mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The freeing of all map elements may invoke bpf_obj_free_fields() to free
the special fields in the map value. Since these special fields may be
allocated from bpf memory allocator, migrate_{disable|enable} pairs are
necessary for the freeing of these special fields.
To simplify reasoning about when migrate_disable() is needed for the
freeing of these special fields, let the caller to guarantee migration
is disabled before invoking bpf_obj_free_fields(). Therefore, disabling
migration before calling ops->map_free() to simplify the freeing of map
values or special fields allocated from bpf memory allocator.
After disabling migration in bpf_map_free(), there is no need for
additional migration_{disable|enable} pairs in these ->map_free()
callbacks. Remove these redundant invocations.
The migrate_{disable|enable} pairs in the underlying implementation of
bpf_obj_free_fields() will be removed by the following patch.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20250108010728.207536-11-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
		
	
			
		
			
				
	
	
		
			270 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			270 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
 | 
						|
#include <linux/interval_tree_generic.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/bpf_mem_alloc.h>
 | 
						|
#include <linux/bpf.h>
 | 
						|
#include "range_tree.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * struct range_tree is a data structure used to allocate contiguous memory
 | 
						|
 * ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is
 | 
						|
 * represented by struct range_node or 'rn' for short.
 | 
						|
 * rn->rn_rbnode links it into an interval tree while
 | 
						|
 * rn->rb_range_size links it into a second rbtree sorted by size of the range.
 | 
						|
 * __find_range() performs binary search and best fit algorithm to find the
 | 
						|
 * range less or equal requested size.
 | 
						|
 * range_tree_clear/set() clears or sets a range of bits in this bitmap. The
 | 
						|
 * adjacent ranges are merged or split at the same time.
 | 
						|
 *
 | 
						|
 * The split/merge logic is based/borrowed from XFS's xbitmap32 added
 | 
						|
 * in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree").
 | 
						|
 *
 | 
						|
 * The implementation relies on external lock to protect rbtree-s.
 | 
						|
 * The alloc/free of range_node-s is done via bpf_mem_alloc.
 | 
						|
 *
 | 
						|
 * bpf arena is using range_tree to represent unallocated slots.
 | 
						|
 * At init time:
 | 
						|
 *   range_tree_set(rt, 0, max);
 | 
						|
 * Then:
 | 
						|
 *   start = range_tree_find(rt, len);
 | 
						|
 *   if (start >= 0)
 | 
						|
 *     range_tree_clear(rt, start, len);
 | 
						|
 * to find free range and mark slots as allocated and later:
 | 
						|
 *   range_tree_set(rt, start, len);
 | 
						|
 * to mark as unallocated after use.
 | 
						|
 */
 | 
						|
struct range_node {
 | 
						|
	struct rb_node rn_rbnode;
 | 
						|
	struct rb_node rb_range_size;
 | 
						|
	u32 rn_start;
 | 
						|
	u32 rn_last; /* inclusive */
 | 
						|
	u32 __rn_subtree_last;
 | 
						|
};
 | 
						|
 | 
						|
static struct range_node *rb_to_range_node(struct rb_node *rb)
 | 
						|
{
 | 
						|
	return rb_entry(rb, struct range_node, rb_range_size);
 | 
						|
}
 | 
						|
 | 
						|
static u32 rn_size(struct range_node *rn)
 | 
						|
{
 | 
						|
	return rn->rn_last - rn->rn_start + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Find range that fits best to requested size */
 | 
						|
static inline struct range_node *__find_range(struct range_tree *rt, u32 len)
 | 
						|
{
 | 
						|
	struct rb_node *rb = rt->range_size_root.rb_root.rb_node;
 | 
						|
	struct range_node *best = NULL;
 | 
						|
 | 
						|
	while (rb) {
 | 
						|
		struct range_node *rn = rb_to_range_node(rb);
 | 
						|
 | 
						|
		if (len <= rn_size(rn)) {
 | 
						|
			best = rn;
 | 
						|
			rb = rb->rb_right;
 | 
						|
		} else {
 | 
						|
			rb = rb->rb_left;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return best;
 | 
						|
}
 | 
						|
 | 
						|
s64 range_tree_find(struct range_tree *rt, u32 len)
 | 
						|
{
 | 
						|
	struct range_node *rn;
 | 
						|
 | 
						|
	rn = __find_range(rt, len);
 | 
						|
	if (!rn)
 | 
						|
		return -ENOENT;
 | 
						|
	return rn->rn_start;
 | 
						|
}
 | 
						|
 | 
						|
/* Insert the range into rbtree sorted by the range size */
 | 
						|
static inline void __range_size_insert(struct range_node *rn,
 | 
						|
				       struct rb_root_cached *root)
 | 
						|
{
 | 
						|
	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
 | 
						|
	u64 size = rn_size(rn);
 | 
						|
	bool leftmost = true;
 | 
						|
 | 
						|
	while (*link) {
 | 
						|
		rb = *link;
 | 
						|
		if (size > rn_size(rb_to_range_node(rb))) {
 | 
						|
			link = &rb->rb_left;
 | 
						|
		} else {
 | 
						|
			link = &rb->rb_right;
 | 
						|
			leftmost = false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&rn->rb_range_size, rb, link);
 | 
						|
	rb_insert_color_cached(&rn->rb_range_size, root, leftmost);
 | 
						|
}
 | 
						|
 | 
						|
#define START(node) ((node)->rn_start)
 | 
						|
#define LAST(node)  ((node)->rn_last)
 | 
						|
 | 
						|
INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32,
 | 
						|
		     __rn_subtree_last, START, LAST,
 | 
						|
		     static inline __maybe_unused,
 | 
						|
		     __range_it)
 | 
						|
 | 
						|
static inline __maybe_unused void
 | 
						|
range_it_insert(struct range_node *rn, struct range_tree *rt)
 | 
						|
{
 | 
						|
	__range_size_insert(rn, &rt->range_size_root);
 | 
						|
	__range_it_insert(rn, &rt->it_root);
 | 
						|
}
 | 
						|
 | 
						|
static inline __maybe_unused void
 | 
						|
range_it_remove(struct range_node *rn, struct range_tree *rt)
 | 
						|
{
 | 
						|
	rb_erase_cached(&rn->rb_range_size, &rt->range_size_root);
 | 
						|
	RB_CLEAR_NODE(&rn->rb_range_size);
 | 
						|
	__range_it_remove(rn, &rt->it_root);
 | 
						|
}
 | 
						|
 | 
						|
static inline __maybe_unused struct range_node *
 | 
						|
range_it_iter_first(struct range_tree *rt, u32 start, u32 last)
 | 
						|
{
 | 
						|
	return __range_it_iter_first(&rt->it_root, start, last);
 | 
						|
}
 | 
						|
 | 
						|
/* Clear the range in this range tree */
 | 
						|
int range_tree_clear(struct range_tree *rt, u32 start, u32 len)
 | 
						|
{
 | 
						|
	u32 last = start + len - 1;
 | 
						|
	struct range_node *new_rn;
 | 
						|
	struct range_node *rn;
 | 
						|
 | 
						|
	while ((rn = range_it_iter_first(rt, start, last))) {
 | 
						|
		if (rn->rn_start < start && rn->rn_last > last) {
 | 
						|
			u32 old_last = rn->rn_last;
 | 
						|
 | 
						|
			/* Overlaps with the entire clearing range */
 | 
						|
			range_it_remove(rn, rt);
 | 
						|
			rn->rn_last = start - 1;
 | 
						|
			range_it_insert(rn, rt);
 | 
						|
 | 
						|
			/* Add a range */
 | 
						|
			migrate_disable();
 | 
						|
			new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
 | 
						|
			migrate_enable();
 | 
						|
			if (!new_rn)
 | 
						|
				return -ENOMEM;
 | 
						|
			new_rn->rn_start = last + 1;
 | 
						|
			new_rn->rn_last = old_last;
 | 
						|
			range_it_insert(new_rn, rt);
 | 
						|
		} else if (rn->rn_start < start) {
 | 
						|
			/* Overlaps with the left side of the clearing range */
 | 
						|
			range_it_remove(rn, rt);
 | 
						|
			rn->rn_last = start - 1;
 | 
						|
			range_it_insert(rn, rt);
 | 
						|
		} else if (rn->rn_last > last) {
 | 
						|
			/* Overlaps with the right side of the clearing range */
 | 
						|
			range_it_remove(rn, rt);
 | 
						|
			rn->rn_start = last + 1;
 | 
						|
			range_it_insert(rn, rt);
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			/* in the middle of the clearing range */
 | 
						|
			range_it_remove(rn, rt);
 | 
						|
			migrate_disable();
 | 
						|
			bpf_mem_free(&bpf_global_ma, rn);
 | 
						|
			migrate_enable();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Is the whole range set ? */
 | 
						|
int is_range_tree_set(struct range_tree *rt, u32 start, u32 len)
 | 
						|
{
 | 
						|
	u32 last = start + len - 1;
 | 
						|
	struct range_node *left;
 | 
						|
 | 
						|
	/* Is this whole range set ? */
 | 
						|
	left = range_it_iter_first(rt, start, last);
 | 
						|
	if (left && left->rn_start <= start && left->rn_last >= last)
 | 
						|
		return 0;
 | 
						|
	return -ESRCH;
 | 
						|
}
 | 
						|
 | 
						|
/* Set the range in this range tree */
 | 
						|
int range_tree_set(struct range_tree *rt, u32 start, u32 len)
 | 
						|
{
 | 
						|
	u32 last = start + len - 1;
 | 
						|
	struct range_node *right;
 | 
						|
	struct range_node *left;
 | 
						|
	int err;
 | 
						|
 | 
						|
	/* Is this whole range already set ? */
 | 
						|
	left = range_it_iter_first(rt, start, last);
 | 
						|
	if (left && left->rn_start <= start && left->rn_last >= last)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Clear out everything in the range we want to set. */
 | 
						|
	err = range_tree_clear(rt, start, len);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/* Do we have a left-adjacent range ? */
 | 
						|
	left = range_it_iter_first(rt, start - 1, start - 1);
 | 
						|
	if (left && left->rn_last + 1 != start)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* Do we have a right-adjacent range ? */
 | 
						|
	right = range_it_iter_first(rt, last + 1, last + 1);
 | 
						|
	if (right && right->rn_start != last + 1)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (left && right) {
 | 
						|
		/* Combine left and right adjacent ranges */
 | 
						|
		range_it_remove(left, rt);
 | 
						|
		range_it_remove(right, rt);
 | 
						|
		left->rn_last = right->rn_last;
 | 
						|
		range_it_insert(left, rt);
 | 
						|
		migrate_disable();
 | 
						|
		bpf_mem_free(&bpf_global_ma, right);
 | 
						|
		migrate_enable();
 | 
						|
	} else if (left) {
 | 
						|
		/* Combine with the left range */
 | 
						|
		range_it_remove(left, rt);
 | 
						|
		left->rn_last = last;
 | 
						|
		range_it_insert(left, rt);
 | 
						|
	} else if (right) {
 | 
						|
		/* Combine with the right range */
 | 
						|
		range_it_remove(right, rt);
 | 
						|
		right->rn_start = start;
 | 
						|
		range_it_insert(right, rt);
 | 
						|
	} else {
 | 
						|
		migrate_disable();
 | 
						|
		left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
 | 
						|
		migrate_enable();
 | 
						|
		if (!left)
 | 
						|
			return -ENOMEM;
 | 
						|
		left->rn_start = start;
 | 
						|
		left->rn_last = last;
 | 
						|
		range_it_insert(left, rt);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void range_tree_destroy(struct range_tree *rt)
 | 
						|
{
 | 
						|
	struct range_node *rn;
 | 
						|
 | 
						|
	while ((rn = range_it_iter_first(rt, 0, -1U))) {
 | 
						|
		range_it_remove(rn, rt);
 | 
						|
		bpf_mem_free(&bpf_global_ma, rn);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void range_tree_init(struct range_tree *rt)
 | 
						|
{
 | 
						|
	rt->it_root = RB_ROOT_CACHED;
 | 
						|
	rt->range_size_root = RB_ROOT_CACHED;
 | 
						|
}
 |