bioc->map_type,
 | |
| 						      bioc->raid_map,
 | |
| 						      mapped_length,
 | |
| 						      bioc->num_stripes -
 | |
| 						      bioc->num_tgtdevs,
 | |
| 						      mirror_index,
 | |
| 						      &stripe_index,
 | |
| 						      &stripe_offset);
 | |
| 			sector->physical = bioc->stripes[stripe_index].physical +
 | |
| 					 stripe_offset;
 | |
| 			sector->dev = bioc->stripes[stripe_index].dev;
 | |
| 
 | |
| 			BUG_ON(sector_index >= original_sblock->sector_count);
 | |
| 			sector->physical_for_dev_replace =
 | |
| 				original_sblock->sectors[sector_index]->
 | |
| 				physical_for_dev_replace;
 | |
| 			/* For missing devices, dev->bdev is NULL */
 | |
| 			sector->mirror_num = mirror_index + 1;
 | |
| 			sblock->sector_count++;
 | |
| 			sector->page = alloc_page(GFP_NOFS);
 | |
| 			if (!sector->page)
 | |
| 				goto leave_nomem;
 | |
| 
 | |
| 			scrub_get_recover(recover);
 | |
| 			sector->recover = recover;
 | |
| 		}
 | |
| 		scrub_put_recover(fs_info, recover);
 | |
| 		length -= sublen;
 | |
| 		logical += sublen;
 | |
| 		sector_index++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_bio_wait_endio(struct bio *bio)
 | |
| {
 | |
| 	complete(bio->bi_private);
 | |
| }
 | |
| 
 | |
| static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
 | |
| 					struct bio *bio,
 | |
| 					struct scrub_sector *sector)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(done);
 | |
| 	int ret;
 | |
| 	int mirror_num;
 | |
| 
 | |
| 	bio->bi_iter.bi_sector = sector->logical >> 9;
 | |
| 	bio->bi_private = &done;
 | |
| 	bio->bi_end_io = scrub_bio_wait_endio;
 | |
| 
 | |
| 	mirror_num = sector->sblock->sectors[0]->mirror_num;
 | |
| 	ret = raid56_parity_recover(bio, sector->recover->bioc,
 | |
| 				    sector->recover->map_length,
 | |
| 				    mirror_num, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	wait_for_completion_io(&done);
 | |
| 	return blk_status_to_errno(bio->bi_status);
 | |
| }
 | |
| 
 | |
| static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
 | |
| 					  struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_sector *first_sector = sblock->sectors[0];
 | |
| 	struct bio *bio;
 | |
| 	int i;
 | |
| 
 | |
| 	/* All sectors in sblock belong to the same stripe on the same device. */
 | |
| 	ASSERT(first_sector->dev);
 | |
| 	if (!first_sector->dev->bdev)
 | |
| 		goto out;
 | |
| 
 | |
| 	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
 | |
| 
 | |
| 	for (i = 0; i < sblock->sector_count; i++) {
 | |
| 		struct scrub_sector *sector = sblock->sectors[i];
 | |
| 
 | |
| 		WARN_ON(!sector->page);
 | |
| 		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
 | |
| 		bio_put(bio);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	scrub_recheck_block_checksum(sblock);
 | |
| 
 | |
| 	return;
 | |
| out:
 | |
| 	for (i = 0; i < sblock->sector_count; i++)
 | |
| 		sblock->sectors[i]->io_error = 1;
 | |
| 
 | |
| 	sblock->no_io_error_seen = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function will check the on disk data for checksum errors, header errors
 | |
|  * and read I/O errors. If any I/O errors happen, the exact sectors which are
 | |
|  * errored are marked as being bad. The goal is to enable scrub to take those
 | |
|  * sectors that are not errored from all the mirrors so that the sectors that
 | |
|  * are errored in the just handled mirror can be repaired.
 | |
|  */
 | |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 | |
| 				struct scrub_block *sblock,
 | |
| 				int retry_failed_mirror)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 
 | |
| 	/* short cut for raid56 */
 | |
| 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
 | |
| 		return scrub_recheck_block_on_raid56(fs_info, sblock);
 | |
| 
 | |
| 	for (i = 0; i < sblock->sector_count; i++) {
 | |
| 		struct scrub_sector *sector = sblock->sectors[i];
 | |
| 		struct bio bio;
 | |
| 		struct bio_vec bvec;
 | |
| 
 | |
| 		if (sector->dev->bdev == NULL) {
 | |
| 			sector->io_error = 1;
 | |
| 			sblock->no_io_error_seen = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(!sector->page);
 | |
| 		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
 | |
| 		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
 | |
| 		bio.bi_iter.bi_sector = sector->physical >> 9;
 | |
| 
 | |
| 		btrfsic_check_bio(&bio);
 | |
| 		if (submit_bio_wait(&bio)) {
 | |
| 			sector->io_error = 1;
 | |
| 			sblock->no_io_error_seen = 0;
 | |
| 		}
 | |
| 
 | |
| 		bio_uninit(&bio);
 | |
| 	}
 | |
| 
 | |
| 	if (sblock->no_io_error_seen)
 | |
| 		scrub_recheck_block_checksum(sblock);
 | |
| }
 | |
| 
 | |
| static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	return !ret;
 | |
| }
 | |
| 
 | |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock)
 | |
| {
 | |
| 	sblock->header_error = 0;
 | |
| 	sblock->checksum_error = 0;
 | |
| 	sblock->generation_error = 0;
 | |
| 
 | |
| 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		scrub_checksum_data(sblock);
 | |
| 	else
 | |
| 		scrub_checksum_tree_block(sblock);
 | |
| }
 | |
| 
 | |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					     struct scrub_block *sblock_good)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (i = 0; i < sblock_bad->sector_count; i++) {
 | |
| 		int ret_sub;
 | |
| 
 | |
| 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
 | |
| 							     sblock_good, i, 1);
 | |
| 		if (ret_sub)
 | |
| 			ret = ret_sub;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					      struct scrub_block *sblock_good,
 | |
| 					      int sector_num, int force_write)
 | |
| {
 | |
| 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
 | |
| 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
 | |
| 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 
 | |
| 	BUG_ON(sector_bad->page == NULL);
 | |
| 	BUG_ON(sector_good->page == NULL);
 | |
| 	if (force_write || sblock_bad->header_error ||
 | |
| 	    sblock_bad->checksum_error || sector_bad->io_error) {
 | |
| 		struct bio bio;
 | |
| 		struct bio_vec bvec;
 | |
| 		int ret;
 | |
| 
 | |
| 		if (!sector_bad->dev->bdev) {
 | |
| 			btrfs_warn_rl(fs_info,
 | |
| 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
 | |
| 		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
 | |
| 		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
 | |
| 
 | |
| 		btrfsic_check_bio(&bio);
 | |
| 		ret = submit_bio_wait(&bio);
 | |
| 		bio_uninit(&bio);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			btrfs_dev_stat_inc_and_print(sector_bad->dev,
 | |
| 				BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * This block is used for the check of the parity on the source device,
 | |
| 	 * so the data needn't be written into the destination device.
 | |
| 	 */
 | |
| 	if (sblock->sparity)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < sblock->sector_count; i++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = scrub_write_sector_to_dev_replace(sblock, i);
 | |
| 		if (ret)
 | |
| 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
 | |
| {
 | |
| 	struct scrub_sector *sector = sblock->sectors[sector_num];
 | |
| 
 | |
| 	BUG_ON(sector->page == NULL);
 | |
| 	if (sector->io_error)
 | |
| 		clear_page(page_address(sector->page));
 | |
| 
 | |
| 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
 | |
| }
 | |
| 
 | |
| static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 length;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(sctx->fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sctx->write_pointer < physical) {
 | |
| 		length = physical - sctx->write_pointer;
 | |
| 
 | |
| 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 | |
| 						sctx->write_pointer, length);
 | |
| 		if (!ret)
 | |
| 			sctx->write_pointer = physical;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
 | |
| 				      struct scrub_sector *sector)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 	int ret;
 | |
| 	const u32 sectorsize = sctx->fs_info->sectorsize;
 | |
| 
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| again:
 | |
| 	if (!sctx->wr_curr_bio) {
 | |
| 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
 | |
| 					      GFP_KERNEL);
 | |
| 		if (!sctx->wr_curr_bio) {
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		sctx->wr_curr_bio->sctx = sctx;
 | |
| 		sctx->wr_curr_bio->sector_count = 0;
 | |
| 	}
 | |
| 	sbio = sctx->wr_curr_bio;
 | |
| 	if (sbio->sector_count == 0) {
 | |
| 		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		sbio->physical = sector->physical_for_dev_replace;
 | |
| 		sbio->logical = sector->logical;
 | |
| 		sbio->dev = sctx->wr_tgtdev;
 | |
| 		if (!sbio->bio) {
 | |
| 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
 | |
| 					      REQ_OP_WRITE, GFP_NOFS);
 | |
| 		}
 | |
| 		sbio->bio->bi_private = sbio;
 | |
| 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
 | |
| 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
 | |
| 		sbio->status = 0;
 | |
| 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
 | |
| 		   sector->physical_for_dev_replace ||
 | |
| 		   sbio->logical + sbio->sector_count * sectorsize !=
 | |
| 		   sector->logical) {
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
 | |
| 	if (ret != sectorsize) {
 | |
| 		if (sbio->sector_count < 1) {
 | |
| 			bio_put(sbio->bio);
 | |
| 			sbio->bio = NULL;
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	sbio->sectors[sbio->sector_count] = sector;
 | |
| 	scrub_sector_get(sector);
 | |
| 	sbio->sector_count++;
 | |
| 	if (sbio->sector_count == sctx->sectors_per_bio)
 | |
| 		scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_wr_submit(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 
 | |
| 	if (!sctx->wr_curr_bio)
 | |
| 		return;
 | |
| 
 | |
| 	sbio = sctx->wr_curr_bio;
 | |
| 	sctx->wr_curr_bio = NULL;
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	/* process all writes in a single worker thread. Then the block layer
 | |
| 	 * orders the requests before sending them to the driver which
 | |
| 	 * doubled the write performance on spinning disks when measured
 | |
| 	 * with Linux 3.5 */
 | |
| 	btrfsic_check_bio(sbio->bio);
 | |
| 	submit_bio(sbio->bio);
 | |
| 
 | |
| 	if (btrfs_is_zoned(sctx->fs_info))
 | |
| 		sctx->write_pointer = sbio->physical + sbio->sector_count *
 | |
| 			sctx->fs_info->sectorsize;
 | |
| }
 | |
| 
 | |
| static void scrub_wr_bio_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_bio *sbio = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 | |
| 
 | |
| 	sbio->status = bio->bi_status;
 | |
| 	sbio->bio = bio;
 | |
| 
 | |
| 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
 | |
| 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 | |
| }
 | |
| 
 | |
| static void scrub_wr_bio_end_io_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 | |
| 	struct scrub_ctx *sctx = sbio->sctx;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
 | |
| 	if (sbio->status) {
 | |
| 		struct btrfs_dev_replace *dev_replace =
 | |
| 			&sbio->sctx->fs_info->dev_replace;
 | |
| 
 | |
| 		for (i = 0; i < sbio->sector_count; i++) {
 | |
| 			struct scrub_sector *sector = sbio->sectors[i];
 | |
| 
 | |
| 			sector->io_error = 1;
 | |
| 			atomic64_inc(&dev_replace->num_write_errors);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sbio->sector_count; i++)
 | |
| 		scrub_sector_put(sbio->sectors[i]);
 | |
| 
 | |
| 	bio_put(sbio->bio);
 | |
| 	kfree(sbio);
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static int scrub_checksum(struct scrub_block *sblock)
 | |
| {
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to initialize these stats currently,
 | |
| 	 * because this function only use return value
 | |
| 	 * instead of these stats value.
 | |
| 	 *
 | |
| 	 * Todo:
 | |
| 	 * always use stats
 | |
| 	 */
 | |
| 	sblock->header_error = 0;
 | |
| 	sblock->generation_error = 0;
 | |
| 	sblock->checksum_error = 0;
 | |
| 
 | |
| 	WARN_ON(sblock->sector_count < 1);
 | |
| 	flags = sblock->sectors[0]->flags;
 | |
| 	ret = 0;
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		ret = scrub_checksum_data(sblock);
 | |
| 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 		ret = scrub_checksum_tree_block(sblock);
 | |
| 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
 | |
| 		(void)scrub_checksum_super(sblock);
 | |
| 	else
 | |
| 		WARN_ON(1);
 | |
| 	if (ret)
 | |
| 		scrub_handle_errored_block(sblock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_data(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	struct scrub_sector *sector;
 | |
| 	char *kaddr;
 | |
| 
 | |
| 	BUG_ON(sblock->sector_count < 1);
 | |
| 	sector = sblock->sectors[0];
 | |
| 	if (!sector->have_csum)
 | |
| 		return 0;
 | |
| 
 | |
| 	kaddr = page_address(sector->page);
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 	crypto_shash_init(shash);
 | |
| 
 | |
| 	/*
 | |
| 	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
 | |
| 	 * only contains one sector of data.
 | |
| 	 */
 | |
| 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
 | |
| 
 | |
| 	if (memcmp(csum, sector->csum, fs_info->csum_size))
 | |
| 		sblock->checksum_error = 1;
 | |
| 	return sblock->checksum_error;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_tree_block(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_header *h;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	u8 calculated_csum[BTRFS_CSUM_SIZE];
 | |
| 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 | |
| 	/*
 | |
| 	 * This is done in sectorsize steps even for metadata as there's a
 | |
| 	 * constraint for nodesize to be aligned to sectorsize. This will need
 | |
| 	 * to change so we don't misuse data and metadata units like that.
 | |
| 	 */
 | |
| 	const u32 sectorsize = sctx->fs_info->sectorsize;
 | |
| 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
 | |
| 	int i;
 | |
| 	struct scrub_sector *sector;
 | |
| 	char *kaddr;
 | |
| 
 | |
| 	BUG_ON(sblock->sector_count < 1);
 | |
| 
 | |
| 	/* Each member in sectors is just one sector */
 | |
| 	ASSERT(sblock->sector_count == num_sectors);
 | |
| 
 | |
| 	sector = sblock->sectors[0];
 | |
| 	kaddr = page_address(sector->page);
 | |
| 	h = (struct btrfs_header *)kaddr;
 | |
| 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't use the getter functions here, as we
 | |
| 	 * a) don't have an extent buffer and
 | |
| 	 * b) the page is already kmapped
 | |
| 	 */
 | |
| 	if (sector->logical != btrfs_stack_header_bytenr(h))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	if (sector->generation != btrfs_stack_header_generation(h)) {
 | |
| 		sblock->header_error = 1;
 | |
| 		sblock->generation_error = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!scrub_check_fsid(h->fsid, sector))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 | |
| 		   BTRFS_UUID_SIZE))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 	crypto_shash_init(shash);
 | |
| 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 | |
| 			    sectorsize - BTRFS_CSUM_SIZE);
 | |
| 
 | |
| 	for (i = 1; i < num_sectors; i++) {
 | |
| 		kaddr = page_address(sblock->sectors[i]->page);
 | |
| 		crypto_shash_update(shash, kaddr, sectorsize);
 | |
| 	}
 | |
| 
 | |
| 	crypto_shash_final(shash, calculated_csum);
 | |
| 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
 | |
| 		sblock->checksum_error = 1;
 | |
| 
 | |
| 	return sblock->header_error || sblock->checksum_error;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_super(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_super_block *s;
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	u8 calculated_csum[BTRFS_CSUM_SIZE];
 | |
| 	struct scrub_sector *sector;
 | |
| 	char *kaddr;
 | |
| 	int fail_gen = 0;
 | |
| 	int fail_cor = 0;
 | |
| 
 | |
| 	BUG_ON(sblock->sector_count < 1);
 | |
| 	sector = sblock->sectors[0];
 | |
| 	kaddr = page_address(sector->page);
 | |
| 	s = (struct btrfs_super_block *)kaddr;
 | |
| 
 | |
| 	if (sector->logical != btrfs_super_bytenr(s))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	if (sector->generation != btrfs_super_generation(s))
 | |
| 		++fail_gen;
 | |
| 
 | |
| 	if (!scrub_check_fsid(s->fsid, sector))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 	crypto_shash_init(shash);
 | |
| 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
 | |
| 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
 | |
| 
 | |
| 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	if (fail_cor + fail_gen) {
 | |
| 		/*
 | |
| 		 * if we find an error in a super block, we just report it.
 | |
| 		 * They will get written with the next transaction commit
 | |
| 		 * anyway
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		++sctx->stat.super_errors;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (fail_cor)
 | |
| 			btrfs_dev_stat_inc_and_print(sector->dev,
 | |
| 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 		else
 | |
| 			btrfs_dev_stat_inc_and_print(sector->dev,
 | |
| 				BTRFS_DEV_STAT_GENERATION_ERRS);
 | |
| 	}
 | |
| 
 | |
| 	return fail_cor + fail_gen;
 | |
| }
 | |
| 
 | |
| static void scrub_block_get(struct scrub_block *sblock)
 | |
| {
 | |
| 	refcount_inc(&sblock->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_block_put(struct scrub_block *sblock)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sblock->refs)) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (sblock->sparity)
 | |
| 			scrub_parity_put(sblock->sparity);
 | |
| 
 | |
| 		for (i = 0; i < sblock->sector_count; i++)
 | |
| 			scrub_sector_put(sblock->sectors[i]);
 | |
| 		kfree(sblock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_sector_get(struct scrub_sector *sector)
 | |
| {
 | |
| 	atomic_inc(§or->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_sector_put(struct scrub_sector *sector)
 | |
| {
 | |
| 	if (atomic_dec_and_test(§or->refs)) {
 | |
| 		if (sector->page)
 | |
| 			__free_page(sector->page);
 | |
| 		kfree(sector);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 | |
|  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 | |
|  */
 | |
| static void scrub_throttle(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	const int time_slice = 1000;
 | |
| 	struct scrub_bio *sbio;
 | |
| 	struct btrfs_device *device;
 | |
| 	s64 delta;
 | |
| 	ktime_t now;
 | |
| 	u32 div;
 | |
| 	u64 bwlimit;
 | |
| 
 | |
| 	sbio = sctx->bios[sctx->curr];
 | |
| 	device = sbio->dev;
 | |
| 	bwlimit = READ_ONCE(device->scrub_speed_max);
 | |
| 	if (bwlimit == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Slice is divided into intervals when the IO is submitted, adjust by
 | |
| 	 * bwlimit and maximum of 64 intervals.
 | |
| 	 */
 | |
| 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
 | |
| 	div = min_t(u32, 64, div);
 | |
| 
 | |
| 	/* Start new epoch, set deadline */
 | |
| 	now = ktime_get();
 | |
| 	if (sctx->throttle_deadline == 0) {
 | |
| 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
 | |
| 		sctx->throttle_sent = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Still in the time to send? */
 | |
| 	if (ktime_before(now, sctx->throttle_deadline)) {
 | |
| 		/* If current bio is within the limit, send it */
 | |
| 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
 | |
| 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
 | |
| 			return;
 | |
| 
 | |
| 		/* We're over the limit, sleep until the rest of the slice */
 | |
| 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
 | |
| 	} else {
 | |
| 		/* New request after deadline, start new epoch */
 | |
| 		delta = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (delta) {
 | |
| 		long timeout;
 | |
| 
 | |
| 		timeout = div_u64(delta * HZ, 1000);
 | |
| 		schedule_timeout_interruptible(timeout);
 | |
| 	}
 | |
| 
 | |
| 	/* Next call will start the deadline period */
 | |
| 	sctx->throttle_deadline = 0;
 | |
| }
 | |
| 
 | |
| static void scrub_submit(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 
 | |
| 	if (sctx->curr == -1)
 | |
| 		return;
 | |
| 
 | |
| 	scrub_throttle(sctx);
 | |
| 
 | |
| 	sbio = sctx->bios[sctx->curr];
 | |
| 	sctx->curr = -1;
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	btrfsic_check_bio(sbio->bio);
 | |
| 	submit_bio(sbio->bio);
 | |
| }
 | |
| 
 | |
| static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
 | |
| 				      struct scrub_sector *sector)
 | |
| {
 | |
| 	struct scrub_block *sblock = sector->sblock;
 | |
| 	struct scrub_bio *sbio;
 | |
| 	const u32 sectorsize = sctx->fs_info->sectorsize;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	/*
 | |
| 	 * grab a fresh bio or wait for one to become available
 | |
| 	 */
 | |
| 	while (sctx->curr == -1) {
 | |
| 		spin_lock(&sctx->list_lock);
 | |
| 		sctx->curr = sctx->first_free;
 | |
| 		if (sctx->curr != -1) {
 | |
| 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
 | |
| 			sctx->bios[sctx->curr]->next_free = -1;
 | |
| 			sctx->bios[sctx->curr]->sector_count = 0;
 | |
| 			spin_unlock(&sctx->list_lock);
 | |
| 		} else {
 | |
| 			spin_unlock(&sctx->list_lock);
 | |
| 			wait_event(sctx->list_wait, sctx->first_free != -1);
 | |
| 		}
 | |
| 	}
 | |
| 	sbio = sctx->bios[sctx->curr];
 | |
| 	if (sbio->sector_count == 0) {
 | |
| 		sbio->physical = sector->physical;
 | |
| 		sbio->logical = sector->logical;
 | |
| 		sbio->dev = sector->dev;
 | |
| 		if (!sbio->bio) {
 | |
| 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
 | |
| 					      REQ_OP_READ, GFP_NOFS);
 | |
| 		}
 | |
| 		sbio->bio->bi_private = sbio;
 | |
| 		sbio->bio->bi_end_io = scrub_bio_end_io;
 | |
| 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
 | |
| 		sbio->status = 0;
 | |
| 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
 | |
| 		   sector->physical ||
 | |
| 		   sbio->logical + sbio->sector_count * sectorsize !=
 | |
| 		   sector->logical ||
 | |
| 		   sbio->dev != sector->dev) {
 | |
| 		scrub_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	sbio->sectors[sbio->sector_count] = sector;
 | |
| 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
 | |
| 	if (ret != sectorsize) {
 | |
| 		if (sbio->sector_count < 1) {
 | |
| 			bio_put(sbio->bio);
 | |
| 			sbio->bio = NULL;
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		scrub_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	scrub_block_get(sblock); /* one for the page added to the bio */
 | |
| 	atomic_inc(&sblock->outstanding_sectors);
 | |
| 	sbio->sector_count++;
 | |
| 	if (sbio->sector_count == sctx->sectors_per_bio)
 | |
| 		scrub_submit(sctx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_block *sblock = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		sblock->no_io_error_seen = 0;
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	queue_work(fs_info->scrub_workers, &sblock->work);
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 logical;
 | |
| 	struct btrfs_device *dev;
 | |
| 
 | |
| 	logical = sblock->sectors[0]->logical;
 | |
| 	dev = sblock->sectors[0]->dev;
 | |
| 
 | |
| 	if (sblock->no_io_error_seen)
 | |
| 		scrub_recheck_block_checksum(sblock);
 | |
| 
 | |
| 	if (!sblock->no_io_error_seen) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"IO error rebuilding logical %llu for dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	} else if (sblock->header_error || sblock->checksum_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"failed to rebuild valid logical %llu for dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	} else {
 | |
| 		scrub_write_block_to_dev_replace(sblock);
 | |
| 	}
 | |
| 
 | |
| 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 	}
 | |
| 
 | |
| 	scrub_block_put(sblock);
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_pages(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
 | |
| 	u64 logical = sblock->sectors[0]->logical;
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 | |
| 			       &length, &bioc);
 | |
| 	if (ret || !bioc || !bioc->raid_map)
 | |
| 		goto bioc_out;
 | |
| 
 | |
| 	if (WARN_ON(!sctx->is_dev_replace ||
 | |
| 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
 | |
| 		/*
 | |
| 		 * We shouldn't be scrubbing a missing device. Even for dev
 | |
| 		 * replace, we should only get here for RAID 5/6. We either
 | |
| 		 * managed to mount something with no mirrors remaining or
 | |
| 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
 | |
| 		 */
 | |
| 		goto bioc_out;
 | |
| 	}
 | |
| 
 | |
| 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
 | |
| 	bio->bi_iter.bi_sector = logical >> 9;
 | |
| 	bio->bi_private = sblock;
 | |
| 	bio->bi_end_io = scrub_missing_raid56_end_io;
 | |
| 
 | |
| 	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
 | |
| 	if (!rbio)
 | |
| 		goto rbio_out;
 | |
| 
 | |
| 	for (i = 0; i < sblock->sector_count; i++) {
 | |
| 		struct scrub_sector *sector = sblock->sectors[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * For now, our scrub is still one page per sector, so pgoff
 | |
| 		 * is always 0.
 | |
| 		 */
 | |
| 		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
 | |
| 	}
 | |
| 
 | |
| 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
 | |
| 	scrub_block_get(sblock);
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	raid56_submit_missing_rbio(rbio);
 | |
| 	return;
 | |
| 
 | |
| rbio_out:
 | |
| 	bio_put(bio);
 | |
| bioc_out:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	btrfs_put_bioc(bioc);
 | |
| 	spin_lock(&sctx->stat_lock);
 | |
| 	sctx->stat.malloc_errors++;
 | |
| 	spin_unlock(&sctx->stat_lock);
 | |
| }
 | |
| 
 | |
| static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
 | |
| 		       u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 		       u64 gen, int mirror_num, u8 *csum,
 | |
| 		       u64 physical_for_dev_replace)
 | |
| {
 | |
| 	struct scrub_block *sblock;
 | |
| 	const u32 sectorsize = sctx->fs_info->sectorsize;
 | |
| 	int index;
 | |
| 
 | |
| 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 | |
| 	if (!sblock) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* one ref inside this function, plus one for each page added to
 | |
| 	 * a bio later on */
 | |
| 	refcount_set(&sblock->refs, 1);
 | |
| 	sblock->sctx = sctx;
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 
 | |
| 	for (index = 0; len > 0; index++) {
 | |
| 		struct scrub_sector *sector;
 | |
| 		/*
 | |
| 		 * Here we will allocate one page for one sector to scrub.
 | |
| 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
 | |
| 		 * more memory for PAGE_SIZE > sectorsize case.
 | |
| 		 */
 | |
| 		u32 l = min(sectorsize, len);
 | |
| 
 | |
| 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
 | |
| 		if (!sector) {
 | |
| leave_nomem:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			scrub_block_put(sblock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
 | |
| 		scrub_sector_get(sector);
 | |
| 		sblock->sectors[index] = sector;
 | |
| 		sector->sblock = sblock;
 | |
| 		sector->dev = dev;
 | |
| 		sector->flags = flags;
 | |
| 		sector->generation = gen;
 | |
| 		sector->logical = logical;
 | |
| 		sector->physical = physical;
 | |
| 		sector->physical_for_dev_replace = physical_for_dev_replace;
 | |
| 		sector->mirror_num = mirror_num;
 | |
| 		if (csum) {
 | |
| 			sector->have_csum = 1;
 | |
| 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
 | |
| 		} else {
 | |
| 			sector->have_csum = 0;
 | |
| 		}
 | |
| 		sblock->sector_count++;
 | |
| 		sector->page = alloc_page(GFP_KERNEL);
 | |
| 		if (!sector->page)
 | |
| 			goto leave_nomem;
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 		physical_for_dev_replace += l;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(sblock->sector_count == 0);
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
 | |
| 		/*
 | |
| 		 * This case should only be hit for RAID 5/6 device replace. See
 | |
| 		 * the comment in scrub_missing_raid56_pages() for details.
 | |
| 		 */
 | |
| 		scrub_missing_raid56_pages(sblock);
 | |
| 	} else {
 | |
| 		for (index = 0; index < sblock->sector_count; index++) {
 | |
| 			struct scrub_sector *sector = sblock->sectors[index];
 | |
| 			int ret;
 | |
| 
 | |
| 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
 | |
| 			if (ret) {
 | |
| 				scrub_block_put(sblock);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
 | |
| 			scrub_submit(sctx);
 | |
| 	}
 | |
| 
 | |
| 	/* last one frees, either here or in bio completion for last page */
 | |
| 	scrub_block_put(sblock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_bio_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_bio *sbio = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 | |
| 
 | |
| 	sbio->status = bio->bi_status;
 | |
| 	sbio->bio = bio;
 | |
| 
 | |
| 	queue_work(fs_info->scrub_workers, &sbio->work);
 | |
| }
 | |
| 
 | |
| static void scrub_bio_end_io_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 | |
| 	struct scrub_ctx *sctx = sbio->sctx;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
 | |
| 	if (sbio->status) {
 | |
| 		for (i = 0; i < sbio->sector_count; i++) {
 | |
| 			struct scrub_sector *sector = sbio->sectors[i];
 | |
| 
 | |
| 			sector->io_error = 1;
 | |
| 			sector->sblock->no_io_error_seen = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now complete the scrub_block items that have all pages completed */
 | |
| 	for (i = 0; i < sbio->sector_count; i++) {
 | |
| 		struct scrub_sector *sector = sbio->sectors[i];
 | |
| 		struct scrub_block *sblock = sector->sblock;
 | |
| 
 | |
| 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
 | |
| 			scrub_block_complete(sblock);
 | |
| 		scrub_block_put(sblock);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(sbio->bio);
 | |
| 	sbio->bio = NULL;
 | |
| 	spin_lock(&sctx->list_lock);
 | |
| 	sbio->next_free = sctx->first_free;
 | |
| 	sctx->first_free = sbio->index;
 | |
| 	spin_unlock(&sctx->list_lock);
 | |
| 
 | |
| 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 	}
 | |
| 
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
 | |
| 				       unsigned long *bitmap,
 | |
| 				       u64 start, u32 len)
 | |
| {
 | |
| 	u64 offset;
 | |
| 	u32 nsectors;
 | |
| 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
 | |
| 
 | |
| 	if (len >= sparity->stripe_len) {
 | |
| 		bitmap_set(bitmap, 0, sparity->nsectors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	start -= sparity->logic_start;
 | |
| 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
 | |
| 	offset = offset >> sectorsize_bits;
 | |
| 	nsectors = len >> sectorsize_bits;
 | |
| 
 | |
| 	if (offset + nsectors <= sparity->nsectors) {
 | |
| 		bitmap_set(bitmap, offset, nsectors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
 | |
| 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
 | |
| }
 | |
| 
 | |
| static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
 | |
| 						   u64 start, u32 len)
 | |
| {
 | |
| 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
 | |
| }
 | |
| 
 | |
| static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
 | |
| 						  u64 start, u32 len)
 | |
| {
 | |
| 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
 | |
| }
 | |
| 
 | |
| static void scrub_block_complete(struct scrub_block *sblock)
 | |
| {
 | |
| 	int corrupted = 0;
 | |
| 
 | |
| 	if (!sblock->no_io_error_seen) {
 | |
| 		corrupted = 1;
 | |
| 		scrub_handle_errored_block(sblock);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * if has checksum error, write via repair mechanism in
 | |
| 		 * dev replace case, otherwise write here in dev replace
 | |
| 		 * case.
 | |
| 		 */
 | |
| 		corrupted = scrub_checksum(sblock);
 | |
| 		if (!corrupted && sblock->sctx->is_dev_replace)
 | |
| 			scrub_write_block_to_dev_replace(sblock);
 | |
| 	}
 | |
| 
 | |
| 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
 | |
| 		u64 start = sblock->sectors[0]->logical;
 | |
| 		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
 | |
| 			  sblock->sctx->fs_info->sectorsize;
 | |
| 
 | |
| 		ASSERT(end - start <= U32_MAX);
 | |
| 		scrub_parity_mark_sectors_error(sblock->sparity,
 | |
| 						start, end - start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
 | |
| {
 | |
| 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
 | |
| 	list_del(&sum->list);
 | |
| 	kfree(sum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the desired csum for range [logical, logical + sectorsize), and store
 | |
|  * the csum into @csum.
 | |
|  *
 | |
|  * The search source is sctx->csum_list, which is a pre-populated list
 | |
|  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
 | |
|  * that is before @logical.
 | |
|  *
 | |
|  * Return 0 if there is no csum for the range.
 | |
|  * Return 1 if there is csum for the range and copied to @csum.
 | |
|  */
 | |
| static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 | |
| {
 | |
| 	bool found = false;
 | |
| 
 | |
| 	while (!list_empty(&sctx->csum_list)) {
 | |
| 		struct btrfs_ordered_sum *sum = NULL;
 | |
| 		unsigned long index;
 | |
| 		unsigned long num_sectors;
 | |
| 
 | |
| 		sum = list_first_entry(&sctx->csum_list,
 | |
| 				       struct btrfs_ordered_sum, list);
 | |
| 		/* The current csum range is beyond our range, no csum found */
 | |
| 		if (sum->bytenr > logical)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * The current sum is before our bytenr, since scrub is always
 | |
| 		 * done in bytenr order, the csum will never be used anymore,
 | |
| 		 * clean it up so that later calls won't bother with the range,
 | |
| 		 * and continue search the next range.
 | |
| 		 */
 | |
| 		if (sum->bytenr + sum->len <= logical) {
 | |
| 			drop_csum_range(sctx, sum);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Now the csum range covers our bytenr, copy the csum */
 | |
| 		found = true;
 | |
| 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
 | |
| 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
 | |
| 
 | |
| 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
 | |
| 		       sctx->fs_info->csum_size);
 | |
| 
 | |
| 		/* Cleanup the range if we're at the end of the csum range */
 | |
| 		if (index == num_sectors - 1)
 | |
| 			drop_csum_range(sctx, sum);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* scrub extent tries to collect up to 64 kB for each bio */
 | |
| static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
 | |
| 			u64 logical, u32 len,
 | |
| 			u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 			u64 gen, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_device *src_dev = dev;
 | |
| 	u64 src_physical = physical;
 | |
| 	int src_mirror = mirror_num;
 | |
| 	int ret;
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	u32 blocksize;
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			blocksize = map->stripe_len;
 | |
| 		else
 | |
| 			blocksize = sctx->fs_info->sectorsize;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.data_extents_scrubbed++;
 | |
| 		sctx->stat.data_bytes_scrubbed += len;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			blocksize = map->stripe_len;
 | |
| 		else
 | |
| 			blocksize = sctx->fs_info->nodesize;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.tree_extents_scrubbed++;
 | |
| 		sctx->stat.tree_bytes_scrubbed += len;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	} else {
 | |
| 		blocksize = sctx->fs_info->sectorsize;
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For dev-replace case, we can have @dev being a missing device.
 | |
| 	 * Regular scrub will avoid its execution on missing device at all,
 | |
| 	 * as that would trigger tons of read error.
 | |
| 	 *
 | |
| 	 * Reading from missing device will cause read error counts to
 | |
| 	 * increase unnecessarily.
 | |
| 	 * So here we change the read source to a good mirror.
 | |
| 	 */
 | |
| 	if (sctx->is_dev_replace && !dev->bdev)
 | |
| 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
 | |
| 				     &src_dev, &src_mirror);
 | |
| 	while (len) {
 | |
| 		u32 l = min(len, blocksize);
 | |
| 		int have_csum = 0;
 | |
| 
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 			/* push csums to sbio */
 | |
| 			have_csum = scrub_find_csum(sctx, logical, csum);
 | |
| 			if (have_csum == 0)
 | |
| 				++sctx->stat.no_csum;
 | |
| 		}
 | |
| 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
 | |
| 				    flags, gen, src_mirror,
 | |
| 				    have_csum ? csum : NULL, physical);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 		src_physical += l;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scrub_sectors_for_parity(struct scrub_parity *sparity,
 | |
| 				  u64 logical, u32 len,
 | |
| 				  u64 physical, struct btrfs_device *dev,
 | |
| 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct scrub_block *sblock;
 | |
| 	const u32 sectorsize = sctx->fs_info->sectorsize;
 | |
| 	int index;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(len, sectorsize));
 | |
| 
 | |
| 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 | |
| 	if (!sblock) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* one ref inside this function, plus one for each page added to
 | |
| 	 * a bio later on */
 | |
| 	refcount_set(&sblock->refs, 1);
 | |
| 	sblock->sctx = sctx;
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 	sblock->sparity = sparity;
 | |
| 	scrub_parity_get(sparity);
 | |
| 
 | |
| 	for (index = 0; len > 0; index++) {
 | |
| 		struct scrub_sector *sector;
 | |
| 
 | |
| 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
 | |
| 		if (!sector) {
 | |
| leave_nomem:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			scrub_block_put(sblock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
 | |
| 		/* For scrub block */
 | |
| 		scrub_sector_get(sector);
 | |
| 		sblock->sectors[index] = sector;
 | |
| 		/* For scrub parity */
 | |
| 		scrub_sector_get(sector);
 | |
| 		list_add_tail(§or->list, &sparity->sectors_list);
 | |
| 		sector->sblock = sblock;
 | |
| 		sector->dev = dev;
 | |
| 		sector->flags = flags;
 | |
| 		sector->generation = gen;
 | |
| 		sector->logical = logical;
 | |
| 		sector->physical = physical;
 | |
| 		sector->mirror_num = mirror_num;
 | |
| 		if (csum) {
 | |
| 			sector->have_csum = 1;
 | |
| 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
 | |
| 		} else {
 | |
| 			sector->have_csum = 0;
 | |
| 		}
 | |
| 		sblock->sector_count++;
 | |
| 		sector->page = alloc_page(GFP_KERNEL);
 | |
| 		if (!sector->page)
 | |
| 			goto leave_nomem;
 | |
| 
 | |
| 
 | |
| 		/* Iterate over the stripe range in sectorsize steps */
 | |
| 		len -= sectorsize;
 | |
| 		logical += sectorsize;
 | |
| 		physical += sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(sblock->sector_count == 0);
 | |
| 	for (index = 0; index < sblock->sector_count; index++) {
 | |
| 		struct scrub_sector *sector = sblock->sectors[index];
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
 | |
| 		if (ret) {
 | |
| 			scrub_block_put(sblock);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Last one frees, either here or in bio completion for last sector */
 | |
| 	scrub_block_put(sblock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scrub_extent_for_parity(struct scrub_parity *sparity,
 | |
| 				   u64 logical, u32 len,
 | |
| 				   u64 physical, struct btrfs_device *dev,
 | |
| 				   u64 flags, u64 gen, int mirror_num)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	int ret;
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	u32 blocksize;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
 | |
| 		scrub_parity_mark_sectors_error(sparity, logical, len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 		blocksize = sparity->stripe_len;
 | |
| 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		blocksize = sparity->stripe_len;
 | |
| 	} else {
 | |
| 		blocksize = sctx->fs_info->sectorsize;
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	while (len) {
 | |
| 		u32 l = min(len, blocksize);
 | |
| 		int have_csum = 0;
 | |
| 
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 			/* push csums to sbio */
 | |
| 			have_csum = scrub_find_csum(sctx, logical, csum);
 | |
| 			if (have_csum == 0)
 | |
| 				goto skip;
 | |
| 		}
 | |
| 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
 | |
| 					     flags, gen, mirror_num,
 | |
| 					     have_csum ? csum : NULL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| skip:
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a physical address, this will calculate it's
 | |
|  * logical offset. if this is a parity stripe, it will return
 | |
|  * the most left data stripe's logical offset.
 | |
|  *
 | |
|  * return 0 if it is a data stripe, 1 means parity stripe.
 | |
|  */
 | |
| static int get_raid56_logic_offset(u64 physical, int num,
 | |
| 				   struct map_lookup *map, u64 *offset,
 | |
| 				   u64 *stripe_start)
 | |
| {
 | |
| 	int i;
 | |
| 	int j = 0;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 last_offset;
 | |
| 	u32 stripe_index;
 | |
| 	u32 rot;
 | |
| 	const int data_stripes = nr_data_stripes(map);
 | |
| 
 | |
| 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
 | |
| 	if (stripe_start)
 | |
| 		*stripe_start = last_offset;
 | |
| 
 | |
| 	*offset = last_offset;
 | |
| 	for (i = 0; i < data_stripes; i++) {
 | |
| 		*offset = last_offset + i * map->stripe_len;
 | |
| 
 | |
| 		stripe_nr = div64_u64(*offset, map->stripe_len);
 | |
| 		stripe_nr = div_u64(stripe_nr, data_stripes);
 | |
| 
 | |
| 		/* Work out the disk rotation on this stripe-set */
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
 | |
| 		/* calculate which stripe this data locates */
 | |
| 		rot += i;
 | |
| 		stripe_index = rot % map->num_stripes;
 | |
| 		if (stripe_index == num)
 | |
| 			return 0;
 | |
| 		if (stripe_index < num)
 | |
| 			j++;
 | |
| 	}
 | |
| 	*offset = last_offset + j * map->stripe_len;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void scrub_free_parity(struct scrub_parity *sparity)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct scrub_sector *curr, *next;
 | |
| 	int nbits;
 | |
| 
 | |
| 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
 | |
| 	if (nbits) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors += nbits;
 | |
| 		sctx->stat.uncorrectable_errors += nbits;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
 | |
| 		list_del_init(&curr->list);
 | |
| 		scrub_sector_put(curr);
 | |
| 	}
 | |
| 
 | |
| 	kfree(sparity);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_bio_endio_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
 | |
| 						    work);
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 
 | |
| 	scrub_free_parity(sparity);
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_bio_endio(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_parity *sparity = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
 | |
| 			  sparity->nsectors);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
 | |
| 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	u64 length;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
 | |
| 			   sparity->nsectors))
 | |
| 		goto out;
 | |
| 
 | |
| 	length = sparity->logic_end - sparity->logic_start;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
 | |
| 			       &length, &bioc);
 | |
| 	if (ret || !bioc || !bioc->raid_map)
 | |
| 		goto bioc_out;
 | |
| 
 | |
| 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
 | |
| 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
 | |
| 	bio->bi_private = sparity;
 | |
| 	bio->bi_end_io = scrub_parity_bio_endio;
 | |
| 
 | |
| 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
 | |
| 					      sparity->scrub_dev,
 | |
| 					      sparity->dbitmap,
 | |
| 					      sparity->nsectors);
 | |
| 	if (!rbio)
 | |
| 		goto rbio_out;
 | |
| 
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	raid56_parity_submit_scrub_rbio(rbio);
 | |
| 	return;
 | |
| 
 | |
| rbio_out:
 | |
| 	bio_put(bio);
 | |
| bioc_out:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	btrfs_put_bioc(bioc);
 | |
| 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
 | |
| 		  sparity->nsectors);
 | |
| 	spin_lock(&sctx->stat_lock);
 | |
| 	sctx->stat.malloc_errors++;
 | |
| 	spin_unlock(&sctx->stat_lock);
 | |
| out:
 | |
| 	scrub_free_parity(sparity);
 | |
| }
 | |
| 
 | |
| static inline int scrub_calc_parity_bitmap_len(int nsectors)
 | |
| {
 | |
| 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_get(struct scrub_parity *sparity)
 | |
| {
 | |
| 	refcount_inc(&sparity->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_put(struct scrub_parity *sparity)
 | |
| {
 | |
| 	if (!refcount_dec_and_test(&sparity->refs))
 | |
| 		return;
 | |
| 
 | |
| 	scrub_parity_check_and_repair(sparity);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if the extent item range covers any byte of the range.
 | |
|  * Return <0 if the extent item is before @search_start.
 | |
|  * Return >0 if the extent item is after @start_start + @search_len.
 | |
|  */
 | |
| static int compare_extent_item_range(struct btrfs_path *path,
 | |
| 				     u64 search_start, u64 search_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
 | |
| 	u64 len;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
 | |
| 	       key.type == BTRFS_METADATA_ITEM_KEY);
 | |
| 	if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 		len = fs_info->nodesize;
 | |
| 	else
 | |
| 		len = key.offset;
 | |
| 
 | |
| 	if (key.objectid + len <= search_start)
 | |
| 		return -1;
 | |
| 	if (key.objectid >= search_start + search_len)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate one extent item which covers any byte in range
 | |
|  * [@search_start, @search_start + @search_length)
 | |
|  *
 | |
|  * If the path is not initialized, we will initialize the search by doing
 | |
|  * a btrfs_search_slot().
 | |
|  * If the path is already initialized, we will use the path as the initial
 | |
|  * slot, to avoid duplicated btrfs_search_slot() calls.
 | |
|  *
 | |
|  * NOTE: If an extent item starts before @search_start, we will still
 | |
|  * return the extent item. This is for data extent crossing stripe boundary.
 | |
|  *
 | |
|  * Return 0 if we found such extent item, and @path will point to the extent item.
 | |
|  * Return >0 if no such extent item can be found, and @path will be released.
 | |
|  * Return <0 if hit fatal error, and @path will be released.
 | |
|  */
 | |
| static int find_first_extent_item(struct btrfs_root *extent_root,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 search_start, u64 search_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Continue using the existing path */
 | |
| 	if (path->nodes[0])
 | |
| 		goto search_forward;
 | |
| 
 | |
| 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.objectid = search_start;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ASSERT(ret > 0);
 | |
| 	/*
 | |
| 	 * Here we intentionally pass 0 as @min_objectid, as there could be
 | |
| 	 * an extent item starting before @search_start.
 | |
| 	 */
 | |
| 	ret = btrfs_previous_extent_item(extent_root, path, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * No matter whether we have found an extent item, the next loop will
 | |
| 	 * properly do every check on the key.
 | |
| 	 */
 | |
| search_forward:
 | |
| 	while (true) {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid >= search_start + search_len)
 | |
| 			break;
 | |
| 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
 | |
| 		    key.type != BTRFS_EXTENT_ITEM_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		ret = compare_extent_item_range(path, search_start, search_len);
 | |
| 		if (ret == 0)
 | |
| 			return ret;
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| next:
 | |
| 		path->slots[0]++;
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 			ret = btrfs_next_leaf(extent_root, path);
 | |
| 			if (ret) {
 | |
| 				/* Either no more item or fatal error */
 | |
| 				btrfs_release_path(path);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
 | |
| 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
 | |
| 	       key.type == BTRFS_EXTENT_ITEM_KEY);
 | |
| 	*extent_start_ret = key.objectid;
 | |
| 	if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 		*size_ret = path->nodes[0]->fs_info->nodesize;
 | |
| 	else
 | |
| 		*size_ret = key.offset;
 | |
| 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
 | |
| 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
 | |
| 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
 | |
| }
 | |
| 
 | |
| static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
 | |
| 				      u64 boundary_start, u64 boudary_len)
 | |
| {
 | |
| 	return (extent_start < boundary_start &&
 | |
| 		extent_start + extent_len > boundary_start) ||
 | |
| 	       (extent_start < boundary_start + boudary_len &&
 | |
| 		extent_start + extent_len > boundary_start + boudary_len);
 | |
| }
 | |
| 
 | |
| static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
 | |
| 					       struct scrub_parity *sparity,
 | |
| 					       struct map_lookup *map,
 | |
| 					       struct btrfs_device *sdev,
 | |
| 					       struct btrfs_path *path,
 | |
| 					       u64 logical)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
 | |
| 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
 | |
| 	u64 cur_logical = logical;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 | |
| 
 | |
| 	/* Path must not be populated */
 | |
| 	ASSERT(!path->nodes[0]);
 | |
| 
 | |
| 	while (cur_logical < logical + map->stripe_len) {
 | |
| 		struct btrfs_io_context *bioc = NULL;
 | |
| 		struct btrfs_device *extent_dev;
 | |
| 		u64 extent_start;
 | |
| 		u64 extent_size;
 | |
| 		u64 mapped_length;
 | |
| 		u64 extent_flags;
 | |
| 		u64 extent_gen;
 | |
| 		u64 extent_physical;
 | |
| 		u64 extent_mirror_num;
 | |
| 
 | |
| 		ret = find_first_extent_item(extent_root, path, cur_logical,
 | |
| 					     logical + map->stripe_len - cur_logical);
 | |
| 		/* No more extent item in this data stripe */
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
 | |
| 				&extent_gen);
 | |
| 
 | |
| 		/* Metadata should not cross stripe boundaries */
 | |
| 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
 | |
| 		    does_range_cross_boundary(extent_start, extent_size,
 | |
| 					      logical, map->stripe_len)) {
 | |
| 			btrfs_err(fs_info,
 | |
| 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 | |
| 				  extent_start, logical);
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.uncorrectable_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			cur_logical += extent_size;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip hole range which doesn't have any extent */
 | |
| 		cur_logical = max(extent_start, cur_logical);
 | |
| 
 | |
| 		/* Truncate the range inside this data stripe */
 | |
| 		extent_size = min(extent_start + extent_size,
 | |
| 				  logical + map->stripe_len) - cur_logical;
 | |
| 		extent_start = cur_logical;
 | |
| 		ASSERT(extent_size <= U32_MAX);
 | |
| 
 | |
| 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
 | |
| 
 | |
| 		mapped_length = extent_size;
 | |
| 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
 | |
| 				      &mapped_length, &bioc, 0);
 | |
| 		if (!ret && (!bioc || mapped_length < extent_size))
 | |
| 			ret = -EIO;
 | |
| 		if (ret) {
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 			scrub_parity_mark_sectors_error(sparity, extent_start,
 | |
| 							extent_size);
 | |
| 			break;
 | |
| 		}
 | |
| 		extent_physical = bioc->stripes[0].physical;
 | |
| 		extent_mirror_num = bioc->mirror_num;
 | |
| 		extent_dev = bioc->stripes[0].dev;
 | |
| 		btrfs_put_bioc(bioc);
 | |
| 
 | |
| 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
 | |
| 					       extent_start + extent_size - 1,
 | |
| 					       &sctx->csum_list, 1);
 | |
| 		if (ret) {
 | |
| 			scrub_parity_mark_sectors_error(sparity, extent_start,
 | |
| 							extent_size);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = scrub_extent_for_parity(sparity, extent_start,
 | |
| 					      extent_size, extent_physical,
 | |
| 					      extent_dev, extent_flags,
 | |
| 					      extent_gen, extent_mirror_num);
 | |
| 		scrub_free_csums(sctx);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			scrub_parity_mark_sectors_error(sparity, extent_start,
 | |
| 							extent_size);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 		cur_logical += extent_size;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
 | |
| 						  struct map_lookup *map,
 | |
| 						  struct btrfs_device *sdev,
 | |
| 						  u64 logic_start,
 | |
| 						  u64 logic_end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 cur_logical;
 | |
| 	int ret;
 | |
| 	struct scrub_parity *sparity;
 | |
| 	int nsectors;
 | |
| 	int bitmap_len;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	ASSERT(map->stripe_len <= U32_MAX);
 | |
| 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
 | |
| 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
 | |
| 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
 | |
| 			  GFP_NOFS);
 | |
| 	if (!sparity) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(map->stripe_len <= U32_MAX);
 | |
| 	sparity->stripe_len = map->stripe_len;
 | |
| 	sparity->nsectors = nsectors;
 | |
| 	sparity->sctx = sctx;
 | |
| 	sparity->scrub_dev = sdev;
 | |
| 	sparity->logic_start = logic_start;
 | |
| 	sparity->logic_end = logic_end;
 | |
| 	refcount_set(&sparity->refs, 1);
 | |
| 	INIT_LIST_HEAD(&sparity->sectors_list);
 | |
| 	sparity->dbitmap = sparity->bitmap;
 | |
| 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	for (cur_logical = logic_start; cur_logical < logic_end;
 | |
| 	     cur_logical += map->stripe_len) {
 | |
| 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
 | |
| 							  sdev, path, cur_logical);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	scrub_parity_put(sparity);
 | |
| 	scrub_submit(sctx);
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static void sync_replace_for_zoned(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	if (!btrfs_is_zoned(sctx->fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	sctx->flush_all_writes = true;
 | |
| 	scrub_submit(sctx);
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| }
 | |
| 
 | |
| static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
 | |
| 					u64 physical, u64 physical_end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	if (sctx->write_pointer < physical_end) {
 | |
| 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
 | |
| 						    physical,
 | |
| 						    sctx->write_pointer);
 | |
| 		if (ret)
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "zoned: failed to recover write pointer");
 | |
| 	}
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scrub one range which can only has simple mirror based profile.
 | |
|  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 | |
|  *  RAID0/RAID10).
 | |
|  *
 | |
|  * Since we may need to handle a subset of block group, we need @logical_start
 | |
|  * and @logical_length parameter.
 | |
|  */
 | |
| static int scrub_simple_mirror(struct scrub_ctx *sctx,
 | |
| 			       struct btrfs_root *extent_root,
 | |
| 			       struct btrfs_root *csum_root,
 | |
| 			       struct btrfs_block_group *bg,
 | |
| 			       struct map_lookup *map,
 | |
| 			       u64 logical_start, u64 logical_length,
 | |
| 			       struct btrfs_device *device,
 | |
| 			       u64 physical, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	const u64 logical_end = logical_start + logical_length;
 | |
| 	/* An artificial limit, inherit from old scrub behavior */
 | |
| 	const u32 max_length = SZ_64K;
 | |
| 	struct btrfs_path path = { 0 };
 | |
| 	u64 cur_logical = logical_start;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* The range must be inside the bg */
 | |
| 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 | |
| 
 | |
| 	path.search_commit_root = 1;
 | |
| 	path.skip_locking = 1;
 | |
| 	/* Go through each extent items inside the logical range */
 | |
| 	while (cur_logical < logical_end) {
 | |
| 		u64 extent_start;
 | |
| 		u64 extent_len;
 | |
| 		u64 extent_flags;
 | |
| 		u64 extent_gen;
 | |
| 		u64 scrub_len;
 | |
| 
 | |
| 		/* Canceled? */
 | |
| 		if (atomic_read(&fs_info->scrub_cancel_req) ||
 | |
| 		    atomic_read(&sctx->cancel_req)) {
 | |
| 			ret = -ECANCELED;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Paused? */
 | |
| 		if (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 			/* Push queued extents */
 | |
| 			sctx->flush_all_writes = true;
 | |
| 			scrub_submit(sctx);
 | |
| 			mutex_lock(&sctx->wr_lock);
 | |
| 			scrub_wr_submit(sctx);
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			wait_event(sctx->list_wait,
 | |
| 				   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 			sctx->flush_all_writes = false;
 | |
| 			scrub_blocked_if_needed(fs_info);
 | |
| 		}
 | |
| 		/* Block group removed? */
 | |
| 		spin_lock(&bg->lock);
 | |
| 		if (bg->removed) {
 | |
| 			spin_unlock(&bg->lock);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&bg->lock);
 | |
| 
 | |
| 		ret = find_first_extent_item(extent_root, &path, cur_logical,
 | |
| 					     logical_end - cur_logical);
 | |
| 		if (ret > 0) {
 | |
| 			/* No more extent, just update the accounting */
 | |
| 			sctx->stat.last_physical = physical + logical_length;
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		get_extent_info(&path, &extent_start, &extent_len,
 | |
| 				&extent_flags, &extent_gen);
 | |
| 		/* Skip hole range which doesn't have any extent */
 | |
| 		cur_logical = max(extent_start, cur_logical);
 | |
| 
 | |
| 		/*
 | |
| 		 * Scrub len has three limits:
 | |
| 		 * - Extent size limit
 | |
| 		 * - Scrub range limit
 | |
| 		 *   This is especially imporatant for RAID0/RAID10 to reuse
 | |
| 		 *   this function
 | |
| 		 * - Max scrub size limit
 | |
| 		 */
 | |
| 		scrub_len = min(min(extent_start + extent_len,
 | |
| 				    logical_end), cur_logical + max_length) -
 | |
| 			    cur_logical;
 | |
| 
 | |
| 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
 | |
| 					cur_logical + scrub_len - 1,
 | |
| 					&sctx->csum_list, 1);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
 | |
| 		    does_range_cross_boundary(extent_start, extent_len,
 | |
| 					      logical_start, logical_length)) {
 | |
| 			btrfs_err(fs_info,
 | |
| "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
 | |
| 				  extent_start, logical_start, logical_end);
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.uncorrectable_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			cur_logical += scrub_len;
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
 | |
| 				   cur_logical - logical_start + physical,
 | |
| 				   device, extent_flags, extent_gen,
 | |
| 				   mirror_num);
 | |
| 		scrub_free_csums(sctx);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (sctx->is_dev_replace)
 | |
| 			sync_replace_for_zoned(sctx);
 | |
| 		cur_logical += scrub_len;
 | |
| 		/* Don't hold CPU for too long time */
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	btrfs_release_path(&path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Calculate the full stripe length for simple stripe based profiles */
 | |
| static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 
 | |
| 	return map->num_stripes / map->sub_stripes * map->stripe_len;
 | |
| }
 | |
| 
 | |
| /* Get the logical bytenr for the stripe */
 | |
| static u64 simple_stripe_get_logical(struct map_lookup *map,
 | |
| 				     struct btrfs_block_group *bg,
 | |
| 				     int stripe_index)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 	ASSERT(stripe_index < map->num_stripes);
 | |
| 
 | |
| 	/*
 | |
| 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
 | |
| 	 * skip.
 | |
| 	 */
 | |
| 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
 | |
| }
 | |
| 
 | |
| /* Get the mirror number for the stripe */
 | |
| static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 	ASSERT(stripe_index < map->num_stripes);
 | |
| 
 | |
| 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
 | |
| 	return stripe_index % map->sub_stripes + 1;
 | |
| }
 | |
| 
 | |
| static int scrub_simple_stripe(struct scrub_ctx *sctx,
 | |
| 			       struct btrfs_root *extent_root,
 | |
| 			       struct btrfs_root *csum_root,
 | |
| 			       struct btrfs_block_group *bg,
 | |
| 			       struct map_lookup *map,
 | |
| 			       struct btrfs_device *device,
 | |
| 			       int stripe_index)
 | |
| {
 | |
| 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
 | |
| 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
 | |
| 	const u64 orig_physical = map->stripes[stripe_index].physical;
 | |
| 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
 | |
| 	u64 cur_logical = orig_logical;
 | |
| 	u64 cur_physical = orig_physical;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (cur_logical < bg->start + bg->length) {
 | |
| 		/*
 | |
| 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
 | |
| 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
 | |
| 		 * this stripe.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
 | |
| 					  cur_logical, map->stripe_len, device,
 | |
| 					  cur_physical, mirror_num);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		/* Skip to next stripe which belongs to the target device */
 | |
| 		cur_logical += logical_increment;
 | |
| 		/* For physical offset, we just go to next stripe */
 | |
| 		cur_physical += map->stripe_len;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
 | |
| 					   struct btrfs_block_group *bg,
 | |
| 					   struct map_lookup *map,
 | |
| 					   struct btrfs_device *scrub_dev,
 | |
| 					   int stripe_index, u64 dev_extent_len)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_root *csum_root;
 | |
| 	struct blk_plug plug;
 | |
| 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
 | |
| 	const u64 chunk_logical = bg->start;
 | |
| 	int ret;
 | |
| 	u64 physical = map->stripes[stripe_index].physical;
 | |
| 	const u64 physical_end = physical + dev_extent_len;
 | |
| 	u64 logical;
 | |
| 	u64 logic_end;
 | |
| 	/* The logical increment after finishing one stripe */
 | |
| 	u64 increment;
 | |
| 	/* Offset inside the chunk */
 | |
| 	u64 offset;
 | |
| 	u64 stripe_logical;
 | |
| 	u64 stripe_end;
 | |
| 	int stop_loop = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * work on commit root. The related disk blocks are static as
 | |
| 	 * long as COW is applied. This means, it is save to rewrite
 | |
| 	 * them to repair disk errors without any race conditions
 | |
| 	 */
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 	path->reada = READA_FORWARD;
 | |
| 
 | |
| 	wait_event(sctx->list_wait,
 | |
| 		   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 	scrub_blocked_if_needed(fs_info);
 | |
| 
 | |
| 	root = btrfs_extent_root(fs_info, bg->start);
 | |
| 	csum_root = btrfs_csum_root(fs_info, bg->start);
 | |
| 
 | |
| 	/*
 | |
| 	 * collect all data csums for the stripe to avoid seeking during
 | |
| 	 * the scrub. This might currently (crc32) end up to be about 1MB
 | |
| 	 */
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	if (sctx->is_dev_replace &&
 | |
| 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		sctx->write_pointer = physical;
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 		sctx->flush_all_writes = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There used to be a big double loop to handle all profiles using the
 | |
| 	 * same routine, which grows larger and more gross over time.
 | |
| 	 *
 | |
| 	 * So here we handle each profile differently, so simpler profiles
 | |
| 	 * have simpler scrubbing function.
 | |
| 	 */
 | |
| 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
 | |
| 		/*
 | |
| 		 * Above check rules out all complex profile, the remaining
 | |
| 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
 | |
| 		 * mirrored duplication without stripe.
 | |
| 		 *
 | |
| 		 * Only @physical and @mirror_num needs to calculated using
 | |
| 		 * @stripe_index.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
 | |
| 				bg->start, bg->length, scrub_dev,
 | |
| 				map->stripes[stripe_index].physical,
 | |
| 				stripe_index + 1);
 | |
| 		offset = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
 | |
| 					  scrub_dev, stripe_index);
 | |
| 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Only RAID56 goes through the old code */
 | |
| 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Calculate the logical end of the stripe */
 | |
| 	get_raid56_logic_offset(physical_end, stripe_index,
 | |
| 				map, &logic_end, NULL);
 | |
| 	logic_end += chunk_logical;
 | |
| 
 | |
| 	/* Initialize @offset in case we need to go to out: label */
 | |
| 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
 | |
| 	increment = map->stripe_len * nr_data_stripes(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
 | |
| 	 * using their physical offset.
 | |
| 	 */
 | |
| 	while (physical < physical_end) {
 | |
| 		ret = get_raid56_logic_offset(physical, stripe_index, map,
 | |
| 					      &logical, &stripe_logical);
 | |
| 		logical += chunk_logical;
 | |
| 		if (ret) {
 | |
| 			/* it is parity strip */
 | |
| 			stripe_logical += chunk_logical;
 | |
| 			stripe_end = stripe_logical + increment;
 | |
| 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
 | |
| 						  stripe_logical,
 | |
| 						  stripe_end);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we're at a data stripe, scrub each extents in the range.
 | |
| 		 *
 | |
| 		 * At this stage, if we ignore the repair part, inside each data
 | |
| 		 * stripe it is no different than SINGLE profile.
 | |
| 		 * We can reuse scrub_simple_mirror() here, as the repair part
 | |
| 		 * is still based on @mirror_num.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
 | |
| 					  logical, map->stripe_len,
 | |
| 					  scrub_dev, physical, 1);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| next:
 | |
| 		logical += increment;
 | |
| 		physical += map->stripe_len;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		if (stop_loop)
 | |
| 			sctx->stat.last_physical = map->stripes[stripe_index].physical +
 | |
| 						   dev_extent_len;
 | |
| 		else
 | |
| 			sctx->stat.last_physical = physical;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (stop_loop)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	/* push queued extents */
 | |
| 	scrub_submit(sctx);
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	if (sctx->is_dev_replace && ret >= 0) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		ret2 = sync_write_pointer_for_zoned(sctx,
 | |
| 				chunk_logical + offset,
 | |
| 				map->stripes[stripe_index].physical,
 | |
| 				physical_end);
 | |
| 		if (ret2)
 | |
| 			ret = ret2;
 | |
| 	}
 | |
| 
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 | |
| 					  struct btrfs_block_group *bg,
 | |
| 					  struct btrfs_device *scrub_dev,
 | |
| 					  u64 dev_offset,
 | |
| 					  u64 dev_extent_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map *em;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	read_lock(&map_tree->lock);
 | |
| 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
 | |
| 	read_unlock(&map_tree->lock);
 | |
| 
 | |
| 	if (!em) {
 | |
| 		/*
 | |
| 		 * Might have been an unused block group deleted by the cleaner
 | |
| 		 * kthread or relocation.
 | |
| 		 */
 | |
| 		spin_lock(&bg->lock);
 | |
| 		if (!bg->removed)
 | |
| 			ret = -EINVAL;
 | |
| 		spin_unlock(&bg->lock);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (em->start != bg->start)
 | |
| 		goto out;
 | |
| 	if (em->len < dev_extent_len)
 | |
| 		goto out;
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	for (i = 0; i < map->num_stripes; ++i) {
 | |
| 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
 | |
| 		    map->stripes[i].physical == dev_offset) {
 | |
| 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
 | |
| 					   dev_extent_len);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int finish_extent_writes_for_zoned(struct btrfs_root *root,
 | |
| 					  struct btrfs_block_group *cache)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_wait_block_group_reservations(cache);
 | |
| 	btrfs_wait_nocow_writers(cache);
 | |
| 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
 | |
| 
 | |
| 	trans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 	return btrfs_commit_transaction(trans);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx,
 | |
| 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_dev_extent *dev_extent = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	u64 chunk_offset;
 | |
| 	int ret = 0;
 | |
| 	int ro_set;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	key.objectid = scrub_dev->devid;
 | |
| 	key.offset = 0ull;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		u64 dev_extent_len;
 | |
| 
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] >=
 | |
| 			    btrfs_header_nritems(path->nodes[0])) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret < 0)
 | |
| 					break;
 | |
| 				if (ret > 0) {
 | |
| 					ret = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 			} else {
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(l, &found_key, slot);
 | |
| 
 | |
| 		if (found_key.objectid != scrub_dev->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset < key.offset)
 | |
| 			break;
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
 | |
| 
 | |
| 		if (found_key.offset + dev_extent_len <= start)
 | |
| 			goto skip;
 | |
| 
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | |
| 
 | |
| 		/*
 | |
| 		 * get a reference on the corresponding block group to prevent
 | |
| 		 * the chunk from going away while we scrub it
 | |
| 		 */
 | |
| 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 
 | |
| 		/* some chunks are removed but not committed to disk yet,
 | |
| 		 * continue scrubbing */
 | |
| 		if (!cache)
 | |
| 			goto skip;
 | |
| 
 | |
| 		ASSERT(cache->start <= chunk_offset);
 | |
| 		/*
 | |
| 		 * We are using the commit root to search for device extents, so
 | |
| 		 * that means we could have found a device extent item from a
 | |
| 		 * block group that was deleted in the current transaction. The
 | |
| 		 * logical start offset of the deleted block group, stored at
 | |
| 		 * @chunk_offset, might be part of the logical address range of
 | |
| 		 * a new block group (which uses different physical extents).
 | |
| 		 * In this case btrfs_lookup_block_group() has returned the new
 | |
| 		 * block group, and its start address is less than @chunk_offset.
 | |
| 		 *
 | |
| 		 * We skip such new block groups, because it's pointless to
 | |
| 		 * process them, as we won't find their extents because we search
 | |
| 		 * for them using the commit root of the extent tree. For a device
 | |
| 		 * replace it's also fine to skip it, we won't miss copying them
 | |
| 		 * to the target device because we have the write duplication
 | |
| 		 * setup through the regular write path (by btrfs_map_block()),
 | |
| 		 * and we have committed a transaction when we started the device
 | |
| 		 * replace, right after setting up the device replace state.
 | |
| 		 */
 | |
| 		if (cache->start < chunk_offset) {
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 
 | |
| 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
 | |
| 			spin_lock(&cache->lock);
 | |
| 			if (!cache->to_copy) {
 | |
| 				spin_unlock(&cache->lock);
 | |
| 				btrfs_put_block_group(cache);
 | |
| 				goto skip;
 | |
| 			}
 | |
| 			spin_unlock(&cache->lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that while we are scrubbing the corresponding block
 | |
| 		 * group doesn't get its logical address and its device extents
 | |
| 		 * reused for another block group, which can possibly be of a
 | |
| 		 * different type and different profile. We do this to prevent
 | |
| 		 * false error detections and crashes due to bogus attempts to
 | |
| 		 * repair extents.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (cache->removed) {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 		btrfs_freeze_block_group(cache);
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
 | |
| 		 * to avoid deadlock caused by:
 | |
| 		 * btrfs_inc_block_group_ro()
 | |
| 		 * -> btrfs_wait_for_commit()
 | |
| 		 * -> btrfs_commit_transaction()
 | |
| 		 * -> btrfs_scrub_pause()
 | |
| 		 */
 | |
| 		scrub_pause_on(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't do chunk preallocation for scrub.
 | |
| 		 *
 | |
| 		 * This is especially important for SYSTEM bgs, or we can hit
 | |
| 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
 | |
| 		 * 1. The only SYSTEM bg is marked RO.
 | |
| 		 *    Since SYSTEM bg is small, that's pretty common.
 | |
| 		 * 2. New SYSTEM bg will be allocated
 | |
| 		 *    Due to regular version will allocate new chunk.
 | |
| 		 * 3. New SYSTEM bg is empty and will get cleaned up
 | |
| 		 *    Before cleanup really happens, it's marked RO again.
 | |
| 		 * 4. Empty SYSTEM bg get scrubbed
 | |
| 		 *    We go back to 2.
 | |
| 		 *
 | |
| 		 * This can easily boost the amount of SYSTEM chunks if cleaner
 | |
| 		 * thread can't be triggered fast enough, and use up all space
 | |
| 		 * of btrfs_super_block::sys_chunk_array
 | |
| 		 *
 | |
| 		 * While for dev replace, we need to try our best to mark block
 | |
| 		 * group RO, to prevent race between:
 | |
| 		 * - Write duplication
 | |
| 		 *   Contains latest data
 | |
| 		 * - Scrub copy
 | |
| 		 *   Contains data from commit tree
 | |
| 		 *
 | |
| 		 * If target block group is not marked RO, nocow writes can
 | |
| 		 * be overwritten by scrub copy, causing data corruption.
 | |
| 		 * So for dev-replace, it's not allowed to continue if a block
 | |
| 		 * group is not RO.
 | |
| 		 */
 | |
| 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
 | |
| 		if (!ret && sctx->is_dev_replace) {
 | |
| 			ret = finish_extent_writes_for_zoned(root, cache);
 | |
| 			if (ret) {
 | |
| 				btrfs_dec_block_group_ro(cache);
 | |
| 				scrub_pause_off(fs_info);
 | |
| 				btrfs_put_block_group(cache);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			ro_set = 1;
 | |
| 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
 | |
| 			/*
 | |
| 			 * btrfs_inc_block_group_ro return -ENOSPC when it
 | |
| 			 * failed in creating new chunk for metadata.
 | |
| 			 * It is not a problem for scrub, because
 | |
| 			 * metadata are always cowed, and our scrub paused
 | |
| 			 * commit_transactions.
 | |
| 			 */
 | |
| 			ro_set = 0;
 | |
| 		} else if (ret == -ETXTBSY) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 		   "skipping scrub of block group %llu due to active swapfile",
 | |
| 				   cache->start);
 | |
| 			scrub_pause_off(fs_info);
 | |
| 			ret = 0;
 | |
| 			goto skip_unfreeze;
 | |
| 		} else {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed setting block group ro: %d", ret);
 | |
| 			btrfs_unfreeze_block_group(cache);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			scrub_pause_off(fs_info);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now the target block is marked RO, wait for nocow writes to
 | |
| 		 * finish before dev-replace.
 | |
| 		 * COW is fine, as COW never overwrites extents in commit tree.
 | |
| 		 */
 | |
| 		if (sctx->is_dev_replace) {
 | |
| 			btrfs_wait_nocow_writers(cache);
 | |
| 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
 | |
| 					cache->length);
 | |
| 		}
 | |
| 
 | |
| 		scrub_pause_off(fs_info);
 | |
| 		down_write(&dev_replace->rwsem);
 | |
| 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
 | |
| 		dev_replace->cursor_left = found_key.offset;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		up_write(&dev_replace->rwsem);
 | |
| 
 | |
| 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
 | |
| 				  dev_extent_len);
 | |
| 
 | |
| 		/*
 | |
| 		 * flush, submit all pending read and write bios, afterwards
 | |
| 		 * wait for them.
 | |
| 		 * Note that in the dev replace case, a read request causes
 | |
| 		 * write requests that are submitted in the read completion
 | |
| 		 * worker. Therefore in the current situation, it is required
 | |
| 		 * that all write requests are flushed, so that all read and
 | |
| 		 * write requests are really completed when bios_in_flight
 | |
| 		 * changes to 0.
 | |
| 		 */
 | |
| 		sctx->flush_all_writes = true;
 | |
| 		scrub_submit(sctx);
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 		wait_event(sctx->list_wait,
 | |
| 			   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 
 | |
| 		scrub_pause_on(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * must be called before we decrease @scrub_paused.
 | |
| 		 * make sure we don't block transaction commit while
 | |
| 		 * we are waiting pending workers finished.
 | |
| 		 */
 | |
| 		wait_event(sctx->list_wait,
 | |
| 			   atomic_read(&sctx->workers_pending) == 0);
 | |
| 		sctx->flush_all_writes = false;
 | |
| 
 | |
| 		scrub_pause_off(fs_info);
 | |
| 
 | |
| 		if (sctx->is_dev_replace &&
 | |
| 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
 | |
| 						      cache, found_key.offset))
 | |
| 			ro_set = 0;
 | |
| 
 | |
| 		down_write(&dev_replace->rwsem);
 | |
| 		dev_replace->cursor_left = dev_replace->cursor_right;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		up_write(&dev_replace->rwsem);
 | |
| 
 | |
| 		if (ro_set)
 | |
| 			btrfs_dec_block_group_ro(cache);
 | |
| 
 | |
| 		/*
 | |
| 		 * We might have prevented the cleaner kthread from deleting
 | |
| 		 * this block group if it was already unused because we raced
 | |
| 		 * and set it to RO mode first. So add it back to the unused
 | |
| 		 * list, otherwise it might not ever be deleted unless a manual
 | |
| 		 * balance is triggered or it becomes used and unused again.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
 | |
| 		    cache->used == 0) {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
 | |
| 				btrfs_discard_queue_work(&fs_info->discard_ctl,
 | |
| 							 cache);
 | |
| 			else
 | |
| 				btrfs_mark_bg_unused(cache);
 | |
| 		} else {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 		}
 | |
| skip_unfreeze:
 | |
| 		btrfs_unfreeze_block_group(cache);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (sctx->is_dev_replace &&
 | |
| 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (sctx->stat.malloc_errors > 0) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| skip:
 | |
| 		key.offset = found_key.offset + dev_extent_len;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
 | |
| 					   struct btrfs_device *scrub_dev)
 | |
| {
 | |
| 	int	i;
 | |
| 	u64	bytenr;
 | |
| 	u64	gen;
 | |
| 	int	ret;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 
 | |
| 	if (BTRFS_FS_ERROR(fs_info))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	/* Seed devices of a new filesystem has their own generation. */
 | |
| 	if (scrub_dev->fs_devices != fs_info->fs_devices)
 | |
| 		gen = scrub_dev->generation;
 | |
| 	else
 | |
| 		gen = fs_info->last_trans_committed;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 		bytenr = btrfs_sb_offset(i);
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
 | |
| 		    scrub_dev->commit_total_bytes)
 | |
| 			break;
 | |
| 		if (!btrfs_check_super_location(scrub_dev, bytenr))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
 | |
| 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
 | |
| 				    NULL, bytenr);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_workers_put(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
 | |
| 					&fs_info->scrub_lock)) {
 | |
| 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
 | |
| 		struct workqueue_struct *scrub_wr_comp =
 | |
| 						fs_info->scrub_wr_completion_workers;
 | |
| 		struct workqueue_struct *scrub_parity =
 | |
| 						fs_info->scrub_parity_workers;
 | |
| 
 | |
| 		fs_info->scrub_workers = NULL;
 | |
| 		fs_info->scrub_wr_completion_workers = NULL;
 | |
| 		fs_info->scrub_parity_workers = NULL;
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 		if (scrub_workers)
 | |
| 			destroy_workqueue(scrub_workers);
 | |
| 		if (scrub_wr_comp)
 | |
| 			destroy_workqueue(scrub_wr_comp);
 | |
| 		if (scrub_parity)
 | |
| 			destroy_workqueue(scrub_parity);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get a reference count on fs_info->scrub_workers. start worker if necessary
 | |
|  */
 | |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
 | |
| 						int is_dev_replace)
 | |
| {
 | |
| 	struct workqueue_struct *scrub_workers = NULL;
 | |
| 	struct workqueue_struct *scrub_wr_comp = NULL;
 | |
| 	struct workqueue_struct *scrub_parity = NULL;
 | |
| 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 | |
| 	int max_active = fs_info->thread_pool_size;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
 | |
| 		return 0;
 | |
| 
 | |
| 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
 | |
| 					is_dev_replace ? 1 : max_active);
 | |
| 	if (!scrub_workers)
 | |
| 		goto fail_scrub_workers;
 | |
| 
 | |
| 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
 | |
| 	if (!scrub_wr_comp)
 | |
| 		goto fail_scrub_wr_completion_workers;
 | |
| 
 | |
| 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
 | |
| 	if (!scrub_parity)
 | |
| 		goto fail_scrub_parity_workers;
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
 | |
| 		ASSERT(fs_info->scrub_workers == NULL &&
 | |
| 		       fs_info->scrub_wr_completion_workers == NULL &&
 | |
| 		       fs_info->scrub_parity_workers == NULL);
 | |
| 		fs_info->scrub_workers = scrub_workers;
 | |
| 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
 | |
| 		fs_info->scrub_parity_workers = scrub_parity;
 | |
| 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Other thread raced in and created the workers for us */
 | |
| 	refcount_inc(&fs_info->scrub_workers_refcnt);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	destroy_workqueue(scrub_parity);
 | |
| fail_scrub_parity_workers:
 | |
| 	destroy_workqueue(scrub_wr_comp);
 | |
| fail_scrub_wr_completion_workers:
 | |
| 	destroy_workqueue(scrub_workers);
 | |
| fail_scrub_workers:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
 | |
| 		    u64 end, struct btrfs_scrub_progress *progress,
 | |
| 		    int readonly, int is_dev_replace)
 | |
| {
 | |
| 	struct btrfs_dev_lookup_args args = { .devid = devid };
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int ret;
 | |
| 	struct btrfs_device *dev;
 | |
| 	unsigned int nofs_flag;
 | |
| 
 | |
| 	if (btrfs_fs_closing(fs_info))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
 | |
| 		/*
 | |
| 		 * in this case scrub is unable to calculate the checksum
 | |
| 		 * the way scrub is implemented. Do not handle this
 | |
| 		 * situation at all because it won't ever happen.
 | |
| 		 */
 | |
| 		btrfs_err(fs_info,
 | |
| 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
 | |
| 		       fs_info->nodesize,
 | |
| 		       BTRFS_STRIPE_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->nodesize >
 | |
| 	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
 | |
| 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
 | |
| 		/*
 | |
| 		 * Would exhaust the array bounds of sectorv member in
 | |
| 		 * struct scrub_block
 | |
| 		 */
 | |
| 		btrfs_err(fs_info,
 | |
| "scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
 | |
| 		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
 | |
| 		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate outside of device_list_mutex */
 | |
| 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
 | |
| 	if (IS_ERR(sctx))
 | |
| 		return PTR_ERR(sctx);
 | |
| 
 | |
| 	ret = scrub_workers_get(fs_info, is_dev_replace);
 | |
| 	if (ret)
 | |
| 		goto out_free_ctx;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, &args);
 | |
| 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
 | |
| 		     !is_dev_replace)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_dev_replace && !readonly &&
 | |
| 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 			"scrub on devid %llu: filesystem on %s is not writable",
 | |
| 				 devid, rcu_str_deref(dev->name));
 | |
| 		ret = -EROFS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	down_read(&fs_info->dev_replace.rwsem);
 | |
| 	if (dev->scrub_ctx ||
 | |
| 	    (!is_dev_replace &&
 | |
| 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
 | |
| 		up_read(&fs_info->dev_replace.rwsem);
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EINPROGRESS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	up_read(&fs_info->dev_replace.rwsem);
 | |
| 
 | |
| 	sctx->readonly = readonly;
 | |
| 	dev->scrub_ctx = sctx;
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * checking @scrub_pause_req here, we can avoid
 | |
| 	 * race between committing transaction and scrubbing.
 | |
| 	 */
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_inc(&fs_info->scrubs_running);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to avoid deadlock with reclaim when there is a transaction
 | |
| 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
 | |
| 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
 | |
| 	 * invoked by our callees. The pausing request is done when the
 | |
| 	 * transaction commit starts, and it blocks the transaction until scrub
 | |
| 	 * is paused (done at specific points at scrub_stripe() or right above
 | |
| 	 * before incrementing fs_info->scrubs_running).
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	if (!is_dev_replace) {
 | |
| 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
 | |
| 		/*
 | |
| 		 * by holding device list mutex, we can
 | |
| 		 * kick off writing super in log tree sync.
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = scrub_supers(sctx, dev);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 	atomic_dec(&fs_info->scrubs_running);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
 | |
| 
 | |
| 	if (progress)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 
 | |
| 	if (!is_dev_replace)
 | |
| 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
 | |
| 			ret ? "not finished" : "finished", devid, ret);
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	dev->scrub_ctx = NULL;
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	scrub_workers_put(fs_info);
 | |
| 	scrub_put_ctx(sctx);
 | |
| 
 | |
| 	return ret;
 | |
| out:
 | |
| 	scrub_workers_put(fs_info);
 | |
| out_free_ctx:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	atomic_inc(&fs_info->scrub_pause_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_paused) !=
 | |
| 	       atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_paused) ==
 | |
| 			   atomic_read(&fs_info->scrubs_running));
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_dec(&fs_info->scrub_pause_req);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&fs_info->scrub_cancel_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_running) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	atomic_dec(&fs_info->scrub_cancel_req);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = dev->fs_info;
 | |
| 	struct scrub_ctx *sctx;
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	sctx = dev->scrub_ctx;
 | |
| 	if (!sctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 	atomic_inc(&sctx->cancel_req);
 | |
| 	while (dev->scrub_ctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   dev->scrub_ctx == NULL);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
 | |
| 			 struct btrfs_scrub_progress *progress)
 | |
| {
 | |
| 	struct btrfs_dev_lookup_args args = { .devid = devid };
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct scrub_ctx *sctx = NULL;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, &args);
 | |
| 	if (dev)
 | |
| 		sctx = dev->scrub_ctx;
 | |
| 	if (sctx)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 | |
| }
 | |
| 
 | |
| static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
 | |
| 				 u64 extent_logical, u32 extent_len,
 | |
| 				 u64 *extent_physical,
 | |
| 				 struct btrfs_device **extent_dev,
 | |
| 				 int *extent_mirror_num)
 | |
| {
 | |
| 	u64 mapped_length;
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	mapped_length = extent_len;
 | |
| 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
 | |
| 			      &mapped_length, &bioc, 0);
 | |
| 	if (ret || !bioc || mapped_length < extent_len ||
 | |
| 	    !bioc->stripes[0].dev->bdev) {
 | |
| 		btrfs_put_bioc(bioc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	*extent_physical = bioc->stripes[0].physical;
 | |
| 	*extent_mirror_num = bioc->mirror_num;
 | |
| 	*extent_dev = bioc->stripes[0].dev;
 | |
| 	btrfs_put_bioc(bioc);
 | |
| }
 |